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TENSOR-CUR DECOMPOSITIONS FOR TENSOR-BASED DATA∗
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Abstract. Motivated by numerous applications in which the data may be modeled by a vari-
able subscripted by three or more indices, we develop a tensor-based extension of the matrix CUR
decomposition. The tensor-CUR decomposition is most relevant as a data analysis tool when the
data consist of one mode that is qualitatively different from the others. In this case, the tensor-CUR
decomposition approximately expresses the original data tensor in terms of a basis consisting of
underlying subtensors that are actual data elements and thus that have a natural interpretation in
terms of the processes generating the data. Assume the data may be modeled as a (2+1)-tensor, i.e.,
an m×n×p tensor A in which the first two modes are similar and the third is qualitatively different.
We refer to each of the p different m× n matrices as “slabs” and each of the mn different p-vectors
as “fibers.” In this case, the tensor-CUR algorithm computes an approximation to the data tensor A
that is of the form CUR, where C is an m×n×c tensor consisting of a small number c of the slabs, R
is an r× p matrix consisting of a small number r of the fibers, and U is an appropriately defined and
easily computed c× r encoding matrix. Both C and R may be chosen by randomly sampling either
slabs or fibers according to a judiciously chosen and data-dependent probability distribution, and
both c and r depend on a rank parameter k, an error parameter ε, and a failure probability δ. Under
appropriate assumptions, provable bounds on the Frobenius norm of the error tensor A− CUR are
obtained. In order to demonstrate the general applicability of this tensor decomposition, we apply
it to problems in two diverse domains of data analysis: hyperspectral medical image analysis and
consumer recommendation system analysis. In the hyperspectral data application, the tensor-CUR
decomposition is used to compress the data, and we show that classification quality is not substan-
tially reduced even after substantial data compression. In the recommendation system application,
the tensor-CUR decomposition is used to reconstruct missing entries in a user-product-product pref-
erence tensor, and we show that high quality recommendations can be made on the basis of a small
number of basis users and a small number of product-product comparisons from a new user.
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1. Introduction. Novel algorithmic methods to structure large data sets are of
continuing interest. A particular challenge is presented by tensor-based data, i.e., data
which are modeled by a variable subscripted by three or more indices [44, 31, 46, 61,
11]. Numerous examples suggest themselves, but to guide the discussion consider the
following three. First, in internet data applications, if one is studying the properties
of a large time-evolving graph, the data may consist of a graph or its adjacency matrix
sampled at a large number of sequential time steps, in which case Aijk may represent
the weight of the edge between nodes i and j at time step k. Second, in biomedical
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data applications, if one is studying cancer diagnosis, the data may consist of a large
number of hyperspectrally resolved biopsy images, in which case Aijk may represent
the absorbed or transmitted light intensity of a biopsy sample at pixel ij at frequency
k. Third, in consumer data applications, if one is studying recommendation systems,
the data may consist of product-product preference data for a large number of users,
in which case Aijk may be ±1, depending on whether product i or j is preferred by
user k. Tensor-based data are particularly challenging due to their size and since many
data analysis tools based on graph theory and linear algebra do not easily generalize.

When compared with algorithmic results for data modeled by either matrices or
graphs, algorithmic results for data modeled by multimode tensors are modest. For
example, even computing the rank of a general tensor A (defined as the minimum
number of rank-one tensors into which A can be decomposed) is an NP-hard prob-
lem [32]. On the other hand, the model proposed by Tucker [61], as well as the related
“canonical decomposition” [11] or “parallel factors” models [31], have a long history
in applied data analysis [39, 40, 41, 44]. They provide exact or approximate decom-
positions for higher-order tensors. Recent research has focused on the relationship
between these data tensor models and efforts to extend linear algebraic notions such
as the SVD to multimode data tensors [44, 45, 46, 48].

A seemingly unrelated line of work has focused on matrix CUR decompositions
[19, 22, 23]. As discussed in more detail in section 2.2, a matrix CUR decomposition
provides a low-rank approximation of the form A ≈ Ã = CUR, where C is a matrix
consisting of a small number of columns of A, R is a matrix consisting of a small
number of rows of A, and U is an appropriately defined low-dimensional encoding
matrix [19]. Thus, a matrix CUR decomposition provides a dimensionally reduced
low-rank approximation to the original data matrix A that is expressed in terms of
a small number of actual columns and a small number of actual rows of the original
data matrix, rather than, e.g., orthogonal linear combinations of those columns and
rows.

In this paper, we extend a recently developed and provably accurate matrix CUR
decomposition to tensor-based data sets in which there is a “distinguished” mode, and
we apply it to problems in two of the three data set domains mentioned previously.
When applied to hyperspectral image data, we use tensor-CUR to perform compres-
sion in order to run a classification on a more concise input, and when applied to
recommendation system data, we use tensor-CUR to perform reconstruction in the
absence of the full input.

By a “distinguished” mode, we mean a mode that is qualitatively different from
the other modes in an application-dependent manner. The most appropriate data
structure for a data set consisting of, e.g., a time-evolving internet graph or a set of
hyperspectrally resolved biopsy images or user-product-product preference data for
consumers depends on the application and is a matter of debate. Nevertheless, we
will view such a data set as a tensor, albeit one in which one of the modes is “distin-
guished.” For example, in these three applications, the distinguished mode would be
the mode describing, respectively, the temporal evolution of the graph, the frequency
or spectral variation in the images, and the users. The tensor-CUR decomposition
computes an approximation to the original data tensor that is expressed as a linear
combination of subtensors of the original data tensor. As we shall see, since these sub-
tensors are actual data elements, rather than, e.g., more complex functions of data
elements, in many cases they lend themselves more readily to application-specific
interpretation.
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2. Review of relevant linear and multilinear algebra. In this section, we
provide a brief review of relevant multilinear algebra as well as recent work on matrix
CUR decompositions.

2.1. Tensor-based extension of the SVD. We shall use calligraphic letters
to denote higher-order or multimode tensors with d > 2 modes. For example, let
A ∈ R

n1×n2×···×nd be a d-mode tensor of size n1×n2×· · ·×nd and let Nα =
∏

i �=α ni.
Consider the following definitions:

• Given a tensor A and a particular mode α ∈ {1, . . . , d}, define the matrix
A[α] ∈ R

nα×Nα , where the columns of the matrix consist of varying the αth
coordinate of A while leaving the rest fixed. We refer to the (usually implicit)
construction of A[α] as matricizing [36] or unfolding [44] A along mode α and
define the α-rank of the tensor A to be the rank of the matrix A[α].

• Given an n1 × n2 × · · · × nd d-mode tensor A, a particular mode α, and any
nα× cα matrix B, define the α-mode tensor-matrix product to be the d-mode
tensor of size n1 × · · ·×nα−1 × cα ×nα+1 × · · ·×nd whose i1 · · · id element is

(1) (A⊗α B)i1···id =

nα∑

i=1

Ai1···iα−1iiα+1···idBiiα .

Note that the α-mode tensor-matrix product satisfies (A ⊗α B) ⊗α′ C =
(A ⊗α′ C) ⊗α B = A ⊗α B ⊗α′ C, assuming that the various individual
products are defined.

• Given a tensor A, let us denote the SVD of A[α] by

(2) A[α] = U[α]Σ[α]V
T
[α],

where, e.g., U[α] is an nα×rank(A[α]) matrix and U[α],kα
is an nα×kα matrix

consisting of the left singular vectors corresponding to the top kα singular
values of A[α].

• Given a d-mode tensor A, define the (square of its) Frobenius norm to be

(3) ‖A‖2
F =

n1∑

i1=1

· · ·
nd∑

id=1

A2
i1···id .

