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ABSTRACT Channel estimation is a crucial problem for massive multiple input multiple output (MIMO)

systems to achieve the expected benefits in terms of spectrum and energy efficiencies. However, a con-

siderable number of pilots are usually distributed over a large number of time-frequency resources using

orthogonal frequency division multiplexing (OFDM) to effectively estimate a large number of channel

coefficients in space and frequency domains, sacrificing spectral efficiency. In this paper, by assuming

MIMO-OFDM transmission, we start by proposing a tensor-based minimum mean square error (MMSE)

channel estimator that exploits the multidimensional nature of the frequency-selective massive MIMO chan-

nel in the frequency-domain, being a low-complexity alternative to the well-known vector-MMSE channel

estimation. Then, by incorporating a 3D sparse representation into the tensor-based channel model, a tensor

compressive sensing (tensor-CS)model is formulated by assuming that the channel is compressively sampled

in space (radio-frequency chains), time (symbol periods), and frequency (pilot subcarriers). This tensor-CS

model is used as the basis for the formulation of a tensor-orthogonal matching-pursuit (T-OMP) estimator

that solves a greedy problem per dimension of the measured tensor data. The proposed channel estimator

has two variants which may either resort to a joint search per tensor dimension or to a sequential search

that progressively reduces the search space across the tensor dimensions. The complexities of the different

tensor-based algorithms are studied and compared to those of the traditional vector-MMSE and vector-CS

estimators. Our results also corroborate the performance-complexity tradeoffs between T-MMSE andT-OMP

estimators, both being competing alternatives to their vector-based MMSE and OMP counterparts.

INDEX TERMS Channel estimation, massiveMIMO, compressive sensing, tensor analysis, Tucker3 decom-

position.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is a key

technology for future 5G wireless communication systems.

Employing hundreds of antennas at the base station (BS)

can potentially provide spectral efficiency gains compared to

multi-antenna solutions used in current Long Term Evolution

(LTE) systems [1]. The promised gains can only be achieved

if the BS has an accurate knowledge of the channel state

information (CSI). Otherwise, high beamforming gains can-

not be enjoyed by the user equipment (UE) [1], [2]. A major

The associate editor coordinating the review of this manuscript and
approving it for publication was Nizar Zorba.

bottleneck arising in the problem of channel estimation for

massive MIMO is the training overhead. The higher is the

number of antennas, the higher is the number (and length)

of pilot sequences [3]. This becomes a huge problem in

systems whose duplexing mode employs downlink pilots,

since the minimum length of the pilot sequences necessary

to provide a least squares channel estimate is determined by

the number of transmit antennas [4], [5]. In addition, since

most of the current wireless communication standards are

based on frequency division duplexing (FDD) and rely on

downlink channel estimation, the training overhead prob-

lem places a challenge for their evolution towards the mas-

sive MIMO scenario. Gao et al. [5] propose a closed-loop
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channel estimation scheme that adapts the training sequence

at every channel block, by optimizing the pilots over time.

The training overhead is reduced by resorting to com-

pressed channel representations. In [5], channel compression

is achieved thanks to the use of the eigenvectors of the spatial

channel covariance matrix. Indeed, sparse channel models

for wireless communications have been studied in a number

of works and different channel estimation methods based on

compressive sensing (CS) have been presented [6], [7], [9].

Adopting structured multipath channel models is partic-

ularly important in poor scattering propagation scenarios.

Examples of structured MIMO channels available in the lit-

erature are the Kronecker model [10], the Weichselberger’s

model [11] or the virtual channel representation [12]. In the

context of millimeter wave MIMO systems, exploiting struc-

tured (low-rank) channel models is possible via CS-based

estimators, as shown in [9], [13], and [14]. Bajwa et al. [9]

link sparse reconstruction tools to the channel estimation

problem and discuss the design of pilot assisted schemes.

The work in [14] capitalizes on structured channel models

to estimate the angles of arrival and departure, which allows

reconstructing the instantaneous CSI with good accuracy.

In [15], a sparse channel estimation technique is proposed to

recover the 2D angular information of the dominant channel

paths by exploiting the knowledge of the visibility region of

a planar array as well as the adaptation of the measurement

matrix (beam directions) during the channel acquisition pro-

cess. CS-based channel estimation has also been addressed in

a number of recent works in the context of mmWave MIMO

systems using hybrid analog-digital architectures [16]–[18].

In [16], a hierarchical multi-resolution codebook is used to

design the training beams to estimate the channel angular

parameters and adaptive CS-based algorithm is proposed.

Since modern wireless communication systems may oper-

ate on frequency-selective channels, solutions that takes into

account channel frequency-selectivity have been proposed

recently in [17]–[19], where the authors derive CS-based

algorithms that cope with wideband mmWave systems. The

solutions derived in [17] and [18] do not explicitly exploit

the multidimensional structure of the sparse massive MIMO

channel, by operating instead on the ‘‘vectorized’’ measure-

ments, such that vector-based sparse reconstruction algo-

rithms can be applied. Nasser and Elsabrouty [19] propose

a channel estimation algorithm that separately retrieves the

delay and angle parameters of the channel. However, the solu-

tion proposed therein only exploits the joint sparsity at the

transmitter side, due to the assumption of single-antenna

users. In this work, we are interested in a more general sce-

nario, where i) both ends of the wireless link (base station and

user terminal) are equipped with antenna arrays. This is likely

to happen in millimeter wave systems, where a large number

of antenna elements should be used to compensate for small

antenna apertures [20]; ii) the channel is frequency-selective,

which is the likely the case when operating in wideband

channels. Under these two main assumptions, the chan-

nel model naturally admits a multidimensional algebraic

structure which is also sparse in the joint space-delay domain.

Our interest is to preserve the mutidimensional structure of

the channel a well as to exploit its sparsity by resorting to a

tensor-based CS approach.

A. RELATED WORK

A useful tool to deal with multidimensional data is ten-

sor analysis in multilinear algebra [21]–[23]. In the context

of MIMO channel modeling and estimation, tensor analy-

sis has been used in a number of works as a mathemat-

ical formalism to describe the algebraic structure of the

channel [11], [24]–[26]. In [24], the Kronecker model was

extended to the wideband case using tensor modeling. Fol-

lowing that work, in [25], a tensor-based wideband channel

model built up from the Weichselberger’s model [11] was

proposed and validated experimentally. Zhang et al. [26]

introduced a CSI tensor expression and a full correlation

model for wideband MIMO channels by means of a gen-

eral coupling-based framework built from the relationship

between spatial and frequency channel dimensions. Beyond

the importance of channelmodeling on its own, tensormodels

such as the Parallel Factors (PARAFAC)model [27]–[29] and

the Tucker model [30] have interesting structural properties

that can be exploited to obtain sparse channel representations.

Among these models, the Tucker one is of particular interest

in this work because its structure provides us a complete

multilinear sparse channel representation that can be fully

exploited by a tensor-compressive sensing (CS) channel esti-

mator, as detailed in Section VI.

The joint use of tensor modeling and CS tools for

channel estimation in massive MIMO systems has been

addressed in few recent works [31]–[33]. In [31], the prob-

lem of uplink channel estimation for multiuser mmWave

MIMO systems is considered. Assuming a layered pilot

transmission scheme, a PARAFAC-based estimator is used

to separate effective channels of the different users, and

a CS-based algorithm is applied to estimate each user

angular parameters. A generalization of this method to

frequency-selective channels was recently given in [32]. The

work [33] establishes a link between the frequency-selective

mmWave MIMO channel estimation problem to the the-

ory of multi-way compressive sensing of sparse tensors via

PARAFAC analysis [34]. By leveraging on this link, a two-

stage algorithm for the joint estimation of the compressed

channel bases (spatial transmit, spatial receive, and delay)

is proposed. Although working under different assumptions,

all these methods have a common reasoning; they solve

the channel estimation problem in two stages. The first

stage consists of a PARAFAC-based estimator via an alter-

nating least squares (ALS) algorithm that separate mul-

tiuser signals [31], [32] or multipath components [33], while

the second stage consists of sparse recovery via CS to esti-

mate the channel parameters, such as angles and delays.

