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Abstract

The only general class of MAX-rCSP problems for which Polynomial Time Approximation
Schemes (PTAS) are known are the dense problems. In this paper, we give PTAS’s for a
much larger class of weighted MAX-rCSP problems which includes as two important special
cases — the dense problems and, for r = 2, all metric instances (where the weights satisfy the
triangle inequality) and quasimetric instances; for general r, our class includes a generalization
of metrics. (We note that a PTAS is known specifically for the metric case of the MAX-CUT
and Partitioning problems.) Our algorithms are based on low-rank approximations. Besides
the algorithmic result, our method has two novel features — first, a way of approximating a
tensor by the sum of a small number of “rank 1” tensors, akin to the traditional Singular Value
Decomposition which may be of independent interest and, second, a natural and simple way of
scaling the weights.

1 Introduction

The singular value decomposition is a useful tool in the design of efficient algorithms for a variety of
problems (e.g., [FKV98, Mc01]). In this paper, motivated by boolean constraint satisfaction prob-
lems (CSP’s) with r variables per constraint, we propose an extension of low-rank approximation to
tensors, i.e., r-dimensional real arrays. We give an efficient algorithm for finding such an approxi-
mation and apply it to weighted MAX-rCSP, i.e., the problem of finding a boolean assignment that
maximizes the total weight of satisfied constraints. As a consequence, for any MAX-rCSP that
satisfies a certain density condition, we obtain a polynomial-time approximation scheme. In the
past, there has been much progress on special cases, in particular there are polynomial-time approx-
imation schemes for dense unweighted problems [AKK95, F96, FK96, GGR96, FK00, AFKK02],
and several cases of 2-CSP with metric weights including maxcut and partitioning [FK98, I99,
FKKR03, FKK04]. We will show that our density condition captures all known special cases for
which PTAS’s exist as well as the metric MAX-2CSP (for which no PTAS was known before) and
some generalizations.
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A MAX-rCSP problem can be formulated as a problem of maximizing a homogeneous de-
gree r polynomial in the variables x1, x2, . . . xn, (1 − x1), (1 − x2), . . . (1 − xn). Let S = {y =
(x1, x2, . . . xn, (1− x1), (1− x2), . . . (1− xn)) : xi ∈ {0, 1}} be the solution set. Then the problem is

Maxy∈S

∑

i1,i2,...ir

Ai1,i2,...iryi1yi2 . . . yir .

where A is a given symmetric r-dimensional array (i.e., Ai1,i2,...ir = Aiσ(1),iσ(2),...iσ(r)
for any permu-

tation σ) with nonnegative real entries. The entries of the r-dimensional array A can be viewed as
the weights of an r-uniform hypergraph on n = |V | vertices.

Our main tool to solve this problem is a generalization of low-rank approximation. A rank-1
tensor is the outer product of r vectors x(1), x(2), . . . x(r−1), x(r), is the tensor or r-dimensional array

whose (i1, i2, . . . ir)’th entry is x
(1)
i1

x
(2)
i2

, . . . x
(r)
ir

; it is denoted x(1)⊗x(2)⊗ . . . x(r). A rank one matrix
is the outer product of two vectors and a low rank matrix is the sum of a small number of these.
We will show the following:

1. For any r-dimensional array A, there exists a good approximation by the sum of a small
number of rank-1 tensors.

2. We can algorithmically find such an approximation.

In the case of matrices, traditional Linear Algebra algorithms find good approximations. In-
deed, we can find the best approximations under both the Frobenius and L2 norms using the
Singular Value Decomposition (SVD). Unfortunately, there is no such theory (or algorithm) for
r-dimensional arrays when r ≥ 2. Here, we will develop sampling-based algorithms for finding
low-rank approximations as defined above. These claims are formalized in the next lemma and
theorem (see Section 2 for the definition of the generalized norms).

Lemma 1. For any A, ε > 0, there exist k ≤ 1/ε2 rank-1 tensors, B1, B2, . . . Bk such that

||A − (B1 + B2 + . . . Bk)||2 ≤ ε||A||F .

