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This paper studies the statistical and computational limits of high-
order clustering with planted structures. We focus on two clustering models,
constant high-order clustering (CHC) and rank-one higher-order clustering
(ROHC), and study the methods and theory for testing whether a cluster ex-
ists (detection) and identifying the support of cluster (recovery).

Specifically, we identify the sharp boundaries of signal-to-noise ratio for
which CHC and ROHC detection/recovery are statistically possible. We also
develop the tight computational thresholds: when the signal-to-noise ratio
is below these thresholds, we prove that polynomial-time algorithms cannot
solve these problems under the computational hardness conjectures of hyper-
graphic planted clique (HPC) detection and hypergraphic planted dense sub-
graph (HPDS) recovery. We also propose polynomial-time tensor algorithms
that achieve reliable detection and recovery when the signal-to-noise ratio is
above these thresholds. Both sparsity and tensor structures yield the compu-
tational barriers in high-order tensor clustering. The interplay between them
results in significant differences between high-order tensor clustering and ma-
trix clustering in literature in aspects of statistical and computational phase
transition diagrams, algorithmic approaches, hardness conjecture, and proof
techniques. To our best knowledge, we are the first to give a thorough char-
acterization of the statistical and computational trade-off for such a double
computational-barrier problem. Finally, we provide evidence for the compu-
tational hardness conjectures of HPC detection (via low-degree polynomial
and Metropolis methods) and HPDS recovery (via low-degree polynomial
method).

1. Introduction. The high-dimensional tensor data have been increasingly prevalent in
many domains, such as genetics, social sciences, engineering. In a wide range of applications,
unsupervised analysis, in particular the high-order clustering, can be applied to discover the
hidden modules in these high-dimensional tensor data. For example, in microbiome studies,
microbiome samples are often measured across multiple body sites from multiple subjects
(Faust et al., 2012; Flores et al., 2014), resulting in the three-way tensors with subjects, body
sites, and bacteria taxa as three modes. It has been reported that multiple microbial taxa can
coexist within or across multiple body sites and subjects can form different subpopulations
(Faust et al., 2012). Similar data structures can also be found in multi-tissue multi-individual
gene expression data (Wang, Fischer and Song, 2019). Mathematically, these patterns corre-
spond to high-order clusters, i.e., the underlying multi-way block structures in the data tensor.
We also refer readers to the recent survey (Henriques and Madeira, 2019) on high-order clus-
tering in applications.

In the literature, a number of methods have been proposed for triclustering or high-order
clustering of tensor data, such as divide and conquer (Li and Tuck, 2009), seed growth (Sim,
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Aung and Gopalkrishnan, 2010), stochastic approach (Amar et al., 2015), exhaustive ap-
proaches (Jiang et al., 2004), pattern-based approach (Ji, Tan and Tung, 2006), etc. However,
the theoretical guarantees for those existing procedures are not well established to our best
knowledge.

This paper aims to fill the void of theory in high-order clustering. Suppose we observe an
n1 ˆ ¨ ¨ ¨ ˆ nd-dimensional order-d tensor Y that satisfies

(1) Y “X `Z,

where X PRn1ˆ¨¨¨ˆnd is the underlying signal with planted structure and Z is the noise that
has i.i.d standard normal distributed entries. Our goal is to detect or recover the “planted
structure" of the signal X . The specific problems in this paper are listed below.

1.1. Problem Formulations. First, we consider the signal tensor X that contains a con-
stant planted structure:
(2)
X PXCHCpk,n, λq, XCHCpk,n, λq “

 

λ11I1 ˝ ¨ ¨ ¨ ˝ 1Id : Ii Ď rnis, |Ii| “ ki, λ
1 ě λ

(

.

Here, “˝" denotes the vector outer product, 1Ii is the ni-dimensional indicator vector such
that p1Iiqj “ 1 if j P Ii and p1Iiqj “ 0 if j R Ii; λ represents the signal strength. We col-
lectively denote k “ pk1, . . . , kdq and n “ pn1, . . . , ndq for convenience. The support of the
planted structure of X is denoted as SpX q :“ pI1, . . . , Idq. We refer to this model (1)(2) as
the constant high-order clustering (CHC). The constant planted clustering model in ten-
sor or matrix biclustering (BC) data has been considered in a number of recent literature
(see, e.g., Butucea and Ingster (2013); Butucea, Ingster and Suslina (2015); Sun and Nobel
(2013); Brennan, Bresler and Huleihel (2018); Chi, Allen and Baraniuk (2017); Cai, Liang
and Rakhlin (2017); Brennan, Bresler and Huleihel (2019); Kolar et al. (2011); Chen and Xu
(2016); Xia and Zhou (2019)).

We also consider a more general setting that X contains a rank-one planted structure:

(3) X PXROHCpk,n, µq, XROHCpk,n, µq “
 

µ1v1 ˝ ¨ ¨ ¨ ˝ vd : vi P Vni,ki , µ1 ě µ
(

,

where

Vn,k :“
!

v P Sn´1 : }v}0 ď k and k´1{2 ď |vi| ďCk
´1{2 for i P Spvq

)

, C ą 1

is the set of all k-sparse unit vectors with near-uniform magnitude. Here Spvq denotes the
support of the vector v and its formal definition is given in Section 2. Throughout the paper,
we refer to the model in (1)(3) as the rank-one high-order clustering (ROHC). Especially if
d“ 2, i.e., in the matrix case, this model (rank-one submatrix (ROS)) was considered in Sun
and Nobel (2013); Busygin, Prokopyev and Pardalos (2008); Madeira and Oliveira (2004);
Brennan, Bresler and Huleihel (2018). For both models, we hope to answer the following
questions on detection (PD) and recovery (PR):

PD When we can detect if any high-order cluster exists and when such conclusion cannot
be made. To be specific, consider the following hypothesis tests:

CHCDpn,k, λq : H0 : X “ 0 v.s. H1 : X PXCHCpk,n, λq,

ROHCDpn,k, µq : H0 : X “ 0 v.s. H1 : X PXROHCpk,n, µq,
(4)

we ask when there is a sequence of algorithms that can achieve reliable detection, i.e.,
both type-I and II errors tend to zero.
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PR How to recover the support of the cluster when it exists. Specifically, we assume H1

holds and aim to develop an algorithm that recovers the support SpX q based on the ob-
servation of Y . Denote the CHC and ROHC recovery problems considered in this paper
as CHCRpn,k, λq and ROHCRpn,k, µq, respectively. We would like to know when there
exists a sequence of algorithms that can achieve reliable recovery, i.e., the probability of
correctly recovering SpX q tends to one.

We study the performance of both unconstrained-time algorithms and polynomial-time
algorithms for both detection PD and recovery PR. The class of unconstrained algorithms
includes all procedures with unlimited computational resources, while an algorithm that runs
in polynomial-time has access to poly(n) independent random bits and must finish in polypnq
time, where n is the size of input. For convenience of exposition, we assume the explicit
expressions can be exactly computed and Np0,1q random variable can be sampled in Op1q
time.

1.2. Main Results. In this paper, we give a comprehensive characterization of the statis-
tical and computational limits of the detection and recovery for both CHC and ROHC mod-
els. Denote n :“ maxi ni, k :“ maxi ki, and assume d is fixed. For technical convenience,
our discussions are based on two asymptotic regimes:

(A1) @i P rds, niÑ8, kiÑ8 and ki{niÑ 0;

or for fixed 0ď αď 1, β PR , nÑ8, n1 “ ¨ ¨ ¨ “ nd “ Θ̃pnq,

k “ k1 “ ¨ ¨ ¨ “ kd “ Θ̃pnαq, λ“ Θ̃pn´βq, µ{
?
kd “ Θ̃pn´βq.

(A2)

In (A2), α and β represent the sparsity level and the signal strength of the cluster, respectively.
The cluster becomes sparser as α decreases and the signal becomes stronger as β decreases. A
rescaling of µ in (A2) is to make the magnitude of normalized entries in cluster of ROHC to
be approximately one, which enables a valid comparison between the computational hardness
of CHC and ROHC.

The following informal statements summarize the main results of this paper.

Theorem 1 (Informal: Phase Transitions in CHC) Define

βsCHCD :“ pdα´ d{2q _ pd´ 1qα{2, βsCHCR :“ pd´ 1qα{2,

βcCHCD :“ pdα´ d{2q _ 0, βcCHCR :“ ppd´ 1qα´ pd´ 1q{2q _ 0.
(5)

Under the asymptotic regime (A2), the statistical and computational limits of CHCDpk,n, λq
and CHCRpk,n, λq exhibit the following phase transitions:

• CHC Detection:
(i) β ą βsCHCD

: reliable detection is information-theoretically impossible.
(ii) βcCHCD

ă β ă βsCHCD
: the computational inefficient test ψsCHCD

in Section 4.1 suc-
ceeds, but polynomial-time reliable detection is impossible based on the hypergraphic
planted clique (HPC) conjecture (Conjecture 1).

(iii) β ă βcCHCD
: the polynomial-time test ψcCHCD

in Section 4.2 based on combination of
sum and max statistics succeeds.

• CHC Recovery:
(i) β ą βsCHCR

: reliable recovery is information-theoretically impossible.
(ii) βcCHCD

ă β ă βsCHCR
: the exhaustive search (Algorithm 1) succeeds, but polynomial-

time reliable recovery is impossible based on HPC conjecture (Conjecture 1) and hy-
pergraphic planted dense subgraph (HPDS) recovery conjecture (Conjecture 2).
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CHCD CHCR ROHCD & ROHCR

Impossible λ2
! nd

k2d ^
1

kd´1 λ2
! 1
kd´1

µ2

kd
! 1
kd´1

Hard nd

k2d ^
1

kd´1 À λ
2
! nd

k2d ^ 1 1
kd´1 À λ

2
! nd´1

k2pd´1q ^ 1 1
kd´1 À

µ2

kd
! nd{2

kd
^ 1

Algorithms ψsCHCD
Alg 1 ψsROHCD

& Alg 2

Easy λ2
Á nd

k2d ^ 1 λ2
Á nd´1

k2pd´1q ^ 1 µ2

kd
Á nd{2

kd
^ 1

Algorithms ψcCHCD
Algs 3 and 5 ψcROHCD

& Algs 3 and 4

TABLE 1
Phase transition and algorithms for detection and recovery in CHC and ROHC under the asymptotic regime

(A2). Here, easy, hard, and impossible mean polynomial-time solvable, unconstrained-time solvable but
polynomial-time unsolvable, and unconstrained-time unsolvable, respectively.

(iii) β ă βcCHCD
: the combination of polynomial-time Algorithms 3 and 5 succeeds.

Theorem 2 (Informal: Phase Transitions in ROHC) Define

βsROHC “ β
s
ROHCD “ β

s
ROHCR :“ pd´ 1qα{2,

βcROHC “ β
c
ROHCD “ β

c
ROHCR :“ pαd{2´ d{4q _ 0.

(6)

Under the asymptotic regime (A2), the statistical and computational limits of ROHCDpk,n, µq
and ROHCRpk,n, µq exhibit the following phase transitions:

(i) β ą βsROHC: reliable detection and recovery are information-theoretically impossible.
(ii) βcROHC ă β ă βsROHC: the computational inefficient test ψsROHCD

in Section 4.1 suc-
ceeds in detection and the search Algorithm 2 succeeds in recovery, but polynomial-time
reliable detection and recovery are impossible based on the HPC conjecture (Conjecture
1).

(iii) β ă βcROHC: the polynomial-time test ψcROHCD
in Section 4.2 succeeds in detection and

the combination of polynomial-time Algorithms 3 and 4 succeeds in recovery.

In Table 1, we summarize the statistical and computational limits in Theorems 1 and 2 in
terms of the original parameters k,n,λ,µ and provide the corresponding algorithms that
achieve these limits.

We also illustrate the phase transition diagrams for both CHC,ROHC pdě 3q in Figure 1,
Panels (a) and (c). When d“ 2, the phase transition diagrams in Panels (a) and (c) of Figure
1 reduce to constant biclustering (BC) diagram (Ma and Wu, 2015; Cai, Liang and Rakhlin,
2017; Brennan, Bresler and Huleihel, 2018; Chen and Xu, 2016) and rank-one submatrix
(ROS) diagram (Brennan, Bresler and Huleihel, 2018) in Panels (b) and (d) of Figure 1.

1.3. Comparison with Matrix Clustering and Our Contributions. The high-order (dě 3)
clustering problems show many distinct aspects from their matrix counterparts (d “ 2). We
summarize the differences and highlight our contributions in the aspects of phase transition
diagrams, algorithms, hardness conjecture, and proof techniques below.

(Phase transition diagrams) We can see the order-d (dě 3) tensor clustering has an ad-
ditional regime: (2-2) in Figure 1 Panel (c). Specifically if d “ 2, CHCR,ROHCR become
BCR,ROSR that share the same computational limit and there is no gap between the statis-
tical limit and computational efficiency for α “ 1 in ROSR (see Panels (b) and (d), Figure
1). If d ě 3, we need a strictly stronger signal-to-noise ratio to solve ROHCR than CHCR

and there is always a gap between the statistical optimality and computational efficiency for
ROHCR. This difference roots in two level computation barriers, sparsity and tensor struc-
ture, in high-order (dě 3) clustering. To our best knowledge, we are the first to characterize
such double computational barriers.
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(a) Constant high-order clustering (CHC) (b) Matrix biclustering (BC)

(c) Rank-one high-order clustering (ROHC) (d) Rank-one submatrix clustering (ROS)

FIG 1. Statistical and computational phase transition diagrams for constant high-order and rank-one high-order
(d ě 3) clustering models (CHC and ROHC) (left two panels) and constant biclustering and rank-one subma-
trix (d“ 2) clustering models (BC and ROS) (right two panels) under asymptotic regime (A2). Meaning of each
region: (1) all problems detection and recovery both easy; (2),(2-1),(2-2) all problems detection hard and re-
covery hard; (3) CHC and BC detection easy and recovery hard; (4) CHC and BC detection easy and recovery
impossible; (5) all problems detection and recovery impossible.

(Algorithms) In addition, we develop new algorithms for high-order clustering. For
CHCR and ROHCR, we introduce polynomial-time algorithms Power-iteration (Algorithm
4), Aggregated-SVD (Algorithm 5), both of which can be viewed as high-order analogues of
the matrix spectral clustering. Also, see Section 1.4 for a comparison with the methods in
the literature. We compare these algorithms and the exhaustive search (Algorithms 1 and 2)
under the asymptotic regime (A2) in Figure 2. Compared to matrix clustering recovery dia-
gram, i.e. Figure 1(d), a new Regime (2) appears in the high-order (dě 3) clustering diagram.
Different from the matrix clustering, where the polynomial-time spectral method reaches the
computational limits for both BCR and ROSR when 1

2 ď αď 1, the optimal polynomial-time
algorithms for CHCR and ROHCR are distinct: Power-iteration is optimal for ROHCR but
is suboptimal for CHCR; the Aggregated-SVD is optimal for CHCR but does not apply for
ROHCR. This difference stems from the unique tensor algebraic structure in CHC.

(Hardness conjecture) We adopt the average-case reduction approach to establish the
computational lower bounds. It would be ideal to do average-case reduction from the com-
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FIG 2. CHCR and ROHCR diagrams for Exhaustive search, Aggregated-SVD and Power-iteration algorithms
under asymptotic regime (A2). In the right bottom corner, we provide the feasible signal-to-noise ratio regimes
for each algorithm.

monly raised conjectures, such as the planted clique (PC) detection or Boolean satisfiability
(SAT), so that all of the hardness results of these well-studied conjectures can be inherited
to the target problem. However, this route is complicated by the multiway structure in the
high-order clustering. Instead, we apply a new average-case reduction scheme from hyper-
graphic planted clique (HPC) and the hypergraphic planted dense subgraph (HPDS) since
HPC and HPDS have a more natural tensor structure that enables a more straightforward
average-case reduction. Despite the widely studied planted clique (PC) and planted dense
subgraph (PDS) in literature, the HPC and HPDS are far less understood and so are their
computational hardness conjectures. The relationship between the computational hardness of
PC and HPC remains an open problem (Luo and Zhang, 2020a). This paper is among the first
to explore the average computational complexities of HPC and HPDS. To provide evidence
for the computation hardness conjecture, we show a class of powerful algorithms, including
the polynomial-time low-degree polynomials and Metropolis algorithms, are not able to solve
HPC detection unless the clique size is sufficiently large. Also, we show low-degree polyno-
mial method only succeeds in HPDS recovery in a restricted parameter regime. These results
on HPC and HPDS may be of independent interests in analyzing average-case computational
complexity, given the steadily increasing popularity on tensor data analysis recently and the
commonly observed statistical-computational gaps therein (Richard and Montanari, 2014;
Barak and Moitra, 2016; Zhang and Xia, 2018; Perry et al., 2020; Hopkins, Shi and Steurer,
2015; Lesieur et al., 2017; Wein, El Alaoui and Moore, 2019; Dudeja and Hsu, 2021).

(Proof techniques) The theoretical analysis in high-order clustering incorporates sparsity,
low-rankness, and tensor algebra simultaneously, which is significantly more challenging
than its counterpart in matrix clustering. Specifically, to prove the statistical lower bound
of ROHCD , we introduce the new Lemma 8, which gives an upper bound for the moment
generating function of any power of a symmetric random walk on Z stopped after a hyperge-
ometric distributed number of steps. This lemma is proved by utilizing Hoeffding’s inequality
and the tail bound integration, which is different from the literature and can be of independent
interest. To prove the statistical lower bound of CHCD , we introduce a new technique that
“sequentially decompose event" to bound the second moment of the truncated likelihood ra-
tio (see Lemma 5). To prove the computational lower bounds, we introduce new average-case
reduction schemes from HPC and HPDS, including a new reduction technique of tensor re-
flection cloning (Algorithm 7). This technique spreads the signal in the planted high-order



TENSOR CLUSTERING WITH PLANTED STRUCTURES 7

cluster along each mode evenly, maintains the independence of entries in the tensor, and only
mildly reduces the signal magnitude.

1.4. Related Literature. This work is related to a wide range of literature on biclustering,
tensor decomposition, tensor SVD, and theory of computation. When the order of the obser-
vation d “ 2, the problem (1) reduces to the matrix clustering (Ames and Vavasis, 2011;
Butucea, Ingster and Suslina, 2015; Chi, Allen and Baraniuk, 2017; Mankad and Michai-
lidis, 2014; Tanay, Sharan and Shamir, 2002; Busygin, Prokopyev and Pardalos, 2008). The
statistical and computational limits of matrix clustering have been extensively studied in the
literature (Balakrishnan et al., 2011; Kolar et al., 2011; Butucea and Ingster, 2013; Ma and
Wu, 2015; Chen and Xu, 2016; Cai, Liang and Rakhlin, 2017; Brennan, Bresler and Huleihel,
2018, 2019; Schramm and Wein, 2020). As discussed in Section 1.3, the high-order (dě 3)
tensor clustering exhibits significant differences from the matrix problems in various aspects.

Another related topic is on tensor decomposition and best low-rank tensor approximation.
Although the best low-rank matrix approximation can be efficiently solved by the matrix
singular value decomposition (Eckart´Young´Mirsky Theorem), the best low-rank tensor
approximation is NP-hard to calculate in general (Hillar and Lim, 2013). Various polynomial-
time algorithms, which can be seen as the polynomial-time relaxations of the best low-rank
tensor approximation, have been proposed in the literature, including the Newton method
(Zhang and Golub, 2001), alternating minimization (Zhang and Golub, 2001; Richard and
Montanari, 2014), high-order singular value decomposition (De Lathauwer, De Moor and
Vandewalle, 2000a), high-order orthogonal iteration (De Lathauwer, De Moor and Vande-
walle, 2000b), k-means power iteration (Anandkumar, Ge and Janzamin, 2014; Sun et al.,
2017), sparse high-order singular value decomposition (Zhang and Han, 2019), regularized
gradient descent (Han, Willett and Zhang, 2020), etc. The readers are referred to surveys
Kolda and Bader (2009); Cichocki et al. (2015). Departing from most of these previous re-
sults, the high-order clustering considered this paper involves both sparsity and low-rankness
structures, which requires new methods and theoretical analysis as discussed in Section 1.3.

Our work is also related to a line of literature on average-case computational hardness
and the statistical and computational trade-offs. The average-case reduction approach has
been commonly used to show computational lower bounds for many recent high-dimensional
problems, such as testing k-wise independence (Alon et al., 2007), biclustering (Ma and Wu,
2015; Cai, Liang and Rakhlin, 2017; Cai et al., 2020), community detection (Hajek, Wu and
Xu, 2015), RIP certification (Wang, Berthet and Plan, 2016; Koiran and Zouzias, 2014), ma-
trix completion (Chen, 2015), sparse PCA (Berthet and Rigollet, 2013a,b; Brennan, Bresler
and Huleihel, 2018; Gao, Ma and Zhou, 2017; Wang, Berthet and Samworth, 2016; Brennan
and Bresler, 2019a), universal submatrix detection (Brennan, Bresler and Huleihel, 2019),
sparse mixture and robust estimation (Brennan and Bresler, 2019b), a financial model with
asymmetry information (Arora et al., 2011), finding dense common subgraphs (Charikar,
Naamad and Wu, 2018), graph logistic regression (Berthet and Baldin, 2020), online local
learning (Awasthi et al., 2015). See also a web of average-case reduction to a number of prob-
lems in Brennan, Bresler and Huleihel (2018); Brennan and Bresler (2020) and a recent sur-
vey (Wu and Xu, 2021). The average-case reduction is delicate, requiring that a distribution
over instances in a conjecturally hard problem be mapped precisely to the target distribution.
For this reason, many recent literature turn to show computational hardness results under the
restricted models of computation, such as sum of squares (Ma and Wigderson, 2015; Hop-
kins et al., 2017; Barak et al., 2019), statistical query (Feldman et al., 2017; Diakonikolas,
Kane and Stewart, 2017; Diakonikolas, Kong and Stewart, 2019; Feldman, Perkins and Vem-
pala, 2018; Wang, Gu and Liu, 2015; Fan et al., 2018; Kannan and Vempala, 2017), class of
circuit (Rossman, 2008, 2014), convex relaxation (Chandrasekaran and Jordan, 2013), local
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algorithms (Gamarnik and Sudan, 2014), meta-algorithms based on low-degree polynomials
(Hopkins and Steurer, 2017; Kunisky, Wein and Bandeira, 2019) and others. As discussed
in Section 1.3, this paper is among the first to investigate the hypergraphic planted clique
(HPC) and hypergraphic planted dense subgraph (HPDS) problems and their computational
hardness. We perform new average-case reduction scheme from these conjectures and de-
velop the computational lower bounds for CHC and ROHC.

1.5. Organization. The rest of this article is organized as follows. After a brief intro-
duction of notation and preliminaries in Section 2, the statistical limits of high-order cluster
recovery and detection are given in Sections 3 and 4, respectively. In Section 5, we establish
the computational limits of high-order clustering, along with the hypergraphic planted clique
(HPC) and hypergraphic planted dense subgraph (HPDS) models, computational hardness
conjectures, and evidence. Discussion and future work are given in Section 6. The technical
proofs are collected in supplementary materials Luo and Zhang (2020b).

2. Notation and Definitions. The following notation will be used throughout this arti-
cle. For any non-negative integer n, let rns “ t1, . . . , nu. The lowercase letters (e.g., a, b),
lowercase boldface letters (e.g., u,v), uppercase boldface letters (e.g., A,U), and boldface
calligraphic letters (e.g., A,X ) are used to denote scalars, vectors, matrices, and order-3-or-
higher tensors respectively. For any two series of numbers, say tanu and tbnu, denote a— b
if there exist uniform constants c,C ą 0 such that can ď bn ď Can,@n; and a “ Ωpbq if
there exists uniform constant cą 0 such that an ě cbn,@n. The notation a“ Θ̃pbq and a" b
mean limnÑ8 an{n “ limnÑ8 bn{n and limnÑ8 logpan{nq ą limnÑ8 logpbn{nq, respec-
tively. aÀ b means aď b up to polylogarithmic factors in n. We use bracket subscripts to de-
note sub-vectors, sub-matrices, and sub-tensors. For example, vr2:rs is the vector with the 2nd
to rth entries of v; Drpr`1q:n1,:s contains the pr`1q-th to the n1-th rows of D; Ar1:s1,1:s2,1:s3s

is the s1-by-s2-by-s3 sub-tensor of A with index set tpi1, i2, i3q : 1 ď i1 ď s1,1 ď i2 ď

s2,1ď i3 ď s3u. For any vector v PRn1 , define its `2 norm as }v}2 “
`
ř

i |vi|
2
˘1{2 and }v}0

is defined to be the number of non-zero entries in v. Given vectors tviudi“1 P Rni , the outer
product A PRn1ˆ¨¨¨ˆnd “ v1 ˝ ¨ ¨ ¨ ˝vd is defined such that Ari1,...,ids “ pv1qi1 ¨ ¨ ¨ pvdqid . For
any event A, let PpAq be the probability that A occurs.

For any order-d tensor A P Rn1ˆ¨¨¨ˆnd . The matricization Mp¨q is the operation that un-
folds or flattens the order-d tensor A PRn1ˆ¨¨¨ˆnd into the matrix MzpAq PRnzˆ

ś

j‰z
nj for

z “ 1, . . . , d. Specifically, the mode-z matricization of A is formally defined as

Ari1,...,ids “ pMzpAqqriz,js , j “ 1`
d
ÿ

l“1
l‰z

$

’

&

’

%

pil ´ 1q
l´1
ź

m“1
m‰z

nm

,

/

.

/

-

for any 1 ď il ď nl, l “ 1, . . . , d. Also see (Kolda and Bader, 2009, Section 2.4) for more
discussions on tensor matricizations. The mode-z product of A P Rn1ˆ¨¨¨ˆnd with a matrix
U P Rkzˆnz is denoted by Aˆz U and is of size n1 ˆ ¨ ¨ ¨ ˆ nz´1 ˆ kz ˆ nz`1 ˆ ¨ ¨ ¨ ˆ nd,
such that

pAˆz Uqri1,...,iz´1,j,iz`1,...,ids “

nz
ÿ

iz“1

Ari1,i2,...,idsUrj,izs.

For any two distinct k1, k2 P rds pk1 ă k2q and j1 P rnk1s and j2 P rnk2s, we denote

Apk1,k2q
j1,j2

“A”

:, ... ,:, j1
loomoon

k1 th index

,:, ..., :, j2
loomoon

k2 th index

,: ..., :

ı PRn1ˆ¨¨¨ˆnk1´1ˆnk1`1ˆ¨¨¨ˆnk2´1ˆnk2`1ˆ¨¨¨ˆnd
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as a subtensor of A. The support of an order-d tensor X PRn1ˆ¨¨¨ˆnd is denoted by SpX q :“
pI1, ¨ ¨ ¨ , Idq where Ij P Rnj and pIjqi equals to zero when MjpX qri,:s is a zero vector and
equals to one otherwise. In particular, when the tensor order is 1, we simply have the support
of a vector v is Spvq “ tj : vj ‰ 0u.

Given a distribution Q, let Qbn be the distribution of pX1, . . . ,Xnq if tXiu
n
i“1 are i.i.d.

copies of Q. Similarly, let Qbmˆn and Qbpn
bdq denote the distribution on Rmˆn and Rnbd

with i.i.d. entries distributed as Q. Here nbd :“ nˆnˆ¨ ¨ ¨ˆn denotes the order-d Cartesian
product. In addition, we use C,C1,C2, c and other variations to represent the large and small
constants, whose actual values may vary from line to line.

Next, we formally define the statistical and computational risks to quantify the fun-
damental limits of high-order clustering. First, we define the risk of testing procedure
φDpYq P t0,1u as the sum of Type-I and Type-II errors for detection problems CHCD and
ROHCD:

EPDpφDq “ P0pφDpYq “ 1q ` sup
XPXCHCpk,n,λq

por XPXROHCpk,n,µqq

PX pφDpYq “ 0q,

where P0 is the probability under H0 and PX is the probability under H1 with the signal
tensor X . We say tφDun reliably detect in PD if limnÑ8 EPDpφDq “ 0. Second, for recovery
problem CHCR and ROHCR, define the recovery error for any recovery algorithm φRpYq P
tpI1, . . . , Idq : Ii Ď t1, . . . , niuu as

EPRpφRq “ sup
XPXCHCpk,n,λq

PX pφRpYq ‰ SpX qq or sup
XPXROHCpk,n,µq

PX pφRpYq ‰ SpX qq.

We say tφRun reliably recover in PR if limnÑ8 EPRpφRq “ 0. Third, denote AllAlgD ,
AllAlgR, PolyAlgD , PolyAlgR as the collections of unconstrained-time algorithms and
polynomial-time algorithms for detection and recover problems, respectively. Then we can
define four different statistical and computational risks as follows,

EsPD :“ inf
φDPAllAlgD

EPDpφDq, EcPD :“ inf
φDPPolyAlgD

EPDpφDq,

EsPR :“ inf
φRPAllAlgR

EPRpφRq, EcPR :“ inf
φRPPolyAlgR

EPRpφRq.

3. High-order Cluster Recovery: Statistical Limits and Polynomial-time Algorithms.
This section studies the statistical limits of high-order cluster recovery. We first present
the statistical lower bounds of λ and µ that guarantee reliable recovery, then we give
unconstrained-time algorithms that achieves these lower bounds. We also propose compu-
tationally efficient algorithms, Thresholding Algorithm, Power-iteration, and Aggregated-
SVD, with theoretical guarantees.

3.1. CHCR and ROHCR: Statistical Limits. Recall (5) and (6), we first present the sta-
tistical lower bounds for reliable recovery of CHCR and ROHCR.