Note that the approach of [31], [32] deals with the uplink

multiuser scenario, where tensor-based estimation has the

goal of separating multiple user transmissions, while sparsity
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is solved using conventional (vector-based) CS algorithms.

In the present work, in addition to assuming a different

system setup, we take a different route to solve the prob-

lem. By assuming actual pilot placement schemes of MIMO-

OFDM, we formulate a tensor-based MMSE channel estima-

tor that exploits the multidimensional nature of the massive

MIMO-OFDM channel. Despite its conceptual simplicity,

this is the first time a tensor-MMSE approach is proposed for

MIMO-OFDM channel estimation, to the best of the authors

knowledge. As shown later in Section VIII, the tensor-

MMSE channel estimator performs close to the conventional

(vector-)MMSE one, while being much less computation-

ally complex. Regarding the exploitation of channel sparsity,

in contrast to previous works that rely on vector-CS recovery,

to the best of our knowledge, the present work is the first

resorting to a tensor-CS approach to fully exploit the multidi-

mensional sparse structure of the channel via a joint iterative

tensor-based estimation and CS recovery,

B. CONTRIBUTIONS

The contributions of this paper are summarized as follows.

• We develop a tensor-based MMSE channel estimator

that exploits the multilinear structure of the second

order statistics in space, time, and frequency dimen-

sions. The method consists of filtering each dimension

of the received signal tensor by using the modal min-

imum mean square error (MMSE) filters that operate

multilinearly on each dimension of the channel tensor.

The design of such filters is based on the knowledge of

the individual space, time, and frequency-domain cor-

relation matrices, being a low-complexity alternative to

the well-known vector-MMSE channel estimator, which

solves a single (large-scale) 1D optimization problem

based on the full correlation matrix.

• We propose a tensor-CS channel estimation approach

that resorts to a sparse Tucker3 tensor model to repre-

sent the frequency-selective massive MIMO channel in

the frequency-domain. More specifically, we formulate

a compressible channel representation in space (radio-

frequency chains), time (symbol periods) and frequency

(pilot subcarriers). This tensor-CS model is used as the

basis for the formulation of a T-OMP estimator that

solves a greedy problem per dimension of the measured

tensor data. The proposed channel estimator has two

variants which may either resort to a joint search per

tensor dimension or to a sequential search that pro-

gressively reduces the search space across the tensor

dimensions.

• We discuss the computational complexities of T-MMSE

and T-OMP algorithms and compare them with their

vector-MMSE and vector-CS counterparts, showing that

the proposed estimators are competing solutions for

channel estimation in massive MIMO-OFDM systems,

due to their good performance/complexity tradeoffs.

The remainder of this paper is organized as follows.

We first present some fundamental concepts of tensor

algebra in Section II. In Section III, we use a tensor

framework to model the frequency-selective massive MIMO

channel. Essentially, this model highlights that the channel

and its sparse representation enjoy a multilinear structure.

In Section IV, the basis system model and assumptions are

presented. In Section V, we formulate the tensor-MMSE

channel estimation approach, while in Section VI the

Tensor-CS approach is developed and the corresponding

algorithms are detailed. The simulation results are presented

in VIII, and the conclusions are drawn in Section IX.

Notations: Scalars are denoted by lower-case letters

(a, b, ...), vectors by bold lower-case letters (a, b, ...), matri-

ces by bold upper-case letters (A,B, ...), tensors are defined

by calligraphic upper-case letters (A,B, ...). AT,A†,A∗,AH

stand for transpose, Moore-Penrose pseudo-inverse, conju-

gate and Hermitian of A, respectively. The operators⊗, ⋄ and

◦ define the Kronecker, Khatri-Rao and the outer product,

respectively. For a matrix A ∈ C
I×R, the vec(·) operator

vectorizes a matrix by stacking its columns, i.e., vec(A) =

a ∈ C
IR×1.

II. TENSOR PREREQUISITES

Tensors aremultidimensional structures (i.e. arrayswithmore

than two dimensions) that can be viewed as natural extensions

of vectors and matrices to higher orders.

Definition 1: A tensor A ∈ R
I1×I2×...×IN is a N -th order

array whose typical elementA(i1, i2, . . . , iN ) is accessed via

N indices, in ∈ {I1, I2, . . . IN }.

To define a multiplication between a tensor and a matrix,

it is necessary to specify which mode of the tensor is affected

by that operation.

Definition 2: The n-mode product of a tensor X

∈ C
J1 × J2 ... × JN and a matrix A ∈ C

In × Jn is

symbolized by G = X ×n A, where Y ∈

C
J1 × J2 ... × Jn−1 × In × Jn+1 ...× JN , each element being

defined as [21]:

G(j1, . . . , in, . . . , jN )
.
=

Jn
∑

jn=1

X (j1, . . . , jn, . . . , jN )A(in, jn).

(1)

This product can be applied successively along several

modes, e.g., (X ×n A) ×m B = (X ×m B) ×n A (m 6= n).

In the casem = n, we have (X ×n A) ×n B = X ×n BA.

Definition 3: The Tucker3 decomposition for a three-order

tensor G ∈ RI×J×K is defined, in scalar form, as:

G(i, j, k) =

P
∑

p=1

Q
∑

q=1

R
∑

r=1

X (p, q, r)A(i, p)B(j, q)C(k, r),

(2)

whereG(i, j, k) andX (p, q, r) are elements of the third-order

tensor G ∈ C
I×J×K and X ∈ C

P×Q×R, respectively, A(i, p),

B(j, q), and C(k, r) are typical entries of the factor matrices

A ∈CI×P, B ∈CJ×Q, and C ∈CK×R, respectively. Using the

n-mode product notation, the Tucker3 decomposition can be
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expressed as

G = X ×1 A×2 B×3 C. (3)

The matrices A, B, C are associated with 1-mode, 2-mode,

and 3-mode products across the respective dimensions of the

input tensor X , yielding the output tensor G. Such an oper-

ation can also be interpreted as a three-dimensional filtering

(i.e. a multilinear compression/decompression) mapping X

into G, and is represented in Fig. 1.

FIGURE 1. n-mode product representation for a third-order tensor.

Another useful way of representing the tensor transfor-

mation (3) consists of rewriting it as three different (but

equivalent) unfolded forms, which are given by [21]

G(1) = AX (1) [C ⊗ B]T ∈ C
I×JK , (4)

G(2) = BX (2) [C ⊗ A]T ∈ C
J×IK , (5)

G(3) = CX (3) [B⊗ A]T ∈ C
K×IJ . (6)

Another way of representing the above equations resorts to

an equivalent vectorized form

g = (C ⊗ B⊗ A) x ∈ C
IJK , (7)

where x
.
= vec{X (1)} and g

.
= vec{G(1)}. Two additional

vectorized forms can be obtained in a similar way from the

unfoldings G(2) and G(3), respectively.