Theorem 2. For any A, ε > 0, we can find k rank 1 tensors B1, B2, . . . Bk, where k ≤ 4/ε2, in

time (n/ε)O(1/ε4) such that with high probability at least 3/4 we have

||A − (B1 + B2 + . . . Bk)||2 ≤ ε||A||F .

The proofs and the algorithm for low-rank tensor approximation are given in Section 2.
Next, we give a density condition so that if a MAX-rCSP viewed as a weighted r-uniform

hypergraph satisfies this condition, then there is a PTAS for the problem. This condition is a new
unified framework for a large class of weighted MAX-rCSP’s.

Define the node weights D1, . . . , Dn of A and their average as

Di =
∑

i2,i3,...ir∈V

Ai1,i2,...i D̄ =
1

n

n
∑

i=1

Di.

Definition 1. The core-strength of a weighted r-uniform hypergraph given by an r-dimensional

tensor A : V × V × . . . × V → R is defined as
(

n
∑

i=1

Di

)r−2
∑

i1,i2,...,ir∈V

A2
i1,...,ir

∏r
j=1(Dij + D̄)
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We say that a class of weighted hypergraphs (MAX-rCSP’s) is core-dense if the core-strength
is O(1) (i.e., independent of A,n).

To motivate the definition, first suppose the class consists of unweighted hypergraphs. Then if
a hypergraph in the class has E as the edge set with m edges, then the condition says that

mr−2
∑

(i1,...,ir)∈E

1
∏r

j=1(Dij + D̄)
= O(1). (1)

Note that here the Di’s are the degrees of the hypergraph vertices in the usual sense of the number
of edges incident to the vertex. It is easy to see this condition is satisfied for dense hypergraphs,
i.e., for r− uniform hypergraphs with Ω(nr) edges, because in this case, D̄ ∈ Ω(nr−1).

The condition can be specialized to the case r = 2, where it says that

∑

i,j

A2
ij

(Di + D̄)(Dj + D̄)
= O(1). (2)

We will show that all metrics satisfy this condition. Also, so do quasimetrics. These are weights
that satisfy the triangle inequality up to a constant factor (e.g., powers of a metric) and arise in
clustering applications [FKKR03, SS73, FK00]. So, as a special case of our main result, we get
PTAS’s for metrics and quasimetrics for r = 2 case. (While PTAS’s were known for general r for
the dense case, they were not known previously for the metric case.) Our main algorithmic result
is the following.

Theorem 3. There is a PTAS for any class of core-dense weighted MAX-rCSP problems.

The algorithm and proof are given in Section 3. We will also show (in Section 3.1) that a
generalization of the notion of metric for higher r also satisfies our core-dense condition.

Theorem 4. Suppose for a class of MAX-rCSP problems, the tensors A satisfy the following local

density condition:

∀ i1, . . . , ir ∈ V, Ai1,...,ir ≤ c

rnr−1

r
∑

j=1

Dij

where c is a constant. Then there is a PTAS for the MAX-rCSP defined by A.

The condition in the theorem says that no entry of A is “wild” in that it is at most a constant
times the average entry in the r “planes” passing through the entry. The reason for calling such
tensors “metric tensors” will become clear when we show in Section 3.1 that for r = 2, metrics do
indeed satisfy this condition. Theorem 4 has the following corollary for “quasi-metrics”, where the
triangle inequality is only satisfied within constant factors - Aik ≤ c(Aij + Ajk).

Corollary 5. There exists a PTAS for metric and quasimetric instances of MAX-CSP.