Theorem 3 (Statistical Lower Bounds for CHCR and ROHCR) Consider CHCRpk,n, λq
and ROHCRpk,n, µq. Let 0ă η ă 1

8 be fixed. Under the asymptotic regime (A1), if

λďmax

¨

˝

#

d

η logpni ´ kiq
śd
z“1,z‰i kz

+d

i“1

˛

‚

¨

˝ or
µ

b

śd
i“1 ki

ďmax

¨

˝

#

d

η logpni ´ kiq
śd
z“1,z‰i kz

+d

i“1

˛

‚

˛

‚,
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we have

EsCHCRp or EsROHCRq ě

?
M

1`
?
M

ˆ

1´ 2η´
2η

logM

˙

Ñ 1´ 2η,

where M “maxptni ´ kiu
d
i“1q. Moreover, under the asymptotic regime (A2), if β ą βsCHCR

(or βsROHCR
), we have EsCHCR

p or EsROHCR
qÑ 1´ 2η.

We further propose the CHCR Search (Algorithm 1) and ROHCR Search (Algorithm 2)
with the following theoretical guarantees. These algorithms exhaustively search all possible
cluster positions and find one that best matches the data. In particular, Algorithm 1 is exactly
the maximum likelihood estimator. It is note worthy in Algorithm 2, we generate Z1 with
i.i.d. standard Gaussian entries and construct A“ Y`Z1?

2
and B“ Y´Z1?

2
. In that case, A and

B becomes two independent sample tensors, which facilitate the theoretical analysis. Such a
scheme is mainly for technical convenience and not necessary in practice.

Theorem 4 (Guarantee of CHCR Search) Consider CHCRpk,n, λq under the asymptotic

regime (A1). There exists C0 ą 0 such that when λ ě C0

c

řd
i“1

logpni´kiq

min
1ďiďd

t
śd
z“1,z‰i kzu

, Algorithm 1

identifies the true support of X with probability at least 1 ´ C
řd
i“1pni ´ kiq

´c for some
c,C ą 0. Moreover, under the asymptotic regime (A2), Algorithm 1 achieves the reliable
recovery of CHCR when β ă βsCHCR

.

Theorem 5 (Guarantee of ROHCR Search) Consider ROHCRpk,n, µq under the asymp-
totic regime (A1). There is an absolute constant C0 ą 0 such that if µ ě C0

?
k logn, then

Algorithm 2 identifies the true support of X with probability at least 1´C
řd
i“1pni´ kiq

´1

for some constant C ą 0. Moreover, under the asymptotic regime (A2), Algorithm 2 achieves
the reliable recovery of ROHCR when β ă βsROHCR

.

Algorithm 1 CHCR Search
1: Input: Y PRn1ˆ¨¨¨ˆnd , sparsity level k“ pk1, . . . , kdq.
2: Output:

pÎ1, . . . , Îdq “ arg max
IiĎrnis,|Ii|“ki

i“1,...,d

ÿ

i1PI1

. . .
ÿ

idPId

Yri1,...,ids.

Combining Theorems 3, 4, and 5, we can see if k1 — k2 — ¨ ¨ ¨ — kd, Algorithms 1, 2
achieve the minimax statistical lower bounds for CHCR, ROHCR. On the other hand, Algo-
rithms 1 and 2 are based on computationally inefficient exhaustive search. Next, we introduce
the polynomial-time algorithms.

3.2. CHCR and ROHCR: Polynomial-time Algorithms. The polynomial-time algo-
rithms for solving CHCR and ROHCR rely on the sparsity level ki p1ď iď dq. First, when
k À

?
n (sparse regime), we propose Thresholding Algorithm (Algorithm 3) that selects the

high-order cluster based on the largest entry in absolute value from each tensor slice. The
theoretical guarantee of this algorithm is given in Theorem 6.

Theorem 6 (Guarantee of Thresholding Algorithm for CHCR and ROHCR) Consider CHCRpk,n, λq

and ROHCRpk,n, µq. If λ ě 2
a

2pd` 1q logn (or µ{
b

śd
i“1 ki ě 2

a

2pd` 1q logn), Al-
gorithm 3 exactly recovers the true support of X with probability at least 1 ´ Opn´1q.
Moreover, under the asymptotic regime (A2), Algorithm 3 achieves the reliable recovery of
CHCR and ROHCR when β ă 0.
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Algorithm 2 ROHCR Search
1: Input: Y PRn1ˆ¨¨¨ˆnd , sparsity upper bound k.
2: Sample Z1 „Np0,1q

bn1ˆ¨¨¨ˆnd and construct A“
Y`Z1?

2
and B“ Y´Z1?

2
.

3: For each tk̄iu
d
i“1 satisfying k̄i P r1, kis p1ď iď dq do:

(a) Compute

pû1, . . . , ûdq “ arg max
pu1,...,udqPS

n1
k̄1
ˆ¨¨¨ˆS

nd
k̄d

Aˆ1 uJ1 ˆ ¨ ¨ ¨ ˆd u
J
d .

Here, Snt is the set of vectors u P t´1,1,0un with exactly t nonzero entries.
(b) For each tuple pû1, . . . , ûdq computed from Step (a), mark it if it satisfies

$

&

%

j :
´

Bˆ1 ûJ1 ˆ ¨ ¨ ¨ ˆi´1 ûJi´1 ˆi`1 ûJi`1 ˆ ¨ ¨ ¨ ˆd û
J
d

¯

j
pûiqj ě

1

2
?

2

µ
b

śd
i“1 ki

ź

z‰i

k̄z

,

.

-

is exactly the support of ûi, Spûiq for all 1ď iď d.
4: Among all marked tuples pû1, . . . , ûdq, we find the one, say pũ1, . . . , ũdq, that maximizes

řd
i“1 |Spûiq|.

5: Output: Îi “ Spũiq p1ď iď dq.

Algorithm 3 CHCR and ROHCR Thresholding Algorithm
1: Input: Y PRn1ˆ¨¨¨ˆnd .
2: Output:

pÎ1, . . . , Îdq “ tpi1, . . . , idq : |Yri1,...,ids| ě
a

2pd` 1q lognu.

Second, when k Á
?
n (dense regime), we consider the Power-iteration given in Algo-

rithm 4, which is a modification of the tensor PCA methods in the literature (Richard and
Montanari, 2014; Anandkumar, Ge and Janzamin, 2014; Zhang and Xia, 2018) and can be
seen as an tensor analogue of the matrix spectral clustering method.

Algorithm 4 Power-iteration for CHCR and ROHCR

1: Input: Y PRn1ˆ¨¨¨ˆnd , maximum number of iterations tmax.
2: Sample Z1 „Np0,1q

bn1ˆ¨¨¨ˆnd and construct A“ pY `Z1q{
?

2 and B“ pY ´Z1q{
?

2.

3: (Initiation) Set t“ 0. For i“ 1 : d, compute the top left singular vector of MipAq and denote it as ûp0qi .
4: For t“ 1, . . . , tmax, do

(a) For i“ 1 to d, update

û
ptq
i “NORMpAˆ1 pû

ptq
1 q

J
ˆ ¨ ¨ ¨ ˆi´1 pû

ptq
i´1q

J
ˆi`1 pû

pt´1q
i`1 q

J
ˆ ¨ ¨ ¨ ˆd pû

pt´1q
d q

J
q.

Here, NORMpvq “ v{}v}2 is the normalization of vector v.

5: Let pû1, . . . , ûdq :“ pû
ptmaxq

1 , . . . , û
ptmaxq

d q. For i“ 1, . . . , d, calculate

(7) vi :“Bˆ1 ûJ1 ˆ ¨ ¨ ¨ ˆi´1 ûJi´1 ˆi`1 ûJi`1 ˆ ¨ ¨ ¨ ˆd û
J
d PR

ni .

• If the problem is CHCR, the component values of vi form two clusters. Sort tpviqju
ni
j“1 and cut the

sequence at the largest gap between the consecutive values. Let the index subsets of two parts be Îi and
rniszÎi. Output: Îi

• If the problem is ROHCR, the component values of vi form three clusters. Sort the sequence tpviqju
ni
j“1,

cut at the two largest gaps between the consecutive values, and form three parts. Among the three parts,
pick the two smaller-sized ones, and let the index subsets of these two parts be Î1

i , Î
2
i . Output: Îi “

Î1
i
Ť

Î2
i

6: Output: tÎiu
d
i“1.
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We also propose another polynomial-time algorithm, Aggregated SVD, in Algorithm 5 for
the dense regime of CHCR. As its name suggests, the central idea is to first transform the
tensor Y into a matrix by taking average, then apply matrix SVD. Aggregated-SVD is in a
similar vein of the hypergraph adjacency matrix construction in the hypergraph community
recovery literature (Ghoshdastidar and Dukkipati, 2017; Kim, Bandeira and Goemans, 2017).

Algorithm 5 Aggregated-SVD for CHCR

1: Input: Y PRn1ˆ¨¨¨ˆnd .
2: For i“ 1,2, . . . , d, do:

(a) Find i˚ “ arg minj‰i nj and calculate Ypi,i
˚q

P Rniˆni˚ where Y
pi,i˚q
rk1,k2s

:“

SUMpYpi,i
˚q

k1,k2
q{

b

śd
j“1,j‰i,i˚ nj for 1 ď k1 ď ni,1 ď k2 ď ni˚ . Here SUMpAq :“

ř

i1 ¨ ¨ ¨
ř

id
Ari1,...,ids and Ypi,i

˚q

k1,k2
is the subtensor of Y defined in Section 2.

(b) Sample Z1 „ Np0,1qbniˆni˚ and form Api,i
˚q
“ pYpi,i

˚q
` Z1q{

?
2 and Bpi,i

˚q
“ pYpi,i

˚q
´

Z1q{
?

2. Compute the top right singular vector of Api,i
˚q, denote it as v.

(c) To compute Îi, calculate
ˆ

B
pi,i˚q
rj,:s

¨ v

˙

for 1ď j ď nj . These values form two data driven clusters and

a cut at the largest gap at the ordered value of
"

B
pi,i˚q
rj,:s

¨ v

*ni

j“1
returns the set Îi and rniszÎi.

3: Output: tÎiu
d
i“1.

We give guarantees of Power-iteration and Aggregated-SVD for high-order cluster recov-
ery. In particular, Aggregated SVD achieves strictly better performance than Power-iteration
in CHCR, but does not apply for ROHCR.

Theorem 7 (Guarantee of Power-iteration for CHCR and ROHCR) Consider CHCRpk,n, λq
and ROHCRpk,n, µq. Assume ni ě c0n p1ď iď dq for constant c0 ą 0 where n :“maxi ni.
Under the asymptotic regime (A1), there exists a uniform constant C0 ą 0 such that if

λ
b

śd
i“1 ki ěC0n

d

4 (or µěC0n
d

4 q

and tmax ěC log

¨

˝

n

λ
b

śd
i“1 ki

˛

‚_C p or tmax ěCplogpn{µq _ 1qq ,

Algorithm 4 identifies the true support of X with probability at least 1 ´
řd
i“1 n

´c
i ´

Cexpp´cnq for constants c,C ą 0. Moreover, under the asymptotic regime (A2), Algorithm
4 achieves the reliable recovery of CHCR and ROHCR when β ă pα´ 1{2qd{2.

Theorem 8 (Guarantee of Aggregated-SVD for CHCR) Consider CHCRpk,n, λq and Al-
gorithm 5. There exists a uniform constant C0 ą 0 such that if

(8) λěC0

k
b

śd
i“1 ni

?
nmin

śd
i“1 ki

˜

1`

c

k logn

nmin

¸

,

the support recovery algorithm based on Aggregated-SVD identifies the true support of X
with probability at least 1 ´

řd
i“1 n

´c
i ´ Cexpp´cnminq. Here, nmin “ minpn1, . . . , ndq.

Moreover, under the asymptotic regime (A2), Aggregated-SVD achieves reliable recovery of
CHCR when β ă pα´ 1{2qpd´ 1q.

Combining Theorems 6–8, we can see the reliable recovery of CHCR and ROHCR is
polynomial-time possible if β ă βcCHCR

:“ pα´ 1{2qpd´ 1q _ 0 and β ă βcROHCR
:“ pα´
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1{2qd{2 _ 0. Since βcCHCR
ă βsCHCR

and βcROHCR
ă βsROHCR

, the proposed polynomial-
time algorithms (Algorithms 3, 4 and 5) require a strictly stronger signal-to-noise ratio than
the proposed unconstrained-time ones (Algorithms 1 and 2) which leaves a significant gap
between statistical optimality and computational efficiency to be discussed in Section 5.

4. High-order Cluster Detection: Statistical Limits and Polynomial-time Algorithms.
In this section, we investigate the statistical limits of both CHCD and ROHCD . For each
model, we first present the statistical lower bounds of signal strength that guarantees reliable
detection, then we propose the algorithms, though being computationally intense, that prov-
ably achieve the statistical lower bounds. Finally, we introduce the computationally efficient
algorithms and provide the theoretical guarantees under the stronger signal-to-noise ratio.

4.1. CHCD and ROHCD: Statistical Limits. Recall (5) and (6), Theorems 9 and 10
below give the statistical lower bounds that guarantee reliable detection for CHCD and
ROHCD , respectively.

Theorem 9 (Statistical Lower Bound of CHCD) Consider CHCDpk,n, λq under the asymp-
totic regime (A1) and assume

(9)
logpnj{kjq

ki
Ñ 0,

log logpni{kiq

logpnj{kjq
Ñ 0, and ki log

ni
ki
— kj log

nj
kj

for all i, j P rds, i‰ j. Then if

(10)
λ
śd
i“1 ki

b

śd
i“1 ni

Ñ 0 and lim sup
nÑ8

λp
śd
i“1 kiq

1

2

b

2p
řd
i“1 ki logpni{kiqq

ă 1,

we have EsCHCD
Ñ 1. Moreover, under (A2), if β ą βsCHCD

, EsCHCD
Ñ 1.

Theorem 10 (Statistical Lower Bound of ROHCD) Consider ROHCDpk,n, µq. Under
the asymptotic regime (A1), if µ?

k logpen{kq
Ñ 0, then EsROHCD

Ñ 1. Under the asymptotic

regime (A2), if β ą βsROHCD
, EsROHCD

Ñ 1.

Next, we present the hypothesis tests ψsCHCD
and ψsROHCD

that achieve reliable detection
on the statistical limits in Theorems 9 and 10. For CHCD , define ψsCHCD

:“ ψsum _ ψscan.
Here, ψsum and ψscan are respectively the sum and scan tests:

(11) ψsum “ 1

˜

n1
ÿ

i1“1

¨ ¨ ¨

nd
ÿ

id“1

Yri1,...,ids{
?
n1 ¨ ¨ ¨nd ąW

¸

for some to-be-specified W ą 0 and

(12) ψscan “ 1
´

Tscan ą
b

2 logpGn
kq

¯

, Tscan “ max
CPSk,n

ř

pi1,...,idqPC
Yri1,...,ids

?
k1 ¨ ¨ ¨kd

,

where Gn
k “

`

n1

k1

˘`

n2

k2

˘

¨ ¨ ¨
`

nd
kd

˘

and Sk,n represents the set of all possible supports of planted
signal:
(13)
Sk,n “ tpI1 ˆ I2 ˆ ¨ ¨ ¨ ˆ Idq : I1 Ď rn1s, I2 Ď rn2s, . . . , Id Ď rnds and |Ii| “ ki,1ď iď du .

The following Theorem 11 provides the statistical guarantee for ψsCHCD
.
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Theorem 11 (Guarantee for ψsCHCD
) Consider CHCDpk,n, λq. Under the asymptotic

regime (A1), when

(14)
λ
śd
i“1 ki

b

śd
i“1 ni

Ñ8, W Ñ8, W ď cλ

śd
i“1 ki

b

śd
i“1 ni

p0ă că 1q,

or when

(15) lim inf
nÑ8

λp
śd
i“1 kiq

1

2

b

2p
řd
i“1 ki logpniki qq

ą 1,

we have ECHCDpψ
s
CHCD

q Ñ 0. Under the asymptotic regime (A2), ψsCHCD
succeeds in reli-

able detection when β ă βsCHCD
.

The test for ROHCD is built upon the ROHC Search (Algorithm 2 in Section 3) designed
for ROHCR. To be specific, generate Z1 with i.i.d. standard Gaussian entries and calculate
A “ Y`Z1?

2
and B “ Y´Z1?

2
. Then A and B becomes two independent samples. Apply Al-

gorithm 2 on A and let pu1, . . . ,udq be the output of Step 4 of Algorithm 2. Define the test
statistic as

ψsROHCD “ 1
´

Bˆ1 u
J
1 {
a

k1 ˆ ¨ ¨ ¨ ˆd u
J
d {
a

kd ěC
?
k
¯

,

where C ą 0 is a fixed constant. We have the following theoretical guarantee for ψsROHCD
.

Theorem 12 (Guarantee for ψsROHCD
) Consider ROHCDpk,n, µq under the asymptotic

regime (A1). There exists some constantC ą 0 such that when µěC
?
k logn, EROHCDpψ

s
ROHCD

qÑ

0. Moreover, under the asymptotic regime (A2), ψsROHCD
succeeds in reliable detection when

β ă βsROHCD
.

Combining Theorems 9 and 11, we have shown ψsCHCD
achieves sharply minimax lower

bound of λ for reliable detection of CHCD . From Theorems 10 and 12, we see ψsROHC
achieves the minimax optimal rate of µ for reliable detection of ROHCD . However, both
ψsCHCD

and ψsROHCD
are computationally inefficient.

Remark 1 The proposed ψsCHCD
and ψsROHCD share similar spirits with the matrix cluster-

ing algorithms in the literature (Butucea and Ingster, 2013; Brennan, Bresler and Huleihel,
2018), though the tensor structure here causes extra layer of difficulty. Particularly when
d“ 2, the lower and upper bounds results in Theorem 9-12 match the ones in Butucea and
Ingster (2013); Brennan, Bresler and Huleihel (2018), although the proof for high-order
clustering is much more complicated.

4.2. CHCD and ROHCD: Polynomial-time Algorithms. Next, we introduce polynomial-
time algorithms for high-order cluster detection. For CHCD , define ψcCHCD

:“ ψsum_ψmax,
where ψsum is defined in (11) and ψmax is defined below based on max statistic,

(16) ψmax “ 1

¨

˝ max
1ďijďnj
j“1,...,d

Yri1,...,ids ą

g

f

f

e2
d
ÿ

i“1

logni

˛

‚.

Theorem 13 (Theoretical Guarantee for ψcCHCD
) Consider CHCDpk,n, λq. Under the

asymptotic regime (A1), if condition (14) holds or

(17) lim inf
nÑ8

λ
b

2
řd
i“1 logni

ą 1,

holds, then ECHCDpψ
c
CHCD

q Ñ 0. Moreover, under the asymptotic regime (A2), ψcCHCD
suc-

ceeds in reliable detection when β ă βcCHCD
.
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We also propose a polynomial-time algorithm for ROHCD based on a high-order ana-
logue of the largest matrix singular value in tensor. Following the procedure of ψsROHCD

, we
construct A and B as two independent copies. Apply Algorithm 4 in Section 3 on A and let
pu1, . . . ,udq to be the output of Step 4 of Algorithm 4. We define

(18) ψcROHCD “ ψsing _ψmax, ψsing “ 1
´

Bˆ1 u
J
1 ˆ ¨ ¨ ¨ ˆd u

J
d ěC

?
k
¯

,

where ψmax is defined in (16) and C ą 0 is a fixed constant.

Theorem 14 (Theoretical Guarantee for ψcROHCD
) Consider ROHCDpk,n, µq under the

asymptotic regime (A1). There exists a constant C ą 0 such that when

(19) µěCn
d

4 or lim inf
nÑ8

µ
b

2p
śd
i“1 kiqp

řd
i“1 logniq

ą 1,

we have EROHCDpψ
c
ROHCD

q Ñ 0. Moreover, under the asymptotic regime (A2), ψcROHCD
succeeds in reliable detection when β ă βcROHCD

.

Since βcCHCD
ă βsCHCD

and βcROHCD
ă βsROHCD

, the proposed polynomial-time algo-
rithms ψcCHCD

and ψcROHCD
require a strictly stronger signal-noise-ratio than the unrestricted-

time algorithms.

5. Computational Lower Bounds. To provide the computational lower bounds for
high-order clustering, it suffices to focus on the asymptotic regime (A2) as it also implies
the computational lower bounds in the general parameterization regime (A1). We first con-
sider the detection of CHC. Theorem 15 below and Theorem 13 in Section 4.2 together yield
a tight computational lower bound for CHCD .

Theorem 15 (Computational Lower Bound of CHCD) Consider CHCDpk,n, λq under
the asymptotic regime (A2). If β ą βcCHCD

, then lim infnÑ8 EcCHCD
ě 1{2 under the HPC

detection conjecture 1.

Next, Theorems 6, 8, and Theorem 16 below together give a tight computational lower
bound for CHCR.

Theorem 16 (Computational Lower Bound of CHCR) Consider CHCRpk,n, λq under
the asymptotic regime (A2). If αě 1{2 and β ą pd´1qα´pd´1q{2, then lim infnÑ8 EcCHCR

ě

1{2 under the HPDS recovery conjecture (Conjecture 2). If 0 ă α ă 1{2, β ą 0, then
lim infnÑ8 EcCHCR

ě 1{2 under the HPC detection conjecture (Conjecture 1). Combined
together, we have if β ą βcCHCR

, then lim infnÑ8 EcCHCR
ě 1{2 under Conjectures 1 and 2.

Then, we consider rank-one high-order cluster detection and recovery. By Lemma 10 in
Luo and Zhang (2020b) Section B, we can show that the computational lower bound of
ROHCR is implied by ROHCD . We specifically have the following theorem.

Theorem 17 (Computational Lower Bounds of ROHCD and ROHCR) Consider ROHCDpk,n, µq
and ROHCRpk,n, µq under the asymptotic regime (A2) and the HPC detection Conjecture
1. If β ą βcROHCD

, then lim infnÑ8 EcROHCD
ě 1{2, lim infnÑ8 EcROHCR

ě 1{2.

Combining Theorems 6, 7, 17, and 14 (provided in Section 4.2), we have obtained the tight
computational lower bounds for ROHCD and ROHCR. Furthermore, since ROHC is a spe-
cial case of sparse tensor PCA/SVD studied in literature (Zhang and Han, 2019; Sun et al.,
2017), Theorem 17 also provides a computational lower bound for the signal-to-noise ratio
requirement for sparse tensor PCA/SVD.
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Remark 2 The computational lower bounds in Theorems 15, 16 and 17 are for asymmetric
tensor clustering under the CHC and ROHC models. To establish the computational lower
bounds for a symmetric version of the CHC or ROHC models that both the planted signal and
the noise tensors are symmetric, a new proof scheme is required as the same sparsity across
all modes must be ensured while constructing instance tensors in performing the average-
case reduction.

Theorems 15 – 17 above are based on the HPC and HPDS conjectures. Next, we will
elaborate the HPC, HPDS conjectures in Sections 5.1, 5.2, and discuss the evidence in Section
5.3. Then in Section 5.4, we provide the high level ideas on the average-case reduction from
HPC and HPDS to high-order clustering, and prove these computational lower bounds.

5.1. Hypergraphic Planted Clique Detection. A d-hypergraph can be seen as an order-
d extension of regular graph. In a d-hypergraph G“ pV pGq,EpGqq, each hyper-edge e P E
includes an unordered group of d vertices in V . Define GdpN,1{2q as Erdős-Rényi random d-
hypergraph with N vertices, where each hyper-edge pi1, . . . , idq is independently included in
E with probability 1

2 . Given a d-hypergraph G“ pV pGq,EpGqq, define its adjacency tensor
A :“ApGq P pt0,1uN qbd as

Ari1,...,ids “

#

1, if pi1, . . . , idq PE;

0, otherwise.

We define GdpN, 1
2 , κq as the hypergraphic planted clique (HPC) model with clique size

κ. To generate G „ GdpN, 1
2 , κq, we sample a random hypergraph from GdpN, 1

2q, pick κ
vertices uniformly at random from rN s, denote them as K , and connect all hyper-edges e if
all vertices of e are in K . The focus of this section is on the hypergraphic planted clique
detection (HPC) problem:

(20) HG
0 :G„ Gd pN,1{2q v.s. HG

1 :G„ Gd pN,1{2, κq .

Given the hypergraph G and its adjacency tensor A, the risk of test φ for (20) is defined as
the sum of Type-I and II errors EHPCDpφq “ PHG

0
pφpAq “ 1q ` PHG

1
pφpAq “ 0q . Our aim

is to find out the consistent test φ“ tφNu such that limNÑ8 EHPCDpφN q “ 0.
When d “ 2, HPC detection (20) reduces to the planted clique (PC) detection studied in

literature. It is helpful to have a quick review of existing results for PC before addressing
HPC. Since the size of the largest clique in Erdős Rényi graph G „ G2pN,

1
2q converges to

2 log2N asymptotically, reliable PC detection can be achieved by exhaustive search when-
ever κ ě p2 ` εq log2N for any ε ą 0 (Bollobás and Erdös, 1976). When κ “ Ωp

?
Nq,

many computational-efficient algorithms, including the spectral method, approximate mes-
sage passing, semidefinite programming, nuclear norm minimization, and combinatorial
approaches (Alon, Krivelevich and Sudakov, 1998; Ames and Vavasis, 2011; Feige and
Krauthgamer, 2000; Ron and Feige, 2010; McSherry, 2001; Dekel, Gurel-Gurevich and
Peres, 2014; Deshpande and Montanari, 2015a; Chen and Xu, 2016), have been developed
for PC detection. Despite enormous previous efforts, no polynomial-time algorithm has been
found for reliable detection of PC when κ“ opN1{2q and it has been widely conjectured that
no polynomial-time algorithm can achieve so. The hardness conjecture of PC detection was
strengthened by several pieces of evidence, including the failure of Metropolis process meth-
ods (Jerrum, 1992), low-degree polynomial methods (Hopkins, 2018; Brennan and Bresler,
2019b), statistical query model (Feldman et al., 2017), Sum-of-Squares (Barak et al., 2019;
Deshpande and Montanari, 2015b; Meka, Potechin and Wigderson, 2015), landscape of op-
timization (Gamarnik and Zadik, 2019), etc.
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When moving to HPC detection (20) with dě 3, the computational hardness remains little
studied. Bollobás and Erdös (1976) proved that Kd

N

pd! log2pNqq
1{pd´1q

a.s.
Ñ 1 if Kd

N is the largest

clique in G„ GdpN, 1
2q. So HPC detection problem (20) is statistical possible by exhaustive

search when κ ě ppd!` εq log2pNqq
1{pd´1q for any ε ą 0. However, Zhang and Xia (2018)

observed that the spectral algorithm solves HPC detection if κ “ Ωp
?
Nq but fails when

κ“N
1

2
´ε for any εą 0. We present the following hardness conjecture for HPC detection.

Conjecture 1 (HPC Detection Conjecture) Consider the HPC detection problem (20) and
suppose dě 2 is a fixed integer. If

(21) lim sup
NÑ8

logκ{ log
?
N ď 1´ τ for any τ ą 0,

for any polynomial-time test sequence tφuN : AÑt0,1u, lim infNÑ8 EHPCDpφpAqq ě 1
2 .

Remark 3 (Choice of Type-I, II Error Lower Bound) We set the lower bound for the sum
of Type-I, II errors to be 1{2 in the HPC Detection Conjecture above (i.e., tφuN : AÑ

t0,1u, lim infNÑ8 EHPCDpφpAqq ě 1{2). In the literature, there is no universal choice of
this constant. For example, Berthet and Rigollet (2013a) considers PC detection conjecture
with the sum of type I and type II errors to be some constant close to 1; Ma and Wu (2015)
uses the PC detection conjecture with the error constant 2{3; Brennan, Bresler and Huleihel
(2018); Brennan and Bresler (2019a, 2020); Hajek, Wu and Xu (2015) choose this constant
to be 1.

In Section 5.3, we provide two pieces of evidence for HPC detection conjecture: a general
class of Monte Carlo Markov Chain process methods (Jerrum, 1992) and a general class of
low-degree polynomial tests (Hopkins and Steurer, 2017; Hopkins, 2018; Kunisky, Wein and
Bandeira, 2019; Brennan and Bresler, 2019b) fail to solve HPC detection under the asymp-
totic condition (21). Also, see a recent note Luo and Zhang (2020a) for several open questions
on HPC detection conjecture, in particular, whether HPC detection is equivalently hard as PC
detection.

5.2. Hypergraphic Planted Dense Subgraph. We consider the hypergraphic planted
dense subgraph (HPDS), a hypergraph model with denser connections within a community
and sparser connections outside, in this section. Let Gd be a d-hypergraph. To generate a
HPDS G“ pV pGq,EpGqq „ GdpN,κ, q1, q2q with q1 ą q2, we first select a size-κ subset K
from rN s uniformly at random, then for each hyper-edge e“ pi1, . . . , idq,

P pe PEpGqq “
"

q1, i1, . . . , id PK
q2, otherwise.

The aim of HPDS detection is to test

(22) H0 :G„ GdpN,q2q versus H1 :G„ GdpN,κ, q1, q2q;

the aim of HPDS recovery is to locate the planted support K given G„ GdpN,κ, q1, q2q.
When d“ 2, HPDS reduces to the planted dense subgraph (PDS) considered in literature.

Various statistical limits of PDS have been studied (Chen and Xu, 2016; Hajek, Wu and Xu,
2015; Arias-Castro and Verzelen, 2014; Verzelen and Arias-Castro, 2015; Brennan, Bresler
and Huleihel, 2018; Feldman et al., 2017) and generalizations of PDS recovery has also been
considered in Hajek, Wu and Xu (2016); Montanari (2015); Candogan and Chandrasekaran
(2018). In Hajek, Wu and Xu (2015); Brennan, Bresler and Huleihel (2018), a reduction from
PC has shown the statistical and computational phase transition for PDS detection problem
for all q1 ą q2 with q1 ´ q2 “Opq2q where q2 “ Θ̃pN´βq. For PDS recovery problem, Chen
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and Xu (2016); Brennan, Bresler and Huleihel (2018); Hajek, Wu and Xu (2015) observed
that PDS appears to have a detection-recovery gap in the regime when κ"

?
N .

When moving to HPDS detection, if q1 “ ωpq2q, the computational barrier for this prob-
lem is conjectured to be the log-density threshold κ“ Θ̃pN logq2 q1q when κ!