In the following, the tensor formalism is used to model

a frequency-selective MIMO channel by means of a sparse

multidimensional representation. More specifically, the fac-

tor matrices A, B, and C in (3) play the role of fixed channel

bases in space, time and frequency domains, respectively,

while the core tensor X reveals the sparse structure of the

channel in the joint angle-delay domain. This structure is

exploited in Section VI to formulate the proposed tensor-CS

channel estimators.

III. TENSOR-BASED CHANNEL FORMULATION

Consider a single user MIMO system, where the receiver

and the transmitter are equipped with I and J antennas,

respectively. The channel is modelled as a summation of

K paths, where each of them are defined by the 6-tuple

(φT ,k , θT ,k , φR,k , θR,k , τk , βk ). The azimuth and elevation of

the transmit and receive sides are φT ,k , θT ,k , φR,k and θR,k ,

respectively. The delay associated with the kth path is defined

by τk , and βk is a random complex variable that accounts

for the phase rotation with zero mean, unity variance, and

Normal distribution. We are interested in the case where

the system bandwidth W is much larger than the inverse

of the maximum delay spread, i.e., W >> 1
τmax

. We can

represent the frequency response of a MIMO channel at the

f th frequency bin as the frontal (3-mode) slice of a channel

tensor G ∈ CI×J×F . More specifically, we have

G(:, :, f ) =

K
∑

k=1

βkv(φR,k , θR,k )v
H (φT ,k , θT ,k )e

−2π f τk , (8)

where v(φR,k , θR,k ) and v(φT ,k , θT ,k ) are the receive and

transmit steering vectors, respectively. The ith element of

v(φR,k , θR,k ) is given by

vi(φR,k , θR,k ) = e 2πd
λ (sin θR,k cos θR,k+cos θR,k), (9)

where λ is the wavelength and d is the antenna spacing. The

third-order channel tensor collecting the channel response of

the F frequency bins can be expressed as

G =Hv ×1 AR ×2 AT ×3 AF C
I×J×F , (10)

whereHv ∈ CM×N×P is the sparse core tensor, AR ∈ C
I×M ,

AT ∈ C
J×N , and AF ∈ C

F×P are the (sparsifying) bases that

map the channel tensor G into a sparse virtual one Hv. Note

that Eq. (10) follows a Tucker3 decomposition as defined

in (3), where the core tensor, representing the virtual chan-

nel tensor, has a sparse 3D structure. The variables M , N ,

and P denote the number of discrete angles of arrival, angles

of departure, and delays, respectively. Although the choice

of these bases directly affect the sparse structure of Hv,

the optimization ofAR,AT andAF, also known as ‘‘dictionary

learning’’ in the compressive sensing literature, is beyond

the scope of this paper. We instead focus on the problem

of acquiring the non-zero entries of the core tensor Hv by

assuming predefined bases, i.e. codebooks, which are fixed

at both the transmitter and the receiver. Hence, the (n,m, p)th

element of the 3D virtual channel tensor can be expressed as

Hv(n,m, p) = G ×1 A
H
R (:, n)×2 A

H
T (:,m)×3 A

H
F (:, p) .

(11)

According to [8], [9], for uniform linear arrays (ULAs) and

discrete Fourier transform (DFT) bases, the expression (11)

coincides with the virtual channel representation given by

Hv(n,m, p) ≈
∑

k ∈ SR,n∩ST ,m∩Sτ,p

βk

· fN (n/I − θR,k )f
∗
M (m/J − θT ,k )

· sinc(p−W τk ), (12)

where βk is a zero mean complex Gaussian gain and unit

variance, θR,l and θT ,l denote the angle of arrival (AoA) and

angle of departure (AoD), respectively, τk ∈ [0, τmax] is the

delay related to the kth path, fα(γ ) =
1
α

∑α−1
i=0 e

−j2π iγ is

the Dirichlet kernel, and sinc(x) = e−jπx sin(πx)/(π2x) is
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the sinc kernel. The sets over which the summation in (12) is

carried out are given by [9]:

SR,n = {k θR,k ∈ (n/I −1θR/2, n/I +1θR/2]}

ST ,m = {k θT ,k ∈ (m/J −1θT /2,m/J +1θT /2]}

Sτ,p = {k τk ∈ (p/W −1τ/2, p/W +1τ/2]}.

(13)

The sparse Tucker3 model (10) offers a tensorial repre-

sentation for the massive MIMO channel in the frequency-

domain. The factor matrices AR, AT , and AF are completely

known a priori while Hv is the unknown sparse tensor to be

recovered. Our goal is to exploit the multilinear structure of

the massive MIMO channel tensor G, as well as its sparse

structure captured by the virtual channel tensorHv to derive

our tensor-based channel estimators.

IV. SYSTEM MODEL

Actual wireless communication system have pilot sequences

embedded in their frames that serve as reference symbols for

channel estimation. Assuming an OFDM scheme, the pilot

symbols occupy some subcarriers while the remaining ones

are used for data transmission. Following the tensor formal-

ism introduced in Section III, we define Gp ∈ ∈ C
I×J×Fp ,

and Gd ∈ C
I×J×Fd as the pilot and data channel tensors,

respectively, whereFp denotes the number of pilot subcarriers

and Fd is the number of data subcarriers, with Fp + Fd = F .

Let us define F ∈ C
Fp×F as a subcarrier selection matrix,

where F
Fp×F is the set of all possible selection matrices of

dimensions Fp × F obtained by selecting a subset of Fp
rows of the identity matrix IF . The matrix F defines the pilot

placement scheme, i.e., the set of subcarriers used for pilot

transmission.1 We can define a relationship between the pilot

channel, i.e., the one containing the pilot subcarriers, and the

full channel as

Gp = G ×3 F. (14)

Likewise, by defining a selection matrix for the data subcar-

riers, we can obtain the data channel Gd.

In this work, we assume a hybrid beamforming (HB)

architecture at both transmitter and the receiver [16], [36],

where Lt and Lr denote the number of radio frequency (RF)

chains used at the transmitter and receiver, respectively. Each

RF chain transmits a different pilot sequence (i.e. Lt pilot

sequences transmitted at the same time-frequency resource).

Moreover, each pilot sequence is repeated across the Fp pilot

subcarriers. The pilot symbol vector at the tth OFDM symbol

is given by

X0(t, :) = [xt,0 xt,2 . . . xt,Lt−1] ∈ C
1×Lt , (15)

where t = 1, . . . ,Tp. Therefore, the collection of Tp OFDM

symbols defines X0 ∈ C
Tp×Lt . In this work, we assume

1In wireless communication standards, such as LTE, pilots are regularly
spaced in the frequency domain. Even though other configurations might
be possible without changing the framework, we adopt the regular spacing
scheme.

FIGURE 2. An example of a pilot placement in the time-frequency grid.
The pilot sequences are regularly spaced and their separation is larger
than the coherence bandwidth.

X0 is orthonormal, which implies Tp = Lt. Moreover, each

pilot sequence is associated with a specific beam, defined by

the corresponding column of the beamforming matrix W ∈

C
Lt×J . The effective transmitted signal is therefore given by

X = X0W ∈ C
Tp×J , (16)

with ‖X(t, :)‖2 = PT/Fp, and PT being the total transmit

signal power. Since HB architecture is assumed, the beam-

forming matrix W represents a network of phase shifters.

Hence, its entries are modeled as complex exponentials. Note

that the columns of this matrix are beamforming vectors used

to probe the channel in different directions. In this work,

random phases are assumed for W , which physically means

that random beams are drawn to probe the channel in the

range [0, 2π ) (i.e., there is no direction of preference).