2 Fast tensor approximation via sampling

Corresponding to A, there is a r-linear form which for a set of r vectors x(1), x(2), . . . x(r−1), x(r), is
defined as

A(x(1), x(2), . . . x(r)) =
∑

i1,i2,...ir

Ai1,i2,...ir−1,irx
(1)
i1

x
(2)
i2

, . . . x
(r)
ir

.
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We will use the following two norms of r-dimensional arrays corresponding to the Frobenius norm
and L2 norm for matrices.

||A||F =
(

∑

A2
i1,i2,...ir

)
1
2 ||A||2 = max

x(1),x(2),...x(r)

A(x(1), x(2), . . . x(r−1), x(r))

|x(1)||x(2)| . . . .

We begin with a proof of Lemma 1 about the existence of a low-rank tensor decomposition.

Proof. If ||A||2 ≤ ε||A||F , then we are done. If not, there are x(1), x(2), . . . , x(r), all of length 1 such
that A(x(1), x(2), . . . , x(r)) ≥ ε||A||F . Now consider the r−dimensional array

B = A − (A(x(1), x(2), . . . , x(r)))x(1) ⊗ x(2) ⊗ . . . x(r).

It is easy to see that ||B||2F = ||A||2F − (A(x, y, z, . . .)2). We may repeat on B and clearly this
process will only go on for at most 1/ε2 steps.

From the proof of Lemma 1, it suffices to find x(1), x(2), . . . , x(r) all of length 1, maximizing
A(x(1), x(2), . . . , x(r)) to within additive error ε||A||F /2. We will give an algorithm to solve this
problem. We need a bit more notation. For any r − 1 vectors x(1), x(2), . . . x(r−1), we define
A(x(1), x(2), . . . x(r−1), ·) as the vector whose i’th component is

∑

i1,i2,...ir−1

Ai1,i2,...ir−1,ix
(1)
i1

x
(2)
i2

, . . . x
(r−1)
ir−1

.

Here is the idea behind the algorithm. Suppose z(1), z(2), . . . z(r) are the (unknown) unit vectors
that maximize A(x(1), x(2), . . .). Since

A(z(1), z(2), . . . z(r−1), z(r)) = z(r) · A(z(1), z(2), . . . z(r−1), ·),

we have

z(r) =
A(z(1), z(2), . . . z(r−1), ·)
|A(z(1), z(2), . . . z(r−1), ·)| .

Thus, if we had z(1), z(2), . . . z(r−1), then we could find z(r). In fact, we can estimate the components
of z(r) if we had sufficiently many random terms in the sum A(z(1), z(2), . . . z(r−1), ·). It turns out
that we need only s = O(1/ε2) terms for a good estimate. Now we do not need to know the
z(1), z(2), . . . , z(r−1) completely; only s(r−1) of their coordinates in total are needed for the estimate.
We enumerate all possibilities for the values of these coordinates (in steps of a certain size) and one
of the sets of coordinates we enumerate will correspond to the optimal z (1), z(2), . . . z(r−1), whence
we get the an estimate of z(r). For each candidate z(r), we can reduce the problem to maximizing
an (r − 1)-dimensional tensor and we solve this recursively.
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Tensor decomposition

Set η = ε2/100r
√

n and s = 105r/ε2.

1. Pick s random (r − 1)-tuples (i1, i2, . . . ir−1) with probabilities proportional to the sum
of squared entries on the line defined by it:

p(i1, i2, . . . ir−1) =

∑

i A2
i1,i2,...ir−1,i

||A||2F
.

Let I be the set of s r − 1 tuples picked.

2. For each i1, i2, . . . ir−1 ∈ I, enumerate all possible values of z
(1)
i1

, z
(2)
i2

, . . . z
(r−1)
ir−1

whose
coordinates are in the set

J = {−1,−1 + η,−1 + 2η, . . . 0, . . . 1 − η, 1}s(r−1).

(a) For each set of ẑ(t), for each i ∈ Vr, compute

yi =
∑

(i1,i2,...ir−1)∈I

A(i1, i2, . . . ir−1, i)ẑ
(1)
i1

ẑ
(2)
i2

. . . ẑ
(r−1)
ir−1

.

and normalize the resulting vector y to be a unit vector (a candidate for z (r)).