?
N (Chlam-

tac, Dinitz and Krauthgamer, 2012; Chlamtáč, Dinitz and Makarychev, 2017). Recently,
Chlamtác and Manurangsi (2018) showed that Ω̃plogNq rounds of the Sherali-Adams hi-
erarchy cannot solve the HPDS detection problem below the log-density threshold in the
regime q1 “ ωpq2q. The HPDS recovery, to the best of our knowledge, remains unstudied in
the literature.

In the following Proposition 1, we show that a variant of Aggregated-SVD (presented in
Algorithm 6) requires a restricted condition on κ, q1, q2,N for reliable recovery in HPDS in
the regime κ"

?
N .

Algorithm 6 Support Recovery of HPDS via Aggregated-SVD
1: Input: A.
2: Let qA“A”

1:tN
d

u,tN
d

u`1:2tN
d

u,...,pd´1qtN
d

u`1:Nu

ı.

3: Let rAri1,...,ids “
qAri1,...,ids´q2?
q2p1´q2q

for all 1ď i1 ď tNd u, . . . , pd´ 1qtNd u` 1ď id ďN . Then apply Algo-

rithm 5 with input rA and denote the estimated support for each mode of rA as K̂i.
4: Compute K̂ “

Ťd
i“1 K̂i.

5: Output: K̂ .

Proposition 1 Suppose G„ GdpN,κ, q1, q2q with q1 ą q2. Let A be the adjacency tensor of
G. When lim infNÑ8 logN κě 1{2, and

(23) lim sup
NÑ8

logN

˜

κd´1pq1 ´ q2q
a

q2p1´ q2q

¸

ě
d

2
´

1

2
,

Algorithm 6 recovers the support of the planted dense subgraph with probability at least
1´ d pN{dq´c ´Cexp p´cN{dq for some c,C ą 0.

On the other hand, the theoretical analysis in Proposition 1 breaks down when condition
(23) does not hold. We conjecture that the signal-to-noise ratio requirement in (23) is essential
for HPDS recovery and propose the following computational hardness conjecture.

Conjecture 2 (HPDS Recovery Conjecture) SupposeG„ GdpN,κ, q1, q2qwith 1´Ωp1q ą
q1 ą q2. Denote its adjacency tensor as A. If

(24) lim inf
NÑ8

logN κě
1

2
and lim sup

NÑ8
logN

˜

κd´1pq1 ´ q2q
a

q2p1´ q2q

¸

ă
d

2
´

1

2
,

then for any randomized polynomial-time algorithm tφuN , lim infNÑ8 EHPDSRpφpAqq ě 1
2 .

In the proof of Proposition 1, we provide evidence for Conjecture 2 by showing a variant of
Aggregated-SVD fails to solve HPDS recovery under the PC detection conjecture. A stronger
piece of evidence for Conjecture 2 via low-degree polynomial method is given in Section
5.3.3.

5.3. Evidence for HPC Detection Conjecture. In this section, we provide two pieces
of evidence for HPC conjecture 1 via Monte Carlo Markov Chain process and low-degree
polynomial test and one piece of evidence for HPDS recovery conjecture 2 via low-degree
polynomial method.
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5.3.1. Evidence of HPC Conjecture 1 via Metropolis process. We first show a general
class of Metropolis processes are not able to detect or recover the large planted clique in
hypergraph. Motivated by Alon et al. (2007), in Lemma 1 we first prove that if it is computa-
tionally hard to recover a planted clique in HPC, it is also computationally hard to detect.

Lemma 1 Assume κąΩplogNq. Consider the HPCDpN,1{2, κq problem: test

H0 :G„ GdpN,1{2q versus H1 :G„ GdpN,1{2, κq
and HPCRpN,1{2, κq problem: recover the exact support of the planted clique if H1

holds. If there is no polynomial time recovery algorithm can output the right clique of
HPCRpN,1{2, κq with success probability at least 1´1{N , then there is no polynomial time
detection algorithm can output the right hypothesis for HPCDpN,1{2, κ{3q with probability
1´ 1{p4Ndq.

By Lemma 1, to show the computational hardness of HPC detection, we only need to show
the HPC recovery.

Motivated by the seminal work of Jerrum (1992), we consider the following simulated an-
nealing method for planted clique recovery in hypergraph. Given a hypergraph G“ pV,Eq „
GdpN,1{2, κq on the vertex set V “ t0, . . . ,N ´ 1u and a real number θ ě 1, we consider a
Metropolis process on the state space of the collection Γ Ď 2V of all cliques in G, i.e., all
subsets of V which induces the complete subgraph in G. A transition from state K to state
K 1 is allowed if |K ‘K 1| ď 1 (Here, K ‘K 1 “ ti : i PK, i RK 1u

Ť

ti : i PK 1, i RKu is the
set symmetric difference).

For all distinct states K,K 1 P Γ, the transition probability from K to K 1 is

(25) P pK,K 1q “

$

&

%

1
Nθ , if K ‘K 1 “ 1,K ĄK 1;
1
N , if K ‘K 1 “ 1,K ĂK 1;
0, if |K ‘K 1| ě 2.

The loop probability P pK,Kq “ 1 ´
ř

K1‰K P pK,K
1q are defined by complementation.

The transition probability can be interpreted by the following random process. Suppose the
current state is K . Pick a vertex v uniformly at random from V .

1. If v RK and K
Ť

tvu is a clique, then let K 1 “K
Ť

tvu;
2. If v RK and K

Ť

tvu is not a clique, then let K 1 “K;
3. If v PK , with probability 1

θ , set K 1 “Kztvu, else set K 1 “K .

When θ ą 1, the Metropolis process defined above is aperiodic and then has a unique
statitionary distribution. Let π : ΓÑ r0,1s be defined as

πpKq “
θ|K|

ř

KPΓ θ
|K|
.

We can check that π satisfies the following detailed balance property:

(26) θ|K|P pK,K 1q “ θ|K
1|P pK 1,Kq, for all K,K 1 P Γ.

This means π is indeed the stationary distribution of this Markov chain. The follow-
ing theorem shows that it takes superpolynomial time to locate a clique in G of size
Ω
`

plog2Nq
1{pd´1q

˘

by described Metropolis process.

Theorem 18 (Hardness of Finding Large Clique in GdpN,1{2,Nβq,0ă β ă 1
2 ) Suppose

εą 0 and 0ă β ă 1
2 . For almost every G P GdpN,1{2,Nβq and every θ ą 1, there exists an

initial state from which the expected time for the Metropolis process to reach a clique of size
at least m exceeds NΩpplog2Nq

1{pd´1qq. Here,

m“ 2

S

ˆˆ

1`
2

3
ε

˙

d!

2
log2N

˙
1

d´1

W

´

S

ˆˆ

1`
2

3
ε

˙

pd´ 1q! log2N

˙
1

d´1

W

—d plog2Nq
1

d´1 .
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5.3.2. Evidence of HPC Conjecture 1 via Low-degree Polynomial Test. We also consider
the low-degree polynomial tests to establish the computational hardness for hypergraphic
planted clique detection. The idea of using low-degree polynomial to predict the statisti-
cal and computational gap is recently developed in a line of papers (Hopkins and Steurer,
2017; Hopkins et al., 2017; Hopkins, 2018; Barak et al., 2019). Many state-of-the-art al-
gorithms, such as spectral algorithm, approximate message passing (Donoho, Maleki and
Montanari, 2009) can be represented as low-degree polynomial functions as the input, where
“low" means logarithmic in the dimension. In comparison to sum-of-squares (SOS) compu-
tational lower bounds, the low-degree method is simpler to carry out and appears to always
yields the same results for natural average-case problems, such as the planted clique detection
(Hopkins, 2018; Barak et al., 2019), community detection in stochastic block model (Hopkins
and Steurer, 2017; Hopkins, 2018), the spiked tensor model (Hopkins et al., 2017; Hopkins,
2018; Kunisky, Wein and Bandeira, 2019), the spiked Wishart model (Bandeira, Kunisky
and Wein, 2020), sparse PCA (Ding et al., 2019), spiked Wigner model (Kunisky, Wein and
Bandeira, 2019), sparse clustering (Löffler, Wein and Bandeira, 2020), certifying RIP (Ding
et al., 2020) and a variant of planted clique and planted dense subgraph models (Brennan and
Bresler, 2019b). It is gradually believed that the low-degree polynomial method is able to
capture the essence of what makes SOS succeed or fail (Hopkins and Steurer, 2017; Hopkins
et al., 2017; Hopkins, 2018; Kunisky, Wein and Bandeira, 2019; Raghavendra, Schramm and
Steurer, 2018). Therefore, we apply this method to give the evidence for the computational
hardness of HPC detection (20). Specifically, we have the following Theorem 19 for low
degree polynomial tests in HPC.

Theorem 19 (Failure of Low-degree Polynomial Tests for HPC) Consider the HPC de-
tection problem (20) for κ“Nβ p0ă β ă 1

2q. Suppose A is the adjacency tensor of G and
fpAq is a polynomial test such that EHG

0
fpAq “ 0, EHG

0
pf2pAqq “ 1, and the degree of f

is at most D with D ďC logN for constant C ą 0. Then we have EHG
1
fpAq “Op1q.

It has been widely conjectured in the literature that for a broad class of hypothesis testing
problems: H0 versus H1, there is a test with runtime nÕpDq and Type I + II error tending
to zero if and only if there is a successful D-simple statistic, i.e., a polynomial f of degree
at most D, such that EH0

fpXq “ 0, EH0
pf2pXqq “ 1, and EH1

fpXq Ñ8 (Hopkins, 2018;
Kunisky, Wein and Bandeira, 2019; Brennan and Bresler, 2019b; Ding et al., 2019). Thus,
Theorem 19 provides the firm evidence that there is no polynomial-time test algorithm that
can reliably distinguish between GdpN,1{2q and GdpN,1{2,Nβq for 0ă β ă 1{2.

5.3.3. Evidence of HPDS Recovery Conjecture 2 via Low-degree Polynomial Method.
Compared to the hardness evidence for the hypothesis testing problems, it is much less ex-
plored in the literature to establish hardness evidence for the estimation or recovery problems.
Recently, Schramm and Wein (2020) provides the first sharp computational lower bounds for
recovery in biclustering and planted dense subgraph via the low-degree polynomial method
and resolve the “detection-recovery gap” open problem mentioned in Ma and Wu (2015);
Chen and Xu (2016); Brennan, Bresler and Huleihel (2018); Hajek, Wu and Xu (2015). In
this work, we leverage the results in Schramm and Wein (2020) and provide the firm evidence
for HPDS recovery conjecture 2 via the low-degree polynomial method.

Recall the HPDS recovery problem in Section 5.2. Let G„ GdpN,κ, q1, q2q with q1 ą q2

and planted subsetK . Denote v1 P t0,1u as the membership of vertex 1 such that v1 “ 1 if the
first vertex is inK and v1 “ 0 otherwise. The following theorem shows that it is impossible to
estimate v1 well in the conjectured hard regime via low-degree polynomials, which implies
the computational difficulty of recovering K in general.
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Theorem 20 (Failure of Low-degree Polynomials for HPDS Recovery) SupposeG„ GdpN,κ, q1, q2q

with q1 ą q2 and A is the adjacency tensor of G. For any 0ă r ă 1 and D ě 1, if

(27)
q1 ´ q2

a

q2p1´ q1q
ď

?
r

D` 1
min

˜

pDpd´ 1q ` 1q´d{2,
N pd´1q{2

a

Ddpd´ 1qκd´1

¸

,

then for any f : AÑ R with degree at most D, we have EpfpAq ´ v1q
2 ě κ

N ´ p
κ
N q

2p1`
r

p1´rq2 q.
In particular, suppose q2 ă q1 ă 1´Ωp1q. Consider the asymptotic regime of Conjecture

2 that

lim inf
NÑ8

logN κě
1

2
and lim sup

NÑ8
logN

˜

κd´1pq1 ´ q2q
a

q2p1´ q2q

¸

ă
d

2
´

1

2
.

Let f0 be the trivial constant estimator of v1: f0pAq “ κ{N . Then for any polynomial f :
AÑR with degree at most D with D ď polylogpNq, we have

lim inf
NÑ8

EpfpAq ´ v1q
2

Epf0pAq ´ v1q
2
ě 1.

Theorem 20 shows that under the conjectured hard regime of HPDS (24) and q2 ă q1 ă

1 ´ Ωp1q, the mean square error of any f with degree equal or less than polylogpNq is
no better than the trivial estimator f0. This gives strong evidence for the HPDS recovery
conjecture 2.

5.4. Proofs of Computational Lower Bounds. Now, we are in position to prove the com-
putational lower bounds. Before the detailed analysis, we first outline the high-level idea.

Consider a hypothesis testing problem B: H0 versus H1. To establish a computational
lower bound for B, we can construct a randomized polynomial-time reduction ϕ from the
conjecturally hard problem A to B such that the total variation distance between ϕpAq and
B converges to zero under both H0 and H1. If such a ϕ can be found, whenever there exists a
polynomial-time algorithm φ for solving B, we can also solve A using φ ˝ϕ in polynomial-
time. Since A is conjecturally hard, we can conclude that B must also be polynomial-time
hard by the contradiction argument. To establish the computational lower bound for a recov-
ery problem, we can either follow the same idea above or establish a reduction from recovery
to an established detection lower bound. A key challenge of average-case reduction is often
how to construct an appropriate randomized polynomial-time map ϕ.

We summarize the procedure of constructing randomized polynomial-time maps for the
high-order clustering computational lower bounds as follows.

• Input: Hypergraph G and its adjacency tensor A
• Step 1: Apply the rejection kernel technique, which was proposed by Ma and Wu (2015)

and formalized by Brennan, Bresler and Huleihel (2018), to simultaneously map Bernppq
distribution to Npξ,1q and Bernpqq distribution to Np0,1q approximately.

• Step 2: Simultaneously change the magnitude and sparsity of the planted signal guided
by the target problem. In this step, we develop several new techniques and apply several
ones in the literature. In CHCD (Algorithm 10), we use the average-trick idea in Ma and
Wu (2015); in CHCR (Algorithm 11), we use the invariant property of Gaussian to handle
the multiway-symmetricity of hypergraph; to achieve a sharper scaling of signal strength
and sparsity in ROHCD,ROHCR (Algorithm 8), the tensor reflection cloning, a gener-
alization of reflection cloning (Brennan, Bresler and Huleihel, 2018), is introduced that
spreads the signal in the planted high-order cluster along each mode evenly, maintains the
independence of entries in the tensor, and only mildly reduces the signal magnitude.
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• Step 3: Randomly permute indices of different modes to transform the symmetric planted
signal tensor to an asymmetric one (Lemmas 14 and 16 in Luo and Zhang (2020b)) that
maps to the high-order clustering problem.

Then, we give a detailed proof of Theorem 17, i.e., computational lower bounds for
ROHCD and ROHCR. The proofs for the computational limits of CHCD and CHCR are
similar and postponed to the supplementary materials (Luo and Zhang, 2020b).

We first introduce the rejection kernel scheme given in Algorithm 9 in Luo and Zhang
(2020b) Section C, which simultaneously maps Bernppq to distribution fX and Bernpqq to
distribution gX approximately. In our high-order clustering problem, fX and gX are Npξ,1q
and Np0,1q, i.e., the distribution of the entries inside and outside the planted cluster, respec-
tively. Here, ξ is to be specified later. Denote RKppÑ fX , qÑ gX , T q as the rejection kernel
map, where T is the number of iterations in the rejection kernel algorithm.

We then propose a new tensor reflection cloning technique in Algorithm 7. Note that the
input tensor W0 to Algorithm 7 often has independent entries and a sparse planted cluster,
we multiply Wσbd , a random permutation of W0, by A`B?

2
in each mode to “spread" the

signal of the planted cluster along all modes while keep the entries independent. We prove
some properties related to tensor reflection cloning in Lemma 16 of Luo and Zhang (2020b)
Section C.

Algorithm 7 Tensor Reflecting Cloning

1: Input: Tensor W0 PRn
bd

(n is an even number), number of iterations `.
2: Initialize W “W0.
3: For i“ 1, . . . , `, do:

(a) Generate a permutation σ of rns uniformly at random.
(b) Calculate

W 1
“Wσbd

ˆ1
A`B
?

2
ˆ ¨ ¨ ¨ ˆd

A`B
?

2
,

where Wσbd
means permuting each mode indices of W by σ and B is a nˆ n matrix with ones on its

anti-diagonal and zeros elsewhere and A is given by

(28) A“

«

In
2

0

0 ´In
2

ff

,

where In{2 is a n{2ˆ n{2 identity matrix.

(c) Set W “W 1.
4: Output: W .

We construct the randomized polynomial-time reduction from HPC to ROHC in Algo-
rithm 8. The next lemma shows that the randomized polynomial-time mapping we construct
in Algorithm 8 maps HPC to ROHC asymptotically.

Lemma 2 Suppose that n is even and sufficiently large. Let ξ “ log 2

2
?

2pd`1q logn`2 log 2
. Then

the randomized polynomial-time map ϕ : Gdpnq Ñ Rnbd in Algorithm 8 satisfies if G „
Gdpn, 1

2q, it holds that

TV
´

LpϕpGqq,Np0,1qbpnbdq
¯

“Op1{nq,

and if G„ Gdpn, 1
2 , κq, there is a prior π on unit vectors in Vn,2`κ such that

TV

˜

LpϕpGqq,
ż

L

˜

ξκ
d

2

?
d!
u1 ˝ ¨ ¨ ¨ ˝ ud `Np0,1q

bpnbdq

¸

dπpu1, . . . ,udq

¸

“Op1{
a

lognq.
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Algorithm 8 Randomized Polynomial-time Reduction from HPC to ROHC
1: Input: Hypergraph G„ Gdpnq, number of iterations `.
2: Let RKG “ RKp1 Ñ Npξ,1q, 1

2 Ñ Np0,1q, T q where T “ r2pd ` 1q log2 ns and ξ “
log 2

2
?

2pd`1q logn`2 log 2
and compute the symmetric tensor W P Rn

bd
with Wri1,...,ids

“

RKGp1ppi1, . . . , idq PEpGqqq. Let the diagonal entries of Wri,...,is to be i.i.d. Np0,1q.

3: Generate pd! ´ 1q i.i.d. symmetric random tensor Bp1q, . . . ,Bpd!´1q in the following way: their diagonal
values are 0 and non-diagonal values are i.i.d. Np0,1q. Given any non-diagonal index i “ pi1, . . . , idq
(i1 ď i2 ď . . . ď id), suppose it has D pD ď d!q unique permutations and denote them as ip0q :“

i, ip1q, . . . , ipD´1q, then we transform W in the following way

¨

˚

˚

˚

˚

˝

Wip0q
Wip1q

...
WipD´1q

˛

‹

‹

‹

‹

‚

“

ˆ

1
?
d!
,

ˆ

1
?
d!

˙

K

˙

r1:D,:s
ˆ

¨

˚

˚

˚

˚

˚

˚

˝

Wri1,...,ids

Bp1q
ri1,...,ids

...

Bpd!´1q
ri1,...,ids

˛

‹

‹

‹

‹

‹

‹

‚

.

Here 1?
d!

is a Rd! vector with all entries to be 1?
d!

and
´

1?
d!

¯

K
PRd!ˆpd!´1q is an orthogonal complement

of 1?
d!

.

4: Generate independent permutations σ1, . . . , σd´1 of rns uniformly at random and let W “W id,σ1,...,σd´1 .
5: Apply Tensor Reflecting Cloning to W with ` iterations.
6: Output: W .

Here TV denotes the total variation distance and LpXq denotes the distribution of random
variable X .

Lemma 2 specifically implies that if k “ 2`κ,µ“ ξκ
d
2

?
d!

with ξ “ log 2

2
?

2pd`1q logn`2 log 2
, the re-

duction map ϕpGqwe constructed from Algorithm 8 satisfies TVpϕpHPCDpn,
1
2 , κqq,ROHCDpn,k, µqqÑ

0 under both H0 and H1.
Next, we prove the computational lower bound of ROHCD under the asymptotic regime

(A2) by a contradiction argument.

• If αě 1
2 (α is defined in (A2)), i.e., in the dense cluster case, let `“ r2

dβ log2 ns and ϕ be
this mapping from Algorithm 8. Suppose κ“ rnγs in HPCDpn,

1
2 , κq, then after mapping,

the sparsity and signal strength in (A2) of ROHCpn,k, µq model satisfies

lim
nÑ8

logpµ{k
d

2 q´1

logn
“

d
2p

2
dβ ` γq logn´ d

2γ logn

logn
“ β, lim

nÑ8

logk

logn
“

2

d
β ` γ “: α.

If β ą pα ´ 1
2q
d
2 , there exists a sequence of polynomial-time tests tφnu such that

lim infnÑ8 EROHCDpφnq ă
1
2 . Then by Lemmas 2 and 11 in Luo and Zhang (2020b) Sec-

tion C, we have lim infnÑ8 EHPCDpφn ˝ ϕq ă
1
2 , i.e. φn ˝ ϕ has asymptotic risk less than

to 1
2 in HPC detection. On the other hand, the size of the planted clique in HPC satisfies

limnÑ8
logκ
logn “ γ “ α´

2
dβ ă α´ pα´

1
2q “

1
2 . The combination of these two facts con-

tradicts HPC detection conjecture 1, so we conclude there are no polynomial-time tests
tφnu that make lim infnÑ8 EROHCDpφnq ă

1
2 if β ą pα´ 1

2q
d
2 .

• If 0 ă α ă 1
2 , i.e., in the sparse cluster case, since CHCDpk,n, λq is a special case of

ROHCDpk,n, µq with µ “ λkd{2, the computational lower bound in CHCD in Theorem
15 implies that if β ą 0, then lim infnÑ8 EROHCDpφnq ě

1
2 based on HPC conjecture 1.



24

In summary, we conclude if β ą pα ´ 1
2q
d
2 _ 0 :“ βcROHCD

, any sequence of polynomial-
time tests has asymptotic risk at least 1{2 for ROHCDpn,k, µq. This has finished the proof
of computational lower bound for ROHCD .

Next we show the computational lower bound for ROHCR. Suppose there is a sequence
of polynomial-time recovery algorithm tφRun such that lim infnÑ8 EROHCRpφRq ă

1
2 when

β ą pα ´ 1
2q
d
2 _ 0. In this regime, it is easy to verify µ ě Ck

d

4 for some C ą 0 in
ROHCDpn,k, µq. By Lemma 10 in Luo and Zhang (2020b) Section B, we know there is a se-
quence polynomial-time detection algorithms tφDun such that lim infnÑ8 EROHCDpφDq ă
1
2 , which contradicts the computational lower bound established in the first part. This has
finished the proof of the computational lower bound for ROHCR.

6. Discussion and Future Work. In this paper, we study the statistical and computa-
tional limits of tensor clustering with planted structures, including the constant high-order
structure (CHC) and rank-one high-order structure (ROHC). We derive tight statistical lower
bounds and tight computational lower bounds under the HPC/HPDS conjectures for both
high-order cluster detection and recovery problems. For each problem, we also provide
unconstrained-time algorithms and polynomial-time algorithms that respectively achieve
these statistical and computational limits. The main results of this paper are summarized
in the phase transition diagrams in Figure 1 and Table 1.

There are a few directions worth exploring in the future. First, this paper mainly focuses
on the full high-order clustering in the sense that the signal tensor is sparse along all modes.
In practice, the partial cluster also commonly appears (e.g., tensor biclustering (Feizi, Javadi
and Tse, 2017)), where the signal is sparse only in part of the modes. It is interesting to in-
vestigate the statistical and computational limits for high-order partial clustering. Second, in
addition to the exact recovery discussed in this paper, we think our results can be extended to
other variants of recovery, such as partial recovery and weak recovery. Third, in the ROHC
model, the non-zero components of the signal are required to have the similar magnitudes
as this assumption is essential for support recovery. Another interesting problem is to esti-
mate pv1, . . . ,vdq without the constraint on the component magnitudes of the signal, which
can be seen a rank-one case of the sparse tensor SVD/PCA problem (Zhang and Han, 2019;
Sun et al., 2017; Niles-Weed and Zadik, 2020). For this problem, the signal-to-noise ratio
lower bounds we established in Theorems 10 and 17 still hold by virtue of the estimation-
to-detection reduction. However, the ROHCR Search and Power-iteration algorithms studied
in this paper may no longer be suitable for estimating pv1, . . . ,vdq. A natural unconstrained-
time estimator is the maximum likelihood estimator, while to our best knowledge its guaran-
tee is unexplored. Zhang and Han (2019) developed efficient algorithms which can achieve
the minimax optimal error rate in sparse tensor estimation. However, it is unclear if the re-
quired signal-to-noise in Zhang and Han (2019) is tight. It is interesting to develop algorithms
with optimal guarantees for sparse tensor SVD/PCA under the tight signal-to-noise ratio re-
quirement. Finally, since our computational lower bounds of CHC and ROHC are based
on HPC conjecture (Conjecture 1) and HPDS conjecture (Conjecture 2), it is interesting to
provide more evidence for these conjectures.
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APPENDIX A: PROOFS OF STATISTICAL BOUNDS FOR CHCR AND ROHCR

We begin by introducing a few notations that will be used throughout the proof sections.
Given k “ pk1, ¨ ¨ ¨ , kdq, let k̆ “

śd
i“1 ki, and k̆p´jq “

śd
i“1,i‰j ki. For a random variable

X, we use notation LpXq to denote the distribution of X. Given a tensor X P Rn1ˆ¨¨¨ˆnd ,
LpX ` Np0,1qbn1ˆ¨¨¨ˆndq denotes the distribution of X ` Z where Z is drawn from
Np0,1qbn1ˆ¨¨¨ˆnd .

A.1. Proof of Theorem 3. Since CHCRpk,n, λq is a special case of ROHCRpk,n, λ
b

śd
i“1 kiq,

the statistical lower bound for CHCR implies the lower bound for ROHCR. So we only need
to show the statistical lower bound for CHCR. Also to show the statistical lower bound of
CHCR, it is enough to show for the case X “ λ1I1 ˝ ¨ ¨ ¨ ˝ 1Id .

Note that for any tX0, . . . ,XMu ĎXCHCpk,n, λq,

inf
φRPAllAlgR

sup
XPXCHCpk,n,λq

PX pφRpYq ‰ SpX qq ě inf
φRPAllAlgR

sup
XPtX0,...,XMu

PX pφRpYq ‰ SpX qq.

Next, we aim to select an appropriate set tX0, . . . ,XMu and give a lower bound for

inf
φRPAllAlgR

sup
XPtX0,...,XMu

PX pφRpYq ‰ SpX qq.

We set X0 “ λ1Ip0q1
˝¨ ¨ ¨˝1Ip0qd

, where Ip0qi “ rkis is the signal support of mode i. X1, . . . ,XM

pM “ n1 ´ k1q are constructed in the following way. Assume for mode 2 to mode d,



TENSOR CLUSTERING WITH PLANTED STRUCTURES 3

X1, . . . ,XM have the same signal support as X0, but for Xi, its signal support on mode
1 is Ipiq1 :“ rk1 ´ 1s

Ť

tpi` k1qu.
By such construction, X0, . . . ,XM are close to each other. Now we calculate the KL di-

vergence between PXi
and PX0

. Observe that PXi
and PX0

are the same except that one of
the index of signal support of PX0

on mode 1 is changed from tk1u to tpi` k1qu,

KLpPXi
,PX0

q “

k2
ÿ

i2“1

¨ ¨ ¨

kd
ÿ

id“1

KLpZλ,Z0q `

k2
ÿ

i2“1

¨ ¨ ¨

kd
ÿ

id“1

KLpZ0,Zλq

“

d
ź

j“2

kjpλ
2{2q `

d
ź

j“2

kjpλ
2{2q

“ λ2
d
ź

j“2

kj ,

(29)

where Zλ „ Npλ,1q and Z0 „ Np0,1q. So if λ ď
c

η logpn1´k1q
śd
j“2

kj
, then KLpPXi

,PX0
q ď

η logpn1 ´ k1q. So,

(30)
1

M

M
ÿ

j“1

KLpPXi
,PX0

q ď η logM.

By Theorem 2.5 of Tsybakov (2009), for 0ă η ă 1{8, we have
(31)

inf
φRPAllAlgR

sup
XPtX0,...,XMu

PX pφRpYq ‰ SpX qq ě
?
M

1`
?
M

ˆ

1´ 2η´
2η

logM

˙

Ñ 1´ 2η,

where the limit is taken under the asymptotic regime (A1).
Notice that in the above construction, we only change the signal support in mode 1. Sim-

ilarly, we could construct a parameter set which only differs at the signal support at mode j,
2ď j ď d. By repeating the argument above, we have if

(32) λďmax

¨

˝

#

d

η logpni ´ kiq
śd
j“1,j‰i kj

+d

i“1

˛

‚,

then the minimax estimation error converges to 1´ 2η.
Finally, the second part of the conclusion follows by considering the asymptotic regime

(A2). For CHCR, we have

β ą pd´ 1qα{2“: βsCHCR ùñ n´β À

c

1

nαpd´1q

(A2)
ùñ λďmax

¨

˝

#

d

η logpni ´ kiq
śd
z“1,z‰i kz

+d

i“1

˛

‚.

Similar derivation can be done for ROHCR as well and this has finished the proof.

A.2. Proof of Theorem 4. Denote i “ pi1, . . . , idq. Given any signal support set
pI1, . . . , Idq, define F pI1, . . . , Idq “

ř

i1PI1
¨ ¨ ¨

ř

idPId
Yri1,...,ids. Since the problem only be-

comes easier as λ increases, it is enough to show the algorithm succeeds in the hardest case
X “ λ ¨ 1I1 ˝ ¨ ¨ ¨1Id .
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Suppose the true signal support of Y „ PX is pI˚1 , . . . , I
˚
d q. By construction, the output of

Algorithm 1 satisfies

PppÎ1, . . . , Îdq ‰ pI
˚
1 , . . . , I

˚
d qq “ P

¨

˝

ď

pĨ1,...Ĩdq‰pI
˚
1 ,...,I

˚
d q

!