The input-output relation in the frequency domain is

given as

Y0 = Gp ×2 X +Z ∈ C
I×Tp×Fp , (17)

where Z denotes the noise contribution whose entries are

zero mean circularly symmetric (ZMCS) complex Gaus-

sian random variables with variance N0/2. Substituting (14)

into (17) we obtain

Y0 = G ×2 X ×3 F+Z, (18)

which now expresses the received signal tensor as a function

of the full channel tensor.

First, note that in the time-domain we have Tp << J , since

our interest is to work with short pilot sequences to reduce

the training overhead. Second, in the frequency-domain we

have Fp << F as a consequence of the pilot placement

scheme. This implies that X ∈ C
Tp×J and F ∈ C

Fp×F

are full row-rank matrices, i.e., the received signal tensor

Y0 in (18) is a compressed version of the channel tensor G,

where compression is applied in the second and third modes,

i.e. over the time and frequency domains, respectively. Recall

that a HB architecture is assumed, and define Q ∈ C
Lr×I

as the receive combining/beamforming matrix, which loads

the signals from the I receive antennas into the Lr RF chains,
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with Lr ≪ I . After receiver combining, we further compress

the measurements (18) in the space domain, yielding

Y = Y0 ×1 Q, (19)

which, in combination with (18), gives

Y = G ×1 Q×2 X ×3 F+ Z̃ ∈ C
Lr×Tp×Fp , (20)

where Z̃ = Z ×1 Q denotes the filtered noise term after the

receive combining.

In the next section, we exploit the tensor model (20) to

design tensor-MMSEfilters that exploit the multidimensional

angle-delay representation for the massive MIMO-OFDM

channel.

V. TENSOR-MMSE CHANNEL ESTIMATION

For the sake of completeness, let us first consider the tra-

ditional vector-MMSE design, which is commonly applied

to channel estimation problems formulated in vector and/or

matrix forms [37]. Starting from (20) and ‘‘vectorizing’’ Y ,

we obtain:

y = (F⊗ X ⊗ Q) g+ z̃ ∈ C
LrTpFp . (21)

The problem to be solved is given by

min
U

E
{

‖g− Uy‖22

}

, (22)

where U ∈ C
IJF×LrTpFp is the MMSE matrix filter, whose

closed-form solution is known to be [37]

U = R8
H

(

8R8
H + Rz

)−1
, (23)

where 8 = (F⊗ X ⊗ Q) ∈ C
LrTpFp×IJF , R = E

{

ggH
}

∈

C
IJF×IJF , and Rz = E

{

z̃z̃H
}

∈ C
LrTpFp×IJF . In the massive

MIMO case, finding theMMSE solution forU involves com-

puting products and inversion of large matrices, which may

result in a significant computational burden at the receiver.

To overcome this limitation, we propose an alternative

solution that exploits the multidimensional structure of the

received pilot signal, i.e., by operating on the unfolded forms

of the received tensor Y given in (20). By analogy with (3),

we conclude thatY follows a Tucker3 model, and the follow-

ing correspondences can be deduced

[

X ,A,B,C,
]

←→
[

G,Q,X,F
]

. (24)

From (4)-(6), we can write the three unfolded matrix forms

that represent the measured tensor data Y as follows:

Y (1) = QG(1) [F⊗ X]T ∈ C
Lr×TpFp , (25)

Y (2) = XG(2) [F⊗ Q]T ∈ C
Tp×LrFp , (26)

Y (3) = FG(3) [X ⊗ Q]T ∈ C
Fp×LrTp , (27)

where G(1) ∈ C
I×JF , G(2) ∈ C

J×IF , and G(3) ∈ C
F×IJ are

the 1-mode, 2-mode, and 3-mode unfoldings of the channel

tensor G ∈ C
I×J×F .

The new problem to be minimized is formulated as follows

min
UR,UT,UF

E
{

‖G −Y ×1 UR ×2 UT ×3 UF‖
2
F

}

, (28)

where UR ∈ C
I×Lr , UT ∈ C

J×Tp , and UF ∈ C
F×Fp are

the 1-mode, 2-mode, and 3-mode MMSE matrix filters that

operate over space, time, and frequency dimensions of the

received tensor Y , respectively. More specifically, instead

of applying a single (and very large) space-time-frequency

MMSE matrix filter over the vector signal y ∈ C
LrTpFp

as a linear filter, the proposed tensorial minimum mean

square error (T-MMSE) filtering operates multilinearly over

the tensor signal Y ∈ C
LrTpFp×IJF by means of three ‘‘per-

dimension’’ matrix filters that operate over space, time and

frequency independently. Note that the T-MMSE filtering

formulated in (28) follows a Tucker3 decomposition defined

in (3), and the following correspondences can be deduced

[

X ,A,B,C,
]

←→
[

Y,UR,UT,UF

]

. (29)

Hence, by analogy with (4), (5) and (6), the T-MMSE filter-

ing problem (28) can be recast as three linear MMSE sub-

problems, as follows

min
UR

E
{

‖G(1) − URY (1) [UF ⊗ UT]
T ‖2F

}

, (30)

min
UT

E
{

‖G(2) − UTY (2) [UF ⊗ UR]
T ‖2F

}

, (31)

min
UF

E
{

‖G(3) − UFY (3) [UT ⊗ UR]
T ‖2F

}

. (32)

The solution of each sub-problem yields the n-mode MMSE

filters as

UR = RRQ
H

(

QRRQ
H + σ 2ILr

)−1
, (33)

UT = RTX
H

(

XRTX
H + σ 2ITp

)−1
, (34)

UF = RFF
H

(

FRFF
H + σ 2IFp

)−1
, (35)

where RR = E
{

G(1)G
H
(1)

}

∈ C
I×I , RT = E

{

G(2)G
H
(2)

}

∈

C
J×J , and RF = E

{

G(3)G
H
(3)

}

∈ C
F×F are the space,

time, and frequency channel covariance matrices, respec-

tively. Therefore, the T-MMSE filter exploits the inherent

separability of the space-time-frequency covariance matrix

by designing filters that operate over each channel dimension.

This is possible thanks to the multilinear structure of the

channel, which follows a Tucker3 model as shown in (10).

Note that a trade-off between complexity and accuracy

exists. While the vector-MMSE filter is designed from the

full (large) covariance matrix, the T-MMSE solution makes

use of three (much smaller) marginal covariance matrices,

which may result in a considerable complexity reduction,

as discussed in Section VII. Nevertheless, according to our

simulation results, the T-MMSE approach provides accurate

channel estimates with a small performance loss compared

to the vector-MMSE one. Such a trade-off can be interesting
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in massiveMIMO-OFDM systems operating with large num-

bers of antennas and subcarriers.

Despite the good trade-off between performance and

complexity provided by the proposed T-MMSE estima-

tor, our approach requires the knowledge (or estimation)

of second-order channel statistics. Indeed, the complexity

reduction achieved by exploiting the multilinearity of the

channel tensor, the acquisition of space, time, and frequency

covariance matrices may require large data blocks. In scenar-

ios where a reliable estimation of the channel statistics may

not be possible, the channel parameters can be estimated by

capitalizing on a compressed sensing of the massive MIMO

channel, which admits a sparse representation in angular and

delay domains, especially in mmWave systems [15]–[18].

In the following, we formulate a compressed (sparse) tensor

representation for the massive MIMO-OFDM channel tensor

in terms of space (radio-frequency chains), time (symbol

periods) and frequency (pilot subcarriers) dimensions. The

resulting model is then used as the basis for the formulation

of tensor-CS channel estimators that jointly exploit the multi-

dimensional and sparse structures of the compressed channel

tensor.