• Given a tensor A and a particular mode α, let us refer to slabs as each of the
nα d−1-mode tensors of size n1×· · ·×nα−1×nα+1×· · ·×nd constructed by
fixing the αth coordinate to some particular value iα ∈ {1, . . . , nα}. Similarly,
let us refer to as fibers each of the Nα vectors (mode-one tensors) of size nα

constructed by fixing each of the other coordinates to a particular value.
Remark. See [44, 45, 36] and the references therein for a more detailed description

of these tensor-related definitions. In particular, note that, although they will not be
of interest to our main result, the higher-order SVD of A has been defined as the
decomposition of A of the form A = S ×1 U[1] ×2 · · · ×d U[d], where the rank(A[1]) ×
· · ·× rank(A[d]) tensor S is the so-called core tensor, and the best rank-(k1, k2, . . . , kd)

approximation to the tensor A has been defined as Ã = S ×1 U[1],k1
×2 · · · ×d U[d],kd

.
See [23] for a randomized algorithm that computes an approximation to this quantity.
The algorithm of [23] is similar to the algorithms presented in this paper, except that
it “unfolds” the tensor along every mode and computes an approximation to the top
singular vectors of the unfolded matrix by random sampling.
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Remark. Tensors are a natural generalization of matrices (see, e.g., [30] for more
details) and have been studied in several fields. For example, tensors have been studied
in mathematics and computer science for their algebraic properties, their ability to
efficiently represent multidimensional functions, and the relationship between their
properties and problems in complexity theory [30, 27, 32, 50, 8]. In addition, tensors
provide a natural way to represent many large and complex data sets [44, 43, 31, 36,
46, 61, 11, 65].

Remark. The dimensionality of the linear space generated by the α-slabs is the
α-rank of A. It is worth emphasizing that computing the rank of a general tensor A
(defined as the minimum number of rank-one tensors into which A can be decomposed)
is an NP-hard problem, that only weak bounds are known relating the α-rank and
the tensor rank, and that there do not exist definitions of tensor rank and associated
tensor SVD such that the optimality properties of the matrix rank and matrix SVD
are preserved [40, 33, 41, 32, 45, 38, 48, 67].

2.2. Matrix CUR decomposition. Recent work in theoretical computer sci-
ence, numerical linear algebra, and statistical learning theory [19, 23, 59, 60, 7, 29,
28, 66, 22] has focused on low-rank matrix decompositions with structural properties
that satisfy the following definition.

Definition 1. Let A be an m×n matrix. In addition, let C be an m× c matrix
whose columns consist of a small number c of columns of the matrix A, let R be an
r×n matrix whose rows consist of a small number r of rows of the original matrix A,
and let U be a c× r matrix. Then Ã is a column-row-based low-rank approximation,
or a CUR approximation, to A if it may be explicitly written as

(4) Ã = CUR.

Several things should be noted about this definition. First, for data applications,
we prefer not to provide too precise a characterization of what we mean by a “small”
number of columns and/or rows, but one should think of r, c � m,n. For example,
they could be constant, independent of m and n, logarithmic in the size of m and n,
or simply a large constant factor less than m,n. Second, since the approximation is
expressed in terms of a small number of columns and rows of the original data matrix,
it will provide a low-rank approximation to the original matrix, although one with
structural properties that are quite different from those provided by truncating the
SVD. Third, a CUR approximation approximately expresses all of the columns of A
in terms of a linear combination of a small number of “basis columns,” and it does
this similarly for the rows.

Finally, and most relevant for the present paper, note that a matrix CUR de-
composition has structural properties that are auspicious for its use as a tool in the
analysis of large data sets. For example, if the data matrix A is large and sparse but
well-approximated by a low-rank matrix, then C and R (consisting of actual columns
and rows) are sparse, whereas the matrices consisting of the top left and right singular
vectors will not, in general, be sparse. In addition, in many applications, interpretabil-
ity is important; practitioners often have an intuition about the actual columns and
rows that they fail to have about linear combinations of (up to) all the columns or
rows.

The following algorithmic result regarding a matrix CUR approximation was re-
cently proven [19].

Theorem 1. There exists a randomized algorithm (see the LinearTimeCUR

algorithm of [19]) that takes as input an m× n matrix A and a fixed rank parameter
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Fig. 1. Pictorial representation of a (2 + 1)-data tensor.

k and that returns as output an m×c matrix C consisting of c columns of A, an r×n
matrix R consisting of r rows of A, and a c × r matrix U . The columns/rows are
randomly sampled in c/r independent trials according to a judiciously chosen proba-
bility distribution depending on the Euclidean norm of the corresponding column/row.
If c = O(k log(1/δ)/ε4) and r = O(k/δ2ε2), then

(5) ‖A− CUR‖F ≤ ‖A−Ak‖F + ε ‖A‖F

holds with probability at least 1− δ. The algorithm requires O(m+n) additional time
and scratch space after reading the matrix A twice from external storage.

Our two tensor-CUR algorithms are tensor-based extensions of this matrix algo-
rithm. For more details about these results, see [17, 18, 19, 22].

3. A tensor-based extension of the matrix CUR decomposition.

3.1. A tensor-CUR decomposition for (2 + 1)-data tensors. In this sub-
section, for simplicity of exposition and in light of the two applications we will consider,
we restrict ourselves to tensors that are subscripted by three indices, i.e., so-called
3-mode tensors.

Consider an n1 × n2 × n3 tensor A, defined as the collection of elements

{Aijk|i = 1, . . . , n1; j = 1, . . . , n2; k = 1, . . . , n3}.

The elements may be thought of as a data cube, i.e, a three-dimensional block such
that index i runs along the vertical axis, index j runs along the horizontal axis, and
index k runs along the “depth” axis. Since by assumption there is a “distinguished”
mode, we are considering the special case of a (2 + 1)-tensor, i.e., an n1 × n2 × n3

tensor in which two modes (without loss of generality, we will assume they are the first
two) are similar in some application-dependent manner and the third is qualitatively
different. See Figure 1 for a pictorial description of a (2+1)-data tensor. In this case,
we refer to each of the n3 different n1 × n2 matrices as “slabs” and each of the n1n2

different n3-vectors as “fibers.”
With this in mind, consider the (2 + 1)-Tensor-CUR algorithm, described in

Figure 2. This algorithm takes as input an n1 × n2 × n3 tensor A, a probability
distribution {pi}n3

i=1 over the slabs, a probability distribution {qi}n1n2
i=1 over the fibers,

a number c of slabs to choose, and a number r of fibers to choose. (Without loss
of generality, we have assumed that the preferred mode α ∈ {1, 2, 3} is the third
mode.) The tensor A is decomposed along this mode in a manner analogous to the
original CUR matrix decomposition [19]. More precisely, this algorithm computes the
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Input: An n1 × n2 × n3 tensor A, a probability distribution {pi}n3
i=1, a probability

distribution {qi}n1n2
i=1 , and positive integers c and r.

Output: An n1 × n2 × c tensor C, a c× r matrix U , and an r × n3 matrix R.
1. Select c slabs of A in c independent and identically distributed (i.i.d.) trials

according to {pi}n3
i=1.

(a) Let C be the n1 × n2 × c tensor consisting of the chosen slabs.
(b) Let DC be the c× c diagonal scaling matrix with (DC)tt = 1√

cpit
if the

itth slab is chosen in the tth independent trial.
2. Select r fibers of A in r i.i.d. trials according to {qi}n1n2

i=1 .
(a) Let R be the r × n3 matrix consisting of the chosen fibers.
(b) Let DR be the r × r diagonal scaling matrix with (DR)tt = 1√

rqjt
if the

jtth slab is chosen in the tth independent trial.
3. Let the r × c matrix W be the matricized intersection between C and R.
4. Define the c× r matrix U = DC (DRWDC)

+
DR.

Fig. 2. The (2 + 1)-Tensor-CUR algorithm.

Fig. 3. Pictorial representation of the action of the tensor-CUR decomposition.

approximation by performing the following: first, choose c slabs (2-mode subtensors,
i.e., matrices) in independent random trials and choose r fibers (1-mode subtensors,
i.e., vectors) in independent random trials according to the input probability distri-
butions; second, define the n1 × n2 × c tensor C to consist of the c chosen slabs and
also define the r × n3 matrix R to consist of the chosen fibers; third, let U be an
appropriately defined and easily computed (given C and R) c× r matrix.

Clearly, Ã = C⊗3UR, where ⊗3 is a tensor-matrix multiplication, is an n1×n2×n3

tensor. Thus, by using the (2 + 1)-Tensor-CUR algorithm, we make the following
approximation:

(6) A ≈ Ã = C ⊗3 UR.