F pĨ1, . . . , Ĩdq ą F pI
˚
1 , . . . , I

˚
d q

)

˛

‚

ď

k1
ÿ

i1“0

¨ ¨ ¨

kd
ÿ

id“0

Pi1,...,id ´ Pk1,...,kd ,

(33)

where

Pi1,...,id “ P
´

F pĨ1, . . . , Ĩdq ą F pI
˚
1 , . . . , I

˚
d q

¯

“

˜

d
ź

j“1

ˆ

kj
ij

˙ˆ

nj ´ kj
kj ´ ij

˙

¸

Φ̄

ˆ

λ

b

pk̆´ ĭq{2

˙

,

here Φ̄p¨q is the survival function of c.d.f. of a standard Gaussian distribution and ij “

|Ĩj
Ş

I˚j | p1ď j ď dq.

To bound the right hand side of (33), we first decompose
´

řk1
i1“0 ¨ ¨ ¨

řkd
id“0Pi1,...,id

¯

into
pd` 1q different groups. Specifically:

• In group 0, ij ď kj ´ 1 for all 1ď j ď d, we denote the summation of terms in this group
as T0.

• In group 1, exists one j˚ P rds such that ij˚ “ kj˚ and for j ‰ j˚, ij ď kj ´ 1. We denote
the summation of terms in this group as T1.

• In group 2, there exists two distinct indices j˚1 , j
˚
2 P rds such that ij˚1 “ kj˚1 and ij˚2 “ kj˚2 .

For the rest of indices j ‰ j˚1 , j
˚
2 , ij ď kj ´ 1. We denote the summation of terms in this

group as T2.
• Similarly we can define for group j p3 ď j ď d ´ 1q. Denote the summation of terms in

group j as Tj .
• In group d, there is only one term Pk1,...,kd .

First notice that the term in group d cancels with the p´Pk1,...,kdq in (33). Next we are
going to give an upper bound for T0, T1, . . . , Td´1. Since the strategy to bound each of them
is similar, we only need to demonstrate how to bound T0.

T0 ď

˜

d
ź

j“1

pkj ´ 1q

¸

max
iz“0,...,kz´1
z“1,...,d

Pri1,...,ids

ď

˜

d
ź

j“1

pkj ´ 1q

¸

max
iz“0,...,kz´1
z“1,...,d

˜

d
ź

j“1

pnj ´ kjq
2pkj´ijq

¸

Φ̄

ˆ

λ

b

pk̆´ ĭq{2

˙

ď

˜

d
ź

j“1

pkj ´ 1q

¸

max
iz“0,...,kz´1
z“1,...,d

˜

d
ź

j“1

pnj ´ kjq
2pkj´ijq

¸

exp

ˆ

´
λ2

4

´

k̆´ ĭ
¯

˙

ď max
iz“0,...,kz´1
z“1,...,d

˜

d
ź

j“1

pnj ´ kjq
3pkj´ijq

¸

exp

˜

´
λ2

4

˜

k̆´
1

d

d
ÿ

z“1

izk̆
p´zq

¸¸

,

(34)
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where the second inequality is the result of plugging in Pi1,...,id and the fact
`

kj
ij

˘`

nj´kj
kj´ij

˘

ď

pnj ´ kjq
2pkj´ijq when ki ď 1

2ni, the third inequality is by concentration bound for Gaussian
random variable PpZ0 ą tq ď 1

t expp´t2{2q and the last inequality is due to ki ď 1
2ni and

1
d

řd
z“1 izk̆

p´zq ě ĭ.
The maximum value of right hand side of (34) is achieved when i1 “ k1 ´ 1, . . . , id “

kd ´ 1 and we have

(35) T0 ď

˜

d
ź

j“1

pnj ´ kjq
3

¸

exp

˜

´
λ2

4d

d
ÿ

z“1

k̆p´zq

¸

.

So when

λ2 ěC

řd
i“1 logpni ´ kiq

min1ďiďdtk̆p´iqu
,

for large enough constant C (only depend on d), we have

T0 ď

d
ÿ

i“1

pni ´ kiq
´c,

for some constant cą 0.
Similar analysis holds for Tj (1ď j ď d´ 1). This has finished the proof.

A.3. Proof of Theorem 5. We first introduce a few notations and the rest of the proof
is divided into three steps. Suppose Y „ Lpµ ¨ v1 ˝ ¨ ¨ ¨ ˝ vd `Np0,1q

bn1ˆ¨¨¨ˆndq and vi P
Vni,ki . First it is easy to check that A,B are independent and have the same distribution
Lp µ?

2
¨v1 ˝ ¨ ¨ ¨ ˝vd`Np0,1q

bn1ˆ¨¨¨ˆndq. Denote k˚i “ |vi|, u
˚
i “ 1Spviq. Since pviqj ď C?

ki
,

the number of non-zero entries in vi is at least cki for some small cą 0.
Step 1. In this step, we show with high probability the marked pairs in Step 3 of Algorithm
2 are supported on pSpv1q, . . . , Spvdqq. First for pu1, . . . ,udq P S

n1

k̄1
ˆ ¨ ¨ ¨ ˆSnd

k̄d
, if one of ui

is not supported on corresponding Spviq, we show when µě C
?
k logn, such pu1, . . . ,udq

will not be marked in Algorithm 2 Step 3(b) with probability at least 1´ n´pd`1q.
Without loss of generality, suppose Spu1q Ę Spv1q and let j P Spu1qzSpv1q. Notice

`

Bˆ2 u
J
2 ˆ ¨ ¨ ¨ ˆd u

J
d

˘

j
pu1qj „Np0,

d
ź

i“2

k̄iq.

Then by the Gaussian tail bounds, we have

P

¨

˝

`

Bˆ2 u
J
2 ˆ ¨ ¨ ¨ ˆd u

J
d

˘

j
pu1qj ě

1

2
?

2

µ
b

śd
i“1 ki

d
ź

i“2

k̄i

˛

‚

ďexp

˜

´
µ2p

śd
i“2 k̄iq

2

16
śd
i“2 k̄i

śd
i“1 ki

¸

ďexpp´c
µ2

k1
q ď n´pd`1q,

(36)

where the last inequality holds because µ ě C
?
k logn for sufficient large C ą 0. Similar

analysis holds for other modes.
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If pu1, . . . ,udq is marked, let puk̄1 , . . . ,uk̄dq “ pu1, . . . ,udq, otherwise let puk̄1 , . . . ,uk̄dq “
p0, . . . ,0q. Since B is independent of A, applying a union bound, we have

P
`

Spuk̄1q Ď Spv1q, . . . , Spuk̄dq Ď Spvdq for all k̄i P r1, kis,1ď iď d
˘

ě1´
ÿ

k̄iPr1,kis,1ďiďd

P
`

Spuk̄iq Ę Spviq
˘

ě1´ p
d
ź

i“1

kiqn
´pd`1q ě 1´ n´1.

(37)

Step 2. Let

(38) pû1, . . . , ûdq “ arg max
pu1,...,udqPS

n1

k˚
1

ˆ¨¨¨ˆS
nd

k˚
d

Aˆ1 u
J
1 ˆ2 . . .ˆd u

J
d .

In this step, we show that pSpû1q, . . . , Spûdqq “ pSpv1q, . . . , Spvdqq with high probability.
Let Ai PRniˆni p1ď iď dq be a diagonal matrix with its diagonal values

pAiqjj “

$

&

%

0 if pviqj “ 0
1 if pviqj ą 0
´1 if pviqj ă 0.

So A can be rewritten as µ
?

2
¨A2

1v1 ˝ ¨ ¨ ¨ ˝A
2
dvd `Z where Z „Np0,1qbn1ˆ¨¨¨ˆnd . So

pû1, . . . , ûdq “ arg max
pu1,...,udqPS

n1

k˚
1

ˆ¨¨¨ˆS
nd

k˚
d

Aˆ1 u
J
1 ˆ2 . . .ˆd u

J
d

“ arg max
pu1,...,udqPS

n1

k˚
1

ˆ¨¨¨ˆS
nd

k˚
d

ˆ

µ
?

2
¨A1v1 ˝ ¨ ¨ ¨ ˝Advd

˙

ˆ1 pA1u1q
J ˆ ¨ ¨ ¨ ˆd pAdudq

J

`Z ˆ1 u
J
1 ˆ ¨ ¨ ¨ ˆd u

J
d .

(39)

Notice that in optimization problem (39), Aivi has positive values at its support and these
positive values have magnitude at least 1?

ki
. Also since the diagonal entries of Ai capture the

exact support of vi, problem in (39) is a modified version of constant high-order clustering
problem with λ“ µ?

2
śd
i“1 ki

and by a similar argument of Theorem 4, pSpû1q, . . . , Spûdqq “

pSpv1q, . . . , Spvdqq and signpuiq “signpviq with probability at least 1 ´
řd
i“1pni ´ kiq

´1

when λ“ µ?
2
śd
i“1 ki

ěC0

c

řd
j“1

logpnj´kjq

min
1ďiďd

t
śd
z“1,z‰i

kzu
i.e., µěC

?
k logn for some C ą 0.

Step 3. In this last step, we show pu˚1 , . . . ,u
˚
dq will be marked with high probability. Consider

the analysis for mode-1 first. If j P Spv1q,

`

Bˆ2 u
˚J
2 ˆ ¨ ¨ ¨ ˆd u

˚J
d

˘

j
pu˚1qj „N

˜

µ
?

2
pv1qj

n2
ÿ

i2“1

¨ ¨ ¨

nd
ÿ

id“1

pv2qri2s . . . pvdqrids,
d
ź

i“2

k˚i

¸

,

notice

µ1 :“
µ
?

2
pv1qj

n2
ÿ

i2“1

¨ ¨ ¨

nd
ÿ

id“1

pv2qri2s . . . pvdqrids ě
µ

b

2
śd
i“1 ki

d
ź

i“2

k˚i .
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By Gaussian tail bound, we have

P

¨

˝

`

Bˆ2 u
˚J
2 ˆ ¨ ¨ ¨ ˆd u

˚J
d

˘

j
pu˚1qj ď

1

2
?

2

µ
b

śd
i“1 ki

d
ź

i“2

k˚i

˛

‚

ďP

¨

˝

`

Bˆ2 u
˚J
2 ˆ ¨ ¨ ¨ ˆd u

˚J
d

˘

j
pu˚1qj ´ µ1 ď´

1

2
?

2

µ
b

śd
i“1 ki

d
ź

i“2

k˚i

˛

‚ď n´pd`1q,

where the last inequality is obtained in the same way as in (36). Similarly, if j R Spv1q, then

`

Bˆ2 u
˚J
2 ˆ ¨ ¨ ¨ ˆd u

˚J
d

˘

j
pu˚1qj „Np0,

d
ź

i“2

k˚i q,

and by the same argument of (36), we have

P

¨

˝

`

Bˆ2 u
˚J
2 ˆ ¨ ¨ ¨ ˆd u

˚J
d

˘

j
pu˚1qj ě

1

2
?

2

µ
b

śd
i“1 ki

d
ź

i“2

k˚i

˛

‚ď n´pd`1q.

By a union bound, we have

P

¨

˝Spv1q “

$

&

%

j :
`

Bˆ1 u
˚J
2 ˆ ¨ ¨ ¨ ˆd u

˚J
d

˘

j
pû1qj ě

1

2
?

2

µ
b

śd
i“1 ki

d
ź

i“2

k˚i

,

.

-

˛

‚

ě1´
ÿ

jRSpviq

P

¨

˝

`

Bˆ2 u
˚J
2 ˆ ¨ ¨ ¨ ˆd u

˚J
d

˘

j
pu˚1qj ě

1

2
?

2

µ
b

śd
i“1 ki

ź

i“2

k˚i

˛

‚

´
ÿ

jPSpviq

P

¨

˝

`

Bˆ2 u
˚J
2 ˆ ¨ ¨ ¨ ˆd u

˚J
d

˘

j
pu˚1qj ď

1

2
?

2

µ
b

śd
i“1 ki

ź

i“2

k˚i

˛

‚

ě1´ pn1 ´ k1qn
´pd`1q ´ k1n

´pd`1q.

Similar analysis holds for other modes, so a union bound yields that pu˚1 , . . . ,u
˚
dq is marked

in Step (3b) with probability at least 1´ n´d.
Summarize the result so far, with probability at least 1´

řd
i“1pni´kiq

´1´n´d, we have

• Spuk̄iq Ď Spviq for all k̄i P r1, kis and all 1ď iď d.
•

pu˚1 , . . . ,u
˚
dq “ arg max

pu1,...,udqPS
n1

k˚
1

ˆ¨¨¨ˆS
nd

k˚
d

Aˆ1 u
J
1 ˆ ¨ ¨ ¨ ˆd u

J
d .

• pu˚1 , . . . ,u
˚
dq is marked in Step (3b).

With these three points, we conclude with probably at least 1´
řd
i“1pni ´ kiq

´1 ´ n´d, the
algorithm can output the true support.

A.4. Proof of Theorem 6. The idea to prove this theorem is to use the Gaussian tail
bound PpZ0 ě tq ď 1?

2π
1
t expp´ t2

2 q, where Z0 „ Np0,1q. Suppose Ii “ Spviq p1 ď i ď dq.
If pi1, . . . , idq R I1 ˆ ¨ ¨ ¨ ˆ Id, then Yri1,...,ids „Np0,1q, so

P
´

|Yri1,...,ids| ě
a

2pd` 1q logn
¯

“ 2P
´

Z0 ě
a

2pd` 1q logn
¯

ď
2
?

2π
n´pd`1q “Opn´pd`1qq.
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For pi1, . . . , idq P I1 ˆ ¨ ¨ ¨ ˆ Id, then Yri1,...,ids „Npλ,1q with λ ě 2
a

2pd` 1q logn for
CHCR and Yri1,...,ids „ Npµ ¨ pv1qi1 . . . pvdqid ,1q for ROHCR. Since pvjqij ě

1?
kj

by as-

sumption vj P Vnj ,kj , µ ¨ pv1qi1 . . . pvdqid ě 2
a

2pd` 1q logn. This implies for both CHCR

and ROHCR,

P
´

|Yri1,...,ids| ď
a

2pd` 1q logn
¯

ď P
´

Z0 ď´
a

2pd` 1q logn
¯

ďOpn´pd`1qq.

So the probability that the set pi1, . . . , idq with |Yri1,...,ids| ě
a

2pd` 1q logn is not exactly
I1 ˆ ¨ ¨ ¨ ˆ Id is, by union bound, at most

ÿ

pi1,...,idqRI1ˆ¨¨¨ˆId

P
´

|Yri1,...,ids| ě
a

2pd` 1q logn
¯

`
ÿ

pi1,...,idqPI1ˆ¨¨¨ˆId

P
´

|Yri1,...,ids| ď
a

2pd` 1q logn
¯

“Opn´1q,

which completes the proof of this theorem.

A.5. Proof of Theorem 7 . For any tensor W PRn1ˆ¨¨¨ˆnd ,denote W i
k PRn1ˆ¨¨¨ˆnk´1ˆnk`1ˆ¨¨¨ˆnd

as the subtensor of W by fixing the index of kth mode of W to be i and range over all indices
among other modes.

First, in Algorithm 4, we observe in both models, we have A„X ` rZ and B„X `Z ,
where rZ,Z are independent random variable with distribution Np0,1qbn1ˆ¨¨¨ˆnd . In CHC
model, X “ λ{

?
2 ¨ 1I1 ˝ ¨ ¨ ¨ ˝ 1Id ; in ROHC model, X “

µ
?

2
¨ v1 ˝ ¨ ¨ ¨ ˝ vd.

By the proof of Theorem 1 of Zhang and Xia (2018), when

(40) λ
a

k̆ě n
d

4 or µěCn
d

4 ,

where k̆“
śd
i“1 ki, then w.p. at least 1´Cexpp´cnq, we have

(41) }Pûi ´ Pui} ď 2 }sin Θpûi,uiq} ďC

?
ni

λ
a

k̆
or C

?
ni
µ

for 1ď iď d,

here Pu “ uuJ denotes the projection operator onto the subspace expanded by u and } ¨ } is
the spectral norm of a matrix. Next, we consider CHCR and ROHCR separately.
For CHCRpn,k, λq. We consider the analysis for mode 1 signal support recovery. First

›

›Bi
1 ˆ2 Pû2

ˆ ¨ ¨ ¨ ˆd Pûd ´X i
1

›

›

HS

“
›

›pB´X qi1 ˆ2 Pû2
ˆ ¨ ¨ ¨ ˆd Pûd `X i

1 ˆ2 Pû2
ˆ ¨ ¨ ¨ ˆd Pûd ´X i

1

›

›

HS

ď
›

›Z i
1 ˆ2 Pû2

ˆ ¨ ¨ ¨ ˆd Pûd

›

›

HS
`
›

›X i
1 ˆ2 Pû2

ˆ ¨ ¨ ¨ ˆd Pûd ´X i
1

›

›

HS

ď
›

›Z i
1 ˆ2 Pû2

ˆ ¨ ¨ ¨ ˆd Pûd

›

›

HS
`

d
ÿ

k“2

›

›X i
1

›

›

HS
}Puk ´ Pûk} ,

(42)
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here }A}HS “

´

ř

i1,...,id
A2
ri1,...,ids

¯1{2
is the Hilbert-Schmidt norm for tensor A. The last

inequality is due to triangle inequality and the following decomposition of X i
1 ,

X i
1 “X i

1 ˆ2 Pû2
ˆ ¨ ¨ ¨ ˆd Pûd

`X i
1 ˆ2 Pû2

ˆ ¨ ¨ ¨ ˆd´1 Pûd´1
ˆd pInd ´ Pûdq

`X i
1 ˆ2 Pû2

ˆ ¨ ¨ ¨ ˆd´2 Pûd´2
ˆd´1 pInd´1

´ Pûd´1
q

` . . .`X i
1 ˆ2 pIn2

´ Pû2
q

“X i
1 ˆ2 Pû2

ˆ ¨ ¨ ¨ ˆd Pûd `

d
ÿ

i“2

X i
1 ˆ1ăjăi Pûj ˆi pPui ´ Pûiq .

Since A and B are independent, Z i
1 and Pû2

, . . . , Pûd are independent. So we have
›

›Z i
1 ˆ2 Pû2

ˆ ¨ ¨ ¨ ˆd Pûd

›

›

HS
“
ˇ

ˇZ i
1 ˆ2 û2 ˆ ¨ ¨ ¨ ˆd ûd

ˇ

ˇą
a

2pc` 1q logpn1q,

with probability at most n´pc`1q
1 . By union bound, we have

(43) P
ˆ

max
i“1,...,n1

›

›Z i
1 ˆ2 Pû2

ˆ ¨ ¨ ¨ ˆd Pûd

›

›

HS
ě
a

2pc` 1q logpn1q

˙

ď n´c1 .

Combining (43) with (41), we get an upper bound for (42),

max
i

›

›Bi
1 ˆ2 Pû2

ˆ ¨ ¨ ¨ ˆd Pûd ´X i
1

›

›

HS
ď
a

2pc` 1q logpn1q `Cpd´ 1q

?
n1

?
k1
,(44)

with probability at least 1´n´c1 ´Cexpp´cnq. Here we use the fact }X i
1}HS ď λ

b

śd
i“2 ki.

Then for i P I1, i
1 R I1, condition on (44), we have

ˇ

ˇ

ˇ
Bi

1 ˆ2 û
J
2 ˆ ¨ ¨ ¨ ˆd û

J
d ´Bi1

1 ˆ2 û
J
2 ˆ ¨ ¨ ¨ ˆd û

J
d

ˇ

ˇ

ˇ

“

›

›

›
Bi

1 ˆ2 Pû2
ˆ ¨ ¨ ¨ ˆd Pûd ´Bi1

1 ˆ2 Pû2
ˆ ¨ ¨ ¨ ˆd Pûd

›

›

›

HS

“

›

›

›
Bi

1 ˆ2 Pû2
ˆ ¨ ¨ ¨ ˆd Pûd ´X i

1 `X i
1 ´X i1

1 `X i1

1 ´Bi1

1 ˆ2 Pû2
ˆ ¨ ¨ ¨ ˆd Pûd

›

›

›

HS

ě´
›

›Bi
1 ˆ2 Pû2

ˆ ¨ ¨ ¨ ˆd Pûd ´X i
1

›

›

HS
`

›

›

›
X i

1 ´X i1

1

›

›

›

HS
´

›

›

›
Bi1

1 ˆ2 Pû2
ˆ ¨ ¨ ¨ ˆd Pûd ´X i1

1

›

›

›

HS

ě
λ
?

2

a

k̆p´1q ´ 2

ˆ

a

2pc` 1q logpn1q `Cpd´ 1q

?
n1

?
k1

˙

,

(45)

here k̆´1 “
ś

i ki{k1. Similarly, for i P I1, i
1 P I1 (or i, i1 R I1 ),

ˇ

ˇ

ˇ
Bi

1 ˆ2 û
J
2 ˆ ¨ ¨ ¨ ˆd û

J
d ´Bi1

1 ˆ2 û
J
2 ˆ ¨ ¨ ¨ ˆd û

J
d

ˇ

ˇ

ˇ

ď
›

›Bi
1 ˆ2 Pû2

ˆ ¨ ¨ ¨ ˆd Pûd ´X i
1

›

›

HS
`

›

›

›
X i

1 ´X i1

1

›

›

›

HS
`

›

›

›
Bi1

1 ˆ2 Pû2
ˆ ¨ ¨ ¨ ˆd Pûd ´X i1

1

›

›

›

HS

ď2

ˆ

a

2pc` 1q logpn1q `Cpd´ 1q

?
n1

?
k1

˙

.

(46)
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So when
λ
?

2

a

k̆p´1q ě 6

ˆ

a

2pc` 1q logpn1q `Cpd´ 1q

?
n1

?
k1

˙

,

we have

2 max
i,i1PI1 or i,i1RI1

ˇ

ˇ

ˇ
Bi

1 ˆ2 û
J
2 ˆ ¨ ¨ ¨ ˆd û

J
d ´Bi1

1 ˆ2 û
J
2 ˆ ¨ ¨ ¨ ˆd û

J
d

ˇ

ˇ

ˇ

ď min
iPI1,i1RI1

ˇ

ˇ

ˇ
Bi

1 ˆ2 û
J
2 ˆ ¨ ¨ ¨ ˆd û

J
d ´Bi1

1 ˆ2 û
J
2 ˆ ¨ ¨ ¨ ˆd û

J
d

ˇ

ˇ

ˇ
.

So a simple cutoff at the maximum gap at the ordered value of
 

Bi
1 ˆ2 û

J
2 ˆ ¨ ¨ ¨ ˆd û

J
d

(n1

i“1

can identify the right support of mode 1 with probability at least 1´ n´c1 ´Cexpp´cnq.
Similar analysis holds for mode 2,3, . . . , d and combined with SNR requirement in the

initialization (40), when

λěC
n
d

4

a

k̆
_ 6

˜

a

2pc` 1q logpnq

mini“1,...,d

a

k̆p´iq
`Cpd´ 1q

?
n

a

k̆

¸

,

then with probability at least 1´
řd
i“1pn

´c
i ` Cexpp´cnqq, we have Îi “ I˚i , p1 ď i ď dq.

Notice the initialization SNR requirement will be the dominate one when dě 3, so the final

SNR requirement for λ is λěC n
d
4?
k̆

.

Next consider ROHCRpk,n, µq. The proof of this part is similar to the CHCR part.
First, when µ ě Cnd{4, then w.p. at least 1´ Cexpp´cnq, we have (41). The rest of the

proof is the same as the first part CHCR proof after equation (41) except that in (45) and
(46), we need to consider separately of the support index with positive values and negative
values.

Suppose I1 “ I1`
Ť

I1´ where I1` denotes the indices in Spv1q that have positive values
in v1 and I1´ denotes the indices in Spv1q that have negative values in v1.

By the same argument as (44) and the fact vi P Vni,ki , with probability at least 1´ n´c1 ´

Cexpp´cnq, we have

(47) max
i

›

›Bi
1 ˆ2 Pû2

ˆ ¨ ¨ ¨ ˆd Pûd ´X i
1

›

›

HS
ď
a

2pc` 1q logpn1q `Cpd´ 1q

?
n1

?
k1
.

Similarly, if i P I1, i
1 R I1, condition on (47), we have

ˇ

ˇ

ˇ
Bi

1 ˆ2 û
J
2 ˆ ¨ ¨ ¨ ˆd û

J
d ´Bi1

1 ˆ2 û
J
2 ˆ ¨ ¨ ¨ ˆd û

J
d

ˇ

ˇ

ˇ
ě

µ
?

2k1
´ 2

ˆ

a

2pc` 1q logpn1q `Cpd´ 1q

?
n1

?
k1

˙

.

(48)

For i P I1` ( i P I1´ or i R I1) and i1 P I1` ( i P I1´ or i R I1),

ˇ

ˇ

ˇ
Bi

1 ˆ2 û
J
2 ˆ ¨ ¨ ¨ ˆd û

J
d ´Bi1

1 ˆ2 û
J
2 ˆ ¨ ¨ ¨ ˆd û

J
d

ˇ

ˇ

ˇ
ď 2

ˆ

a

2pc` 1q logpn1q `Cpd´ 1q

?
n1

?
k1

˙

.

(49)

For i P I1` and i P I1´,

ˇ

ˇ

ˇ
Bi

1 ˆ2 û
J
2 ˆ ¨ ¨ ¨ ˆd û

J
d ´Bi1

1 ˆ2 û
J
2 ˆ ¨ ¨ ¨ ˆd û

J
d

ˇ

ˇ

ˇ
ě 2

µ
?

2k1
´ 2

ˆ

a

2pc` 1q logpn1q `Cpd´ 1q

?
n1

?
k1

˙

.

(50)
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So when

µ
?

2k1
ě 6

ˆ

a

2pc` 1q logpn1q `Cpd´ 1q

?
n

?
k1

˙

,

a simple two cuts at the top two maximum gaps at the ordered values of
 

Bi
1 ˆ2 û

J
2 ˆ ¨ ¨ ¨ ˆd û

J
d

(n1

i“1

can identify the right support of I1`, I1´ and rn1szI1 with probability at least 1 ´ n´c1 ´

Cexpp´cnq. Since |I1`|, |I1`| ď k1 ! n1, pick two small clusters could yield the right sup-
port. Similar analysis holds for other modes, combining with the SNR requirement in initial-
ization (40), when

µěCn
d

4 _ 6
´

a

2pc` 1q logpnqk`Cpd´ 1q
?
n
¯

,

with probability at least 1 ´
řd
i“1 n

´c
i ´ Cexpp´cnq, we have Îi “ I˚i , p1 ď i ď dq. No-

tice the initialization SNR requirement will be the dominate one when dě 3, the final SNR
requirement for µ is µěCn

d

4 . This has finished the proof.

A.6. Proof of Theorem 8 . Assume Y „ PX from model (1) and the true support
SpX q “ pI˚1 , . . . , I˚d q. We first take a look at mode 1 signal support recovery. Recall 1˚ is
the index such that 1˚ “ arg minj‰1 nj and

(51) Y
p1,1˚q
rk1,k2s

:“
SUMpYp1,1

˚q

k1,k2
q

b

ś

j‰1,1˚ nj
for 1ď k1 ď n1,1ď k2 ď n1˚ .

It is not hard to check that if Y “ λ ¨ 1I˚1 ˝ ¨ ¨ ¨ ˝ 1I˚d `Z , then

Yp1,1˚q “
λ
ś

j‰1,1˚ kj
b

ś

j‰1,1˚ nj
1I˚1 ¨ 1

J
I˚
1˚
`Z,

where Z has i.i.d. Np0,1q entries.
Now the problem reduces to the submatrix localization problem studied in literature given

parameter

pn1, n1˚ , k1, k1˚ ,
λ
ś

j‰1,1˚ kj
b

śd
j‰1,1˚ nj

q.

By Lemma 1 of Cai, Liang and Rakhlin (2017), if

λ
ś

j‰1,1˚ kj
b

ś

j‰1,1˚ nj

a

k˚1 ěC

ˆc

n1˚

k1
`
a

logn1

˙

,

for a large C ą 0, then w.p. at least 1 ´ n´c1 ´ Cexpp´cn1q, we have Î1 “ I˚1 , and here
c,C ą 0 are some universal constants.

Analysis for other modes are similar and this has finished the proof.
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APPENDIX B: PROOFS OF STATISTICAL BOUNDS FOR CHCD AND ROHCD

B.1. Proof of Theorem 9. The proof of Theorem 9 is fairly long and the main idea is
to reduce the minimax testing risk to a Bayesian testing risk with uniform prior over the set
of parameters. The main technical difficulty is to bound the second moment of the truncated
likelihood ratio, see Lemma 5. For d “ 2, the lower bound for constant matrix clustering
detection has been proved in Butucea and Ingster (2013), however it is much more challeng-
ing to show it in order-d case. In this section, we will first prove the main theorem and its
subsections are devoted to prove Lemmas used in Theorem.

First, we define some convenient notations. Given a vector x “ px1, . . . , xdq P Rd, let

Gn
x :“

`

n1

x1

˘

¨ ¨ ¨
`

nd
xd

˘

and let Ysum
C “

ř

pi1,...,idqPC
Yri1,...,ids

?
k1¨¨¨kd

for any C P Sk,n, here Sk,n is the
collection of all possible choices of signal locations in the big tensor defined in (13). Given
Y , we use notation PC :“ PX where C “ SpX q to denote the distribution of a tensor with
the high-order cluster supported on C . Let π be a uniform prior on all elements in Sk,n, i.e.,

π “ pGn
kq
´1

ÿ

CPSk,n

δC ,

and Pπ be the mixture of distributions Pπ “ pGn
kq
´1ř

CPSk,n
PC . Denote the likelihood ratio

to be:

LRπpYq :“
dPπ
dP0

pYq “pGn
kq
´1

ÿ

CPSk,n

expp´λ2k̆{2` λ
a

k̆Ysum
C q

“pGn
kq
´1

ÿ

CPSk,n

expp´b2{2` bYsum
C q.

where k̆“
śd
i“1 ki and b2 “ λ2k̆. To show the lower bound, it suffices to show

(52) P0 p|LRπpYq ´ 1| ě εqÑ 0, @εą 0.