VI. CHANNEL ESTIMATION VIA TENSOR-CS

In this section, we propose tensor-CS channel estima-

tors based on a sparse Tucker3 modeling for the massive

MIMO-OFDM channel. The tensor-CS approach avoids the

computation of channel second-order statistics by operating

directly on the received pilot signals, which are recast as a

tensor of observations according to (20). This equation shows

that the tensor of observations Y is a tensor-compressed

version of theMIMO-OFDM channel tensorG obtained from

multilinear projections onto the set of sensing matrices {Q,

X , F}. Capitalizing on this tensor structure, the proposed

tensor-CS algorithms operate by solving sparse reconstruc-

tion problem for each dimension of the compressed channel

tensor via orthogonal matching pursuits.

A. SPARSE FORMULATION PRELIMINARIES

Let us start with the following vector-CS data model

y = 8̄g+ e = 8̄9̄d + e, (36)

where g ∈ C
V is the signal of interest, 9̄ ∈ C

V×V ′ is

the sparsifying basis, and 8̄ ∈ C
V̄×V is the measurement

matrix. Now, assume that g = 9̄d has a multilinear structure

according to (7), i.e., g = (93 ⊗92 ⊗91) d , where 91 ∈

C
I×I ′ , 92 ∈ C

J×J ′ , and 93 ∈ C
F×F ′ are the sparsifying

bases. Therefore, we can rewrite g ∈ C
IJF , where IJF = V

and I ′J ′F ′ = V ′, in a Tucker3 tensor format by analogy

with (3) and (7), which gives

G = D ×1 91 ×2 92 ×3 93 ∈ C
I×J×F , (37)

where D = T {d} ∈ C
I ′×J ′×F ′ , and the operator T {·} maps

the elements of the vector d into a tensor D, as follows

d i+(j−1)I+(f−1)IJ −→
T {·}

D(i, j, f ), (38)

where i = {1, . . . , I ′}, j = {1, . . . , J ′}, f = {1, . . . ,F ′}

and D is sparse tensor.

Now, let us introduce three measurement (sensing) matri-

ces 81 ∈ C
Ī×I , 82 ∈ C

J̄×J , and 83 ∈ C
F̄×F , which

sample the tensor G multilinearly along its 1-mode, 2-mode

and 3-mode, respectively. We can recast the vector-CS data

model (36) as

Y = G ×1 81 ×2 82 ×3 83 + E

= D ×1 (8191)×2 (8292)×3 (8393)+ E, (39)

where Y
.
= T {y} ∈ C

Ī×J̄×F̄ and E
.
= T {e} ∈ C

Ī×J̄×F̄ are

the compressed data and noise tensors, respectively, which

follows the mapping given by (38). Hence, the tensor-CS

model expresses the tensor of observations Y in terms of

multilinear projections of the sparse tensor D onto the com-

pressed basis matrices {8i9 i}, i = 1, 2, 3, associatedwith the

1-mode, 2-mode, and 3-mode of the observed tensor data.

Remark 1: Vectorizing the tensor-CS model (39) yields

y
.
= vec(Y)

=
[

(8393)⊗ (8292)⊗ (8191)
]

d + e

= ϒd + e, (40)

which coincides with the Kronecker-CS model introduced

in [35], for which analytical bounds are given to ensure sparse

recovery in terms of mutual coherence properties of the Kro-

necker product. Instead of operating over the resulting vector

y ∈ C
Ī J̄ F̄ of compressed observations using vector sparse

reconstruction algorithms, we are interested in preserving the

tensor structure of the compressed data, which implies oper-

ating over each mode of the tensor Y ∈ C
Ī×J̄×F̄ . As shown

in Section VII, this entails a significant complexity reduction

of sparse recovery algorithms, such as those based on the

orthogonal matching pursuit (OMP) approach.

B. TENSOR-CS DATA MODEL

Recall our measurement tensor model given by (20), which

expresses the received signal after the spatial combining. Our

goal is to estimate the (nonzero) coefficients of the virtual

channel tensor Hv ∈ C
M×N×P, where M ≥ I , N ≥ J , and

P ≥ F denote, respectively, the number of discrete receive

angles, transmit angles, and delays that make up the codebook

set {AR,AT,AF}, according to (10). Replacing (10) into (20)

gives

Y =Hv ×1 (QAR)×2 (XAT)×3 (FAF)+ Z̃. (41)

By analogy with (3), we conclude that the observations tensor

Y follows a Tucker3 model, and we have the following

correspondences:

[

X ,A,B,C,
]

←→
[

Hv, (QAR), (XAT), (FAF)
]

. (42)

This Tucker3 model has a sparse core represented by the

virtual channel tensor Hv, the structure of which reveals the

joint sparse angle-delay profile. Note that (41) is a multilinear
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CSmodel. Comparing (39) and (41), we deduce the following

correspondences

[

D, (8191) , (8292) , (8393)
]

←→
[

Hv, (QAR), (XAT), (FAF)
]

. (43)

Hence, the received pilot tensor Y can be seen as the result

of a multilinear compression of the virtual channel tensor,

where the transmit spatial dimension is compressed by the

pilot sequence matrix X , the receive spatial dimension is

compressed by the combining matrix Q, and the frequency

dimension is compressed by subcarrier selection/mapping

matrix F. The composite factor matrices (QAR), (XAT), and

(FAF) correspond to the sparsifying bases for the channel

tensor G. Note that the design of the measurement matrices

of our tensor-CS model is dictated by the choice of the com-

biner Q, the pilot sequence matrix X , and the pilot placement

strategy defined in F. Moreover, since Hv is sparse, we can

set Lr < I , Tp < J , Fp < F . In practice, especially in

mmWave MIMO systems, the number of RF chains is much

smaller than the number of receive antennas, which means

that Lr < I is naturally satisfied. In addition, since the pilot

subcarriers is always a subset of the total number of subcar-

riers (see Fig. 2), we always have Fp < F . The remaining

inequality, Tp < J , is the most interesting one since it implies

operating with short pilot sequences of length Tp compared to

the number J of transmit antennas, usually large in massive

MIMO systems.

Remark 2: The usual CS approach to estimate the chan-

nel parameters, considered in previous works [17], [18], [32],

consists in vectorizing (41), resulting in the Kronecker-CS

model (40), i.e.,

y
.
= vec(Y) =

[

(FAF)⊗ (XAT)⊗ (QAR)
]

hv + z̃, (47)

where hv
.
= vec(Hv) ∈ C

NMP is the virtual channel

vector to be estimated. In this case, the estimation of hv can

be carried out by means of linear programming [39] or by

using second order cone programs [38]. Traditional sparse

recovery algorithms such as the orthogonal matching pur-

suit (OMP) [38]) present a higher computational complexity

due to the large size of the virtual channel vector, which

is lower-bounded by the product dimension IJF ≤ NMP.

Specifically, the complexity grows exponentially with the

channel dimensions and even for moderate number of anten-

nas and subcarriers, the complexity of a vector-CS approach

to estimate the channel can be prohibitive. When operating

on vectorized observations, however, the 3D sparse structure

of the angle-delay channel tensor is destroyed, since all the

channel dimensions are mixed up. The tensor-CS algorithms

presented in the next section preserve tensor structure of the

problem by operating directly on Y ∈ C
Lr×Tp×Fp to solve a

CS problem for each channel dimension.