Thus, in particular, if i ∈ 1, . . . , n3 is one of the slabs that is not randomly selected,
then by using the (2 + 1)-Tensor-CUR algorithm, we make the following approxi-
mation:

(7) A(:, :, i) ≈
∑

ξ∈C

A(:, :, ξ)X(ξ, i),

where A(:, :, i) is the n1 × n2 matrix formed from A by fixing the value of the third
mode to be i, C is a set indicating which c indices were randomly chosen, and X(:, i)
is a vector consisting of the ith column of the matrix UR.

See Figure 3 for a pictorial description of the action of the algorithm and this
approximation. In particular, note that a small number of slabs are sampled, and
every other slab is approximately reconstructed using the information in those slabs as
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a basis along with the information in a small number of fibers (depicted as the dashed
lines). The extent to which (6) or (7) is a good approximation has to do with the
selection of slabs and fibers. In sections 4 and 5, we show that (6) holds empirically for
our two applications if the slabs and fibers are chosen uniformly and/or nonuniformly
with probabilities that depend on the Frobenius norms of slabs and Euclidean norms
of fibers, respectively. See the proof of Theorem 2 in section 3.2 and also [17, 18, 19]
for a discussion of the algorithmic justification for this sampling.

We emphasize that, as with the matrix CUR decomposition, when this tensor-
CUR decomposition is applied to data, there is a natural interpretation in terms of un-
derlying data elements. For our imaging application, a “slab” corresponds to an image
at a given frequency step and a “fiber” corresponds to a time- or frequency-resolved
pixel. Similarly, for our recommendation system application, a “slab” corresponds to
a product-product preference matrix for a single user and a “fiber” corresponds to
preference information from every user about a single product-product pair.

3.2. A general tensor-CUR decomposition for very large data tensors.
In this subsection, to provide a theoretical justification for the tensor-CUR decompo-
sition of section 3.1, we present our main algorithmic result. Our main algorithmic
result is a generalization of the (2 + 1)-Tensor-CUR algorithm and an associated
provable quality-of-approximation bound for the Frobenius norm of the error tensor
A− C ⊗3 UR.

The Tensor-CUR algorithm, described in Figure 4, takes as input a d-mode
tensor A ∈ R

n1×···×nd , a “distinguished” mode α ∈ {1, . . . , d}, a rank parameter kα,
an error parameter ε > 0, and a failure probability δ ∈ (0, 1). The algorithm returns
as output three carefully constructed subtensors that, when multiplied together, are
an approximation Ã to A. Both the number of slabs cα and the number of fibers rα
that are randomly sampled depend on the rank parameter kα, an error parameter ε,
and a failure probability δ. The subtensors C and R are chosen by sampling according
to a carefully constructed nonuniform probability distribution. In order to obtain the
provable quality-of-approximation bounds of Theorem 2, the probability distribution
depends on the Frobenius norms of the slabs and the Euclidean norms of the fibers,
respectively. Intuitively, this biases the random sampling toward the subtensors that
are of most interest; see [17, 18, 19] for details.

In more detail, the approximation Ã is computed by performing the following:
first, form (implicitly) each of the nα subtensors (slabs of mode d−1) defined by fixing
i ∈ {1, . . . , nα}, and also form (implicitly) each of theNα =

∏
i �=α ni subtensors (fibers

of mode 1, i.e., vectors) defined by fixing a value for each of the modes i �= α; second,
construct nonuniform probability distributions with which to sample the slabs and
the fibers; third, choose cα of the d− 1-mode slabs in independent random trials, and
also choose rα of the 1-mode fibers in independent random trials; fourth, define the
tensor C ∈ R

n1×···×nα−1×cα×nα+1×···×nd to consist of the cα chosen d− 1-mode slabs,
and also define the tensor R ∈ R

rα×nα to consist of the rα chosen 1-mode fibers; and
finally, let U ∈ R

cα×rα be an appropriately defined and easily computed (given C and
R) tensor of mode 2 (i.e., matrix). Then we may define

(8) Ã = C ⊗α UR,

where C ⊗α UR is the α-mode tensor-matrix product between C and UR, to be an
n1 ×· · ·×nα−1 ×nα×nα+1 ×· · ·×nd tensor that is an approximation to the original
tensor A. (The awkward form of U is currently necessary for our provable results.
Nevertheless, U is a subspace perturbation of the Moore–Penrose generalized inverse
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Input: An n1 ×n2 × · · · ×nd tensor A, a mode α ∈ {1, . . . , d}, a rank parameter kα,
an error parameter ε > 0, and a failure probability δ ∈ (0, 1).
Output: An n1 × · · · × nα−1 × cα × nα+1 × · · · × nd tensor C, a cα × rα matrix U ,
and an rα × nα matrix R.

1. Let cα = 4kα
(
1 +

√
8 log(2/δ)

)2
/ε4, rα = 4kα/δ

2ε2, and Nα =
∏

i �=α ni.

2. Define {pi}nα
i=1 to be pi =

|(Aα)(i)|2
‖A‖2

F

.

3. Define {qj}Nα
j=1 to be qj =

|(Aα)(j)|2
‖A‖2

F

.

4. Select cα slabs of A in cα i.i.d. trials according to the probability distribution
{pi}nα

i=1.
(a) Let C be the n1 × · · · × nα−1 × cα × nα+1 × · · · × nd tensor consisting of

the chosen slabs.
(b) Let DC be the cα × cα diagonal scaling matrix with (DC)tt = 1√

cpit
if

the itth slab is chosen in the tth independent trial.
5. Select rα fibers of A in rα i.i.d. trials according to the probability distribution

{qi}Nα
i=1.

(a) Let R be the rα×nα matrix consisting of the chosen fibers (from all the
slabs).

(b) Let Ψ be the rα × cα matrix consisting of the chosen fibers (from the
chosen slabs).

(c) Let DR be the rα × rα diagonal scaling matrix with (DR)tt = 1√
rqjt

if

the jtth slab is chosen in the tth independent trial.
6. Let Φ be the best rank-k approximation to the Moore–Penrose generalized

inverse of (C ⊗α DC)
T
[α] (C ⊗α DC)[α].

7. Define the cα × rα matrix U = Φ (DRΨ)
T
.

Fig. 4. The Tensor-CUR algorithm.

of the matricized intersection between C and R. Thus, for the (2 + 1)-Tensor-CUR

algorithm and for the applications described in sections 4 and 5, we have taken it to
be exactly this quantity.)

Our main quality-of-approximation bound for the Tensor-CUR algorithm is
given by the following theorem, in which we bound the Frobenius norm of the error
tensor Ẽ = A− Ã.

Theorem 2. Let A be an n1 × n2 × · · · × nd tensor, and let α ∈ {1, . . . , d} be a
particular mode, kα be a rank parameter, ε > 0 be an error parameter, and δ ∈ (0, 1)
be a failure probability. Construct a tensor-CUR approximate decomposition to A with
the output of the Tensor-CUR algorithm. Then, with probability at least 1 − δ,

(9) ‖A − C ⊗α UR‖F ≤
∥∥∥A[α] −

(
A[α]

)
kα

∥∥∥
F

+ ε ‖A‖F .

Proof. Since “unfolding” A along any mode does not change the value of its
Frobenius norm (as it is simply a reordering of indices in a summation), it follows
that

(10) ‖A − C ⊗α UR‖F =
∥∥∥A[α] − (C ⊗α UR)[α]

∥∥∥
F
.

Note that the Frobenius norm on the left-hand side of (10) is a tensor norm and that
the Frobenius norm on the right-hand side of (10) is a matrix norm. Due to the form
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of the sampling probabilities used in the Tensor-CUR algorithm, it is this latter
quantity that Theorem 5 of [19] bounds. By applying this result [19], the theorem
follows.

3.3. Remarks on tensor-CUR decompositions and data applications.
Remark. In (9), the

∥∥A[α] − (A[α])kα

∥∥
F

term is a measure of the extent to which
the “unfolded” matrix A[α] is not well-approximated by a rank-kα matrix, and the
ε ‖A‖F term is a measure of the loss in approximation quality due to the choice of
slabs and fibers (rather than, e.g., the top kα eigenslabs and eigenfibers along the α
mode). This latter measure is of the form of an arbitrary (but fixed) precision, scaled
by a measure of the size of the tensor A.