Since

EsCHCD :“ inf
φDPAllAlgD

˜

P0pφDpYq “ 1q ` sup
XPXCHCD

pk,n,λq
PX pφDpYq “ 0q

¸

ě inf
φDPAllAlgD

¨

˝P0pφDpYq “ 1q ` pGn
kq
´1

ÿ

CPSk,n

PCpφDpYq “ 0q

˛

‚

“ inf
φDPAllAlgD

¨

˝E0pφDpYqq ` pGn
kq
´1

ÿ

CPSk,n

E0rp1´ φDpYqq
dPC
dP0

pYqs

˛

‚

“ inf
φDPAllAlgD

pE0pφDpYqq `E0rp1´ φDpYqqLRπpYqsq

ě E0pφ
˚
DpYqq `E0rp1´ φ

˚
DpYqqLRπpYqs,

(53)

where φ˚DpYq “ 1pLRπpYq ą 1q is the likelihood ratio test, take liminf at both side of (53)
and by Fatou’s lemma, it is easy to get lim infnÑ8 EsCHCD

Ñ 1 if LRπpYqÑ 1 in P0 proba-
bility.

One canonical way to show LRπpYq Ñ 1 in P0 probability is to show E0pLR2
πpYqq Ñ 1

and then use chebyshev’s inequality. However, the direct calculation of E0pLR2
πpYqq does

not work here and we replace LRπpYq by its truncated version,

(54) ĂLRπpYq “ pGn
kq
´1

ÿ

CPSk,n

dPC
dP0

pYq1ΓC .
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Here ΓC is defined as follows: take small δ1 ą 0 (will be specified later) and for v “
pv1, v2, . . . , vdq, let Sv,C “ tV P Sv,n : V Ă Cu be the sub-support set of C which are in
Sv,n and define

ΓC “
č

δ1kiďviďki
i“1,...,d

č

V PSv,C

tYsum
V ď Tv,nu,

where Tv,n “
b

2plogGn
v ` log

śd
i“1 kiq. It is easy to check, under asymptotic regime (A1)

and δ1ki ď vi ď ki, we have

(55) T 2
v,n „ 2

˜

d
ÿ

i“1

vi logp
ni
vi
q

¸

„ 2

˜

d
ÿ

i“1

vi logp
ni
ki
q

¸

,

here an „ bn if limnÑ8
an
bn
“ 1.

Now we introduce the first Lemma.

Lemma 3 Set Γk “
Ş

CPSk,n
ΓC , we have P0pΓkq “ 1.

This yields P0pLRπpYq “ ĂLRπpYqq Ñ 1. So in place of checking (52), it is sufficient to
check ĂLRπpYq Ñ 1 in P0 probability. To show this, we change it to show the following two
Lemmas.

Lemma 4 E0pĂLRπqÑ 1.

Lemma 5 E0pĂLR
2

πq ď 1` op1q.

Lemma 4 and 5 imply that

(56) E0pĂLRπ ´ 1q2 “ pE0pĂLR
2

πq ´ 1q ´ 2pE0pĂLRπq ´ 1q ď op1q.

This has finished the proof of Theorem 9.

B.1.1. Proof of Lemma 3. It suffices to check P0pΓ
c
kqÑ 0, where Γck is the complement

of event Γk. First,

Γck “
ď

CPSk,n

ď

δ1kiďviďki
i“1,...,d

ď

V PSv,C

tYsum
V ą Tv,nu

“
ď

δ1kiďviďki
i“1,...,d

ď

V PSv,n

tYsum
V ą Tv,nu.

(57)

Since Ysum
V „Np0,1q under P0, by definition of Tv,n and using the asymptotics Φp´xq „

e´x
2{2{
?

2πx as xÑ8, we have

P0pΓ
c
kq ď

ÿ

δ1kiďviďki
i“1,...,d

ÿ

V PSv,n

Φp´Tv,nq “
ÿ

δ1kiďviďki
i“1,...,d

Gn
vΦp´Tv,nq

ď
ÿ

δ1kiďviďki
i“1,...,d

1` op1q

k̆Tv,n
?

2π
Ñ 0.

This has finished the proof.
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B.1.2. Proof of Lemma 4 . In view of symmetry for C in (54), it suffices to check that,
for any fixed C P Sk,n,

E0

ˆ

dPC
dP0

1ΓC

˙

“ PCpΓCqÑ 1,

or equivalently, PC pΓcCq Ñ 0. Since Ysum
V „ Npzv,1q under the PC , where z2

v “ λ2v̆ :“

λ2
śd
i“1 vi, we have

PCpΓcCq ď
ÿ

δ1kiďviďki
i“1,...,d

ÿ

V PSv,C

Φpzv ´ Tv,nq “
ÿ

δ1kiďviďki
i“1,...,d

Gk
vΦpzv ´ Tv,nq,

where Gk
v “

`

k1
v1

˘

¨ ¨ ¨
`

kd
vd

˘

. By the condition (10), there exists δ ą 0,

(58) b2 “ λ2k̆ă p2´ δq
d
ÿ

i“1

ki log
ni
ki
.

Let δ1 small enough such that when δ1k1 ď v1 ď k1, . . . , δ1kd ď vd ď kd, combining with
(55) we have,

z2
v “ λ

2v̆ă
2´ δ

k̆
p

d
ÿ

i“1

ki log
ni
ki
qv̆ď p2´ δq

d
ÿ

i“1

vi log
ni
ki

„ p1´
δ

2
qT 2

v,n.

Thus there exists δ ą 0,

Φpzv ´ Tv,nq ď expp´
δ

2
T 2
v,nq.

By Stirling’s formula, log
`

Gk
v

˘

“
řd
i“1 logp

`

ki
vi

˘

q „
řd
i“1 vi log ki

vi
“Op

řd
i“1 kiq, where the

last equality is because ki
vi
ď 1

δ1
. On the other hand, T 2

v,n „
řd
i“1 vi log ni

ki
"
řd
i“1 ki under

the asymptotic regime (A1), so

ÿ

δ1kiďviďki
i“1,...,d

Gk
vΦpzv ´ Tv,nq ď

ÿ

δ1kiďviďki
i“1,...,d

exppOp
d
ÿ

i“1

kiq ´
δ

2
T 2
v,nqÑ 0.

This has finished the proof.

B.1.3. Proof of Lemma 5. First,

E0pĂLR
2

πq “ pG
n
kq
´2

ÿ

C1,C2PSk,n

E0pexpp´b2 ` bpYsum
C1

`Ysum
C2

qq1ΓC1XΓC2
q.

Denote two latent supports as C1 “A1ˆA2ˆ¨ ¨ ¨ˆAd and C2 “B1ˆB2ˆ¨ ¨ ¨ˆBd where
Ai,Bi Ď rnis and |Ai| “ |Bi| “ ki for 1 ď i ď d. Denote the intersection part of C1,C2

as V and its dimension as v “ pv1, . . . , vdq, i.e., V “ pA1
Ş

B1q ˆ ¨ ¨ ¨ ˆ pAd
Ş

Bdq and
v1 “ |A1

Ş

B1|, . . . , vd “ |Ad
Ş

Bd|.
Notice that the value of E0pexpp´b2` bpYsum

C1
`Ysum

C2
qq1ΓC1

Ş

ΓC2
q only depends on the

size of V . So given V “C1
Ş

C2, let

(59) gpvq :“ E0pexpp´b2 ` bpYsum
C1

`Ysum
C2

qq1ΓC1

Ş

ΓC2
q.
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Then

E0pĂLR
2

πq “

k1
ÿ

v1“0

¨ ¨ ¨

kd
ÿ

vd“0

#
´

pC1,C2q P S2
k,n : sizepV q “ pv1, . . . , vdq

¯

G2
k,n

gpvq

“

k1
ÿ

v1“0

¨ ¨ ¨

kd
ÿ

vd“0

˜

d
ź

i“1

`

ki
vi

˘`

ni´ki
ki´vi

˘

`

ni
ki

˘

¸

gpvq

“ EHG1ˆ¨¨¨ˆHGdg pX1, . . . ,Xdq ,

where Xi independently follows the hypergeometric distribution HGpni, ki, kiq.
The goal is to show

(60) EHG1ˆ¨¨¨ˆHGd rg pX1, . . . ,Xdqs “ 1` op1q.

Under (10), there exists δ ą 0, b2 “ λ2k̆ď p2´ δq
řd
i“1 ki log ni

ki
, so

(61) λ2 —

řd
i“1 ki log ni

ki

k̆
.

To prove (60), we consider the value of EHG1ˆ¨¨¨ˆHGd rg pX1, . . . ,Xdqs on different events
and the rest of the proof can be divided into three steps.
Step 1. First letE1 be the value of EHG1ˆ¨¨¨ˆHGd rg pX1, . . . ,Xdqs on event tλ2X1 ¨ ¨ ¨Xd´1 ď

1u, in this step, we show E1 “ 1` op1q. Notice

E1 “ EHG1ˆ¨¨¨ˆHGd
“

gpX1, . . . ,Xdq1pλ
2X1 ¨ ¨ ¨Xd´1 ď 1q

‰

paq
ď EHG1ˆ¨¨¨ˆHGd

“

exp
`

λ2X1 ¨ ¨ ¨Xd

˘

1pλ2X1 ¨ ¨ ¨Xd´1 ď 1q
‰

“ EHG1ˆ¨¨¨ˆHGd´1

“

EHGd
`

exp
`

λ2X1 ¨ ¨ ¨Xd

˘˘

1pλ2X1 ¨ ¨ ¨Xd´1 ď 1q
‰

pbq
ď EHG1ˆ¨¨¨ˆHGd´1

“

EBind
`

exppλ2X1 ¨ ¨ ¨Xdq
˘

1pλ2X1 ¨ ¨ ¨Xd´1 ď 1q
‰

pcq
“ EHG1ˆ¨¨¨ˆHGd´1

„

´

1` q̃d

´

eλ
2X1¨¨¨Xd´1 ´ 1

¯¯kd
1pλ2X1 ¨ ¨ ¨Xd´1 ď 1q



pdq
ď EHG1ˆ¨¨¨ˆHGd´1

”

exp
´

kdq̃dpe
λ2X1¨¨¨Xd´1 ´ 1q

¯

1pλ2X1 ¨ ¨ ¨Xd´1 ď 1q
ı

peq
ď EHG1ˆ¨¨¨ˆHGd´1

“

exp
`

Bkdqdλ
2X1 ¨ ¨ ¨Xd´1

˘‰

,

(62)

where q̃d “ kd
nd´kd

, qd “
kd
nd

. (a) is due to Lemma 6 (72), pbq is due to the stochastic dominance
of binomial distributed random variable to hypergeometric distributed random variable( see
Lemma 5.2 of Butucea and Ingster (2013)) and Bind denotes the distribution of a binomial
distribution Binpkd,

kd
nd´kd

q, (c) is due to the moment generating function of a Binomial dis-
tribution, (d) is due to the fact that p1`xq ď ex for any x and (e) is because condition on event
1pλ2X1 ¨ ¨ ¨Xd´1 ď 1q, there exists B ą 0 such that peλ

2X1¨¨¨Xd´1 ´ 1q ďBλ2X1 ¨ ¨ ¨Xd´1.
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We can apply the argument in (62) sequentially and get an upper bound for E1,

E1 ď EHG1ˆ¨¨¨ˆHGd´1

“

exp
`

Bkdqdλ
2X1 ¨ ¨ ¨Xd´1

˘‰

ď EHG1ˆ¨¨¨ˆHGd´2

“

exp
`

Bkdkd´1qdqd´1λ
2X1 ¨ ¨ ¨Xd´2

˘‰

. . .

ď EHG1ˆHG2

“

exp
`

Bk3 ¨ ¨ ¨kd´1kdq3 ¨ ¨ ¨ qd´1qdλ
2X1X2

˘‰

ď EHG1
rexppBk2 ¨ ¨ ¨kdq2 ¨ ¨ ¨ qdλ

2X1qs

ď EBin1
rexppBk2 ¨ ¨ ¨kdq2 ¨ ¨ ¨ qdλ

2X1qs

ď

´

1` q̃1pe
Bk2¨¨¨kdq2¨¨¨qdλ2

´ 1q
¯k2

ď exppBk1k2 ¨ ¨ ¨kdq1q2 ¨ ¨ ¨ qdλ
2q

“ 1` op1q,

where qi “ ki
ni

and the constant B may vary from line to line. The last equality is due to

assumption in (10) that pk1¨¨¨kdq
2

n1...nd
λ2 Ñ 0.

Step 2. To show (60), there is left to show

(63) E2 :“ EHG1ˆ¨¨¨ˆHGd
“

gpX1, . . . ,Xdq1pλ
2X1 ¨ ¨ ¨Xd´1 ě 1q

‰

“ op1q.

In this step, we show there exists δ1 ą 0 such that E2 “ op1q on any of event tXi ď δ1kiu,
1ď iď d.

Denote Pipxq :“ PHGipXi “ xq “
pkix qp

ni´ki
ki´x

q

pnikiq
. Since (61) and (9), we can find small

enough δ1 such that

(64) δ1λ
2 k̆

ki
ď logp

ni
ki
q{2 for i“ 1, . . . , d.

So by the definition in (59) and (72) of Lemma 6, we have

E2 “EHG1ˆ¨¨¨ˆHGdrgpX1, . . . ,Xdq1pλ
2X1 ¨ ¨ ¨Xd´1 ě 1qs

ď

k1
ÿ

v1“0

¨ ¨ ¨

kd
ÿ

vd“0

v1¨¨¨vdě
1

λ2

exppλ2v1 ¨ ¨ ¨vdq
d
ź

j“1

Pjpvjq.(65)

To analysis the above term, we again consider its value on different events. First we consider
the value of E2 on event W1 “ tX1 ď δ1k1u. Notice on W1

Ş

tλ2X1 ¨ ¨ ¨Xd´1 ě 1u, for
sufficient small δ1,

X2 ě
1

λ2δ1k1X3 ¨ ¨ ¨Xd´1

ě
1

λ2δ1k1k3 ¨ ¨ ¨kd´1
ě

k2

logpn2

k2
q
,

(66)

where the least inequality is due to (61) and (9). So by Lemma 7 (with p“ k2
n2
, rppq “ log n2

k2
),

for v2 ě
k2

logp
n2
k2
q
, we have

(67) P2pv2q ď exp

ˆ

´v2 log

ˆ

n2

k2

˙

p1` op1qq

˙

.
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So on W1,

EHG1ˆ¨¨¨ˆHGd
“

gpX1, . . . ,Xdq1pλ
2X1 ¨ ¨ ¨Xd´1 ě 1q1pX1 ď δ1k1q

‰

ď
ÿ

v1ďδ1k1

ÿ

v2ě
k2

logp
n2
k2
q

k3
ÿ

v3“1

¨ ¨ ¨

kd
ÿ

vd“1

exppλ2v1 ¨ ¨ ¨vdq
d
ź

j“1

Pjpvjq

ď
ÿ

v1ďδ1k1

ÿ

v2ě
k2

logp
n2
k2
q

k3
ÿ

v3“1

¨ ¨ ¨

kd
ÿ

vd“1

exppλ2v1 ¨ ¨ ¨vdqexp

ˆ

´v2 log

ˆ

n2

k2

˙

p1` op1qq

˙

ď
ÿ

v1ďδ1k1

ÿ

v2ě
k2

logp
n2
k2
q

k3
ÿ

v3“1

¨ ¨ ¨

kd
ÿ

vd“1

exp

ˆ

v2pλ
2v1v3 ¨ ¨ ¨vd ´ log

n2

k2
q p1` op1qq

˙

ď
ÿ

v1ďδ1k1

ÿ

v2ě
k2

logp
n2
k2
q

k3
ÿ

v3“1

¨ ¨ ¨

kd
ÿ

vd“1

exp

ˆ

v2pδ1λ
2k1k3 ¨ ¨ ¨kd ´ log

n2

k2
q p1` op1qq

˙

ďk̆exp

ˆ

´
1

2
v2 log

n2

k2

˙

Ñ 0,

(68)

where the last inequality is due to (64) and the last term goes to 0 is because v2 log n2

k2
"

logpk̆q.
By the same argument of (68), we can show E2 goes to 0 on any of the event tXi ď δ1kiu

for 2ď iď d.
Step 3. In this step, we show the value of E2 is op1q on event

(69) H“ tpX1, . . . ,Xdq :X1 ě δ1k1,X2 ě δ1k2, . . . ,Xd ě δ1kdu .

Combining this results with the results in Step 2, we have shown (63).
We decompose H into two part H1 and H2 and consider the value of E2 on H1 and H2

separately. Here H1 and H2 are defined as

H1 “

#

pv1, . . . , vdq PH :
d
ÿ

i“1

v1 logp
ni
ki
q ě 2ρv ¨

˜

d
ÿ

i“1

ki logp
ni
ki
q

¸+

,

H2 “

#

pv1, . . . , vdq PH :
d
ÿ

i“1

v1 logp
ni
ki
q ă 2ρv ¨

˜

d
ÿ

i“1

ki logp
ni
ki
q

¸+

,

(70)

where ρv :“ v̆
k̆

.
Denote the value of E2 on H1 and H2 as E21 and E22, respectively. We first bound E21.
Observe that ρv ě δd1 for v P H. Recall (58), observe that we could take δ ą 0 small

enough such that t“ Tk,n ´ bp1` ρvq ă 0. Applying Lemma 6 (73) we have

E21 ď
ÿ

vPH1

exp

˜

´pTk,n ´ bq
2 `

ρvT
2
k,n

1` ρv

¸˜

d
ź

i“1

Pjpvjq

¸

ď
ÿ

vPH1

exp

˜

´pTk,n ´ bq
2 `

ρvT
2
k,n

1` ρv
´

d
ÿ

i“1

vi log
ni
ki
` opT 2

k,nq

¸

,

(71)

where the second inequality is due to Lemma 7 and observe that Xi ě
ki

log
ni
ki

p1ď iď dq.
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Note that when δ ą 0 is small enough, we can take δ2 “ δ2pδq ą 0 such that pTk,n´ bq2 ě

δ2T
2
k,n for the first term at the right hand side of (71). Recall Tk,n „ 2

´

řd
i“1 ki log ni

ki

¯

, so
on H1,

ρvT
2
k,n

1` ρv
´

d
ÿ

i“1

vi log
ni
ki
` opT 2

k,nq

“
2ρv

1` ρv

˜

d
ÿ

i“1

ki logp
ni
ki
q

¸

´

d
ÿ

i“1

vi log
ni
ki
` opT 2

k,nq

ď

ˆ

1

1` ρv
´ 1

˙ d
ÿ

i“1

vi logp
ni
ki
q ` opT 2

k,nq ď opT
2
k,nq,

here the first inequality is due to the construction of H1. Therefore

E21 ď k̆exp
`

´pδ2 ` op1qqT
2
k,n

˘

“ op1q.

Now we consider E22. Recall (55), (58) and z2
v “ ρvλ

2k̆ “ ρvp2 ´ δqp
řd
i“1 ki log ni

ki
q,

observe that on H2, for small enough δ, δ1, we have Tv,n ´ 2zv ă 0. So by Lemma 6 (74),
we have

E22 ď
ÿ

vPH2

exp
`

T 2
v,n{2´ pTv,n ´ zvq

2
˘

d
ź

i“1

Pjpvjq

ď
ÿ

vPH2

exp

˜

T 2
v,n{2´ pTv,n ´ zvq

2 ´

˜

d
ÿ

i“1

vi log
ni
ki

¸¸

,

where the last inequality is by Lemma 7.
Since

řd
i“1 vi log ni

ki
„ T 2

v,n{2, the power in the exponent is of the form

´pTv,n ´ zvq
2 ` opT 2

v,nq.

Result E22 “ op1q is due to the following result by observing (58) and (55)

T 2
v,n ´ z

2
v “ 2

d
ÿ

i“1

vi log
ni
ki
´ p2´ δq

d
ÿ

i“1

vi

ś

j‰i vi
ś

j‰i ki
log

ni
ki
ě δ1T 2

v,n,

for some δ1 ą 0.
So we have shown E21 “ op1q, E22 “ op1q. This has finished the proof.

Lemma 6 Let z2
v “ λ

2
śd
i“1 vi.

(1)

(72) gpvq ď E0

`

expp´b2 ` bpYsum
C1

`Ysum
C2

qq
˘

“ exppz2
vq “: g1pvq.

(2) If bě Tk,n

1`ρv
, then

gpvq ď E0

´

expp´b2 ` bpYsum
C1

`Ysum
C2

qq1tYsum
C1

ďTk,n,Ysum
C2

ďTk,nu

¯

ď expp´pTk,n ´ bq
2 `

ρvT
2
k,n

1` ρv
q “: g2pvq

(73)

(3) Let v1 ě δ1k1, . . . , vd ě δ1kd and Tv,n ď 2zv, then

gpvq ďE0

`

expp´b2 ` bpYsum
C1

`Ysum
C2

qq1tYsum
V ďTv,nu

˘

“exppT 2
v,n{2´ pTv,n ´ zvq

2q “: g3pvq
(74)
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Lemma 7 ( Lemma 5.3 of Butucea and Ingster (2013) ) Let Xi „ HGpni, ki, kiq and de-

note Pipxq :“ PHGpXi “ xq “
pkix qp

ni´ki
ki´x

q

pnikiq
. Let kiÑ8, pÑ 0, vi ě ki{rppq where rppq ě 1

for pą 0 small enough, and logprppqq “ oplogpp´1qq. Then

logpPipviqq ď vi logppqp1` op1qq.

B.1.4. Proof of Lemma 6. The proof is based on the following fact: if X „Np0,1q, then
EpexppτXqq “ exppτ2{2q.

We start with the proof of (72). Given two possible latent supports for the signal C1,C2,
define V1 “ C1zC2, V2 “ C2zC1, V “ C1

Ş

C2. Notice V1, V2, V are disjoint and #pV1q “

#pV2q “ k̆´ v̆, #pV q “ v̆, here v̆ :“
śd
i“1 vi.

Recall ρv :“ v̆
k̆
, b2 “ λ2k̆, zv “ λ2v̆ “ b2ρv and the definition of Ysum

C in the proof of
Theorem 9, so

Ysum
C1

“
a

1´ ρvYsum
V1

`
?
ρvYsum

V

Ysum
C2

“
a

1´ ρvYsum
V2

`
?
ρvYsum

V .

So

E0

`

expp´b2 ` bpYsum
C1

`Ysum
C2

qq
˘

“ expp´b2qE0pb
a

1´ ρvYsum
V1

` b
a

1´ ρvYsum
V2

` 2b
?
ρvYsum

V q

“ exppb2ρvq “ exppz2
vq.

The first inequality of (73) is trivial and we focus on the second one. Let hě 0, we have

E0

´

expp´b2 ` bpYsum
C1

`Ysum
C2

qq1tYsum
C1

ďTk,n,Ysum
C2

ďTk,nu

¯

“expp´b2 ` 2Tk,nhq

ˆE0pexp
`

pb´ hqpYsum
C1

`Ysum
C2

q ` hpYsum
C1

`Ysum
C2

´ 2Tk,nq
˘

1tYsum
C1

ďTk,n,Ysum
C2

ďTk,nuq

ďexpp´b2 ` 2Tk,nhqE0

`

exp
`

pb´ hqpYsum
C1

`Ysum
C2

q
˘˘

“expp´b2 ` 2Tk,nhqE0

´

exp
´

pb´ hq
a

1´ ρvpYsum
V1

`Ysum
V2

q ` 2pb´ hq
?
ρvYsum

V

¯¯

“exp
`

´b2 ` 2Tk,nh` pb´ hq
2p1´ ρvq ` 2pb´ hq2ρv

˘

“exp
`

´b2 ` 2Tk,nh` pb´ hq
2p1` ρvq

˘

.

Plug in h“ b´ Tk,n

1`ρv
, we get the result.

To prove (74), for hě 0, we have

E0

`

expp´b2 ` bpYsum
C1

`Ysum
C2

qq1tYsum
V ďTv,nu

˘

“expp´b2qE0pb
a

1´ ρvYsum
V1

` b
a

1´ ρvYsum
V2

` 2b
?
ρvYsum

V 1tYsum
V ďTv,nuq

“expp´b2ρv ` Tv,nhqE0

`

exp pp2b
?
ρv ´ hqYsum

V ` hpYsum
V ´ Tv,nqq1tYsum

V ďTv,nu

˘

ďexpp´b2ρv ` Tv,nhqE0 pexp pp2b
?
ρv ´ hqYsum

V qq

“expp´b2ρv ` Tv,nh` p2b
?
ρv ´ hq

2{2q.

Plug in h“ 2b
?
ρv ´ Tv,n, we get the inequality.
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B.2. Proof of Theorem 11. We adopt the same notation as in the proof of Theorem 9.
First note that

P0pψ
s
CHCD “ 1q ď P0pψsum “ 1q ` P0pψscan “ 1q

and

PX pψ
s
CHCD “ 0q ďminpPX pψsum “ 1q,PX pψscan “ 1qq.

So we could consider two tests ψsum and ψscan separately.

Let Tsum “
řn1
i1“1¨¨¨

řnd
id“1 Yri1,...,ids?
n1¨¨¨nd

and denote Zλ to be a random variable following distri-
bution Npλ,1q. Under H0, Tsum „Np0,1q, P0pψsum “ 1q “ Φp´W q Ñ 0, since W Ñ8

by assumption. Similarly we have

P0pψscan “ 1q “ P0pTscan ą Tk,nq ďG
n
kP0pZ0 ą

b

2 logpGn
kqq

ďGn
k ¨ expp´ logpGn

kqq{p2 logpGn
kqqÑ 0.

Here the second inequality is because PpZ0 ą tq ď 1
t expp´t2{2q. Therefore, we have

P0pψ
s
CHCD

“ 1qÑ 0.

Under H1, Tsum „Npµsum,1q with µsum :“ λk̆?
n̆

.
Then if (14) holds,

PX pTsum ďW q “ PX pZµsum´W ď 0q

ď PX pZp1´cqµsum ď 0qÑ 0,
(75)

where the last inequality is by assumption W “ cµsumpcă 1q when (14) holds.
If (15) holds, then

PX pTscan ď Tk,nq ď PX pYsum
C˚ ď Tkq

ď PX pZ
λ
?

k̆´Tk,n

ď 0q “ΦpTk,n ´ λ
a

k̆q,
(76)

where C˚ “ SpX q denote the true latent support of Y given Y „ PX .
Under assumption (A1), by Stirling formula, we have

Tk,n “
b

2 logpGn
kq „

g

f

f

e2
d
ÿ

i“1

ki log
ni
ki
.

So Tk,n ´ λ
a

k̆Ñ´8 and ΦpTk,n ´ λ
a

k̆qÑ 0 under condition (15).
Combining (75) and (76), we have PX pψ

s
CHCD

“ 0qÑ 0 holds for every X , so

sup
XPXCHCpk,n,λq

PX pψ
s
CHCD “ 0qÑ 0.

This has finished the proof.

B.3. Proof of Theorem 13. Similar to the proof of Theorem 11, we only need to con-
sider two tests ψmax and ψsum separately.

As we have shown in Theorem 11, when W Ñ8, P0pψsum “ 1q Ñ 0. Also PX pψsum “
0q Ñ 0, @X P XCHCpk,n, λq when condition (14) holds. So we only need to show
P0pψmax “ 1qÑ 0 and PX pψmax “ 0qÑ 0 for X PXCHCpk,n, λq.
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First

P0pψmax “ 1q “ P0

¨

˝Tmax ě

g

f

f

e2
d
ÿ

i“1

logni

˛

‚

“ n̆PpZ0 ě
a

2 log n̆q

ď
1

?
2 log n̆

Ñ 0,

(77)

where the last inequality is due to PpZ0 ą tq ď
1
t expp´t2{2q. Also

PX pψmax “ 0q “ PX pTmax ă
a

2 log n̆q

ď PX pZλ ď
a

2 log n̆q

“ PX pZ0 ď
a

2 log n̆´ λqÑ 0,

(78)

where the last term goes to 0 because
?

2 log n̆Ñ8 and condition (17). This has finished
the proof.

B.4. Proof of Theorem 10. To prove the lower bound, it is enough to prove for the
following case

H0 : X “ 0 vs H1 : X “ µ ¨ v ˝ v ˝ ¨ ¨ ¨ ˝ v,

where v is in the set C of k-sparse unit vector with non-zero entries equal to ˘ 1?
k

. In this

case, Y „Np0,1qbpnbdq under H0 and Y „ Pv :“ Lpµ ¨ v ˝ ¨ ¨ ¨ ˝ v`Np0,1qbpnbdqq under
H1.