C. TENSOR-OMP WITH JOINT SEARCH

Although the conventional orthogonal matching-pursuit

(OMP) algorithm and its variants have been widely studied in

the literature, they have been designed to recover a sparse vec-

tor (1D signal). For recovering a higher-order tensor (e.g. a

3D signal), applying OMP to the ‘‘vectorized’’ tensor can

potentially yield problems in terms of memory usage and

processing. The high number of operations involved and their

complexity, including inversion of big matrices, call for more

efficient ways to circumvent these shortcomings. Our interest

is to avoid channel vectorization by explicitly operating on

the virtual channel tensor. The proposed tensor-OMP with

joint search T-OMP with joint search (T-OMP-JS) operates

on the tensor Y to recover the full channel tensor Hv by

solving a sparse recovery problem per channel dimension in

an iterative way.

Let us rewrite (41) as

Y =Hv ×1 ϒ1 ×2 ϒ2 ×3 ϒ3,+Z̃, (48)

where ϒ1 = QAR ∈ C
Lr×N , ϒ2 = XAT ∈ C

Tp×M , and

ϒ3 = FAF ∈ C
Fp×P.

The T-OMP-JS algorithm consists of a greedy search per

dimension of Hv. The cost function to be solved at the kth

iteration is given by (44) as shown at the bottom of the next

page, where R(k−1) ∈ C
Lr×Tp×Fp is the tensor of residuals

at the (k − 1)th iteration, where k = 1, . . . ,K , and K

denotes the maximum number of iterations to convergence.

In order to exploit each channel dimension, the algorithm

should determine the index triplet [ī
(k)
1 , ī

(k)
2 , ī

(k)
3 ] that maxi-

mizes (44) at each iteration. This procedure involves a search

over all possible combinations of indices i
(k)
1 , i

(k)
2 , and i

(k)
3

per iteration, where ♦ denotes the Khatri-Rao (columnwise

Kronecker) product. The algorithm starts by setting k = 1

with R(k−1) = R(0) = Y , and the estimated virtual

channel tensor set to the zero tensor, i.e. Hv = ON×M×P.

The index sets I
(k)
1 , I

(k)
2 , and I

(k)
3 store the optimum indices

found at the (k − 1)th iteration, for the first (space), sec-

ond (time) and third (frequency) channel dimensions, respec-

tively. At the kth iteration, an estimate of the nonzero entries

of the channel tensor is found from (45), as shown at the

bottom of the next page, where h(k) ∈ C
k×1 is a parameter

vector that collects the k nonzero entries of the channel

found at the kth iteration. The parameter vector h(k) is then

used to update the entries of the virtual channel tensor as

Ĥ
v
(n,m, p)←−

T {·}
h
(k)
n+(m−1)N+(p−1)NM . Then, a new tensor of

residuals is formed by subtracting, at each iteration, a rank-

one tensor channel component as shown in the second term

of (46), as shown at the bottom of the next page, where

◦ denotes the outer product. After that, the updated ten-

sor of residuals R(k) is used as input to find a new index

triplet in the subsequent iteration. This procedure is repeated

until the energy of the tensor of residuals is small enough

according to a predefined threshold, i.e. ||R(k)||2F < ǫ,

where ǫ denotes the threshold. In this work, we declare

the convergence when ǫ is on the order of the noise vari-

ance. This assumption is valid for the two proposed algo-

rithms. Table 1 provides a summary of the T-OMP-JS

algorithm.
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TABLE 1. T-OMP with joint search (T-OMP-JS).

D. TENSOR-OMP WITH SEQUENTIAL SEARCH

The T-OMP with sequential search (T-OMP-SS) is an algo-

rithm derived from the T-OMP-JS to reduce the computation

complexity of an exhaustive search. Let us remember that

T-OMP-JS solves the problem in (44) by simultaneously

testing all the combinations of index triplets [i
(k)
1 , i

(k)
2 , i

(k)
3 ] at

the kth iteration. The computational complexity associated

with this procedure may be high when operating with large

dictionaries. This is problemwhen considering user terminals

with reduced computational resources or limited power con-

sumption. For instance, wideband systems and/or scenarios

where a high angular resolution is required, the size of the

codebook set {AR,AT,AF} can be very large, leading to a

high number of index triplets to be evaluated. In order to turn

the problem solvable in this scenario, the T-OMP-SS cuts out

triplets that are likely to be out of the solution set, speeding up

the search procedure due to a reduced number of operations.

Indeed, the solution of (44) implemented in step 2 of T-OMP-

JS may exhibit a high computation complexity in cases where

(at least) one dimension of the virtual channel tensor Hv is

very large.

The idea behind T-OMP-SS is to solve (44) in a more

efficient fashion. The algorithm exploits the n-mode product

operator over the three dimensions by sequentially solving

one-dimensional (1D) search problems, starting with a search

on the space domain, then on the time domain, and finally

on the frequency domain. The first iteration of the algorithm

(k = 1) sets the residual tensor R(k−1) = R(0) = Y .

We also define the index sets I
(k)
1 , I

(k)
2 , and I

(k)
3 to store the

optimum indexes found at the (k − 1)th iteration, for the

first (space), second (time) and third (frequency) channel

dimensions, respectively. To obtain such indexes, the algo-

rithm splits the three-mode products shown in (44) into three

sequentially related maximization problems that are solved

in three steps. The T-OMP-SS algorithm starts by scanning

across the space dimension, while averaging the tensor of

residuals over the time and frequency dimensions, as shown

in (49) at the bottom of the next page. Once i
(k)
1 is determined,

the selected matrix-slice of residuals given by R(k−1) ×1

ϒ
H
1 (:, i

(k)
1 ) ∈ C

Tp×Fp is used as an input to the second maxi-

mization problem the goal of which is to find i
(k)
2 . We stress

that multiplying the tensor of residualsR(k−1) by the selected

column of the space-domain basisϒ
H
1 (:, i

(k)
1 ) returns a matrix

of residuals, i.e., all the triplets that are not associated with

the index i
(k)
1 are discarded. The second step solves problem

(50), as shown at the bottom of the next page by making use

of the matrix of residuals R(k−1) ×1 ϒ
H
1 (:, i

(k)
1 ) ∈ C

Tp×Fp

to scan across the time dimension, while averaging over the

frequency dimension. The solutions i
(k)
1 and i

(k)
2 are used to

generate a vector of residuals R(k−1) ×1 ϒ
H
1 (:, i

(k)
1 ) ×2 ϒ

H
2

(:, i
(k)
2 ) ∈ C

Fp that is used as an input to the third step. Finally,

in the third step, a frequency-domain search is performed

using (51), as shown at the bottom of the next page, to find

i
(k)
3 . The tensor of residuals is updated according to steps (45)

and (46), as for the T-OMP-JS algorithm, and the same pro-

cedure is repeated until convergence.

Note that the T-OMP-SS algorithm follows the same logic

as a greedy algorithm, but replace a 3D search by three

sequentially related 1D searches to determine the triplet

[i
(k)
1 , i

(k)
2 , i

(k)
3 ] as shown in (49)-(51). Table 2 summarizes the

T-OMP-SS algorithm.

TABLE 2. T-OMP with sequential search (T-OMP-SS).

The convergence of TOMP-SS and TOMP-JS is affected

by the degree of sparsity of the channel tensor representation.