Remark. The values for cα and rα in general differ, as they do with matrix CUR
decompositions. Although this is an artifact of the proof techniques [19], this allows
for greater flexibility in data applications. For example, if the noise properties of the
slabs and fibers differ, then one may wish to oversample the slabs or fibers in different
ways.

Remark. The choice for slabs and fibers in the Tensor-CUR algorithm takes ad-
vantage only of linear and not multilinear structure in the data tensors. Equivalently,
the algorithm reduces to the corresponding matrix algorithm. It is an open problem
whether one can choose slabs and/or fibers to preserve some nontrivial multilinear
tensor structure in the original tensor A.

Remark. A crucial decision in applying these techniques to data will be the proper
choice (if any) of the preferred mode α. This depends on the application area from
which the data are drawn. The theorems will be true but uninteresting if this choice
is not made carefully.

Remark. Assume, for simplicity, that the tensor A is stored externally, and assume
that ki = O(1) and that ni = n for every i = 1, . . . , d. Then the matrices C[i] each

occupy only O(n) additional scratch space. In general, O(nd−1) additional scratch
space will be needed to compute the probabilities of the form used by the Tensor-

CUR algorithm, and this will be comparable to the overall memory requirements if
d is large. On the other hand, if the uniform probabilities are approximately optimal
for each of the d nodes, then only O(n) additional scratch space and computation
time are needed, resulting in a substantial scratch memory and time savings. See [17]
for additional discussion of resource issues within the framework of the pass-efficient
model of data streaming computation.

Remark. Although sampling with respect to the proper probability distribution is
critical for our provable results, one might expect that in many cases the slabs and/or
fibers will all be approximately the same length due to the manner in which the data
are generated, in which case uniform sampling may be successfully employed. This
was seen to be the case for an application of the CUR algorithm of [19] to kernel-based
learning [21, 22, 66].

Remark. Alternatively, one might expect that in many cases the data are gener-
ated in such a way that information about the Frobenius norm of each of the slabs
and/or fibers is easily computed at the data generation step. For example, in the case
of a (2+1)-imaging application, the Frobenius norm of a slab corresponds to the total
absorption at one time step or frequency value. In this case, these approximations to
the probabilities could be used in the Tensor-CUR algorithm.

Remark. Although cα = 4kα
(
1+

√
8 log(2/δ)

)2
/ε4 slabs and rα = 4kα/δ

2ε2 fibers
suffice to prove the claims of Theorem 2, they can be rather large for even moderate
values of kα, δ, and ε. In the applications we consider, choosing many fewer slabs and
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fibers suffices, e.g., on the order of tens or hundreds; see sections 4 and 5 for more
detail.

4. Application to hyperspectral image data. In hyperspectral imagery, an
object or scene is imaged at a large number of contiguous wavelengths [51]. Although
hyperspectral imagery originated in astronomy and geosensing, it has been employed
more recently in numerous other application areas, including agriculture, manufac-
turing, forensics, and medicine. In many of these applications, target resolution is
limited by available spatial resolution. By considering the spectral variation of light
intensity, one obtains rich information about the object or scene being imaged that
complements traditional spatial information. One also obtains very large data sets
that may be represented as a tensor and that contain much redundancy. For ex-
ample, if a single scene is imaged at 128 frequency bands, where at each frequency
a 495 × 656 image is generated, then the data cube generated for this single object
consists of 40 million values and may be represented by a 495 × 656 × 128 tensor
A, where Aijk represents the absorbed or transmitted light intensity at pixel ij at
physical frequency k.

In this section, we describe an application of the tensor-CUR decomposition to
a problem in hyperspectral medical image analysis. In particular, the tensor-CUR
decomposition is used to compress the data, and we show that tissue segmentation and
nuclei classification quality are not substantially reduced even after substantial data
compression. In more detail, in section 4.1, we describe the data and its generation.
Then, in section 4.2, we describe the reconstruction of the full data from a small
sample of slabs and fibers. In section 4.3, we describe the classification task of tissue
segmentation, i.e., classifying the pixels in a single image into different tissue types,
as a function of how heavily we downsample on the slabs and fibers. This task is of
intermediate interest, since nuclei are the most discriminative structures in the final
classification task of interest. Finally, in section 4.4, we describe the classification of
data cubes into, e.g., normal and malignant, as a function of downsampling on the
slabs and fibers.

4.1. Description of data and data generation. The application of hyper-
spectral imaging to medicine, and pathology in particular, while not new, is be-
coming more widespread and powerful. A variety of proprietary spectral splitting
devices, including prisms and mirrors [64], interferometers [25, 55], variable interfer-
ence filter-based monochromometers [53], and tuned liquid crystals [47], mounted on
microscopes in combination with CCD cameras and computers, have been used to
discriminate among cell types, tissue patterns, and endogenous and exogenous pig-
ments [47]. Although the increasing power of these methods holds the promise for
developing automatic diagnostics, the increased volume and formal dimensionality of
the data make the development of more efficient algorithms necessary in order to
extract statistically useful and reliable information about the data.

The prototype-tuned light source used to generate the data we studied (Plain
Sight Systems, Inc.; see [16] for details) can generate a large number of combinations
of light frequencies, ranging from about 440 nm to about 700 nm, with a wavelength
resolution of up to approximately 6 nm. The light modulated by the prototype is
shone via a fiber optic cable directed in a Nikon Biophot microscope and transillu-
minates hematoxylin and eosin (H & E) stained microarray tissue sections of normal,
benign (adenoma), and malignant carcinoma colon biopsies. Hyperspectral photomi-
crographs, collected in random order at 400X magnification, are obtained with a CCD
camera (Sensovation) from 59 different patient biopsies (20 normal, 19 benign ade-
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Fig. 5. Examples of Hadamard patterns (left) and randomized Hadamard patterns (right). The
latter are used at the data generation step to improve the signal-to-noise ratio; see the text for
details.

noma, and 20 malignant carcinoma), mounted as a microarray on a single glass slide
[14, 2, 3, 5]. From these, 59 hyperspectral grayscale images at 400X magnification
are derived. The biopsies are collected randomly on the slide across and within the
different groups of biopsies in order to avoid any biases due to instrumentation, e.g.,
due to temperature or time of collection. This data was collected by G. L. Davis,
M.D., as discussed in [51].

Each measurement yields a data cube, which is a set {Ii}i=1...128 of 128 images,
each of which is 495 by 656 pixels in size. (That is, there is one data cube for each of
the 59 biopsies.) The intensity of the pixel Ii(x, y) is (ideally) the transmitted light at
location (x, y) when the ith light pattern ψi shone through the sample. The data is
collected by using randomized Hadamard patterns in order to maximize the signal-to-
noise ratio. The noise in the measurement of the hyperspectral image can be modeled
as independent of the intensity of light shown through the sample. The signal-to-noise
ratio of the measurement of each Ii, for a fixed integration time for the measurement
of Ii, is maximized when the amount of modulated light shone through the sample
is maximized. The instrument allows us to shine patterns {ψi}i=1,...,S = {ψi(ν) =∑N

j=1 εijδj(ν)}, where (ε)ij is an S by N matrix with entries in {0, 1}, and (δ)j , an
S-dimensional vector, represents (ideally) a Dirac δ-function at physical frequency
νj ∼ (700−440)j/N+440. In our experiment, we set N = 256 (the instrument would
allow up to N = 1024) and S = 128. Ideally, Ii(x, y), i = 1, . . . , S, is the value of the
inner product (in the frequency variable ν)

Ii(x, y) = 〈f(x, y, ν), ψi(ν)〉ν =
∑

j

f(x, y, νj)ψi(νj) ,

where f(x, y, ν) is the transmittance of the sample at location (x, y) and frequency ν.
The choice of the patterns ψi is crucial in determining the signal-to-noise ratio of the
measurements for a fixed integration time and total intensity of the light source: we
use the idea of multiplexing and shine a sequence of randomized Hadamard patterns
{ψH

i }i=1,...,N , obtained from standard Hadamard patterns by randomly shuffling the
frequency axis. See Figure 5 for examples of Hadamard and randomized Hadamard
patterns.