Let P1 “
1
|C|

ř

vPC Pv, so the likelihood ratio is

dP1

dP0
“ exp

˜

´
1

2

n
ÿ

i1“1

¨ ¨ ¨

n
ÿ

id“1

`

Yri1,...,ids ´ µvi1 . . .vid
˘2
`

1

2

n
ÿ

i1“1

¨ ¨ ¨

n
ÿ

id“1

Y2
ri1,...,ids

¸

“ exp

ˆ

µxY ,v ˝ ¨ ¨ ¨ ˝ vy ´ µ2

2
}v ˝ ¨ ¨ ¨ ˝ v}2HS

˙

“ exp

ˆ

µxY ,v ˝ ¨ ¨ ¨ ˝ vy ´ µ2

2

˙

,

where the last inequality is due to the fact that }v ˝ ¨ ¨ ¨ ˝ v}HS “ 1.
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As we illustrate in (53), the result follows by showing E0

´

dP1

dP0

¯2
Ñ 1. Notice

E0

ˆ

dP1

dP0

˙2

“
1

|C|2
ÿ

u,vPC
E0

ˆ

dPu

dP0

dPv

dP0

˙

“
1

|C|2
ÿ

u,vPC
E0exp

`

µxY ,v ˝ ¨ ¨ ¨ ˝ v` u ˝ ¨ ¨ ¨ ˝ uy ´ µ2
˘

“
1

|C|2
ÿ

u,vPC
exp

ˆ

µ2

2
}u ˝ ¨ ¨ ¨ ˝ u` v ˝ ¨ ¨ ¨ ˝ v}2HS ´ µ

2

˙

“
1

|C|2
ÿ

u,vPC
exp

`

µ2xu ˝ ¨ ¨ ¨ ˝ u,v ˝ ¨ ¨ ¨ ˝ vy
˘

“
1

|C|2
ÿ

u,vPC
exp

´

µ2puJvqd
¯

“ Eu,v„UinfrCs

´

exppµ2puJvqdq
¯

,

here the third equality follows from Epexppxt,Yqq “ expp1
2}t}

2
HSq. Let Gm denote a sym-

metric random walk on Z stopped at the mth step. When u,v „ UnifrCs are independent,
uJv follows distribution of GH

k where H follows Hypergeometric distribution with param-

eter pn,k, kq. Thus µ2puJvqd “ µ2

kdG
d
H “

µ2

k log en

k

log en

k

kd´1 GdH . Then when µ?
k log en

k

Ñ 0, by

Lemma 8, we have

Eu,v„UinfrCs

´

exppµ2puJvqdq
¯

“ E
„

expp
µ2

k log en
k

log en
k

kd´1
GdHq



Ñ 1.

So this has finished the proof of this theorem.

Lemma 8 Suppose n P N and k P rns. Let B1, . . . ,Bk be independently Rademacher dis-
tributed. Denote the symmetric random walk on Z stopped at the mth step by

Gm “
m
ÿ

i“1

Bi.

Let H „Hypergeometricpn,k, kq with PpH “ iq “ p
k

iqp
n´k

k´iq

pnkq
, i“ 1, . . . , k. Then there exists a

function g : p0, cq Ñ p1,8q with cą 0 is a fixed small constant and gp0`q “ 1, such that for
any aă c,

(79) EexpptGdHq ď gpaq,

where t“ a
kd´1 log en

k .

B.4.1. Proof of Lemma 8. When d “ 2, this Lemma was proved in Cai, Ma and Wu
(2015). Their proof heavily relies on the explicit formula of a moment generating function
(MGF) of the second moment of Gaussian random variables, which can not be extended to the
dě 3 case as the MGF of high-order moment of Gaussian random variables does not exist.
Here, we introduce a new way of proving this lemma. Throughout the proof, we assume a is
sufficiently small and k,n are sufficiently large.
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Recall that for non-negative random variable Y , EpY q “
ş8

0 PpY ě xqdx. Condition on
H , 0ă expptGdHq ď expptHdq, thus

E
”

expptGdHq|H
ı

“

ż expptHdq

0
P
´

expptGdHq ě x
¯

dx

“

ż expptHdq

0
P

˜

GH ě

ˆ

logx

t

˙
1

d

¸

dx

ď

ż expptHdq

0
P

˜

|GH | ě

ˆ

logx

t

˙
1

d

¸

dx

“

ż expptHdq

1
P

˜

|GH | ě

ˆ

logx

t

˙
1

d

¸

dx` 1

paq
ď

ż expptHdq

1
2exp

¨

˚

˝

´

´

logx
t

¯
2

d

2H

˛

‹

‚

dx` 1.

(80)

Here (a) is due to Hoeffding’s inequality.
By taking expectation over H , we have

(81) E
”

expptGdHq
ı

ď
ÿ

0ďhďk

E
”

expptGdHq|H “ h
ı

PpH “ hq ` 1.

To prove the result, we only need to show the right hand side of (81) is upper bounded by
gpaq, or equivalently we can show that there exists fpaq ą 0 with fp0`q “ 0 such that

(82)
ÿ

0ďhďk

ż exppthdq

1
2exp

¨

˚

˝

´

´

logx
t

¯
2

d

2h

˛

‹

‚

dxPpH “ hq ď fpaq.

The idea to prove this is to divide the summation in (82) into three parts and bound each of
them.

Small h. Assume hďC
´

kd´1

log2 en

k

¯
1

d . In this regime,

ÿ

hPZ:0ďhďC
´

kd´1

log2 en
k

¯ 1
d

ż exppthdq

1
2exp

¨

˚

˝

´

´

logx
t

¯
2

d

2h

˛

‹

‚

dxPpH “ hq

ď max

hPZ:0ďhďC
´

kd´1

log2 en
k

¯ 1
d

ż exppthdq

1
2exp

¨

˚

˝

´

´

logx
t

¯
2

d

2h

˛

‹

‚

dx

paq
ď 2

˜

exp

˜

Ct
kd´1

log2 en
k

¸

´ 1

¸

pbq
ď expp

Ca

e
q ´ 1,

(83)

(a) is because the integrand is less or equal to 1 and the fourth inequality is due to the fact
´

Ct kd´1

log2 en

k

¯

“
Ca log en

k

kd´1
kd´1

log2 en

k

“ Ca
log en

k

ď Ca
e .
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Moderate large h. Assume C
´

kd´1

log2 en

k

¯
1

d

ď hď k

a
1
d´1 plog en

k q
1
d´1

. In this regime,

ÿ

hPZ:C
´

kd´1

log2 en
k

¯ 1
d
ďhď k

a
1
d´1 plog enk q

1
d´1

ż exppthdq

1
2exp

¨

˚

˝

´

´

logx
t

¯
2

d

2h

˛

‹

‚

dxPpH “ hq

paq
ď

ÿ

hPZ:C
´

kd´1

log2 en
k

¯ 1
d
ďhď k

a
1
d´1 plog enk q

1
d´1

ˆ

C
´

exppthd ´ hq ` expp´Kq
¯

`
2

K ´ 1
p1´ e1´Kq

˙

PpH “ hq

pbq
ď

ÿ

hPZ:C
´

kd´1

log2 en
k

¯ 1
d
ďhď k

a
1
d´1 plog enk q

1
d´1

ˆ

C ppexpp´chq ` expp´Kqq `
2

K ´ 1
p1´ e1´Kq

˙

PpH “ hq

pcq
ď Cexpp´Kq `

2

K ´ 1
p1´ e1´Kq `

ÿ

hPZ:C
´

kd´1

log2 en
k

¯ 1
d
ďhď k

a
1
d´1 plog enk q

1
d´1

Cexpp´chq

ď exppaq ´ 1,

(84)

here the (a) is due to Lemma 9 and K “ a
2
d k

2d´2
d

2plog en

k
q
2
d h

, (b) is due to the fact that when h ď
k

a
1
d´1 plog en

k q
1
d´1

, we have thd ď h, (c) is due to the fact that PpH “ hq ď 1 and
ř

h PpH “

hq ď 1 and the last inequality holds for sufficiently large k.
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Large h. Assume k

a
1
d´1 plog en

k q
1
d´1

ď hď k,

ÿ

hPZ: k

a
1
d´1 plog enk q

1
d´1

ďhďk

ż exppthdq

1
2exp

¨

˚

˝

´

´

logx
t

¯
2

d

2h

˛

‹

‚

dxPpH “ hq

paq
ď

ÿ

hPZ: k

a
1
d´1 plog enk q

1
d´1

ďhďk

ˆ

C
´

exppthd ´ hq ` expp´Kq
¯

`
2

K ´ 1
p1´ e1´Kq

˙

PpH “ hq

pbq
ď

ÿ

hPZ: k

a
1
d´1 plog enk q

1
d´1

ďhďk

ˆ

C
´

exppcthdq ` expp´Kq
¯

`
2

K ´ 1
p1´ e1´Kq

˙

PpH “ hq

pcq
ď C

˜

expp´
k
d´2

d

plog en
k q

2

d

q `
2plog en

k q
2

d

k
d´2

d

¸

`EH„HG

«

CexppctHdq1pH ě
k

a
1

d´1

`

log en
k

˘
1

d´1

q

ff

pdq
ď C

˜

expp´
k
d´2

d

plog en
k q

2

d

q `
2plog en

k q
2

d

k
d´2

d

¸

`EH„Bin

«

CexppctHdq1pH ě
k

a
1

d´1

`

log en
k

˘
1

d´1

q

ff

“C

˜

expp´
k
d´2

d

plog en
k q

2

d

q `
2plog en

k q
2

d

k
d´2

d

¸

`
ÿ

hPZ: k

a
1
d´1 plog enk q

1
d´1

ďhďk

Cexppcthdq

ˆ

k

n´ k

˙hˆn´ 2k

n´ k

˙k´hˆk

h

˙

peq
ď C

˜

expp´
k
d´2

d

plog en
k q

2

d

q `
2plog en

k q
2

d

k
d´2

d

¸

`
ÿ

hPZ: k

a
1
d´1 plog enk q

1
d´1

ďhďk

exppctkd´1h´ h log
n

2k
` h log

ek

h
q

pfq
ď

ÿ

hPZ: k

a
1
d´1 plog enk q

1
d´1

ďhďk

exp

ˆ

cah log
en

k
´ h log

n

2k
` h log

ˆ

ea
1

d´1

´

log
en

k

¯
1

d´1

˙˙

`C

˜

expp´
k
d´2

d

plog en
k q

2

d

q `
2plog en

k q
2

d

k
d´2

d

¸

pgq
ď exppaq ´ 1,

(85)

here (a) is due to Lemma 9 with K “ a
2
d k

2d´2
d

2plog en

k
q
2
d h

, (b) is due to the fact that when h ě

a
1

d´1

`

log en
k

˘
1

d´1 , thd ě h, (c) is due to the fact that

Cexpp´Kq `
2

K ´ 1
p1´ e1´Kq ďC

˜

exp

˜

´
k
d´2

d

plog en
k q

2

d

¸

`
2plog en

k q
2

d

k
d´2

d

¸

,

(d) is due to stochastic dominance of Hypergeometric distribution Hypergeometricpn,k, kq
by Binomial distribution Binpk, k

n´k q (e.g., see Lemma 5.2 of Butucea and Ingster (2013)),
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(e) is due to that
`

k
h

˘

ď
`

ek
h

˘h
and ně 3k and n´2k

n´k ă 1, (f) is due to that in the summation

range of h, kh ď a
1

d´1

`

log en
k

˘
1

d´1 and (g) holds for a sufficient small a and sufficiently large
k.

So we can take fpaq “ 2pexppaq´1q`exppCae q´1, i.e., gpaq “ 2pexppaq´1q`exppCae q
in the statement and this has finished the proof.

Lemma 9 Suppose M , K are sufficiently large fixed constants and set τ “ 2
d , then for dě 3,

we have
ż exppMq

1
2expp´K logτ xqdxď

2

K ´ 1
p1´ e1´Kq `C pexpp´Kq ` expp´M τK `Mqq ,

for some C ą 0.

B.4.2. Proof of Lemma 9. The idea to prove this lemma is to divide the integral range
into different parts and then bound each part separately.

ż exppMq

1
2expp´K logτ xqdx“

ż e

1
2exp p´K logτ xqdx`

Mτ´1
ÿ

i“1

ż expppi`1q
1
τ q

exppi
1
τ q

2expp´K logτ xqdx

paq
ď

ż e

1
2exp p´K logτ xqdx` 2

Mτ´1
ÿ

i“1

expp´iKqexp
´

pi` 1q
1

τ

¯

,

(86)

where (a) is due to the fact that the integrand decays as x increases.
We first bound the first term in the right hand side of (86). Since logx P r0,1s when x P

r1, es and τ ă 1, we have
ż e

1
2exp p´K logτ xqdxď

ż e

1
2expp´K logxqdx

“

ż e

1
2x´Kdx“

2

K ´ 1
p1´ e1´Kq.

Now we move onto the second term in (86). We show that the value of the sequence of
expp´iKqexp

´

pi` 1q
1

τ

¯

is a U-shape curve, specifically, it first geometrically decreases
and then geometrically increases, so the summation of the sequence could be upper bounded
by the sum of first term and the last term.

Compare two consecutive values in the summation
řMτ´1
i“1 expp´iKqexp

´

pi` 1q
1

τ

¯

,
when i is large,

expp´iKqexp
´

pi` 1q
1

τ

¯

expp´pi´ 1qKqexp
´

i
1

τ

¯ “ expp´Kqexp

ˆ

i
1

τ

„

p1`
1

i
q

1

τ ´ 1

˙

“ expp´Kqexp

ˆ

C
1

τ
i

1

τ
´1

˙

,

for some C ą 0, where the last equation is due to Taylor expansion.
So the sequence expp´iKqexp

´

pi` 1q
1

τ

¯

geometrically decreases when i ÀK
τ

1´τ and

then geometrically increases when i ÁK
τ

1´τ . At the same time, the beginning terms in the
series expp´iKqexp

´

pi` 1q
1

τ

¯

are of order expp´Kq.
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So by the summation property of geometric sequence, we have
Mτ´1
ÿ

i“1

expp´iKqexp
´

pi` 1q
1

τ

¯

ďC pexpp´Kq ` expp´M τK `Mqq ,

for some C ą 0. Combining two parts, we finish the proof of this Lemma.

B.5. Proof of Theorem 12. Notice that by Theorem 5, when µ ě C
?
k logn, the

ROHCR search Algorithm 2 can identify the true support with probability goes to 1. Then
by Lemma 10, EROHCDpψ

s
ROHCD

q Ñ 0 follows by observing that ψsROHCD
is the algorithm

used in Lemma 10. Combining them together, we get the theorem.

B.6. Proof of Theorem 14. First in regime limnÑ8
µ?

2p
śd
i“1 kiqp

řd
i“1 logniq

ą 1, by the

same argument as Theorem 13, we can show P0pψmax “ 1qÑ 1 and PX pψmax “ 0qÑ 0.
In regime µěCn

d

4 , notice that by Theorem 7, the Power-iteration algorithm can identify
the true support with probability goes to 1. Also notice that µ ě Ck

d

4 in this case, then by
Lemma 10, EROHCDpψsingq Ñ 0 follows by observing that ψsing is the algorithm used in
Lemma 10. Combining them together, we get the theorem.

Lemma 10 Consider ROHCDpk,n, µq and ROHCRpk,n, µq under the asymptotic regime
(A1).

(1) If µěC
?
k logn for some C ą 0 and there is a sequence of recovery algorithm tφRun

such that lim infnÑ8 EROHCRpφRq ă η for η P p0,1s, then there exists a sequence of test
tφDun such that lim infnÑ8 EROHCDpφDq ă η.

(2) If µ ě Ck
d

4 for some C ą 0 and there is a sequence of polynomial-time recovery
algorithm tφRun such that lim infnÑ8 EROHCRpφRq ă η for η P p0,1s, then there exists a
sequence of polynomial-time algorithm tφDun such that lim infnÑ8 EROHCDpφDq ă η.

B.6.1. Proof of Lemma 10. The idea to prove this lemma is to form two independent
copies of the observation from the original observation, then use the first copy and the re-
covery algorithm φR to find the true support with high probability, finally use the estimated
support and the second copy to do test.

First by the property of Gaussian, it is easy to check A :“ Y`Z1?
2

and B :“ Y´Z1?
2

are

two independent copies with distribution L
´

µ
?

2
¨ v1 ˝ ¨ ¨ ¨ ˝ vd `Np0,1q

bn1ˆ¨¨¨ˆnd
¯

if Z1 „

Np0,1qbn1ˆ¨¨¨ˆnd .
Proof of Statement (1). Based on A and assumption about algorithm φR, we have event
E “ tφRpYq “ Spv1q ˆ ¨ ¨ ¨ ˆ Spvdqu happens with probability more than 1´ η. Condition
on E, denote rB to the part of B that restricted to the support Spv1q ˆ ¨ ¨ ¨ ˆ Spvdq.

Apply ROHCR Search Algorithm 2 to rB and in the output of Step 4, we get pû1, . . . , ûdq

and let v̂1 “
û1?
k1
, . . . , v̂d “

ûd?
kd

. The test procedure is φD “ 1
´

rBˆ1 v̂
J
1 ˆ ¨ ¨ ¨ ˆ

J
d v̂d ěC

?
k
¯

.

Under H0, rB has i.i.d. Np0,1q entries, by Lemma 5 of Zhang and Xia (2018), we have

Pp| rBˆ1 v̂
J
1 ˆ ¨ ¨ ¨ ˆd v̂

J
d | ěC

?
kq ď expp´ckq,

for some C,cą 0.
Under H1 and regime µěC

?
k logn, by Theorem 5, we have the elementwise sign of ûi

matches vi and v̂Ji vi ě c for some cą 0 with probability at least 1´Opn´1q. So conditioned
on E, with probability at least 1´ n´1,

rBˆ1 v̂
J
1 ˆ ¨ ¨ ¨ ˆ

J
d v̂d “

µ
?

2
ˆ

d
ź

i“1

pv̂Ji vq ě
µ
?

2
cd ěC

?
k,(87)
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So overall we have

(88) EROHCDpφDq ďCexpp´ckq `Cn´1 Ñ 0,

condition on E. On Ec we have EROHCDpφDq ă 1. So the results follow since E happens
with probability more than 1´ η.
Proof of Statement (2). Similarly based on A and assumption about polynomial-time al-
gorithm φR, we have event E “ tφRpYq “ Spv1q ˆ ¨ ¨ ¨ ˆ Spvdqu happens with probability
more than 1´ η. Define rB in the same way as before.

Apply Power-iteration (Algorithm 4) on rB and get the rank-one approximation v̂1, . . . , v̂d

at the Step 5. The test procedure is φD “ 1
´

rBˆ1 v̂
J
1 ˆ ¨ ¨ ¨ ˆ

J
d v̂d ěC

?
k
¯

.
Under H0, similarly we have

Pp| rBˆ1 v̂
J
1 ˆ ¨ ¨ ¨ ˆd v̂

J
d | ěC

?
kq ď expp´ckq,

for some C,cą 0.
Under H1 and regime µ ě Ck

d

4 , by Theorem 1 of Zhang and Xia (2018), we have
} sin Θpv̂i,viq}2 ď

?
k
µ ď

1
2 p1ď iď dq w.p. at least 1´Cexpp´ckq. Here } sin Θpv̂i,viq} “

b

1´ pv̂Ji viq
2 is used measure the angle between v̂i and vi. So v̂Ji vi ě

b

1´ 1
4 “

?
3

2 .
Conditioned on E,

rBˆ1 v̂
J
1 ˆ ¨ ¨ ¨ ˆ

J
d v̂d “

µ
?

2
ˆ

d
ź

i“1

pv̂Ji vq ě
µ
?

2
p

?
3

2
qd ěCk

d

4 ěC
?
k,(89)

with probability at least 1´Cexpp´ckq for some c,C ą 0. So overall we have

(90) EROHCDpφDq ďCexpp´ckqÑ 0,

condition on E. On Ec, EROHCDpφDq ă 1 for sufficient large n. So the results follow since
eventE happens with probability more than 1´η and it is polynomial-time computable since
both φR and Power-iteration are polynomial-time computable.

APPENDIX C: AVERAGE-CASE REDUCTION

We first list some existing tools in the literature and introduce some new results for estab-
lishing computational lower bounds.

The following lemma gives the rigorous results why mapping the conjecturally hard prob-
lem in distribution to the target problem is the key step in the idea of average-case reduction
we have built in Section 5.4.

Lemma 11 (Lemma 4 of Brennan, Bresler and Huleihel (2018)) Let P and P 1 be detec-
tion problems with hypotheses H0,H1,H

1
0,H

1
1 and let X and Y be instances of P and P 1,

respectively. Suppose there is a polynomial-time computable map ϕ satisfying

TV
`

LH0
pϕpXqq,LH 10pY q

˘

` sup
PPH1

inf
πP4pH 11q

TV

ˆ

LPpϕpXqq,

ż

H 11

LP1pY qdπpP1q
˙

ď δ,

where 4pH 11q denotes the set of priors on H 11. If there is a polynomial-time algorithm solving
P 1 with Type I + II error at most ε, then there is a polynomial-time algorithm solving P with
Type I+II error at most ε` δ.

Lemma 12 (Data Processing (Csiszár, 1967)) Let P and Q be distributions on a measur-
able space pΩ,Bq and let f : ΩÑΩ1 be a Markov transition kernel (see definition in (Klenke,
2013, Section 8.3)). If A„ P and B „Q, then

TV pLpfpAqq,LpfpBqqq ďTVpP,Qq.

Here, Lp¨q is the distribution of any random variable “ ¨ ”.
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Lemma 13 (Tensorization (Ma and Wu (2015), Lemma 7)) Let P1, . . . , Pn andQ1, . . . ,Qn
be distributions on a measurable space pΩ,Bq. Then

TV

˜

n
ź

i“1

Pi,
n
ź

i“1

Qi

¸

ď

n
ÿ

i“1

TVpPi,Qiq.

The following Lemma 14 will be used in proving the computational lower bound of con-
stant high-order cluster recovery. Given an order-d tensor W , let Wσ1,...,σd be the tensor
formed by permuting mode i indices by permutation σi, i.e.

Wσ1,...,σd
rσ1pi1q,...,σdpidqs

“Wri1,...,ids.

Lemma 14 Let P and Q be two distributions such that Q dominates P , (i.e. for any event
A, QpAq “ 0 implies P pAq “ 0) and χ2pP,Qq ď 1. Suppose W P Rnbd is an order-d
dimension-n tensor with all its non-diagonal entries i.i.d. sampled from Q and all of its
diagonal entries i.i.d. sampled from P , where the set of diagonal entries of W is tWi,i,...,iu.
Suppose that σ1, . . . σd´1 are independent permutations on rns chosen uniformly at random.
Then

TV
´

LpW id,σ1,...,σd´1q,Qbpn
bdq

¯

ď
a

χ2pP,Qq,

where

χ2pP,Qq “

ż

pP pxq ´Qpxqq2

Qpxq
dx

is the χ2 divergence between distributions P and Q, and “id" be the identity permutation.

The proof of this lemma is given in Section C.1. Next, we introduce the rejection kernel
algorithm.

Algorithm 9 Rejection Kernel
1: Input: x P t0,1u, a pair of PMFs or PDFs fX and gX that can be efficiently computed and sampled,

Bernoulli probabilities p, q P r0,1s, number of iterations T .
2: Initialize Y “ 0.
3: For i“ 1, . . . , T , do:

(a) If x“ 0, sample Z „ gX and if

p ¨ gX pZq ě q ¨ fX pZq,

then with probability 1´
q¨fXpZq
p¨gXpZq

, update Y “ Z and break.

(b) If x“ 1, sample Z „ fX and if

p1´ qq ¨ fX pZq ě p1´ pq ¨ gX pZq

then with probability 1´
p1´pq¨gXpZq
p1´qq¨fXpZq

, update Y “ Z and break.
4: Output: Y .

Recall we denote the above Rejection Kernel map as RKppÑ fX , qÑ gX , T q. The fol-
lowing lemma discusses the mapping from Bernoulli random variable to Gaussian random
variable by rejection kernel. We omit the proof of Lemma 15 here since the proof is essen-
tially the same as the proof of Lemma 14 in Brennan, Bresler and Huleihel (2018) except for
some constant modifications.
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Lemma 15 Let n be a parameter and suppose that p “ ppnq and q “ qpnq satisfy p ą q,
p, q P r0,1s, maxpq,1´qq “Ωp1q and p´q ě n´Op1q. Let δ “mintlog p

q , log 1´q
1´pu. Suppose

ξ “ ξpnq P p0,1q satisfies

ξ ď
δ

2
a

2pd` 1q logn` 2 log ppp´ qq´1q
.

Then the map RKG :“RKppÑNpξ,1q, qÑNp0,1q, T q with T “ r2pd` 1qδ´1 logns can
be computed in polypnq time and satisfies

TV pRKGpBernppqq,Npξ,1qq “Opn´pd`1qq and TVpRKGpBernpqq,Np0,1qqq “Opn´pd`1qq.

The next lemma gives the property of tensor reflection cloning in Algorithm 7.

Lemma 16 (Tensor Reflecting Cloning) Suppose n is even and ` “ Oplognq. There is a
randomized polynomial-time computable map ϕ : Rnbd Ñ Rnbd given by Algorithm 7 that
satisfies

1. ϕ
´

Np0,1qbpn
bdq

¯

„Np0,1qbpn
bdq.

2. Consider any λą 0 and any set of vectors u1, . . . ,ud P Zn. There exists a distribution π
over vectors u

p`q
1 , . . . ,u

p`q
d P Zn with }up`qi }

2
2 “ 2`}ui}

2
2, 2`}ui}0 ě }u

p`q
i }0 for 1 ď i ď d

such that

ϕ
´

λ ¨ u1 ˝ ¨ ¨ ¨ ˝ ud `Np0,1q
bpnbdq

¯

„

ż

L

˜

λ
?

2
d`
¨ u
p`q
1 ˝ ¨ ¨ ¨ ˝ u

p`q
d `Z

¸

dπpu
p`q
1 , . . . ,u

p`q
d q,

where Z „ Np0,1qbpn
bdq. Furthermore, if ui “ uj are equal for some i, j P rds, i ‰ j

then u
p`q
i “ u

p`q
j holds almost surely.

C.1. Proof of Lemma 14. Let σ11, . . . , σ
1
d´1 be independent permutations of rns cho-

sen uniformly at random and also independent of σ1, . . . , σd´1. For convenience, we denote
σpiq “ pσ1piq, . . . , σd´1piqq,σ

1piq “ pσ11piq, . . . , σ
1
d´1piqq and j “ pj1, . . . , jd´1q. By prop-

erty χ2pP,Qq ` 1“
ş P 2pxq
Qpxq dx, we have

χ2
´

LpW id,σ1,...,σd´1q,Qbpn
bdq

¯

` 1

“

ż

`

Eσ1,...,σd´1
rPW id,σ1,...,σd´1 pX |σ1, . . . , σd´1qs

˘2

PQbpnbdqpX q
dX

“ Eσ1,...,σd´1,σ11,...,σ
1
d´1

ż PW id,σ1,...,σd´1 pX |σ1, . . . , σd´1qPW id,σ1
1
,...,σ1

d´1
pX |σ11, . . . , σ1d´1q

PQbpnbdqpX q
dX .

(91)

Notice

PW id,σ1,...,σd´1 pX |σ1, . . . , σd´1q “

n
ź

i“1

$

&

%

P pXri,σ1piq,...,σd´1piqsq
ź

j‰σpiq

QpXri,j1,...,jd´1sq

,

.

-

,
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so

PW id,σ1,...,σd´1 pX |σ1, . . . , σd´1qPW id,σ1
1
,...,σ1

d´1
pX |σ11, . . . , σ1d´1q

PQbpnbdqpX q

“
ź

i:σpiq“σ1piq

$

&

%

P 2pXri,σ1piq,...,σd´1piqsq

QpXri,σ1piq,...,σd´1piqsq

ź

j‰σpiq

QpXri,j1,...,jd´1sq

,

.

-

ˆ
ź

i:σpiq‰σ1piq

P pXri,σ1piq,...,σd´1piqsqP pXri,σ11piq,...,σ1d´1piqs
q
ś

j‰σpiq
j‰σ1piq

Q2pXri,j1,...,jd´1sq

ś

j‰σpiq
j‰σ1piq

QpXri,j1,...,jd´1sq

“
ź

i:σpiq“σ1piq

P 2pXri,σ1piq,...,σd´1piqsq

QpXri,σ1piq,...,σd´1piqsq

ź

i:σpiq‰σ1piq

P pXri,σ1piq,...,σd´1piqsqP pXri,σ11piq,...,σ1d´1piqs
q

ˆ

¨

˚

˚

˝

ź

j‰σpiq
j‰σ1piq

QpXri,j1,...,jd´1sq

˛

‹

‹

‚

.

(92)

After integration, last two terms at the right hand side of (92) are integrated to 1, only the
first term left. So

ż PW id,σ1,...,σd´1 pX |σ1, . . . , σd´1qPW id,σ1
1
,...,σ1

d´1
pX |σ11, . . . , σ1d´1q

PQbpnbdqpX q
dX

“
ź

i:σpiq“σ1piq

˜

ż

P 2pXri,σ1piq,...,σd´1piqsq

QpXri,σ1piq,...,σd´1piqsq
dXri,σ1piq,...,σd´1piqs

¸

“
`

1` χ2pP,Qq
˘|ti:σpiq“σ1piqu|

.

(93)

Let Y “ |ti : σpiq “ σ1piqu| be the number of fixed coordinates in all d ´ 1 permutations
and let Ȳ “ |ti : σ1piq “ σ11piqu| be the number of fixed coordinate in the first permutation,
clearly Y ď Ȳ . As shown in Pitman (1997), the ith moment of Ȳ is at most the ith Bell
number and possion distribution with rate 1 has its ith moment given by ith Bell number
for all i. So the moment generating function(m.g.f.) EpetȲ q is at most the m.g.f. of possion
distribution with rate 1 which is exppet ´ 1q. Set t“ logp1` χ2pP,Qqq,

χ2
´

LpW id,σ1,...,σd´1q,Qbpn
bdq

¯

paq
“ Er

`

1` χ2pP,Qq
˘Y
s ´ 1

ď Er
`

1` χ2pP,Qq
˘Ȳ
s ´ 1

“ ErexppȲ logp1` χ2pP,Qqqqs ´ 1

ď exp
`

χ2pP,Qq
˘

´ 1ď 2 ¨ χ2pP,Qq.

Here (a) is due to (91)(93) and the last inequality is because ex ď 1`2x for x P r0,1s. Finally,

since TVpP,Qq ď

b

χ2pP,Qq
2 by Tsybakov (2009) Lemma 2.7, we have

TV
´

LpW id,σ1,...,σd´1q,Qbpn
bdq

¯

ď

d

χ2
`

LpW id,σ1,...,σd´1q,Qbpnbdq
˘

2
ď
a

χ2pP,Qq.

This has finished the proof.
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C.2. Proof of Lemma 16. First notice A`B?
2

is an orthogonal matrix. If W0 „

Np0,1qbpn
bdq then by the orthogonal invariant property of Gaussian, it is easy to check

Wσbd
0 ˆi

A`B?
2
„Np0,1qbpn

bdq for all 1ď iď d. So the property 1 of the Lemma is estab-
lished.

