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Abstract In this paper, we prove that a real tensor is strictly semi-positive

if and only if the corresponding tensor complementarity problem has a unique

solution for any nonnegative vector and a real tensor is semi-positive if and only

if the corresponding tensor complementarity problem has a unique solution for

any positive vector. It is showed that a real symmetric tensor is a (strictly)

semi-positive tensor if and only if it is (strictly) copositive.
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1 Introduction

It is well-known that the linear complementarity problem (LCP) is the first-

order optimality conditions of quadratic programming, which has wide appli-

cations in applied science and technology such as optimization and physical

or economic equilibrium problems. By means of the linear complementarity

problem, properties of (strictly) semi-monotone matrices were considered by

Cottle and Dantzig [1], Eaves [2] and Karamardian [3], see also Han, Xiu and

Qi [4], Facchinei and Pang [5] and Cottle, Pang and Stone [6].

Pang [7,8] and Gowda [9] presented that some relations between the solu-

tion of the LCP (q, A) and (strictly) semi-monotone. Cottle [10] showed that

each completely Q-matrix is a strictly semi-monotone matrix. Eaves [2] gave an

equivalent definition of strictly semi-monotone matrices using the linear com-

plementarity problem. The concept of (strictly) copositive matrices is one of

the most important concept in applied mathematics and graph theory, which

was introduced by Motzkin [11] in 1952. In the literature, there are extensive

discussions on such matrices [12–14].

The nonlinear complementarity problem has been systematically studied

in the mid-1960s and has developed into a very fruitful discipline in the field

of mathematical programming, that included a multitude of interesting con-

nections to numerous disciplines and a widely important applications in engi-
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neering and economics. The notion of the tensor complementarity problem, a

special structured nonlinear complementarity problem, is used firstly by Song

and Qi [15], and they studied the existence of solution for the tensor com-

plementarity problem with some classes of structured tensors. In particular,

they showed that the tensor complementarity problem with a nonnegative

tensor has a solution if and only if all principal diagonal entries of such a

tensor are positive. Che, Qi, Wei [16] showed the existence of solution for the

tensor complementarity problem with symmetric positive definite tensors and

copositive tensors. Luo, Qi, Xiu [17] studied the sparsest solutions to Z-tensor

complementarity problems.

In this paper, we will study some relationships between the unique solution

of the tensor complementarity problem and (strictly) semi-positive tensors. We

will prove that a symmetric m-order n-dimensional tensor is (strictly) semi-

positive if and only if it is (strictly) copositive.

In Section 2, we will give some definitions and basic conclusions. We will

show that all diagonal entries of a semi-positive tensor are nonnegative, and

all diagonal entries of a strictly semi-positive tensor are positive.

In Section 3, we will prove that a real tensor is a semi-positive tensor if

and only if the corresponding tensor complementarity problem has no non-

zero vector solution for any positive vector and a real tensor is a strictly

semi-positive tensor if and only if the corresponding tensor complementarity

problem has no non-zero vector solution for any nonnegative vector. We show

that a symmetric real tensor is semi-positive if and only if it is copositive and
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a symmetric real tensor is a strictly semi-positive if and only if it is strictly

copositive.

2 Preliminaries

Throughout this paper, we use small letters x, y, v, α, · · · , for scalars, small

bold letters x,y, · · · , for vectors, capital letters A,B, · · · , for matrices, calli-

graphic letters A,B, · · · , for tensors. All the tensors discussed in this paper are

real. Let In := {1, 2, · · · , n}, and Rn := {(x1, x2, · · · , xn)>;xi ∈ R, i ∈ In},

Rn+ := {x ∈ Rn;x ≥ 0}, Rn− := {x ∈ Rn;x ≤ 0}, Rn++ := {x ∈ Rn;x > 0},

where R is the set of real numbers, x> is the transposition of a vector x, and

x ≥ 0 (x > 0) means xi ≥ 0 (xi > 0) for all i ∈ In.

Let A = (aij) be an n×n real matrix. The linear complementarity problem,

denoted by LCP (q, A), is to find z ∈ Rn such that

z ≥ 0,q +Az ≥ 0, and z>(q +Az) = 0, (1)

or to show that no such vector exists. A real matrix A is said to be

(i) semi-monotone (or semi-positive) iff for each x ≥ 0 and x 6= 0, there

exists an index k ∈ In such that xk > 0 and (Ax)k ≥ 0;

(ii) strictly semi-monotone (or strictly semi-positive) iff for each x ≥ 0

and x 6= 0, there exists an index k ∈ In such that xk > 0 and (Ax)k > 0;

(iii) copositive iff x>Ax ≥ 0 for all x ∈ Rn+;

(iv) strictly copositive iff x>Ax > 0 for all x ∈ Rn+ \ {0};

(v) Q-matrix iff LCP(A,q) has a solution for all q ∈ Rn;
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(vi) completely Q-matrix iff A and all its principal sub-matrices are Q-

matrices.