Thus, each data cube consists of 128 images, each 495 by 656 pixels in size (for a
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Fig. 6. Two different spectral slices, i.e., two different images each at a single frequency, from
a hyperspectral data cube derived from a normal sample (top) and from a hyperspectral data cube
derived from a very malignant sample (bottom).

total of about 40 million pixels), measuring the modulated light transmitted through
the sample. We view this as a 495 × 656 × 128 3-mode tensor A, where the entry
Aijk is proportional to the light with spectral modulation k transmitted at location
(i, j). Each biopsy contains either normal, benign (adenoma), or malignant (cancer-
ous) tissue and is labeled by G. L. Davis, M.D., pathologist. Various algorithms have
previously been shown to find and classify automatically normal, abnormal, and ma-
lignant small portions of each biopsy [14, 15, 51] using the complete data cube. As
we describe in more detail in the next three subsections, we couple the tensor-CUR
decomposition described in section 3.1 with ideas from [14, 15, 51] in order to speed
up computations, denoise, compress, and preprocess the data, and we show that this
causes only a small loss of performance of these algorithms.

In order to gain a feel for the data, consider Figures 6 and 7. Figure 6 illustrates
two of the 128 images, i.e., two hyperspectral images at two distinct frequencies, in
a normal sample and in a very malignant sample. Similarly, Figure 7 illustrates a
typical frequency-resolved pixel in both a normal and a malignant nucleus as well as a
single spectrum in the malignant sample and the spectrum averaged over every one of
the ca. 324,000 frequency-resolved pixels in the malignant data cube. Note that both
successive images and pixels from different spatial regions are strongly correlated with
one another.

In this imaging application, the tensor C in the tensor-CUR decomposition con-
sists of a small number of dictionary or basis images (which are actual and not eigen-
images) with respect to which the remaining images are expressed. Similarly, the
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Fig. 7. Left: Average normalized nuclei spectrum from a normal and a malignant sample.
Right: Average normalized spectrum and a single typical spectrum in one hyperspectral data cube.
The vertical axis represents normalized energy per frequency in the spectra, and the horizontal axis
is the slab index.

matrix R consists of the spectral variation of a small number of dictionary or basis
pixels with respect to which spectral variation of the remaining pixels is expressed.
In the next three subsections, we will see that the tensor-CUR decomposition can be
applied to this hyperspectral image data in order to compress the data and to perform
two classification tasks of interest on the data. That is, the tensor-CUR algorithm
will downsample slabs A(:, :, νi) by sampling a set of images at certain randomly
chosen wavelengths {νi}128

i=1 and fibers A(xi, yi, :) by sampling spectra at certain ran-
domly chosen locations {(xi, yi)}. Slabs will be chosen randomly with a probability
proportional to the average normalized spectrum of Figure 7, i.e., with probability
proportional to ||A(:, :, ν)||F , and fibers will be chosen uniformly at random. The
data-dependent motivation for this is that the intensity of transmitted light captures
a meaningful notion of information as a function of varying frequency but not as a
function of varying spatial coordinates due to the particular staining technology.

4.2. Reconstruction of hyperspectral data. For each slab we did not ran-
domly sample, we use the tensor-CUR decomposition to reconstruct that slab in the
basis provided by the sampled slabs, and we do so using only a small number of pixels
in that slab. In Figure 8, we present a representative example of the reconstruction
of two spectral slices from a normal biopsy and two spectral slices from a malignant
biopsy. The redundancy in the data is evident by the quality of the reconstruction
under very heavy downsampling. For example, it suffices to judiciously choose as few
as 8 or even 2 of the original 128 slabs, and to reconstruct the remaining slabs, it
suffices to choose ca. 1000 (or fewer) of the original ca. 324,000 fibers.

In Figure 9, we present the approximation error as a function of downsampling
to different numbers of slabs and then to different numbers of fibers. As expected, as
the number of sampled slabs and fibers increases, the approximation error decreases.
The approximation error is very small in the middle range of the frequencies, where
the energy per frequency is larger, and hence the sampling probability is larger. Thus,
due to the form of the slab sampling probabilities, slabs between ca. 30 and ca. 60
tend to be reproduced much better than those toward the tails of the spectrum. Slabs
below ca. 20 and above ca. 70 tend to have a lower signal-to-noise ratio and are less
important for the problem of approximate data reconstruction (but not necessarily
for other problems). Sampling more than 1200 fibers does not lead to significant
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Fig. 8. Typical reconstruction of the hyperspectral data cubes as a function of sampling. Shown
in this figure are two different spectral slabs from a normal biopsy and two from a malignant biopsy,
each reconstructed under three different compression ratios. In particular, the three figures in the
first column are from slab number 30 (out of 128) from a normal sample; the second column is from
slab number 60 from the same normal sample; and the third and fourth columns are slabs number
30 and 60, respectively, from another biopsy that is malignant. Presented are the original data (in
the top row), the data when it is compressed with 8 slabs and 1200 fibers (in the middle row), and
even more compressed data with only 2 slabs and 1200 fibers (in the bottom row).

improvements (unless several tens of thousands fibers are sampled).

At this point, we observe that the spectra reconstructed after compression are
far less noisy than the original spectra. More precisely, a close examination of images
such as those presented in Figure 8 reveals a subtle interplay between sampling-
induced error and denoising due to the low dimensionality of the sample. This has
a denoising and a regularization effect on the spectra, and we can interpret the low-
dimensional projection achieved by compression as a denoising mechanism, tuned
to each data cube. Note that by giving our tensor-CUR algorithm the flexibility
to sample different numbers of slabs and fibers, we can, e.g., sample slabs to a level
appropriate for structure identification and sample more fibers for denoising purposes.

4.3. Tissue-type segmentation. In medical applications, one is interested in
the classification of an entire data cube, i.e., a medical sample, as normal or malignant.
Biological reasons suggest that nuclei are the most discriminative structures for this
task. Thus, as an intermediate step, one is interested in classifying the pixels in a
single data cube into different tissue types, e.g., nuclei, cytoplasm, or lamina propria,
based on the spectral response (“fiber”) associated with each pixel. For each of the
59 images, we use the algorithm described in [14, 15, 51] for segmenting the pixels
in the image into three sets of regions corresponding to different tissue types. This
algorithm is based on the local discriminant basis (LDB) algorithm [13, 56, 57] to find
features that best discriminate among the different classes and a nearest neighbor
classifier in a discriminant projection found by LDB. Note that for the normal versus
malignant classification task of the next subsection (in which we classify entire data
cubes), we have access to a label (assumed correct) provided by a pathologist [51],
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Fig. 9. Reconstruction error. The caption indicates how many slabs (S) and fibers (F) were
sampled. The vertical axis is the relative reconstruction error (for the Frobenius norm). The hor-
izontal axis is the slab index. Average and standard deviation are over 4 slab draws and 3 fiber
draws.

while no such ground truth is available for this tissue classification in this section (in
which we classify pixels in each image).

In Figure 10, we present typical results for running this tissue classification algo-
rithm on two data cubes (one normal and one malignant) with increasing compression
ratios. We see that the tissue classification is affected in two different ways. When
we sample 16 slabs, the tissue classification, at least qualitatively speaking, improves
by becoming less noisy and by generating fewer misclassification errors. See, e.g., the
isolated red pixels, which correspond to nuclei, in the images in the leftmost column
of Figure 10. As the compression ratio increases further, we observe a slight decreased
performance in the tissue classification algorithm. As with the reconstruction prob-
lem, in both cases there is little quality loss until the number of fiber samples is less
than ca. 1000. In addition, as before, a careful analysis reveals a complex interplay
between sampling-induced information loss and sampling-induced denoising. Unfor-
tunately, it is not possible for us to quantify these results, since this would require an
individual to mark, by hand and with high precision, the correct tissue segmentation.