More specifically, two aspects directly affect the convergence

speed, which are the number of channel paths and the choice

[

ī
(k)
1 , ī

(k)
2 , ī

(k)
3

]

= arg max
i1,i2,i3

∣

∣

∣
R(k−1) ×1 ϒ

H
1 (:, i1)×2 ϒ

H
2 (:, i2)×3 ϒ

H
3 (:, i3)

∣

∣

∣

2
(44)

h(k) =
(

ϒ3(:, I
(k)
3 )♦ϒ2(:, I

(k)
2 )♦ϒ1(:, I

(k)
1 )

)†
vec(Y) (45)

R(k) = R(k−1) − Ĥ
v
(ī
(k)
1 , ī

(k)
2 , ī

(k)
3 ) ◦ϒ1(:, ī

(k)
1 ) ◦ϒ2(:, ī

(k)
2 ) ◦ϒ3(:, ī

(k)
3 ) (46)
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of the representation bases. The higher is the number of chan-

nel paths, the higher is the number of nonzero elements of its

sparse representation and more iterations will be necessary

for the convergence, for a fixed stopping criterion. In addi-

tion, the mismatch between the bases and the actual steering

vectors generates a power leakage in the virtual (core) tensor,

which also causes an increase on the required number of

iterations for the convergence of both algorithms.

VII. COMPUTATIONAL COMPLEXITY

In the downlink, channel estimation is implemented at UEs

that generally has limited computational resources compared

to the BS. An analysis of the computational complexity

required by the different solutions proposed in the previous

section is therefore an important aspect to be considered. The

MMSE method follows the conventional vector formulation,

which represents the signal model by stacking all the mea-

surements in a single vector containing space-, time- and

frequency- domain samples. This approach implies solving

for a linear system modeled as a Kronecker product of space,

time, and filtering components, as shown in (21). The dom-

inant cost of the MMSE estimator is associated with that

of inverting the square matrix in the right-hand side of (23)

which has size LrTpFp. This operation results in a complex-

ity of O
(

(

LrTpFp
)3

)

. The T-MMSE estimator reduces the

number of operations by exploiting a tensor representation

of the MIMO-OFDM channel. Instead of considering a sin-

gle linear system, the tensor solution breaks the problem

into three smaller ones with smaller transformation matri-

ces. The resulting complexity is that of solving the n-mode

MMSE solutions for the three smaller sub-problems given

in (33)-(35), resulting in a complexity ofO
(

L3r + F
3
p + T

3
p

)

.

Both T-OMP-JS and T-OMP-SS are greedy algorithms

that implement the greedy search in different manners.

The first uses a joint search over the full tensor space,

i.e. the algorithm search over all the dimensions simulta-

neously by trying all combinations of triplets {i1, i2, i3}.

The required number of operations implies a complexity

O(TpFpMNP), where M is the number of scanned directions

at the receive side, N is the number of scanned directions

at the transmit side, and P is the number of scanned delay

bins, respectively. The product LrTpFp correspond to the

number of elements of the compressed tensor Y , which are

much smaller than the product MNP corresponding to the

number of elements of the sparse virtual channel tensor Hv.

Therefore if M , N , and/or P is large, the more granular

and costly will be the greedy search. On the other hand,

T-OMP-SS breaks the maximization problem in (44) down

to three smaller ones, given by (49), (50), and (51). The

overall complexity is obtained by summing over the com-

plexities of the individual search procedures for each channel

dimension, which results in O
(

LrTpFpN + TpFpM + FpP
)

.

In addition to the greedy search, both T-OMP-SS and

T-OMP-JS calculate the pseudoinverse of the Khatri-Rao

product matrix
(

ϒ3(:, I
(k)
3 )♦ϒ2(:, I

(k)
2 )♦ϒ1(:, I

(k)
1 )

)

as

shown in (45), which is needed to estimate Hv at each

iteration. This step adds a complexity of O
(

k3
)

to both algo-

rithms, as shown in Table 3. Note that the number of columns

of the Khatri-Rao product matrix in (45) is incremented as a

function of the iteration index k . For sparser channels with

only few paths, less iterations are needed for the convergence

and the impact of the term O
(

k3
)

will be limited.

TABLE 3. Computational complexity of the different estimators.

VIII. NUMERICAL RESULTS

In this section, we provide results from computer simulations

to evaluate the performance of the proposed tensor-based

estimators. In all simulations, we assume the BS and UE are

equipped with uniform rectangular arrays, where the BS is

equipped with J = 64 antennas while the UE has I = 4

antennas. Unless stated otherwise, our simulations assume

Lt = 32 and Lr = 2 RF chains at the BS and UE, respectively.

We also assume Tp = Lt = 32 pilot symbol periods and

Fp= 256 regularly-spaced pilot subcarriers. Table 4 describes

the simulation setup used in all the simulations.

The performance is evaluated in terms of the normalized

mean square error (NMSE) defined as

NMSE =
1

Nruns

Nruns
∑

n=1

‖Gn − Ĝn‖
2
F

‖Gn‖
2
F

, (52)

where Nruns is the number of Monte Carlo runs, while

i
(k)
1 = argmax

i1

1

TpFp

Tp
∑

m=1

Fp
∑

n=1

∣

∣

∣
R(k−1)(:,m, n)×1 ϒ

H
1 (:, i1)

∣

∣

∣

2
. (49)

i
(k)
2 = argmax

i2

1

Fp

Fp
∑

m=1

∣

∣

∣
R(k−1)(:, :,m)×1 ϒ

H
1 (:, i

(k)
1 )×2 ϒ

H
2 (:, i2)

∣

∣

∣

2
. (50)

i
(k)
3 = argmax

i3

∣

∣

∣
R(k−1) ×1 ϒ

H
1 (:, i

(k)
1 )×2 ϒ

H
2 (:, i

(k)
2 )×3 ϒ

H
3 (:, i3)

∣

∣

∣

2
. (51)
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TABLE 4. Simulation parameters.

Gn and Ĝn denote the true and estimated channel tensors at

the nth run. For all simulations, we assume Nruns = 1000.

Each run corresponds to a different realization of the channel

and noise tensors G andZ , respectively. The entries (phases)

of the beamforming matrix W are also randomly drawn at

each run. We also show the impact of the channel estimation

accuracy on the spectral efficiency bymeans of the Shannon’s

formula

C =

(

1−
TpFp

TF

)

log2 (1+ SNR). (53)

Recall that Tp and Fp denote the number of symbol peri-

ods and subcarriers used for pilots, as shown in Fig. 2

(c.f. Section IV). For all simulations, the pilot subcarriers are

regularly spaced and every RF chain transmits a different pilot

sequence, which is spread across all the pilot subcarriers.

Recall that the channel used in our experiments fol-

lows (8). At each Monte Carlo run, to generate the kth

azimuth and elevation angles for the transmit and receive

sides, we assume θT ,k ∼ U (θ̄T , σθ,T ), θR,k ∼ U (θ̄R, σθ,R),

φT ,k ∼ U (φ̄T , σφ,T ), and φR,k ∼ U (φ̄R, σφ,R), whereU (a, b)

stands for uniform distribution with mean a and standard

deviation b, while θ̄T and θ̄R as the mean azimuth angles at

the transmit and receive sides, respectively. The parameters

σθ,T and σθ,R are the transmit and receive azimuth spreads,

respectively. Likewise, φ̄T and φ̄R are the respective mean

elevation angles, and σφ,T and σφ,R are the elevation spreads.

The power delay profile of the channel follows an exponential

distribution with mean and variance equal to τ̄ is assumed for

the path delays. The complex path gains {βk} are drawn from

a normal distribution with zero mean and unitary variance.

Our first experiment evaluates the convergence of the

T-OMP-JS and T-OMP-SS algorithms. Figure 3 depicts the

energy of the tensor of residuals ||R(k)||2F , calculated at

FIGURE 3. Convergence curves for T-OMP-JS and T-OMP-SS: ||R(k)||2
F

vs. k .