In 2005, Qi [18] introduced the concept of positive (semi-)definite symmet-

ric tensors. A real mth order n-dimensional tensor (hypermatrix)A = (ai1···im)

is a multi-array of real entries ai1···im , where ij ∈ In for j ∈ Im. Denote the

set of all real mth order n-dimensional tensors by Tm,n. Then Tm,n is a linear

space of dimension nm. Let A = (ai1···im) ∈ Tm,n. If the entries ai1···im are in-

variant under any permutation of their indices, then A is called a symmetric

tensor. Denote the set of all real mth order n-dimensional symmetric tensors

by Sm,n. Then Sm,n is a linear subspace of Tm,n. We denote the zero tensor

in Tm,n by O. Let A = (ai1···im) ∈ Tm,n and x ∈ Rn. Then Axm−1 is a vector

in Rn with its ith component as

(
Axm−1

)
i

:=

n∑
i2,··· ,im=1

aii2···imxi2 · · ·xim

for i ∈ In. Then Axm is a homogeneous polynomial of degree m, defined by

Axm := x>(Axm−1) =

n∑
i1,··· ,im=1

ai1···imxi1 · · ·xim .

A tensor A ∈ Tm,n is called positive semi-definite if for any vector x ∈ Rn,

Axm ≥ 0, and is called positive definite if for any nonzero vector x ∈ Rn,

Axm > 0. Recently, miscellaneous structured tensors are widely studied, for

example, Zhang, Qi and Zhou [19] and Ding, Qi and Wei [20] for M-tensors,

Song and Qi [21] for P-(P0)tensors and B-(B0)tensors, Qi and Song [22] for

B-(B0)tensors, Song and Qi [23] for infinite and finite dimensional Hilbert
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tensors, Song and Qi [24] for E-eigenvalues of weakly symmetric nonnegative

tensors and so on.

Recently, Song and Qi [15] extended the concepts of (strictly) semi-positive

matrices and the linear complementarity problem to (strictly) semi-positive

tensors and the tensor complementarity problem, respectively. Moreover, some

nice properties of those concepts were obtained.

Definition 2.1 Let A = (ai1···im) ∈ Tm,n. The tensor complementarity prob-

lem, denoted by TCP (q,A), is to find x ∈ Rn such that

x ≥ 0,q +Axm−1 ≥ 0, and x>(q +Axm−1) = 0, (2)

or to show that no such vector exists.

Clearly, the tensor complementarity problem is the first-order optimality con-

ditions of the homogeneous polynomial optimization problem, which may be

referred to as a direct and natural extension of the linear complementarity

problem. The tensor complementarity problem TCP (q,A) is a specially struc-

tured nonlinear complementarity problem, and so, the TCP (q,A) has its

particular and nice properties other than ones of the classical nonlinear com-

plementarity problem.

Definition 2.2 Let A = (ai1···im) ∈ Tm,n. A is said to be

(i) semi-positive iff for each x ≥ 0 and x 6= 0, there exists an index k ∈ In

such that

xk > 0 and
(
Axm−1

)
k
≥ 0;
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(ii) strictly semi-positive iff for each x ≥ 0 and x 6= 0, there exists an index

k ∈ In such that

xk > 0 and
(
Axm−1

)
k
> 0;

(iii) Q-tensor iff the TCP (q,A) has a solution for all q ∈ Rn.

Lemma 2.1 (Song and Qi [15, Corollary 3.3, Theorem 3.4]) Each strictly

semi-positive tensor must be a Q-tensor.

Proposition 2.1 Let A ∈ Tm,n. Then

(i) aii···i ≥ 0 for all i ∈ In if A is semi-positive;

(ii) aii···i > 0 for all i ∈ In if A is strictly semi-positive;

(iii) there exists k ∈ In such that
n∑

i2,··· ,im=1

aki2···im ≥ 0 if A is semi-positive;

(iv) there exists k ∈ In such that
n∑

i2,··· ,im=1

aki2···im > 0 if A is strictly semi-

positive.

Proof It follows from Definition 2.2 that we can obtain (i) and (ii) by taking

x(i) = (0, · · · , 1, · · · , 0)>, i ∈ In

where 1 is the ith component xi. Similarly, choose x = e = (1, 1, · · · , 1)>, then

we obtain (iii) and (vi) by Definition 2.2. ut

Definition 2.3 Let A = (ai1···im) ∈ Tm,n. A is said to be

(i) copositive if Axm ≥ 0 for all x ∈ Rn+;

(ii) strictly copositive if Axm > 0 for all x ∈ Rn+ \ {0}.
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The concept of (strictly) copositive tensors was first introduced and used

by Qi in [25]. Song and Qi [26] showed their equivalent definition and some

special structures. The following lemma is one of the structure conclusions of

(strictly) copositive tensors in [26].