4.4. Classification of nuclei and data cubes. If the nuclei identified by the
tissue classification described in section 4.3 are then used to classify data cubes, the
results can be compared with the true value (assigned by the pathologist). For each
nucleus, we consider the mean spectrum, and we use partial least squares (PLS)
to build a linear classifier to classify this spectrum. We consider the following two
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Fig. 10. Segmentation into three tissue types in a normal biopsy (top row) and a malignant
biopsy (bottom row): red for nuclei (the only class that we are interested in for the next classification
task), green for cytoplasm, and blue for lamina propria and other regions. From left to right:
classification on original data; on compressed data (16 slabs and 1200 fibers); and on compressed
data (8 slabs and 1200 fibers).

classification tasks: classify as normal or malignant; and classify as normal, abnormal,
or malignant. In addition, we use two cross-validation procedures, described below,
for each classification task. See [14, 15, 51] for more details on these procedures.

We define the patches we want to classify as follows. A patch is a subset of a data
cube of the form Ql

x0,y0
× S, where Ql

x0,y0
is a square of side l pixels long, centered

at (x0, y0), and S denotes the complete spectral range. A patch is admissible if it
contains at least 8

10 l
2 nuclei pixels. From now on, we will consider each patch simply

as a collection of the nuclei spectra it contains and hence as a cloud in R
128. For the

results reported here, we have chosen and fixed l = 64, which provides a size that
roughly corresponds to the size of a single nucleus. The set of l× l patches we consider
consists of 3298 patches chosen by the algorithm by randomly picking a square in the
slide and checking if it is admissible. About 60 patches per slide are collected. We
denote by {Ni,k}k∈Ki the set of nuclei spectra in the ith patch Pi.

For each admissible patch Pi collected, we compute the mean of the nuclei spectra
{Ni,k}k, and we normalize it to unit energy. We denote this set of normalized average
nuclei spectra by N . (Therefore, |N | = 3298, as above.) The label (e.g., normal or
abnormal) attached to the patch is transferred to the corresponding mean nucleus
spectrum. We used PLS, keeping k = 15 top vectors, and we ran 50 rounds of 25-
fold cross-validation to avoid overfitting. We run this cross-validation in two different
ways:

• (Weak CV) Extract a random training subset of size 3
4 |N | and predict on the

remaining subset of size 1
4 |N |.

• (Strong CV) Extract a random subset of biopsies, of size 3
4#biopsies, train

the algorithm on the corresponding normalized average nuclei in N extracted
from those biopsies, and test the algorithm on the remaining subset of N ,
corresponding to averaged normalized nuclei extracted from the remaining
biopsies.

Thus, in each case, the training and testing sets are subsets of biopsies. Note that the
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Table 1

Confusion matrix of predictions of normal and malignant nuclei (patches of size 64 by 64 with
averaged 25-fold cross-validated error) using average (weak CV) error. TN, TM stand for true
normal and true malignant, and PN, PM stand for the corresponding predictions. From left to
right, the number of random slabs sampled is 128(all), 16, 8, 2.

PN PM
TN 90% 10%
TM 10% 90%

PN PM
TN 100% 0%
TM 0% 100%

PN PM
TN 100% 0%
TM 0% 100%

PN PM
TN 100% 0%
TM 0% 100%

Table 2

Confusion matrix of predictions of normal, benign (adenoma), and malignant nuclei patches,
as in Table 1, but errors corresponding to (strong CV).

PN PM
TN 79% 21%
TM 26% 74%

PN PM
TN 77% 23%
TM 30% 70%

PN PM
TN 79% 22%
TM 29% 71%

PN PM
TN 68% 32%
TM 33% 67%

first cross-validation is weaker. Since we expect correlations between (nuclei) spectra
in the same data cube, and since in (weak CV) the training set contains, with high
probability, nuclei spectra from all the biopsies, training and testing sets cannot be
assumed to be completely independent. Most of this lack of independence, we think,
is due to normalization issues, sample preparation, lighting, and other data collection
conditions, which exhibit variations across biopsies. Since we can consider different
biopsies as being independent samples as they were collected in random order and
independently of the type (e.g., normal, abnormal, or malignant), the second cross-
validation is stronger.

We are interested in measuring any change of performance of the classification
algorithm as a function of the compression ratio. The confusion matrices of the clas-
sifiers obtained are summarized in Tables 1, 2, 3, and 4 for classifiers of patches of size
l = 64. These confusion matrices are averages over the performance on the testing
set in several cross-validation runs. For the full data, the two-class discrimination
between normal and carcinoma nuclei correctly identifies 79% of normal and 74% of
malignant nuclei. The three-class discrimination among normal, abnormal (adenoma),
and carcinoma nuclei is much more challenging (independently of compression), with
identification rates of 33%, 73%, and 40% for normal, abnormal, and carcinoma sam-
ples, respectively. We study how this performance changes under compression of the
data cubes. As can be seen, in general, high quality results are obtained using sam-
ples of 16 and 8 slabs, but quality degrades if only 2 slabs are used. Also, note that
the algorithm performs more poorly (about 25% error in the discrimination of the
3 classes of biopsies) on completely new biopsies. This is related to normalization of
the data, due both to the process of staining and to the instrument calibration and
data collection. Current research is addressing these issues.

In Tables 1 and 2, we classify normal and malignant, and then we run the same
classifier on data cubes compressed at different compression ratios; we also show the
difference between weak and strong cross-validation. Observe that the performance of
the algorithm is very good across compression ratios, except for a significant decrease
of performance for a very high compression ratio (sampling of only 2 slabs!). We
interpret this as a balancing effect between the possible loss of information due to
compression and the denoising and regularization effect due to the dimensionality
reduction.

In Tables 3 and 4, we classify normal, abnormal, and malignant, and again we
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Table 3

Confusion matrix of predictions of normal, benign (adenoma), and malignant nuclei (patches
of size 64 by 64 with averaged 25-fold cross-validated error) using average (weak CV) error. TN,
TB, TM stand for true normal, true benign (adenoma), and true malignant, and PN, PB, PM
stand for the corresponding predictions. From left to right, the number of random slabs sampled is
128(all), 16, 8, 2.

PN PB PM
TN 45% 51% 4%
TB 17% 76% 7%
TM 4% 36% 60%

PN PB PM
TN 96% 4% 0%
TB 1% 98% 0%
TM 0% 3% 97%

PN PB PM
TN 99% 1% 0%
TB 0% 100% 0%
TM 0% 1% 99%

PN PB PM
TN 100% 0% 0%
TB 0% 100% 0%
TM 0% 0% 100%

Table 4

Confusion matrix of predictions of normal, benign (adenoma), and malignant nuclei patches,
as in Table 3, but with (strong CV).

PN PB PM
TN 33% 61% 6%
TB 22% 73% 5%
TM 9% 51% 40%

PN PB PM
TN 42% 24% 34%
TB 31% 36% 33%
TM 23% 28% 49%

PN PB PM
TN 30% 53% 17%
TB 26% 61% 13%
TM 7% 48% 51%

PN PB PM
TN 30% 45% 25%
TB 29% 53% 16%
TM 12% 35% 53%

run the same classifier on data cubes compressed at different compression ratios; we
also show the difference between weak and strong cross-validation. Here we observe
a interesting phenomenon: under (weak CV), the algorithm performs much more
poorly on the original data than on the compressed data. Hence the compression
has a regularization effect that greatly helps the learning phase. This advantage is
partly lost when we consider the (strong CV). Of course, the three-class problem
is expected to be much harder than the two-class problem, not only because, from
a machine-learning perspective, multiclass problems are harder but also because the
abnormal samples are often quite similar to normal samples, and even in the field of
pathology, the differences are qualitative and often not large.

5. Application to recommendation system analysis. In recommendation
system analysis, one is typically interested in making purchase recommendations to
a user at an electronic commerce web site. Collaborative methods (as opposed to
content-based or hybrid) involve recommending to the user items that people with
similar tastes or preferences liked in the past. Probably the most well-known example
of a collaborative filtering system is that of Amazon.com, which is based on rules of the
form “users who are interested in item X are also likely to be interested in item Y” [49].
Many collaborative filtering algorithms represent a user as an n-dimensional vector,
where n is the number of distinct products, and where the components of the vector
are a measure of the rating provided by that user for that product. Thus, for a set of
m users, the user-product ratings matrix is an m×n matrix A, where Aij is the rating
by user i for product j (or is null if the rating is not provided). A recommendation
algorithm generates recommendations for a new user based on a few users who are
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most similar to the user after querying the new user about his (or her) rating on a
small number of products. For more details, see [54, 10, 1].