Now when W “W0 „ λ ¨u1 ˝ ¨ ¨ ¨ ˝ud`Z where Z „Np0,1qbpn
bdq, we first consider

its update after one step.

W 1 “Wσbd ˆ1
A`B
?

2
ˆ ¨ ¨ ¨ ˆd

A`B
?

2

“λˆ1
A`B
?

2
uσ1 ˆ ¨ ¨ ¨ ˆd

A`B
?

2
uσd `Zσbd ˆ1

A`B
?

2
ˆ ¨ ¨ ¨ ˆd

A`B
?

2

“
λ
?

2
d
ˆ1 pA`Bquσ1 ˆ ¨ ¨ ¨ ˆd pA`Bquσd `Zσbd ˆ1

A`B
?

2
ˆ ¨ ¨ ¨ ˆd

A`B
?

2
.

(94)

By the result of the first part, we know Zσbd ˆ1
A`B?

2
ˆ ¨ ¨ ¨ ˆd

A`B?
2
„Np0,1qbpn

bdq. Now

we consider the first term at the right hand side of (94). Denote u
p0q
i “ ui and u

p`q
i “ pA`

Bqpu
p`´1q
i qσ, p1ď iď dq. Since A`B?

2
is orthogonal,

}u
p`q
i }

2
2 “ 2}pu

p`´1q
i qσ}22 “ 2}u

p`´1q
i }22.

After ` iterations, we have }up`qi }
2
2 “ 2`}ui}

2
2 for 1ď iď d. Also u

p`q
i P Zn since each entry

of pA`Bq belongs to t´1,0,1u. By the definition of up`qi , after ` steps, we have

ϕ
´

λ ¨ u1 ˝ ¨ ¨ ¨ ˝ ud `Np0,1q
bpnbdq

¯

„ L

˜

λ
?

2
d`
¨ u
p`q
1 ˝ ¨ ¨ ¨ ˝ u

p`q
d `Np0,1qbpn

bdq

¸

.

The first part of statement (2) follows.
At the same time if ui “ uj for i, j P rds, i ‰ j, then u

p`q
i “ u

p`q
j holds almost surely by

the definition of up`qi .
To finish the proof of the statement (2), we only need to show the desired bound for

}u
p`q
i }0, p1 ď i ď dq. Since A`B?

2
only has two non-zero values for each row and each col-

umn, }up`qi }0 ď 2}u
p`´1q
i }0. Iterate this step, we have }up`qi }0 ď 2`}ui}0. This has finished the

proof.

APPENDIX D: PROOFS OF COMPUTATIONAL LOWER BOUNDS OF CHCD , CHCR

D.1. Proof of Theorem 15. The high level idea to show the computational lower bound
of CHCD is given in Section 5.4. The randomized polynomial-time reduction procedure we
use shares the same idea as Ma and Wu (2015), but are modified to handle high-order case.
Also we note applying tensor version Gaussian distributional lifting and multivariate rejection
kernel techniques in Brennan, Bresler and Huleihel (2018, 2019) could probably also yield
the same tight computational lower bound.

First, we introduce a few necessary notation. LetN “ dn`with ` PN to be chosen depend-
ing on n,k,λ of CHC model and A P pt0,1uN qbd be the adjacency tensor of hypergraph G.

Algorithm 10 summaries the randomized polynomial-time reduction procedure:

ϕ : pt0,1uN qbdÑRnbd : AÑY .(96)



TENSOR CLUSTERING WITH PLANTED STRUCTURES 33

Algorithm 10 Randomized Polynomial-time Reduction for CHC Detection
1: Input: A P pt0,1uN qbd.
2: Let A0 “ Ar1:n`,n``1:2n`,...,pd´1qn``1:dn`s. Let RKG “ RKp1 Ñ Npξ,1q, 1

2 Ñ Np0,1q, T q with

T “ r2pd ` 1q log2pn`qs and ξ “ log 2
2
?

2pd`1q logpn`q`2 log 2
. Compute the tensor B P Rpn`q

bd
with

Bri1,...,ids “RKGpA0ri1,...,ids
q.

3: Construct Y PRn
bd

as follows:

(95) Yri1,...,ids “
1

`
d
2

ÿ

j1Pr`s

¨ ¨ ¨
ÿ

jdPr`s

Brpj1´1qn`i1,...,pjd´1qn`ids
, 1ď i1, . . . , id ď n.

4: Output: Y .

Lemma 17 shows that the randomized polynomial-time algorithm we construct in Algo-
rithm 10 maps HPCD to CHCD asymptotically.

Lemma 17 Given hypergraph G and its adjacency tensor A. When N “ dn` for some `ą 0
integer, if G„HG

0 ,

TVpNp0,1qbpn
bdq,LpϕpAqqq ď 1

n
.(97)

If G„HG
1 , and in addition assume ξ “ log 2

2
?

2pd`1q logpn`q`2 log 2
, κě 4d,κ“ 4dk,ně 2κ,

then there exists a prior π on Xk,n, ξ

p N
dn
qd{2

such that

(98) TVpLpϕpAqq,Pπq ď
1

n
` 2d expp´

c

2d2
κq ` dk expp´

c

4d
κ log

n

k
q,

where Pπp¨q “
ş

X
k,n,

ξ

p N
dn
qd{2

PX p¨qdπpX q, and cą 0 is some fixed constant.

Lemma 17 specifically implies that if N “ dn`, κ ě 4d,κ “ 4dk,n ě 2κ and µ “ ξ
p N
dn
qd{2

with ξ “ log 2

2
?

2pd`1q logpn`q`2 log 2
, the reduction map ϕpGq we construct from Algorithm 10

satisfies

TV pϕpHPCDpN,1{2, κqq,CHCDpn,k, µqqÑ 0

under both H0 and H1.
Now we prove the computational lower bound of CHC detection by contradiction. If

when β ą pα ´ 1
2qd _ 0 “: βcCHCD

, there exists a sequence of algorithm tφun such that
lim inf ECHCDpφnq ă

1
2 . Then under this regime, we can find λ such that

(99) λď
log 2

2
a

2pd` 1q logpn`q ` 2 log 2
and λď

Cn
d

2

kd`δ
,

for some δ ą 0. Here we let the sparsity and signal strength of the CHCD satisfy k “ Θ̃pnαq,
λ“ Θ̃pn´βq.

Under the first condition in (99), there exists ` ě 1 such that λ ď ξ

`
d
2
“

ξ

pN{pdnqq
d
2

by the

definition of ξ. Thus Xk,n, ξ

p N
dn
qd{2

is supported on Xk,n,λ and let ` to be the largest integer

satisfies ξ

`
d
2
ě λ.

By combining Lemma 17 and Lemma 11, we have

EHPCDpφn ˝ϕq ď ECHCDpφnq `
2

n
` 2dexpp´

c

2d2
κq ` dk expp´k log

n

k
q,
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and lim infnÑ8 EHPCDpφn ˝ ϕq ă
1
2 , i.e. φn ˝ ϕ has asymptotic risk less than 1

2 in HPC
detection.

On the other hand, note d is fixed and ` is a largest integer satisfying λď ξ

`
d
2

, so combining
with the second condition in (99), we have

`
d

2

ξ
ě
kd`δ

Cn
d

2

ùñ kd`δ ďCN
d

2

a

2pd` 1q logN ùñ
´ κ

4d

¯d`δ
ďCN

d

2

a

2pd` 1q logN,

which implies lim infnÑ8
logκ
logN ď

1
2` δ

2

ă 1
2 . The above two facts together contradicts with

Conjecture 1. So by contradiction argument, we have finished the proof.

D.2. Proof of Lemma 17. First, by Lemma 15, when ξ “ log 2

2
?

2pd`1q logpn`q`2 log 2
, we

have
(100)

TV pRKGpBernp1qq,Npξ,1qq “Oppn`q´pd`1q
q and TVpRKGpBernp

1

2
qq,Np0,1qq “Oppn`q´pd`1q

q.

Under HG
0 , let rB P Rpn`qbd be a random tensor with i.i.d. Np0,1q entries independent of

A and rY be the quantity by applying (95) to rB. It is straightforward to verify rY has i.i.d.
Np0,1q entries, i.e., Lp rYq “Np0,1qbpnbdq. So we have

(101) TVpNp0,1qbpn
bdq,LpϕpAqqq ďTVp rB,Bq ď pn`qdpn`q´pd`1q “

1

n
,

where the first inequality is due to Lemma 12 and the second inequality is due to the ten-
sorization and (100).

Under HG
1 , we denote the index set of the planted clique to be V . Let V1 “ V

Ş

rn`s, V2 “

pV
Ş

rn`` 1 : 2n`sq ´ n`, . . . , Vd “ pV
Ş

rpd´ 1qn`` 1, dn`sq ´ pd´ 1qn`, here the nota-
tion “a set minus a value" means shift the indices of the set by that value. By assumption,
we have

řd
i“1 |Vi| “ κ. Recall A0 “Ar1:n`,n``1:2n`,...,pd´1qn``1:dn`s, so A0ri1,...,ids

“ 1 if
ri1, . . . , ids P V1 ˆ ¨ ¨ ¨ ˆ Vd and A0ri1,...,ids

„Bernp1{2q otherwise.
Denote the map hpxq :“ 1` px´ 1q mod n. Let

(102) Ui “ hpViq, i“ 1,2, . . . , d,

where Ui could be viewed as the latent signal support on Y .
We define sets

Ni1,...,id :“ rh´1pi1q, . . . , h
´1pidqszpV1 ˆ ¨ ¨ ¨ ˆ Vdq

Ti1,...,id :“ rh´1pi1q, . . . , h
´1pidqs

č

pV1 ˆ ¨ ¨ ¨ ˆ Vdq
(103)

for 1ď ij ď n p1ď j ď dq. By construction, we have Yri1,...,ids is the normalized summation
of values of B on sets Ni1,...,id and Ti1,...,id .

We divide the rest of the proof into two steps:
Step 1. In this step we show the event

E “ t|U1| ě k, |U2| ě k, . . . , |Ud| ě ku,

happens with high probability.
To show this, we first show |V1|, . . . , |Vd| are concentrated around κ

2d . By symmetry, we
only need to consider |V1|. Notice |V1| follows the hypergeometric distributionHGpN,κ, Nd q.
By concentration result of hypergeometric distribution in Hush and Scovel (2005), we have

(104) Pp
ˇ

ˇ

ˇ
|V1| ´

κ

d

ˇ

ˇ

ˇ
ě

κ

2d
q ď expp´2αhp

κ2

4d2
´ 1qq ď exp

´

´
c

2d2
κ
¯

,
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for some constant cą 0 and αh :“maxp 1
N{d`1`

1
d´1

d
N`1

, 1
κ`1`

1
N´κ`1q. The last inequality

is due to the fact that when N ě dn and ně 2κ, αh is of order 1
κ`1 .

Since κ
d “ 4k, κ

2d —
3κ
2d — k, then for κ1 P r

κ
2d ,

3κ
2d s,

Pp|U1| ď k||V1| “ κ1q ď

k
ÿ

j“rκ1{`s

`

n
j

˘`

j`
κ1

˘

`

n`
κ1

˘

ď k

`

n
k

˘`

k`
κ1

˘

`

n`
κ1

˘ ď kp
en

k
qkp

ek`

κ1
qκ1p

κ1

n`´ κ1
qκ1

ď kexp

ˆ

k log
en

k
´ κ1 logp

n`´ κ1

ek`
q

˙

ď kexppk log
en

k
´

κ

2d
logp

n`

k`
qq

ď kexpp´
c

4d
κ log

n

k
q,

(105)

for some cą 0 and here the first inequality is due to the fact that j ÞÝÑ
pnjqp

j`

κ1
q

pn`κ1q
is an increasing

function of j when ně 2κ and the last inequality is because k “ κ
4d . So

Pp|U1| ď kq ď
κ
ÿ

κ1“0

Pp|U1| ď k||V1| “ κ1qPp|V1| “ κ1q

ď Pp|V1| ď
κ

2d
q ` Pp|V1| ě

3

2d
κq ` max

κ1Pr
κ

2d
, 3κ
2d
s
Pp|U1| ď k||V1| “ κq

ď 2expp´
c

2d2
κq ` kexpp´

c

4d
κ log

n

k
q.

(106)

Thus

(107) PpEcq “ P

˜˜

č

i

tUi ě ku

¸c¸

ď 2d expp´
c

2d2
κq ` dk expp´

c

4d
κ log

n

k
q,

for some cą 0.
Step 2. Now condition on V , generate qB PRpn`q

bd

random tensor such that qBrV1,...,Vds
i.i.d.
„

Npξ,1q and the rest of the entries of qB are i.i.d.Np0,1q. Denote qY as the quantity of applying
qB to (95) of Algorithm 10. qB and qY are the ideal values we want B and Y to be under HG

1 .
By the construction of qY , for any pi1, . . . , idq, we have Er qYri1,...,idss “

ξ|Ti1,...,id |

`
d
2

. Since for

any ri1, . . . , ids P V1 ˆ V2 ˆ ¨ ¨ ¨ ˆ Vd, |Ti1,...,id | ě 1, in this case Er qYri1,...,idss ě
ξ

`
d
2

.

Also by the construction of qY , we have the entries of qY are independent. Since 1E is deter-
ministic given V , for any V such that 1E “ 1, there exists some X “X pV q PX pk,n, ξ

`
d
2
q

such that Lp qY |V q “ PX .
Define the probability distribution π “ LpX pV q|Eq which is supported on the set

X pk,n, ξ

`
d
2
q. Then Lp qY |Eq “ Pπ is a mixture of distributions of tPX : X PX pk,n, ξ

`
d
2
qu.
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Now we are ready to show that TVpLpYq,Pπq is small.

TVpLpYq,Pπq
paq
ď TVpLpYq,Lp qYqq `TVpLp qYq,Pπq

ď EV rTVpLpY |V q,Lp qY |V qqs `TVpLp qYq,Lp qY |Eqq

pbq
ď

n
ÿ̀

i1,...,id“1

TVpLpBri1,...,ids|V q,Lp qBri1,...,ids|V qq ` PpEcq

pcq
ď pn`qdpn`q´pd`1q ` PpEcq

ď
1

n
` PpEcq,

(108)

where (a) is due to triangle inequality, (b) is due to Lemma 12 and Lemma 7 of Brennan,
Bresler and Huleihel (2018) and (c) is due to (100). This has finished the proof of this lemma.

D.3. Proof of Theorem 16. In this section, we prove the computational lower bound for
CHCRpk,n, λq and it is enough to prove the lower bound for the case:

X P tλ1I1 ˝ ¨ ¨ ¨ ˝ 1Id : Ii Ď t1, . . . , niu, |Ii| “ kiu .

We first introduce a randomized polynomial-time Algorithm 11 to do reduction from
HPDSpn,κ, 1

2 ` ρ,
1
2q to CHCpn,k, λq.

Algorithm 11 Randomized Polynomial-time Reduction for CHC Recovery
1: Input: Hypergraph G and the density bias ρ.

2: Let RKG “ RKp1
2 ` ρÑNpξ,1q, 1

2 ÑNp0,1q, T q where ξ “ logp1`2ρq

2
?

2pd`1q logn`2 log 2
and T “ r2pd`

1q log1`2ρ ns and compute the symmetric tensor W P Rn
bd

with Wri1,...,ids
“ RKGp1ppi1, . . . , idq P

EpGqqq. Let the diagonal entries of Wri,...,is to be i.i.d. Np0,1q.

3: Generate pd! ´ 1q i.i.d. symmetric random tensor Bp1q, . . . ,Bpd!´1q in the following way: their diagonal
values are 0 and non-diagonal values are i.i.d. Np0,1q. Given any non-diagonal index i “ pi1, . . . , idq
(i1 ď i2 ď . . . ď id), suppose it has D pD ď d!q unique permutations and denote them as ip0q :“

i, ip1q, . . . , ipD´1q, then we transform W in the following way

¨

˚

˚

˚

˚

˝

Wip0q
Wip1q

...
WipD´1q

˛

‹

‹

‹

‹

‚

“

ˆ

1
?
d!
,

ˆ

1
?
d!

˙

K

˙

r1:D,:s
ˆ

¨

˚

˚

˚

˚

˚

˚

˝

Wri1,...,ids

Bp1q
ri1,...,ids

...

Bpd!´1q
ri1,...,ids

˛

‹

‹

‹

‹

‹

‹

‚

.

Here 1?
d!

is a Rd! vector with all entries to be 1?
d!

and
´

1?
d!

¯

K
P Rd!ˆpd!´1q is any orthogonal comple-

ment of 1?
d!

.

4: Output: W id,σ1,...,σd´1 , where σ1, . . . , σd´1 are independent permutations of rns chosen uniformly at
random.

The Lemma 18 shows randomized polynomial-time mapping in Algorithm 11 maps HPDS
to CHC asymptotically.

Lemma 18 Suppose that n, ξ and ρě 1

n
d´1
2

are such that

ξ “
logp1` 2ρq

2
a

2pd` 1q logn` 2 log 2
,



TENSOR CLUSTERING WITH PLANTED STRUCTURES 37

then the randomized polynomial-time computable map ϕ : Gdpnq Ñ Rnbd represented by
Algorithm 11 holds the following: for any subset S Ď rns with |S| “ κ,

TV

ˆ

ϕ

ˆ

Gdpn,κ,
1

2
` ρ,

1

2
, Sq

˙

,

ż

L
ˆ

ξ
?
d!
¨ 1S ˝ 1T1

˝ ¨ ¨ ¨ ˝ 1Td´1
`Z

˙

dπpT1q ¨ ¨ ¨dπpTd´1q

˙

“O

ˆ

1
?

logn

˙

,

where Z „Np0,1qbpn
bdq and π is the uniform distribution on subsets of rns of size κ and

Gdpn,κ, 1
2`ρ,

1
2 , Sq represents the distribution of HPDS Gdpn,κ, 1

2`ρ,
1
2q with planted dense

subgraph supported on set S.

Lemma 18 specifically implies that if k “ κ, λ “ logp1`2ρq

2
?
d!
?

2pd`1q logn`2 log 2
, the reduction

map ϕpGq in Algorithm 11 satisfies

TVpϕpHPDSRpn,κ,1{2` ρ,1{2qq,LpCHCRpn,k, λqqqÑ 0.

Next, we prove Theorem 16 by contradiction argument and we divide the proof into dense
and sparse regimes.

• α ě 1
2 . Let k “ κrnαs and ρ “ n´β . Then it is easy to check in CHC model, the signal

strength and sparsity levels are limnÑ8
logpλ´1q

logn “ β and limnÑ8
logk
logn “ α.

Suppose when pd´ 1qα´ d´1
2 ă β, there is a sequence of polynomial-time algorithm

tφun such that w.p. more than 1
2 , it can identify the true planted latent cluster in Y „

ROHCRpn,k, λq. Denote the support in Y as S. Let φ1 be the restriction of φ that only
output the estimated support of Y at mode 1.

Denote LS as the distribution of
ż

L
´

λ ¨ 1S ˝ 1T1
˝ ¨ ¨ ¨ ˝ 1Td´1

`Np0,1qbpn
bdq

¯

dπpT1q ¨ ¨ ¨dπpTd´1q,

where π is the uniform distribution on the subset of rns of size κ. By Lemma 18 and
noticing λ“ ξ{

?
d!, we have

ˇ

ˇPW„LpϕpGqq
`

φ1
npWq “ S

˘

´ PW„LSpφ
1
npWq “ Sq

ˇ

ˇďTVpLpϕpGqq,LSq “Op
1

?
logn

q,

where the inequality is due to the definition of total variation distance.
Note by assumption

PW„LSpφ
1
npWq “ Sq “ ET1,...,Td´1„πPW„LS,T1,...,Td´1

pφ1
npWq “ Sq ą

1

2
,

so

P
`

φ1 ˝ϕpGq “ S
˘

ě PW„LSpφ
1
npWq “ Sq ´Op

1
?

logn
q,

and lim inf EHPDSRpφ
1 ˝ϕq ă 1

2 , i.e. φ1 ˝ϕ can recovery the support of HPDS with asymp-
totic risk less than 1

2 .
On the other hand, the condition (24) at here becomes

lim
nÑ8

logn
κd´1ρ

b

1
4 ´ ρ

2
“ pd´ 1qα´ β ă

d´ 1

2
,

where the inequality is because pd´1qα´ d´1
2 ă β. Combining 1{2`ρă 1´Ωp1q, these

two facts together contradict the HPDS recovery conjecture 2. This has finished the proof
for the αě 1

2 region.
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• 0 ă α ă 1
2 . The main idea to prove the computational lower bound for CHCR in this

regime is to use the established computational lower bound for CHCD . Suppose β ą 0
(for example, we can let β “ ε for some small enough ε ą 0), there is a sequence of
polynomial-time algorithm tφRun such that lim inf ECHCRpφRq ă

1
2 . In this regime, we

have λ
b

śd
i“1 ki ě Ck

d

4 , then by the following Lemma 19, there exists a sequence of
polynomial-time test tφDu with limnÑ8 ECHCDpφDq ă

1
2 . This contradicts with the com-

putational lower bound of CHCD under the HPC conjecture 1. So this has established the
computational lower bound for CHCR in regime 0ă αă 1{2.

In summary, combining the results in dense and sparse regime, we have established the
computational lower bound for CHCR in the regime β ą βcCHCR

:“ pd´ 1qpα´ 1{2q _ 0.

Lemma 19 Consider CHCDpk,n, λq and CHCRpk,n, λq under the asymptotic regime

(A1). If λ
b

śd
i“1 ki ě Ck

d

4 for some C ą 0 and there exists a sequence of polynomial-
time recovery algorithm tφRun such that lim infnÑ8 ECHCRpφRq ă η for some η P
p0,1s, then there exists a sequence of polynomial-time algorithm tφDun such that
lim infnÑ8 ECHCDpφDq ă η.

D.4. Proof of Lemma 18. Let ϕ be the map of Algorithm 11 and W2, W3, W4 be the
value of W after step 2, step 3 and step 4 of ϕ.

First by Lemma 15, we know that with value ξ “ logp1`2ρq

2
?

2pd`1q logn`2 log 2
and ρ ě 1

n
d´1
2

,

TV
`

RKGpBernp1
2 ` ρqq,Npξ,1q

˘

“Opn´pd`1qq and TVpRKGpBernp1
2q,Np0,1qqq “Opn

´pd`1qq.

Denote Mn :“MnpS,P,Qq as the distribution of a Rnbd symmetric tensor A, where
its diagonal entries are independent Np0,1q random variables, and for non-diagonal entries
Ari1,...,ids, if set pi1, . . . , idq Ď S, Ari1,...,ids is draw independently from distribution P and if
pi1, . . . , idq Ę S, Ari1,...,ids is draw independently from Q. Here S is a subset of rns of size κ.

Let M2 „MnpS,Npξ,1q,Np0,1qq and M3, M4 be the value of M2 after applying
step 3 and step 3 and 4 of ϕ to M2. Here M2,M3,M4 could be viewed as the ideal values
we want W2,W3,W4 to be.

After step 2 of ϕ,

TV pLpW2q,LpM2qq ďκ
dTV

ˆ

RKGpBernp
1

2
` ρqq,Npξ,1q

˙

`

´

nd ´ κd
¯

TV

ˆ

RKGpBernp
1

2
q,Np0,1qq

˙

“Op
1

n
q,

where G„ Gdpn,κ, 1
2 ` ρ,

1
2 , Sq.

Also by data processing inequality, we have

TV pLpM3q,LpW3qq ďTV pLpM2q,LpW2qq “Opn
´1q.(109)

Also notice that after applying step 3 of ϕ, the diagonal values of M3 are i.i.d. Np0,1q and
the non-diagonal values of M3 have the same distribution as the non-diagonal entries of
ξ
?
d!
1S ˝ ¨ ¨ ¨ ˝ 1S `Np0,1q

bpnbdq.
Now consider the distribution of M4 condition on permutations σ1, . . . , σd´1. It’s entries

have the ditribution as entries of
ξ
?
d!
1S ˝ 1T1

˝ ¨ ¨ ¨ ˝ 1Td´1
`Np0,1qbpn

bdq,
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other than entries at indices pi, σ1piq, . . . , σd´1piqq for i P S. Here T1 “ σ1pSq, . . . , Td´1 “

σd´1pSq. Specifically, conditioning on σ1pSq “ T1, . . . , σd´1pSq “ Td´1, we have

TV

ˆ

pLpM4q|σ1pSq “ T1, . . . , σd´1pSq “ Td´1q ,L
ˆ

ξ
?
d!
1S ˝ 1T1

˝ ¨ ¨ ¨ ˝ 1Td´1
`Z

˙˙

“TV

ˆ

pLpM4qrS ˆ T1 ˆ ¨ ¨ ¨ ˆ Td´1s|σ1pSq “ T1, . . . , σd´1pSq “ Td´1q ,L
ˆ

Np
ξ
?
d!
,1qbk

bd

˙˙

paq
ď

d

χ2

ˆ

Np0,1q,Np
ξ
?
d!
q

˙

“Op
1

?
logn

q.

(110)

Here paq is due to Lemma 14.
Finally, we have

TV

ˆ

ϕ

ˆ

Gdpn,κ,
1

2
` ρ,

1

2
, Sq

˙

,

ż

L
ˆ

ξ
?
d!
¨ 1S ˝ 1T1

˝ ¨ ¨ ¨ ˝ 1Td´1
`Z

˙

dπpT1q ¨ ¨ ¨dπpTd´1q

˙

paq
ďTV

ˆ

ϕ

ˆ

Gdpn,κ,
1

2
` ρ,

1

2
, Sq

˙

,LpM4q

˙

`TV

ˆ

LpM4q,

ż

L
ˆ

ξ
?
d!
¨ 1S ˝ 1T1

˝ ¨ ¨ ¨ ˝ 1Td´1
`Z

˙

dπpT1q ¨ ¨ ¨dπpTd´1q

˙

pbq
ďTV pLpW3q,LpM3qq

`TV

ˆ

LpM4q,

ż

L
ˆ

ξ
?
d!
¨ 1S ˝ 1T1

˝ ¨ ¨ ¨ ˝ 1Td´1
`Z

˙

dπpT1q ¨ ¨ ¨dπpTd´1q

˙

pcq
ďOp

1

n
q `Op

1
?

logn
q “Op

1
?

logn
q,

where paq is due to triangle inequality, (b) is due to data processing inequality and (c) is due
to (109)(110). So we finish the proof of this Lemma.

D.5. Proof of Lemma 19. The proof idea is similar to the proof of statement (2) of
Lemma 10. Given Y generated from

L
`

λ ¨ 1I1 ˝ ¨ ¨ ¨ ˝ 1Id `Np0,1q
bn1ˆ¨¨¨ˆnd

˘

,

by the property of Gaussian, it is easy to check that A :“ Y`Z1?
2

and B :“ Y´Z1?
2

are two
independent copies with distribution

L
ˆ

λ
?

2
¨ 1I1 ˝ ¨ ¨ ¨ ˝ 1Id `Np0,1q

bn1ˆ¨¨¨ˆnd

˙

,

if Z1 „Np0,1q
bn1ˆ¨¨¨ˆnd and independent of Y .

The rest of the proof is the same as the proof of statement (2) of Lemma 10 by replacing

µ with λ
b

śd
i“1 ki.
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APPENDIX E: PROOFS OF COMPUTATIONAL LOWER BOUNDS OF ROHCD AND
ROHCR

E.1. Proof of Lemma 2. Let ϕ : Gdpnq ÑRnbd be the map in Algorithm 8 and let W4,
W5 be the values of W after step 4 and step 5 of Algorithm 8. Also by Lemma 15, we know
that with value ξ “ log 2

2
?

2pd`1q logn`2 log 2
, we have

(111)

TV pRKGpBernp1qq,Npξ,1qq “Opn´pd`1qq, and TVpRKGpBernp
1

2
q,Np0,1qqq “Opn´pd`1qq.

If G„ Gdpn, 1
2q, then

TV

ˆ

ϕpGdpn,
1

2
qq,Np0,1qbpn

bdq

˙

ďTV

ˆ

ϕ1pGdpn,
1

2
qq,Np0,1qbpn

bdq

˙

ďOp
1

n
q,

where ϕ1 denotes the step 1 of ϕ, the first inequality is due to data processing inequality and
the second one is due to tensorization and (111).

Now we consider the case G„ Gdpn, 1
2 , κq. First following the same proof of Lemma 18,

we have

TV

ˆ

LpW4q,

ż

L
ˆ

ξ
?
d!
¨ 1T1

˝ ¨ ¨ ¨ ˝ 1Td `Np0,1q
bpnbdq

˙

dπ1pT1, . . . , Tdq

˙

“O

ˆ

1
?

logn

˙

,

(112)

where π1 is the uniform distributions over pairs pT1, . . . , Tdq of κ-subsets T1, . . . , Td Ď rns.
Let M4 be a tensor distributed as

ξ
?
d!
¨ 1T1

˝ ¨ ¨ ¨ ˝ 1Td `Np0,1q
bpnbdq,

where T1, . . . , Td are κ-subsets of rns chosen uniformly at random. Also let M5 be the value
of M4 after applying step 5 of ϕ to M4. Again M4 and M5 are the ideal values we want
W4 and W5 to be. By statement 2 of Lemma 16, the distribution of M5 condition on sets
T1, . . . , Td is given by

LpM5|T1, . . . , Tdq „

ż

L
ˆ

ξ
?
d!p
?

2qd`
v1 ˝ ¨ ¨ ¨ ˝ vd `Np0,1q

bpnbdq

˙

dπ̄pv1, . . . ,vdq,

where π̄ :“ π̄T1,...,Td is a prior defined in Lemma 16.
As shown in Lemma 16, vis p1ď iď dq are supported on π̄ and satisfy }vi}22 “ 2`}1Ti}

2
2 “

2`κ,}vi}0 ď 2`κ. If ui “ 1?
2`κ

vi, then π̄ induces a prior on pair pu1, . . . ,udq in Vn,2`κ. This
is because vi P Zn as shown in Lemma 16, and the nonzero entries of ui have magnitudes at
least 1?

2`κ
.