Step 7 of the proposed algorithm (see Tables 1 and 2), as a

function of the iteration index k . We consider two scenarios

with K = 8 and K = 16 paths with the SNR fixed to

20dB. We can observe that both algorithms converge to low

reconstruction errors (smaller than 0.1) around 30 iterations

forK = 8, and 60 iterations forK = 16. As expected, conver-

gence is faster for sparser channels with few dominant paths.

We can also note that T-OMP-JS and T-OMP-SS have the

same convergence behaviour, the difference between them

being on the lower computational complexity of the second

one.

In the second set of simulations, we evaluate the NMSE

performances of T-OMP-SS, T-OMP-JS, vec-OMP, and

T-MMSE. For the T-MMSE estimator, we assume the knowl-

edge of the covariance matrices to compute the n-mode

MMSE filters in (33)-(35). In contrast, the sparse channel

estimators (T-OMP-SS, T-OMP-JS, and vec-OMP) rely on

the knowledge of the sparsifying bases (codebooks). Figure 4

shows that the sparsity-based approaches exhibit a satura-

tion in their NMSE curves. This behaviour comes from the

FIGURE 4. NMSE performances of different estimators: vec-OMP,
T-MMSE, T-OMP-JS, and T-OMP-SS. K = 16.
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mismatch between the codebooks and the actual steering vec-

tors defined in Eq. (8), which generates a power leakage in the

core tensorHv. Indeed, such a leakage increases the number

of non-zero entries of Hv and, consequently, its sparsity

is decreased. To overcome this off-grid problem, we would

need to learn/refine the codebooks while exploiting the tensor

structure of the problem. Despite being outside the scope of

this work, this issue is important and will be addressed in a

future contribution. Note also that vec-OMP and T-OMP-JS

have similar performances, although the later is much less

complex, as discussed in Section VII. By its turn, the

T-OMP-SS estimator exhibits a small degradation compared

to vec-OMP and T-OMP-JS, offering a trade-off between

computational complexity and accuracy. As expected,

the best performance is achieved with the T-MMSE estimator

with perfect knowledge of the channel covariance structure.

In a second experiment, we study the influence of the

number of paths in the performance of different tensor-based

estimators. To this end, we keep the same parameters as

assumed for the previous experiment (Fig. 4) but now reduce

the number of channel paths down to K = 8. The results

are depicted in Fig. 5. The curves show that T-OMP-JS and

T-OMP-SS have similar performances. The T-MMSE solu-

tion outperforms the other two when the SNR is very low.

Otherwise, the three methods exhibit nearly the same perfor-

mance. Indeed, in this scenario, T-OMP-JS and T-OMP-SS

are more attractive due to their good performance-complexity

tradeoff. This experiment also indicates that, for a small

number of paths, the gains obtained with the T-MMSE are

marginal, in contrast to the gains observed in Figure 4 with

K = 16, which are significant. Nevertheless, the proposed

T-MMSE estimator is still far less complex than the tra-

ditional vector-MMSE estimator when a large number of

antennas are assumed at the BS and UE, which is the situ-

ation assumed in this paper. Otherwise stated, for a moderate

number of paths T-MMSE is a good choice, since it offers

FIGURE 5. Performance of the proposed tensor-based estimators for
K = 8.

a good accuracy while being more computationally efficient

compared with the vector-MMSE solution.

In the next experiment, we evaluate the influence of the

number of RF chains at the transmitter on the performance of

the different tensor-based estimators proposed in this work.

As shown in Figure 6, T-MMSE, T-OMP-JS and T-OMP-SS

reduce the estimation error with more RF chains at the trans-

mitter. All the three methods have similar performances with

an advantage of T-MMSE over T-OMP-JS and T-OMP-SS

within the range from 10 to 45 number of RF chains. This

means T-MMSE affords a simpler transmitter that employs

less RF chains than that with sparsity-based algorithms.

FIGURE 6. NMSE performance as a function of the number Lt of RF chains
at the transmitter. K = 8 and SNR = 20 dB.

We have also studied the impact of the proposed estimators

in terms of spectral efficiency, as depicted in Figure 7 for

K = 8 and SNR = 20 dB. In this experiment, we assume an

eigenbeamforming solution, where the transmit and receive

beamformers for each subcarrier are designed from the left

and right singular vectors of the associated MIMO channel,

respectively. The spectral efficiency (in bps/Hz) is plotted

FIGURE 7. Spectral efficiency as a function of the number Lt of RF chains
at the transmitter.
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as a function of the number Lt of RF chains. It can be seen

that T-OMP-JS and T-OMP-SS exhibit similar performances,

while T-MMSE offers the best results. The superiority of

T-MMSE comes at the price of an accurate knowledge of the

channel second-order statistics, which are not necessary for

T-OMP-SS and T-OMP-JS. As expected, using more RF

chains does not always imply a higher spectral efficiency,

since the number of pilot sequences used for channel esti-

mation scales with Lt (recall that every RF chain transmits a

different pilot sequence).

Figure 8 shows the behaviour of T-OMP-SS and

T-OMP-JS for low and high angular spreads. To this end,

we consider σφ,T = 5 and σφ,T = 20, respectively. With the

low angular spread, both T-OMP-JS and T-OMP-SS improve

their performance as the SNR increases. However, the curves

saturate due to the off-grid problem. Essentially, the beams

predefined by the codebook do not match to the actual

channel paths, with yields a power leakage. This problem

reduces the channel sparsity and limits the performance of

T-OMP-JS and T-OMP-SS. Note that for the higher the

angular spread value, the error floor limits the performance

of both algorithms, as we can conclude by comparing blue

against black curves in Fig. 8.

FIGURE 8. Impact of the angular spread at the transmitter side.

Another important aspect is the difference between

T-OMP-JS and T-OMP-SS. In the low angular spread case,

T-OMP-JS achieves better results than T-OMP-SS, but both

solutions have similar performances in the high angular

spread situation. In the later case, we can conclude that

performing a joint search with T-OMP-JS produces marginal

gains over the sequential search with T-OMP-SS. In sum-

mary, using T-OMP-JS is beneficial for low angular spreads

and very low SNR. On the other hand, for high angular

spreads the gap between both solutions diminishes and both

of them become less attractive since the channel is no more

sparse due to the large number of resolvable paths. The same

can be said about the traditional vector-OMP, which also

exhibits poor performance for high angular spreads. In this

case, vector-MMSE and T-MMSE are preferable, the later

being a better choice for massive MIMO systems due to its

low complexity, as previously discussed.

IX. CONCLUSION

We have proposed new algorithms to estimate the CSI in mas-

sive MIMO-OFDM systems that jointly exploit the sparsity

and multidimensional nature of the channel. The proposed

tensor-based estimators enable theUEs to estimate theMIMO

channel by assuming that (i) the BS and UE have a limited

number of RF chains, (ii) the MIMO channel is frequency-

selective, and (iii) the system has limited pilot resources for

channel acquisition, allowing to reduce the training overhead.

While T-MMSE is an attractive solution for a higher number

of paths, T-OMP-JS and T-OMP-SS are preferable in poor

scattering scenarios with a smaller number of paths due

to their good complexity-performance tradeoff. The perfor-

mance of the proposed T-OMP-JS and T-OMP-SS can be

further enhanced to deal with off-grid problems, where the

channel paths do not match to the basis set (AF,AT,AR).

This situation happens, for instance, when there is uncertainty

in the structure of the array response vectors at the trans-

mitter and/or receiver due to calibration errors. In this case,

tensor-based dictionary learning algorithms [40], [41] could

be used. In addition, the proposed tensor-CS model can be

generalized to include Doppler shifts and carrier-frequency

offsets.
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