(b) Consider the (r − 1)-dimensional array A(y) defined by

(A(y))i1 ,i2,...ir−1 =
∑

i

Ai1,i2,i3...ir−1,i yi

and apply the algorithm recursively to find the optimum

A(y)(x(1), x(2), . . . x(r−1)) |x(1)| = . . . |x(r−1)| = 1

to within additive error ε||A(y)||F /2. (Note that ||A(y)||F ≤ ||A||F by Cauchy-
Schwartz).

3. Output the set of vectors that given the maximum among all these candidates.

We will now analyze the algorithm and consequently prove Theorem 2. We begin by showing
the discretization does not cause any signicant loss.

Lemma 6. Let z(1), z(2), . . . z(r−1) be the optimal unit vectors. Suppose w(1), w(2), . . . w(r−1) are

obtained from the z(t) ’s by rounding each coordinate down to the nearest integer multiple of η.
Then,

∣

∣

∣A(z(1), z(2), . . . z(r−1), ·) − A(w(1), w(2), . . . w(r−1), ·)
∣

∣

∣ ≤ ε2

100
||A||F .
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Proof. We may write

∣

∣

∣
A(z(1), z(2), . . . z(r−1), ·) − A(w(1), w(2), . . . w(r−1), ·)

∣

∣

∣

≤
∣

∣

∣
A(z(1), z(2), . . . z(r−1), ·) − A(w(1), z(2), . . . z(r−1), ·)

∣

∣

∣
+

∣

∣

∣A(w(1), z(2), . . . z(r−1), ·) − A(w(1), w(2), z(3), . . . z(r−1), ·)
∣

∣

∣ . . .

A typical term above is

∣

∣

∣A(w(1), w(2), . . . w(t), z(t+1), . . . z(r−1), ·) − A(w(1), w(2), . . . w(t), w(t+1), z(t+2), . . . z(r−1), ·)
∣

∣

∣

≤
∣

∣

∣
B(z(t+1) − w(t+1))

∣

∣

∣
≤ ||B||2|z(t+1) − w(t+1)| ≤ ||B||F η

√
n ≤ ||A||F η

√
n.

Here, B is the matrix defined as

Bij =
∑

j1,j2,...jt,jt+2...jr−1

Aj1,j2,...jt,i,jt+2,...jr−1,jw
(1)
j1

. . . w
(t)
jt

z
(t+2)
jt+2

. . . z
(r−1)
jr−1

The claim follows.

Next, we analyze the error incurred by sampling.
Consider an (r − 1)-tuple (i1, i2, . . . ir−1) ∈ I and define the random variables variables Xi for

i by

Xi =
Ai1,i2,...ir−1,iw

(1)
11

w
(2)
i2

. . . w
(r−1)
ir−1

p(i1, i2, . . . ir−1)
.

It follows that
E(Xi) = A(w(1), w(2) . . . w(r−1), ·)i.

We estimate the variance:

∑

i

Var(Xi) ≤
∑

i

∑

i1,i2,...

A2
i1,i2,...ir−1,i(w

(1)
i1

. . . w
(r−1)
ir−1

)2

p(i1, i2, . . .)

≤
∑

i1,i2,...

(z
(1)
i1

. . . z
(r−1)
ir−1

)2

p(i1, i2, . . .)

∑

i

A2
i1,i2,...ir−1,i

≤ ||A||2F .

Consider the yi computed by the algorithm when all ẑ
(t)
it

are set to w
(t)
it

. This will clearly happen
sometime during the enumeration. This yi is just the sum of s i.i.d. copies of Xi, one for each
element of I. Thus, we have that

E(y) = sA(w(1), w(2) . . . w(r−1), ·) Var(y) = E(|y − E(y)|2) ≤ s||A||2F .

We will sketch the rest of the argument. Define

ζ = A(z(1), z(2), . . . z(r−1), ·) and ∆ = y − sζ.
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From the above, it follows that with probability at least 1 − (1/10r), we have

|∆| ≤ 10r
√

s||A||F .