Let π “ ET1,...,Td pπ̄T1,...,Tdq be a prior formed by marginalizing T1, . . . , Td, and π is also
supported on Vn,2`κ. So

LpM5q „

ż

L
ˆ

ξ
?
d!
κ
d

2u1 ˝ ¨ ¨ ¨ ˝ ud `Np0,1q
bpnbdq

˙

dπpu1, . . . ,udq.(113)
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Finally by triangle inequality and Lemma 12, we have

TV

˜

LpϕpGqq,
ż

L

˜

ξκ
d

2

?
d!
u1 ˝ ¨ ¨ ¨ ˝ ud `Np0,1q

bppbdq

¸

dπpu1, . . . ,udq

¸

ďTV pLpW5q,LpM5qq

`TV

ˆ

LpM5q,

ż

L
ˆ

ξ
?
d!
κ
d

2u1 ˝ ¨ ¨ ¨ ˝ ud

˙

dπpu1, . . . ,udq

˙

paq
ďOp

1
?

logn
q,

where (a) is due to (112), (113). This has finished the proof.

APPENDIX F: PROOFS FOR THE EVIDENCE OF HPC CONJECTURE 1 AND HPDS
CONJECTURE 2

F.1. Proof of Proposition 1 . Without loss of generality, we can assumeN is a multiplier
of d, otherwise we can replace N “ dtNd u. Recall the planted dense subgraph index set is K ,
and let Ki “K

Ş

rpi´ 1qNd ` 1 : iNd s. By symmetry, we only need to consider recovering
K1 and K2.

First by the same argument as (104), we can show |K1| — |K2| —
κ
d . Denote tXp1qi u as

i.i.d. Bernpq2q random variables and tXp2qi u as i.i.d. Bernpq1q random variables. Following
the same notation in Algorithm 5, for pk1, k2q RK1 ˆK2,

Y
p1,2q
rk1,k2s

“

řpN
d
qd´2

i“1

´

X
p1q
i ´ q2

¯

b

`

N
d

˘d´2
pq2p1´ q2qq

,

and for pk1, k2q PK1 ˆK2,

Y
p1,2q
rk1,k2s

“

řpN
d
qd´2´Cpκ

d
qd´2

i“1

´

X
p1q
i ´ q2

¯

b

`

N
d

˘d´2
pq2p1´ q2qq

`

řCpκ
d
qd´2

i“1

´

X
p2q
i ´ q2

¯

b

`

N
d

˘d´2
pq2p1´ q2qq

,

for some constant C ą 0.
By Chernoff bound, we have if pk1, k2q RK1 ˆK2

P
´

|Y
p1,2q
rk1,k2s

| ą t
¯

ď expp´t2q,

and if pk1, k2q PK1 ˆK2,

P

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Y
p1,2q
rk1,k2s

´C
pκd q

d´2pq1 ´ q2q
b

`

N
d

˘d´2
pq2p1´ q2qq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ą t

˛

‚ď expp´t2q

So we can write Y “ λ ¨ 1K1
1JK2

`Z where λ“ C pκ
d
qd´2pq1´q2q

b

pNd q
d´2
pq2p1´q2qq

and entries Zij are

independent subgaussian random variable with variance 1.
To recover K1,K2, it is the same as biclustering recovery problem studied in literature

with parameters pNd , |K1|, |K2|, λq. By Lemma 1 of Cai, Liang and Rakhlin (2017), when

λěC 1

b

N
d

|K1| ^ |K2|
, i.e., lim sup

NÑ8
logN

˜

κd´1pq1 ´ q2q
a

q2p1´ q2q

¸

ě
d

2
´

1

2
,
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then with probability at least 1 ´ pNd q
´c ´ expp´CN

d q, the output of the Algorithm can
exactly recover K1 and K2. Similar analysis holds for other modes.

However when lim supNÑ8 logN

ˆ

κd´1pq1´q2q?
q2p1´q2q

˙

ă d
2 ´

1
2 , then under a variant PC re-

covery conjecture Cai, Liang and Rakhlin (2017), the biclustering recovery procedure of
Algorithm 5 fails with non-trivial probability, so as Algorithm 6.

F.2. Proof of Lemma 1. The proof of this lemma is by a contradiction argument. Sup-
pose for sufficient large N , there is no polynomial-time recovery algorithm can output the
right clique of GdpN,1{2, κq with success probability at least 1´1{N , but we can distinguish
in polynomial time whether a hypergraph G is drawn from GdpN, 1

2q or GdpN, 1
2 , κ{3q with

probability at least 1
4Nd . Denote ϕ as this distinguisher.

In Algorithm 12, we provide an polynomial-time algorithm which can find a clique of size
κ in G using the distinguisher ϕ for G from GdpN, 1

2 , κq. Denote the clique set in HPC as
K . We first give a high level idea why the algorithm works. When v ĹK , by construction,
after remove v and X , at most 2κ{3 nodes in the clique is removed with high probability by
concentration, thus the graph Gx is a random graph with a planted clique of size at least κ{3,
i.e., chosen from GdpNx,1{2, κ

1q for some κ1 ą κ{3. When vĂK , then after remove v and
X , we remove the entire clique K , and the remaining hypergraph Gi is a random graph from
GdpNx,

1
2q. In this case we include all vertices in v to Q set.

Based on the idea above, we formalize the proof next. The proof can be divided into two
steps.
Step 1. In this step, we consider v Ĺ K in step 3 of Algorithm 12. When v Ĺ K , then
each entry of Arv1,...,vd´1,xs are independent Bernp1{2q random variables. Thus each vertex
in clique will be removed with probability 1{2. By concentration result, for each Gx, we
have Ppκ1 ą κ

3 q ě 1´ expp´Cκq where κ1 is the clique size in graph Gx. So ϕ will output
GdpNx,1{2, κ{3q with probability at least 1´ expp´Cκq ´ 1{p4Ndq.
Step 2. In this step, we consider vĂK . Given vĂK , by the construction of Algorithm 12,
the whole clique set K is removed in Gx. So Gx „ GdpNi,

1
2q, and we have

Ppκ1 ą
κ

3
q ď

ˆ

Nx

κ{3

˙

p
1

2
qp
κ{3

d q ď expp´Cκq,

hereκ1 is the clique size in graph Gx. So ϕ outputs GdpNx,
1
2q with probability at least 1´

expp´Cκq ´ 1
4Nd .

By the union bound over all possible choices of v, there exists C ą 0 that for κěC logN ,

PpQ“Kq ě 1´

ˆ

N

d´ 1

˙

expp´Cκq ´

ˆ

N

d´ 1

˙

1

2Nd
ě 1´

1

N
.

This contracts the assumption. So we have finished the proof of this lemma.

Algorithm 12 Algorithm for HPC Recovery based on HPC Detection
1: Input: hypergraph G with adjacency tensor A, HPC detection algorithm ϕ.
2: Let H “ tv : vĂ rN s, |v| “ d´ 1u, Q“H (representing the current clique).
3: for v PH do
4: Denote all vertices in v as v1, . . . ,vd´1. Let X “ tx P rN szv |Arv1,v2,...,vd´1,xs

“ 1u, Gx “
Gztv

Ť

Xu, and Nx “ |Gx|.
5: Input Gx to the HPC detection algorithm ϕ. If ϕ outputs GdpNx, 1

2 q, then set Q“Q
Ť

v.
6: end for
7: Output: Q.
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F.3. Proof of Theorem 18. We begin the theorem by introducing the concept "m-
gateway" proposed in Jerrum (1992). A state K is callled m-gateway if there exists a se-
quence of states K0,K1, . . . ,Ks such that K0 “K,Ki‘Ki`1 “ 1,0ď iď s´ 1, |Ks| “m
and |Ki| ą |K0| for 1ď iď s.

Next, we introduce Lemma 20 which is useful in the proof of this theorem.

Lemma 20 Suppose 0 ă ε ă 1,0 ă β ă 1
2 and 1

3ε ă
1
2 ´ β. For G „ GdpN, 1

2 ,N
βq and

let m“ 2k´ r
`

p1` 2
3εqpd´ 1q! log2N

˘
1

d´1 s where k “ r
`

p1` 2
3εq

d!
2 log2N

˘

1

d´1 s. Let ρpGq

the proportion of size k cliques in G that are m-gateway. Then ρpGq ďN´Ω
´

plog2Nq
1
d´1

¯

for
almost every G.

Recall Γ denotes the collection of all cliques in G and Γk Ď Γ is the set of k-cliques in G.
Let QĎ Γk be the set of all k-cliques that are m-gateways, where k,m are quantities defined
in Lemma 20. Divide cliques in G into two sets S and S̄ :“ ΓzS where S can be reached
without passing through Q. It is easy to see that Γk Ď S and all m-cliques are in S̄. The
intuition underlying the proof is that Q is rather small which makes it hard to transit from S
to m-cliques.

First we calculate the probability, in the stationary distribution, of transiting from S to S̄
conditional on being in S,

(114) ΦS :“ P
`

transit from S to S̄| being in S
˘

“
ÿ

KPS,K1PS̄

πpKqPpK,K 1q{p
ÿ

KPS

πpKqq.

By the definition of S̄, to transit to S̄, we need to pass nodes inQ. So the numerator in (114) is
bounded by πpQq. Since Γk Ď S, πpSq in the denominator is greater or equal to πpΓkq. Thus
the conditional transition probability in (114) is no more than πpQq

πpΓkq
, which is the proportion

of k´clique that are m-gateways in Lemma 20. Based on the results in Lemma 20, we have

ΦS ďN
´Ωpplog2Nq

1
d´1 q.

Next, we make rigorous argument that the restriction on Q makes it hard to transit from S
to S̄. We modify the Metropolis process to make states in S̄ absorbing; this is done by setting
PpK 1,Kq “ δK1K for all K 1 P S̄ where δK1K is the Kronecker delta. Also define the initial
distribution π0 by

π0pKq “

"

πpKq{πpSq, if K P S;
0, otherwise.

Note that given the initial distribution π0, the probability that the Metropolis process transit
to S in the first step is ΦS . Also since the states in S̄ are absorbing, for any fixed K P S, the
probability πtpKq of being in state K at time t is a monotonically decreasing function of t.
So the probability of transition from S to S̄ in each subsequent step is bounded above by ΦS .
Hence the expected time of first entry into S̄, given initial distribution π0, is bounded below
by 1

2ΦS
. Clearly, there must be some choice of initial state from which the expected time to

reach S̄ (and hence a clique of size m) is at least 1
2ΦS

. This has finished the proof.

F.3.1. Proof of Lemma 20. Let X be the set of all pairs pG,Kq where K is the clique
with size k in G and Y be the set of pairs pG,Kq PX such that K is also a m-gateway.

Let V “ t0,1, . . . , n´ 1u be the set of all nodes and Q“ t0,1, . . . , κ´ 1u be the node set

of planted clique. Define fptq “
`

κ
t

˘`

N´κ
k´t

˘ `

1
2

˘pkdq´p
t

dq as the probability that t nodes in K
come from Q and rest of pk´ tq nodes in K come from V zQ and let F “

řk
t“0 fptq. In the
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following we define a sampling way of sampling pG,Kq from X such that it has the same
distribution as uniformly sample pG,Kq from k-cliques in G„ GdpN, 1

2 , κq and we call this
sampling strategy “uniform sampling from X ". The uniform sampling of pG,Kq from X is
the following:

• Pick t P r0, ks with probability fptq
F .

• Select K 1 of size t uniformly at random from Q and select K2 of size pk´ tq uniformly at
random from the subset of V zQ, and set K “K 1 `K2.

• Include all edges that have both endpoints in Q or have both endpoints in K in G; decide
whether to include the remaining potential edges in G with probability 1

2 .

We first show that the size of K 1 is often small when k “ r
`

d!
2 p1`

2
3εq log2N

˘

1

d´1 s. Using
the fact

`

κ
t

˘

ď κt,
`

N´κ
k´t

˘

ď
`

N´κ
k

˘ `

2k
N

˘t
and κ “ Nβ , fptq could be upper bounded in the

following way

fptq ď κt
ˆ

N ´ κ

k

˙ˆ

2k

N

˙tˆ1

2

˙pkdq´p
t

dq

ď

ˆ

κ
2k

N
2
pt´1q...pt´d`1q

d!

˙t

fp0q

ď

ˆ

κ
2k

N
2
kd´1

d!

˙t

fp0q ď
´

2kN´
1

2
`β` 1

3
ε
¯t
fp0q

ď fp0qN´ct,

where the last inequality is because β ´ 1
2 ă´

1
3ε. So fp0q “ 1´N´c and for any t˚ ą 0,

(115) Pptě t˚q ďN´ct˚ .

For pG,Kq sampled uniformly at random from X , we show that the probability pG,Kq P

Y is N´Ω
´

plog2Nq
1
d´1

¯

. When pG,Kq P Y , by definition K is a m-gateway. Consider a path
that lead the Metropolis process from K to a m-clique and denote K˚ as the first clique
in this path satisfying |K˚zK| “ m ´ k. Set A “ K˚zK . Then, a “ |A| “ m ´ k. Since
|K˚| ą k, |K˚

Ş

K| ą k ´ a, there exists a set B ĎK of cardinality b “ k ´ a “ 2k ´m
such that the bipartite subgraph ofG induced byA andB is complete. So condition on tď t˚,
the probability that pG,Kq P Y is less than the probability of the existence of the complete
bipartite graph between A and BzK 1 where |BzK 1| ě b´ t˚, i.e.,

P
´

pG,Kq P Y|pG,Kq PX ,
ˇ

ˇ

ˇ
B
č

Q
ˇ

ˇ

ˇ
ď t˚

¯

ď

ˆ

N ´ k

m´ k

˙ˆ

k

2k´m

˙

2´pm´kqp
b´t˚

d´1 q

ď

ˆ

N

m´ k

˙ˆ

k

m´ k

˙

2´pm´kqp
b´t˚

d´1 q

ď

ˆ

eN

m´ k

ek

m´ k
2´p

2k´m´t˚

d´1 q
˙m´k

ď

ˆ

eN

m´ k

ek

m´ k
2
´
p2k´m´t˚´d`2qd´1

pd´1q!

˙m´k

ď

ˆ

eN

m´ k

ek

m´ k
N´1´ 1

6
ε

˙m´k

ďN
´Ω

´

plog2Nq
1
d´1

¯

,

(116)
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here the first inequality is because all hyper-edges between |BzK 1| and A are connected with
probability 1{2 by construction and in the forth inequality, we choose t˚ such that 2k´m´

t˚ “ r
`

p1` 1
3εqpd´ 1q! log2N

˘
1

d´1 s and for large enoughN , we have 2k´m´ t˚´d`2ě

r
`

p1` 1
6εqpd´ 1q! log2N

˘
1

d´1 s.

Using Bayesian formula and (115), (116) with the choice of t˚ “ 2k´m´r
`

p1` 1
3εqpd´ 1q! log2N

˘
1

d´1 s,
and marginalizing |B

Ş

Q| ď t˚ we get

(117) P ppG,Kq P Y|pG,Kq PX q ďN´Ωpplog2Nq
1
d´1 q.

Given G P GdpN, 1
2 , κq with κ “ Nβ , let X “ XpGq be the number of k-cliques in G and

Y “ Y pGq be the number of k-cliques that are also m-gateways. By the uniform sampling
property and (117), we have

EpY q
EpXq

“ P ppG,Kq P Y|pG,Kq PX q ďN´Ωpplog2Nq
1
d´1 q.

So to show the result YX “N
´Ωpplog2Nq

1
d´1 q, we only need to show thatX,Y are concentrated

around EpXq,EpY q. Let cpNq be a sequence that goes to 8 as N Ñ8, since Y is non-
negative, by Markov inequality, PpY ě EpY qcpNqq ď 1

cpNq Ñ 0. Since the subgraph of G
induced by V zQ is a random Erdős-Rényi graph on N ´ κ vertices, by the same argument
of Bollobás (2001) p284, the number of k-clique in G is concentrated and we have

X ě
3

4

ˆ

N ´ κ

k

˙

2´p
k

dq `

ˆ

κ

k

˙

.

At the same time, EpXq “
`

N´κ
k

˘

2´p
k

dq `
`

κ
k

˘

, and this yields X ě 1
2EpXq for almost every

G. Finally we have

Y

X
ď
cpNqEpY q

1
2EpXq

ď 2cpNqN´Ωpplog2Nq
1
d´1 q ďOpN´Ωpplog2Nq

1
d´1 qq,

the last inequality is because we can choose cpNq such that it grows slow enough.

F.4. Proof of Theorem 19. We first introduce some preliminary results in literature we
will use in the proof. The following Proposition 2 comes from Hopkins (2018).

Proposition 2 (Page 35 of Hopkins (2018)) Let likelihood ratio be LRpxq “
pH1

pxq
pH0

pxq : ΩnÑ

R. For every D P Z`, we have

LRďD ´ 1

}LRďD ´ 1}
“ arg max

fPD´simple:
EH0

f2pXq“1,EH0
fpXq“0

EH1
fpXq

and

}LRďD ´ 1} “ max
f :EH0f

2pXq“1,
EH0fpXq“0

EH1
fpXq,

where }f} “
a

EH0
f2pXq and fďH0D is the projection of a function f to the span of

coordinate-degree-D functions, where the projection is orthonormal with respect to the inner
product x¨, ¨yH0

. When it is clear from the context, we may drop the subscript H0.
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By the above Proposition, we know to bound EH1
fpGq for f satisfying EH0

fpGq “ 0 and
EH0

f2pGq “ 1, we just need to bound }LRďD ´ 1}.
Also suppose D ě 1 is fixed, f0, f1, . . . , fm : Ωn Ñ R are orthonormal basis for the

coordinate-degree D functions (with respect to x¨, ¨yH0
), and that f0pxq “ 1 is a constant

function. Then by the property of basis functions, we have

}LRďD ´ 1}2 “
m
ÿ

i“1

xfi,LRďD ´ 1y2 “
m
ÿ

i“1

`

EH0
pfipXqpLRďD ´ 1qq

˘2

paq
“

m
ÿ

i“1

pEH0
pfipXqLRpXqqq2 “

m
ÿ

i“1

pEH1
fipXqq

2,

here (a) is because LR´ pLRďD ´ 1q is orthogonal to fi by assumption.
Now, we start the proof of the main result. We consider a simple variant of hypergraphic

planted clique model with G „ GdpN, 1
2q and each vertex is included in the clique set with

probability κ
N and denote its adjacency tensor as A. By concentration result, the clique size

of the modified hypergraphic planted clique is of order κ and it is easy to see that if we
could solve above modified hypergraphic planted clique problem, then we can solve the orig-
inal hypergraphic planted clique problem with high probability. In the HPC problem, by the
Boolean Fourier analysis O’Donnell (2014), functions tχαpAq “

ś

pi1,...,idqPα
p2Ari1,...,ids´

1quαĎsetpNdq,|α|ď|D|
form an orthonormal basis for the degree-D functions, i.e. fis mentioned

above. Here set
`

N
d

˘

denotes the set of all possible d-tuples chosen from rN s. Fix αĎ set
`

N
d

˘

and the planted clique indices set S. Then

EχαpAq “ ES
ź

pi1,...,idqPα

E
“

p2Ari1,...,ids ´ 1q|S
‰

.

This is non-zero if and only if V pαq Ď S where V pαq is the vertex set appear in α. So we
have

(118) EχαpAq “ p
κ

N
q|V pαq|.

If |α| ďD, then |V pαq| ď dD and for every tď dD, we can compute the number of sets α

with |V pαq| “ t and |α| ďD is
`

N
t

˘`ptdq
|α|

˘

.
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Let D “C logN,κ“N
1

2
´ε, then

ÿ

0ă|α|ďD

pEH1
χαpAqq2

paq
ď

ÿ

tďdC logN

´ κ

N

¯2t
ˆ

N

t

˙ˆ

`

t
d

˘

|α|

˙

ď
ÿ

tďdC logN

N´t´2εtN t

ˆ

t

d

˙minp|α|,ptdq{2q

ď
ÿ

tďdC logN

N´2εtptdqminp|α|,tdq

ď
ÿ

tďpC logNq
1
d

N´2εttdt
d

`
ÿ

pC logNq
1
dďtďdC logN

N´2εttdC logN

“
ÿ

tďpC logNq
1
d

expp´2εt logN ` dC logN log tq

`
ÿ

pC logNq
1
dďtďdC logN

expp´2εt logN ` dC logN log tq

ď
ÿ

tďpC logNq
1
d

expp´εt logNq `
ÿ

pC logNq
1
dďtďdC logN

expp´εt logNq “Op1q,

(119)

where (a) is due to (118) and last inequality is due to the fact that when N is large enough,
we have εt logN ěC log t logN .

F.5. Proof of Theorem 20 . We begin by introducing a few notation and preliminaries
from Schramm and Wein (2020) before proving our main results.

Recall G P GdpN,κ, q1, q2q and its adjacency tensor is A. Let X “ EpA|Kq where K is a
size κ subset of rN s drawn uniformly at random and X “ pXri1,...,idsqi1ă¨¨¨ăid P tq1, q2u

pNdq.
First, define the minimum mean squared error of f with degree at most D as

MMSEďD :“ inf
f : degree of f is at most D

EpfpAq ´ v1q
2.

MMSEďD is closely related to the quantity called degree-D maximum correlation:

CorrďD :“ sup
f : degree of f is at most D,

Epf2pAqq“1

EpfpAq ¨ v1q.

Schramm and Wein (2020) showed that MMSEďD “ Epv2
1q ´ Corr2

ďD . Notice Epv2
1q “

Epv1q “
κ
N , so to lower bound MMSEďD , we just need to upper bound Corr2

ďD . Theorem
2.7 of Schramm and Wein (2020) gives an upper bound for Corr2

ďD in the general binary
observation model. Specifying it in our context, we have

Proposition 3 In the HPDS recovery problem,

(120) Corr2
ďD ď

ÿ

αPt0,1up
N
d q,0ď|α|ďD

κ2
α

pq2p1´ q1qq
|α|
,

where κα for α P t0,1up
N

dq is defined recursively by

κα “ Epv1X
αq ´

ÿ

0ďβňα

κβEpXα´βq.
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Here for α,β P t0,1up
N

dq, |α| :“
řpNdq
i“1 |αi|, X

α :“
śpNdq
i“1 X

αi
i and 0ď β ň α means β ‰ α

and for i“ 1, . . . ,
`

N
d

˘

, we have 0ď βi ď αi.

In the hypergraph setting, we can view α as pαri1,¨¨¨ ,idsqi1ă¨¨¨ăid and it is a realization of hy-
pergraph on the vertex set rN s, where αri1,¨¨¨ ,ids encodes whether a hyperedge exists between
vertices i1, . . . , id. The quantity κα can be interpreted as a certain joint cumulant between v1

and Xi for i“ 1, . . . ,
`

N
d

˘

and we refer readers to Remark 2.3 and Appendix D of Schramm
and Wein (2020) for detailed discussion.

By the proof of Theorem 2.9 and Lemma 3.4 in Schramm and Wein (2020), we have the
following upper bound for κα:

Lemma 21 First, κ0 “
κ
N and for α such that |α| ě 1, we have

(121)
κα

pq2p1´ q1qq
|α|{2

ď p|α| ` 1q|α|θ|α|κ
|V pαq|
0 ,

here θ :“ q1´q2?
q2p1´q1q

and V pαq Ď rN s denotes the set of vertices spanned by α.

We note that Lemma 3.4 of Schramm and Wein (2020) is established when d“ 2, i.e., graph
setting, while it is straightforward to extend it to the hypergraph setting. For brevity, we omit
the proof here.

Next we discuss the connectivity of two vertices in hypergraph. We say vertex i and j
are connected if there exists a hyperedge path e1, . . . , em such that e1 contains vertex i,
em contains vertex j and ek has at least one common vertex with ek´1 for k “ 2, . . . ,m.
Following the same proof as Lemma 3.2 of Schramm and Wein (2020), we have

Lemma 22 If α has a nonempty connected component without vertex 1, then κα “ 0.

Based on Lemma 22, we only need to consider the connected hypergraph α containing vertex
1 when bounding Corr2

ďD .
The final ingredient we need is to bound the number of connected hypergraph α containing

vertex 1 in different settings. In the graph case, we can enumerate connected graph α by its
number of edges and spanned vertices and it is relative easy to bound the number of connected
α when fixing |α| and |V pαq| due to the fact that adding a new edge to a connected graph
can introduce at most one new vertex. While in hypergraph, it is difficult to count the number
of connected α given |α| and |V pαq| as now adding a new edge to a connected hypergraph
can introduce 0 to d ´ 1 different number of new vertices. To overcome this difficulty, we
introduce another characteristic of α. Given any connected hypergraph α containing vertex 1,
we can divide its hyperedges into two groups: in the first group, the edges are sorted such that
the first edge contains vertex 1, the second edge has at least one common vertex with the first
edge and at the same time has at least one new vertex that does not appear in previous edges.
Similar ideas applies to the rest of the edges in group 1, i.e., the ith edge in group 1 needs to
have at least one common vertex with the edges appeared before and also introduce as least
one new vertex. The second group contains edges where all their vertices have appeared in
the first group. Denote the number of edges in group 1 as g1pαq and the number of edges in
group 2 as g2pαq. We note that given α, the grouping and values of g1pαq, g2pαq may not be
unique.

The following Lemma plays a key role in proving our main results.

Lemma 23 Given a hypergraph G „ Gd on vertex set rN s. For integer w ě 1 and 0 ď
h ď w ´ 1, suppose N is sufficiently large and d,w “ opNq, the number of connected
hypergraph α satisfying (i) |α| “ w, (ii) 1 P V pαq, and (iii) g1pαq “ w ´ h is at most
pwdpd´ 1qqw´hN pw´hqpd´1qpwpd´ 1q ` 1qhd.
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Now, we are ready to bound Corr2
ďD .

Corr2
ďD

(120)
ď κ2

0 `
ÿ

αPt0,1up
N
d q,1ď|α|ďD

κ2
α

pq2p1´ q1qq
|α|

ďκ2
0 `

ÿ

1ď|α|ďD

κ2
α

pq2p1´ q1qq
|α|

paq
ďκ2

0 `

D
ÿ

w“1

w´1
ÿ

h“0

pwdpd´ 1qqw´hN pw´hqpd´1qpwpd´ 1q ` 1qhdpw` 1q2wθ2wκ
2ppw´hqpd´1q`1q
0

ďκ2
0

¨

˝1`
D
ÿ

w“1

w´1
ÿ

h“0

pDpD` 1q2dpd´ 1qNd´1κ
2pd´1q
0 θ2qw

˜

pDpd´ 1q ` 1qd

Ddpd´ 1qNd´1κ
2pd´1q
0

¸h
˛

‚

ďκ2
0

˜

1`
D´1
ÿ

h“0

D
ÿ

w“h`1

pDpD` 1q2dpd´ 1qNd´1κ
2pd´1q
0 θ2qw´h

´

pDpd´ 1q ` 1qdpD` 1q2θ2
¯h

¸

pbq
ďκ2

0

˜

1`
D´1
ÿ

h“0

rh
D
ÿ

w“h`1

rw´h

¸

ďκ2
0

˜

1` r
8
ÿ

h“0

rh
8
ÿ

w“h`1

rw´h´1

¸

“ κ2
0p1`

r

p1´ rq2
q.

Here, (a) is due to Lemma 23, (121) and the fact that when g1pαq “ w ´ h, |V pαq| ď pw ´
hqpd´ 1q ` 1; (b) is because of (27), θ “ q1´q2?

q2p1´q1q
and κ0 “

κ
N .

The first conclusion follows by observing that MMSEďD “ Epv2
1q ´ Corr2

ďD , Epv2
1q “

κ0 “
κ
N .

For the second conclusion, we first notice that the trivial estimator f0pAq “ κ
N achieves

the mean square error κ
N ´ p

κ
N q

2 in estimating v1. Also q2 ă q1 ă 1´Ωp1q and

lim inf
NÑ8

logN κě
1

2
and lim sup

NÑ8
logN

˜

κd´1pq1 ´ q2q
a

q2p1´ q2q

¸

ă
d

2
´

1

2

implies (27) holds. So the second conclusion lim infNÑ8
EpfpAq´v1q2
Epf0pAq´v1q2 ě 1 follows by the

first part of the result and set r “ op1q that decays slowly to zero. This has finished the proof
of this Theorem.

F.5.1. Proof of Lemma 23 . Given any α, we can sort its edges as we mentioned in
Section F.5. Next we bound the number of choices for each edge in group 1 and group 2.

For Group 1.

• The first edge contains vertex 1, so there are at most
`

N
d´1

˘

choices for choosing the rest of
the pd´ 1q vertices.

• When choose the second edge, the number of its choices is bounded by
řd´1
x“1

`

d
d´x

˘`

N
x

˘

ď

dpd´ 1q
`

N
d´1

˘

, where x in the first summand denotes the number of vertices we pick from
edge 1 and the inequality is because

`

d
d´x

˘`

N
x

˘

is an increasing function with respect to x
when d,w “ opNq.

• Using the same idea in choose the second edge, the number of choices for the third edge
is at most:

řd´1
x“1

`2pd´1q`1
d´x

˘`

N
x

˘

ď p2pd´ 1q ` 1qpd´ 1q
`

N
d´1

˘
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• ¨ ¨ ¨
• For the pw´hqth edge, the number of its choices is bounded by:

řd´1
x“1

`

pw´h´1qpd´1q`1
d´x

˘`

N
x

˘

ď

ppw´ h´ 1qpd´ 1q ` 1qpd´ 1q
`

N
d´1

˘

.

In total, the number of choices in group 1 is at most

ppw´ h´ 1qpd´ 1q ` 1qw´hpd´ 1qw´h
ˆ

N

d´ 1

˙w´h

ď pwdpd´ 1qqw´hN pw´hqpd´1q.

For Group 2. Each edge left has at most
`

|V pαq|
d

˘

ď |V pαq|d ď pwpd´ 1q ` 1qd choices.
Since there are h edges in group 2, we have at most pwpd´ 1q ` 1qhd choices. This finishes
the proof of this lemma.
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