A matrix CUR decomposition has been used to obtain competitive recommenda-
tion performance by judiciously sampling O(m+n) entries of the user-product ratings
matrix and reconstructing missing entries [20]. In more detail, assuming access to a
matrix C consisting of the ratings of every user for a small number of products and
a matrix R consisting of the ratings of a small number of users for every product,
then, under assumptions, CUR is a provably good approximation to the user-product
matrix A [20]. Prior theoretical work on recommendation systems includes Kumar
et al. [42], who offer competitive algorithms even with only two samples/customer,
assuming a strong clustering of the products; Azar et al. [4], who use spectral meth-
ods to recreate very accurately the user-product ratings matrix A, assuming a certain
gap requirement and a sample of Ω(mn) entries of A; Kleinberg and Sandler [37],
who develop recommendation algorithms with provable performance guarantees in a
probabilistic mixture mode; and (most relevant for our work) Drineas, Kerenidis, and
Raghavan [20], who obtain competitive performance by sampling O(m + n) entries
of the user-product ratings matrix and reconstructing missing entries with a matrix
CUR decomposition. Other applications of linear algebra have used the SVD for
dimensionality reduction [9, 58, 26].

Although the ratings in the user-product matrix A are often interpreted in terms
of the utility of product j for user i, utility in neoclassical economics is an ordinal
and not a cardinal concept. This is because utility functions are constructs that
encode preference information and because the same preferences are described when
the utility function is subject to a wide class of monotonic transformations. This
observation motivates the definition of an m × n × n user-product-product (2 + 1)-
tensor A, where Aijk is +1 or −1 depending on whether product j or product k is
preferred by user i. Similar preference-based models have appeared [12, 24, 35, 34]
and have been motivated by such observations as that two users with very similar
preferences for items may have very different rating schemes. When faced with a new
user, this preference model depends on obtaining pairwise preference information such
as that the user bought product A when he could have bought product B or that the
user clicked on link A when he could have clicked on link B.

5.1. Description of data and the model. Under this preference model for
recommendation system analysis, the tensor C consists of a small number of dictionary
or basis elements from a small number of users, where each element corresponds to
the full n × n pairwise preference matrix for a single user. Similarly, the matrix R
consists of a dictionary or basis set of preference information from every user about
a small number of product-product pairs.

In the next subsection, we will see that the tensor-CUR decomposition can be ap-
plied to recommendation system data under this model to reconstruct missing entries
in the user-product-product preference tensor in order to make high-quality recom-
mendations. Since most recommendation system databases do not provide data in
this preference-based format, the data set we will consider will be derived from the
ratings in the well-studied Jester data [26]. As an initial application, we consider the
m = 14,116 (out of ca. 73,421) users who rated all of the n = 100 products (i.e.,
jokes). From this m × n user-product ratings matrix, we define an m × n × n user-
product-product preference tensor by performing the following for each user: convert
the n-dimensional rating vector into an n×n preference matrix in which the ij entry
is +1 or −1 depending on whether or not the user prefers product i to product j.
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(Although this results in ordered and fully consistent preferences, this is not required
by our decomposition.) In this application, in the absence of a better model, both
slabs and fibers will be chosen uniformly at random.

5.2. Recommendation quality results. We now describe our results for the
tensor-CUR decomposition when applied to the Jester dataset in the context of rec-
ommendation systems. Let c be an integer between 1 and 14,116 (recall that this is
the total number of users that fully rated all 100 jokes in the Jester data), and assume
that we sample uniformly at random c of the 14,116 users. For each sampled user, we
assume that the corresponding 100× 100 slab of the 100× 100× 14,116 tensor repre-
senting the Jester dataset (see the previous section for details) is fully known or, in
other words, that we know all pairwise product-product (i.e., joke-joke) comparisons
for the c sampled users.

Consider the 14,116 − c slabs (i.e., users) that we did not sample. For each such
target slab (i.e., target user), we use the tensor-CUR decomposition to reconstruct
it as a linear combination of the c sampled slabs. Thus, it suffices to compute c
coefficients such that a linear combination of the basis slabs using these coefficients
achieves a satisfactory reconstruction of the target slab. However, in order to do such
a reconstruction, we need some information from the target slab. This information
consists of a small number of product-product preference queries sampled uniformly
at random from the target slab. These elements of the target slab will allow us to
approximately infer the coefficients to be used in expressing the target slab as a linear
combination of the c basis slabs. Once the target slab (i.e., preference matrix) is
reconstructed, we can use this reconstruction to make recommendations by picking
the N products with the largest row sums. In our model, where the (i, j)th entry of
the preference matrix is set to 1 if product i is preferred over product j and to −1
otherwise, such rows correspond to the most desirable products for this user.

To formally evaluate the quality of our recommender system, we use the well-
known top-N procedure and compute the precision, recall, and the F1 statistic [58].
More specifically, let TN be the actual set of the top N products for a certain user,
and let SK be a set of K products that are suggested to this user by a recommender
system. Clearly, K can be equal to or larger than N , whereas values of K that are
smaller than N are typically not interesting. For some combinations of N and K, we
shall measure the following four quantities.
Successful recommendations. The number of elements in the intersection of TN

and SK or, in other words, the number of products that are in the top-
N preferred products for a particular user and were recommended by an
algorithm that made K suggestions.

Recall. The number of successful recommendations divided by the number of sug-
gestions (K) made by the algorithm. This quantity normalizes the number of
successful recommendations to take into account the fact that increasing the
number of suggestions increases the number of top-N products recommended
by the algorithm.

Precision. The number of successful recommendations divided by N . Remember
that N essentially determines the number of products that a user is interested
in, and hence this quantity normalizes the number of successful recommen-
dations to take into account the fact that increasing N increases the number
of top-N products recommended by the algorithm.

F1 statistic. The formal definition is

F1 statistic =
2 · Precision · Recall

Precision + Recall
,
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and it is commonly used to reconcile the mutually conflicting nature of the
precision and recall statistics. (Notice, for example, that increasing N tends
to increase recall but decreases precision [58].)

Prior to presenting the results of our experimental evaluation, we briefly discuss our
choices for the four parameters involved in our experiments. First, recall that c
denotes the number of basis users that reveal all their pairwise product preferences to
the algorithm; we let c be all powers of 2 between 2 and 1024. This choice provides a
clear picture of the behavior of tensor-CUR for very small (e.g., c ≤ 32), medium-sized
(e.g., 64 ≤ c ≤ 256), and large (e.g., c = 512, 1024) basis sets. Second, N is set to be
either 5 or 10, implying the algorithm is successful if it recommends one of the top 5
or top 10 products for a certain user. Third, K is set to be equal to N or 2N , and
hence the algorithm is allowed to suggest either 5 or 10 products for the top-5 case
and either 10 or 20 products for the top-10 case. Fourth, the number of fibers that
the tensor-CUR algorithm samples or, in other words, the number of product-product
pairwise comparisons of a target user that are revealed to the algorithm is again set
to all powers of 2 between 2 and 1024; the rationale is the same as above. In the first
experiment, we will set the number of fibers to 1002 = 10,000 (all available fibers), in
order to illustrate the limiting behavior of tensor-CUR. We emphasize that both the
sampling of slabs and the sampling of fibers are done uniformly at random without
replacement, and hence sampling 10,000 fibers is equivalent to picking all the fibers.

In our first experiment, we seek to determine an upper bound on the quality of
recommendations based on using a small number of basis slabs and all fibers for the
remaining users. Clearly, this experiment seeks only to characterize the limiting be-
havior of tensor-CUR, since having all fibers trivially allows perfect recommendations.
Figures 11 and 12 illustrate that almost all users can be very accurately expressed as
a linear combination of a small number of basis users, chosen uniformly at random
without replacement. In later experiments, given this observation, we will attempt to
approximate the coefficients of this linear combination using a small number of fibers.