Lemma 2.2 ([26, Proposition 3.1]) Let A be a symmetric tensor of order m

and dimension n. Then

(i) A is copositive if and only if Axm ≥ 0 for all x ∈ Rn+ with ‖x‖ = 1;

(ii) A is strictly copositive if and only if Axm > 0 for all x ∈ Rn+ with ‖x‖ = 1.

Definition 2.4 Let A = (ai1···im) ∈ Tm,n. In homogeneous polynomial Axm,

if we let some (but not all) xi be zero, then we have a less variable homo-

geneous polynomial, which defines a lower dimensional tensor. We call such

a lower dimensional tensor a principal sub-tensor of A, i.e., an m-order

r-dimensional principal sub-tensor B of an m-order n-dimensional tensor A

consists of rm entries in A = (ai1···im): for any set N that composed of r

elements in {1, 2, · · · , n},

B = (ai1···im), for all i1, i2, · · · , im ∈ N .

The concept were first introduced and used by Qi [18] to the higher order

symmetric tensor. It follows from Definition 2.2 that the following Proposition

is obvious.

Proposition 2.2 Let A = (ai1···im) ∈ Tm,n. Then

(i) each principal sub-tensor of a semi-positive tensor is semi-positive;
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(ii) each principal sub-tensor of a strictly semi-positive tensor is strictly semi-

positive.

Let N ⊂ In = {1, 2, · · · , n}. We denote the principal sub-tensor of A

by A|N |, where |N | is the cardinality of N . So, A|N | is a tensor of order m

and dimension |N | and the principal sub-tensor A|N | is just A itself when

N = In = {1, 2, · · · , n}.

3 Main results

In this section, we will prove that a real tensor A is a (strictly) semi-positive

tensor if and only if the tensor complementarity problem (q,A) has a unique

solution for q > 0 (q ≥ 0).

Theorem 3.1 Let A = (ai1···im) ∈ Tm,n. The following statements are equiv-

alent:

(i) A is semi-positive.

(ii) The TCP (q,A) has a unique solution for every q > 0.

(iii) For every index set N ⊂ In, the system

A|N |(xN )m−1 < 0, xN ≥ 0 (3)

has no solution, where xN ∈ R|N |.

Proof (i) ⇒ (ii). Since q > 0, it is obvious that 0 is a solution of TCP (q,A).

Suppose that there exists a vector q′ > 0 such that TCP (q′,A) has non-zero

vector solution x. Since A is semi-positive, there is an index k ∈ In such that

xk > 0 and
(
Axm−1

)
k
≥ 0.
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Then q′k +
(
Axm−1

)
k
> 0, and so

x>(q′ +Axm−1) > 0.

This contradicts the assumption that x solves TCP (q′,A). So the TCP (q,A)

has a unique solution 0 for every q > 0.

(ii) ⇒ (iii). Suppose that there is an index set N such that the system (3)

has a solution x̄N . Clearly, x̄N 6= 0. Let x̄ = (x̄1, x̄2, · · · , x̄n)> with

x̄i =


x̄Ni , i ∈ N

0, i ∈ In \N.

Choose q = (q1, q2, · · · , qn)> with
qi = −

(
A|N |(x̄N )m−1

)
i

= −
(
Ax̄m−1

)
i
, i ∈ N

qi > max{0,−
(
Ax̄m−1

)
i
} i ∈ In \N.

So, q > 0 and x̄ 6= 0. Then x̄ solves the TCP (q,A). This contradicts (ii).

(iii) ⇒ (i). For each x ∈ Rn+ and x 6= 0, we may assume that x =

(x1, x2, · · · , xn)> with for some N ⊂ In,
xi > 0, i ∈ N

xi = 0, i ∈ In \N.

Since the system (3) has no solution, there exists an index k ∈ N ⊂ In such

that

xk > 0 and
(
Axm−1

)
k
≥ 0,
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and hence A is semi-positive. ut

Using the same proof as that of Theorem 3.1 with appropriate changes in

the inequalities. We can obtain the following conclusions about the strictly

semi-positive tensor.

Theorem 3.2 Let A = (ai1···im) ∈ Tm,n. The following statements are equiv-

alent:

(i) A is strictly semi-positive.

(ii) The TCP (q,A) has a unique solution for every q ≥ 0.

(iii) For every index set N ⊂ In, the system

A|N |(xN )m−1 ≤ 0, xN ≥ 0, xN 6= 0 (4)

has no solution.

Now we give the following main results by means of the concept of principal

sub-tensor.

Theorem 3.3 Let A be a symmetric tensor of order m and dimension n.

Then A is semi-positive if and only if it is copositive.