Figure 11 shows the results for N = 5. Notice that using 512 or 1024 slabs and
only 5 suggestions results in 4 or more successful recommendations; if the algorithm
is allowed to make 10 suggestions, 64 or more slabs are enough to make roughly
four successful recommendations. (As a trivial but weak lower bound on quality, by
making five suggestions uniformly at random, we expect that we will make ca. .5 pre-
dictions correctly, since we are making 5 predictions and there are 100 products.)
Notice that the F1 statistic shows a change of phase as the number of slabs increases
above 256: making more than 5 suggestions is not necessary anymore, since the num-
ber of basis slabs suffices to accurately capture the high-ranking products. Given less
than 256 basis slabs (e.g., 128 slabs), our results suggest that making 10 suggestions
is qualitatively better. The same conclusions essentially apply to Figure 12 as well,
which shows the results for N = 10. However, we should emphasize that the effect
of making 20 versus 10 suggestions, as measured by the F1 statistic, is much less ob-
vious in this case. Notice that making 20 suggestions does not result in a significant
advantage even for a small number of basis slabs and is clearly worse as the number
of basis slabs increases above 128.

In our second experiment, we show that by using a basis of preference information
from (say) 128 users and performing a small number of product-product preference
queries on a new user, we can make a large number of high-quality recommendations
both for the top-5 and top-10 cases; see Figures 13 and 14, respectively. Since we are
sampling a small number of fibers in this case, we are performing an approximate least-
squares fit using just the information about a new user contained in a small number
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Fig. 11. Effect of user basis size on top-5 recommendation quality using complete pairwise
product-product preference information. The basis users are sampled uniformly at random without
replacement.

of fibers. If the algorithm is allowed to make 10 suggestions, the statistics for top-5
recommendations remain competitive with the upper bounds suggested in Figure 11.
However, if the algorithm is allowed only 5 suggestions, the results are markedly worse,
especially given a small number of pairwise product-product comparisons. Naturally,
the F1 statistic illustrates that suggesting 10 products is now always preferable to
suggesting 5 products. This observation changes when we evaluate the algorithm
on top-10 recommendations, where the F1 statistic shows that suggesting 10 or 20
products is essentially the same, and thus suggesting 10 products is the right course
of action. Notice that even though the performance of the algorithm is worse than
the optimal one of Figure 12, it is clearly well above the random level. We would also
like to note the nonmonotonicity near ca. 64 queries; this seems to be a fitting issue.
Figures 15 and 16 show the results for top-10 recommendations when the number of
basis users is set to 64 and 256, respectively. The results are qualitatively similar,
but it is worth noticing that the algorithm making 10 suggestions outperforms the
algorithm making 20 suggestions given 256 basis slabs and more than 256 fibers. The
results for top-5 recommendations using 64 and 256 basis users are omitted, since
they are qualitatively the same as in Figure 11.

In our third and final experiment, we present the distribution of correct top-10
predictions for the 14,116 users by using 64 or 128 basis users and a variable number
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Fig. 12. Effect of user basis size on top-10 recommendation quality using complete pairwise
product-product preference information. The basis users are sampled uniformly at random without
replacement.
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Fig. 13. Effect of number of sampled fibers (pairwise product-product comparisons) on the top-5
recommendation quality given 128 basis users, sampled uniformly at random without replacement.
The fibers are also sampled uniformly at random without replacement.
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Fig. 14. Effect of number of sampled fibers (pairwise product-product comparisons) on the top-
10 recommendation quality given 128 basis users, sampled uniformly at random without replacement.
The fibers are also sampled uniformly at random without replacement.
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Fig. 15. Effect of number of sampled fibers (pairwise product-product comparisons) on the top-
10 recommendation quality given 64 basis users, sampled uniformly at random without replacement.
The fibers are also sampled uniformly at random without replacement.

of pairwise product-product comparisons; see Figure 17. Clearly, as the number of
basis slabs or sampled fibers increases, the curves are shifted to the right, illustrating
that a larger number of users receives more accurate recommendations. In this case,
we plot results for the algorithm making 10 suggestions. Similar results are seen in
all other cases.

In evaluating performance, we distinguish between prediction and reconstruction.
In the former, we want to know how much user i will like product j (in a ratings model)
or whether user i will prefer product j or product k (in a preference model). In the
latter, which is of interest to us, we want to give a list of, e.g., the top-10 products for
user i. We use tensor reconstruction as an intermediate step to making high-quality
recommendations.

6. Conclusion. We have developed a tensor-based extension of the matrix CUR
decomposition. This tensor-CUR decomposition is of most interest when the data may
be modeled by a variable subscripted by three or more indices and when one of those
indices/modes is qualitatively different from the others. In this case, the tensor-CUR
decomposition approximately expresses the original data tensor in terms of a basis
consisting of underlying subtensors that are actual data elements and thus that have
natural interpretation in terms of the processes generating the data. In addition, we
have applied the tensor-CUR decomposition to problems in two diverse domains of
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Fig. 16. Effect of number of sampled fibers (pairwise product-product comparisons) on the top-
10 recommendation quality given 256 basis users, sampled uniformly at random without replacement.
The fibers are also sampled uniformly at random without replacement.

data analysis: hyperspectral medical image analysis and consumer recommendation
system analysis.

Similarities and differences between the methods discussed in this paper and the
image analysis techniques known as “eigenfaces” and “tensor-faces” should be men-
tioned. The method of eigenfaces computes the eigenvectors of the covariance matrix
of a large number of images of faces [62]. Eigenanalysis (and, more generally, SVD
analysis) successively computes axes of maximum variation in the data, conditioned
on being orthogonal to previously computed axes. Since this orthogonality is not
present in natural images of faces, its imposition results in the characteristic “ring-
ing” oscillations generated by eigenanalysis of facial images that in turn leads to
difficulty interpreting the eigenfaces after the first few. The methods of the present
paper are applicable to a set of time-resolved or frequency-resolved images of a single
object. One could apply SVD-type analysis for data compression, i.e., to reduce the
dimensionality along the slabs and/or the fibers. On the other hand, it will likely
be difficult to interpret the principal components. Our tensor-CUR algorithms pro-
vide approximate low-rank tensor decompositions in terms of actual data elements.
If orthogonality is not present in the data, e.g., if there are different fibers and/or
pixels, then the tensor-CUR decompositions will be in terms of nonorthogonal data
elements. Partly in response to ringing artifacts of eigenface analysis, a tensor-based
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Fig. 17. Distribution of number of users getting a given number of successful top-10 recom-
mendations for a basis consisting of 64 or 128 users for different numbers of sampled fibers. Both
the basis slabs and the fibers are sampled uniformly at random without replacement.

analysis of facial images has been introduced [65]. This analysis involves applying a
tensor-based generalization of the SVD to a user-defined set of features derived from a
set of images of faces. A randomized variant of this generalization has been presented
and analyzed in [23]. This randomized tensor-SVD algorithm bears some similarity
to the randomized tensor-CUR algorithms described in this paper. It differs, how-
ever, in that there is no preferred mode; instead, the tensor is “unfolded” along every
mode, and a projection along each mode is constructed by sampling columns along
that mode.

We conclude with several related extensions of the present work. First, it would be
worth examining how these methods can be coupled with more traditional methods
of image analysis and recommendation system analysis. This could be performed
either by choosing slabs and fibers and then analyzing each slab or fiber with more
traditional methods, or by using structural insights from more traditional methods
to construct the sample of slabs and fibers, or by compressing each individual slab
with more traditional methods. Second, it would be worth determining whether the
sample of slabs and/or fibers could be chosen to preserve some interesting multilinear
structure in the data tensors that is damaged by the sampling techniques we have
used. Third, it would be worth determining the extent to which it would be possible
to combine fibers from several data cubes into a “dictionary” that could be used, along
with a few slabs in a new data cube, to describe the entire new data cube. Fourth, it
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would be worth understanding in greater detail the relationship between the methods
we have presented for analyzing tensor data and the well-studied model proposed
by Tucker, the “canonical decomposition” model, the “parallel factors” model, and
the higher-order SVD model; due to lack of space, a comparison with these models
has been omitted. Finally, cross-approximation techniques are powerful and well-
developed adaptive methods for low-rank approximation of matrices [6, 63]; it is
worth understanding in greater detail the relationship between these methods and
matrix CUR decompositions.
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