Proof If A is copositive, then

Axm = x>Axm−1 ≥ 0 for all x ∈ Rn+. (5)

So Amust be semi-positive. In fact, suppose not. Then there is a vector x ∈ Rn

such that for all k ∈ In

(
Axm−1

)
k
< 0 when xk > 0.
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Then we have

Axm = x>Axm−1 =

n∑
k=1

xk
(
Axm−1

)
k
< 0,

which contradicts (5).

Now we show the necessity. Let

S = {x ∈ Rn+;

n∑
i=1

xi = 1} and F (x) = Axm = x>Axm−1.

Obviously, F : S → R is continuous on the set S. Then there exists ỹ ∈ S

such that

Aỹm = ỹ>Aỹm−1 = F (ỹ) = min
x∈S

F (x) = min
x∈S

x>Axm−1 = min
x∈S
Axm. (6)

Since ỹ ≥ 0 with ỹ 6= 0, we may assume that

ỹ = (ỹ1, ỹ2, · · · , ỹl, 0, · · · , 0)T (ỹi > 0 for i = 1, · · · , l, 1 ≤ l ≤ n).

Let w̃ = (ỹ1, ỹ2, · · · , ỹl)T and let B be a principal sub-tensor that obtained

from A by the polynomial Axm for x = (x1, x2, · · · , xl, 0, · · · , 0)T . Then

w̃ ∈ Rl++,

l∑
i=1

ỹi = 1 and F (ỹ) = Aỹm = Bw̃m = min
x∈S
Axm. (7)

Let x = (z1, z2, · · · , zl, 0, · · · , 0)T ∈ Rn+ for all z = (z1, z2, · · · , zl)T ∈ Rl+

with
l∑
i=1

zi = 1. Clearly, x ∈ S, and hence, by (7), we have

F (x) = Axm = Bzm ≥ F (ỹ) = Aỹm = Bw̃m.

Since w̃ ∈ Rl++, w̃ is a local minimizer of the following optimization problem

min
z∈Rl

Bzm s.t.

l∑
i=1

zi = 1.
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So, the standard KKT conditions implies that there exists µ ∈ R such that

∇(Bzm − µ(

l∑
i=1

zi − 1))|z=w̃ = mBw̃m−1 − µe = 0,

where e = (1, 1, · · · , 1)>, and hence

Bw̃m−1 =
µ

m
e.

Let λ = µ
m . Then

Bw̃m−1 = (λ, λ, · · · , λ)> ∈ Rl,

and so

Bw̃m = w̃>Bw̃m−1 = λ

l∑
i=1

ỹi = λ.

It follows from (7) that

Aỹm = ỹ>Aỹm−1 = Bw̃m = min
x∈S
Axm = λ.

Thus, for all ỹk > 0, we have

(
Aỹm−1

)
k

=
(
Bw̃m−1)

k
= λ.

Since A is semi-positive, for ỹ ≥ 0 and ỹ 6= 0, there exists an index k ∈ In

such that

ỹk > 0 and
(
Aỹm−1

)
k
≥ 0.

and hence, λ ≥ 0. Consequently, we have

min
x∈S
Axm = Aỹm = λ ≥ 0.

It follows from Lemma 2.2 that A is copositive. The theorem is proved. ut
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Using the same proof as that of Theorem 3.3 with appropriate changes

in the inequalities, we can obtain the following conclusions about the strictly

copositive tensor.

Theorem 3.4 Let A = (ai1···im) ∈ Sm,n. Then A is strictly semi-positive if

and only if it is strictly copositive.

By Lemma 2.1 and Theorem 3.4, the following conclusion is obvious.

Corollary 3.1 Let A = (ai1···im) ∈ Sm,n be strictly copositive. Then the ten-

sor complementarity problem TCP (q,A),

finding x ∈ Rn such that x ≥ 0,q +Axm−1 ≥ 0, and x>(q +Axm−1) = 0

has a solution for all q ∈ Rn.

4 Perspectives

There are more research topics on the tensor complementarity problem for

further research.

It is known that there are many efficient algorithms for computing a so-

lution of (non-) linear complementarity problem. Then, whether or not may

these algorithms be applied to tensor complementarity problem? If not, can

one construct an efficient algorithm to compute the solution of the tensor

complementarity problem with a special structured tensor?

A real m-order n-dimensional tensor is said to be completely Q-tensor

iff it and all its principal sub-tensors are Q-tensors. Clearly, each strictly semi-
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positive tensor must be a completely Q-tensor. Naturally, we would like to ask

whether each completely Q-tensor is strictly semi-positive or not.

5 Conclusions

In this paper, we discuss some relationships between the unique solution of the

tensor complementarity problem and (strictly) semi-positive tensors. Further-

more, we establish the equivalence between (strictly) symmetric semi-positive

tensors and (strictly) copositive tensors.
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