Using this,
∣

∣

∣

∣

y

|y| −
ζ

|ζ|

∣

∣

∣

∣

=
|(y|ζ| − ζ|y|)|

|y||ζ|

=
1

|y||ζ| |(∆ + sζ)|ζ| − ζ(|y| − s|ζ| + s|ζ|)|

≤ 2|∆|
(s|y|) ≤ ε

50
,

assuming |y| ≥ ε||A||F /100. If this assumption does not hold, we know that the |ζ| ≤ ε||A||F /20
and in this case, the all-zero tensor is a good approximation to the optimum. From this, it can be
shown that

||A(
y

|y| ) − A(
ζ

|ζ| )||F ≤ ε

10
||A||F .

Thus, for any r − 1 unit length vectors a(1), a(2), . . . a(r−1), we have
∣

∣

∣

∣

A(a(1), a(2), . . . a(r−1),
y

|y|) − A(a(1), a(2), . . . a(r−1),
ζ

|ζ|)
∣

∣

∣

∣

≤ ε

10
||A||F .

This implies that the optimal set of vectors for A(y/|y|) are nearly optimal for A(ζ/|ζ|). Since
z(r) = ζ/|ζ|, the optimal vectors for the latter problem are z (1), . . . , z(r−1).

The running time of algorithm is dominated by the number of candidates we enumerate, and is

poly(n)

(

1

η

)s2r

=
(n

ε

)O(1/ε4)
.

2.1 Optimizing in the constant rank case

We have a vector x of and A(x, 1 − x) is a form of degree r in these variables (as noted in the
introduction, any MAX-rCSP problem can be posed as a question of maximizing this form over
(x, 1 − x) ∈ {0, 1}2n. From the above, it now suffices to deal with the case when A is of constant
rank (is the sum of O(1) rank 1 tensors.) The method here is similar to that in [AFKK02] and we
give a brief sketch.

Suppose v(1), v(2), . . . v(l) are the O(1) vectors which together span the space of all the vectors
occuring in the constant rank expressions for A. Then the value of the polynomial at x is completely
determined by the l dimensional vector {v(i) · x}. One can prove bounds on {v(i) · x}, so there is
box B ⊆ R

l where the vectors lie. We cut B up into small boxes so that inside each small box,
A(x, 1 − x) does not vary much. The number of small boxes will be exponential only in l which is
O(1).

We then determine which small boxes are “feasible”. i.e., which can be realized by 0-1 xi ’s. This
is in general an Ineteger Program, but it can be shown that if we relax this to a Linear Program,
any basic feasible solution to the LP has only O(1) fractional variables, so rounding causes only a
small error. So, it can be shown that it suffices to check LP feasibility for each small box. Now we
take the feasible boxes and in each of them, compute approximately the value of A(x, 1 − x) and
take the best of these.
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3 Approximation schemes for core-dense MAX-rCSP’s

In this section, we give a PTAS for core-dense weighted MAX-rCSP’s proving Theorem 3.
We wish to solve the problem

max
x∈{0,1}n

A(x, x, . . . , x).

The algorithm first scales the entries of A to get an r-dimensional tensor B, as follows :

Bi1,...,ir =
Ai1,...,ir
∏r

j=1 αij

where α = (α1, . . . , αn) ∈ R
n is defined by αj =

√

D̄ + Dj.

Note that for any x, using the substitution, xj = yj/αj , we get

A(x, . . . , x) = B(y, . . . , y).

Then, applying the sampling algorithm from Section 2 to get a tensor B̂ of rank at most k satisfying

||B − B̂||2 ≤ ε

2
||B||F .

We then solve the following problem approximately to within additive error ε||B||F /2.

max
y:yj∈{0,αj}

B̂(y, y, . . . , y).

The error of the approximation is bounded by

max
y:yj∈{0,αj}

|(B − B̂)(y, . . . , y)| ≤ max
y:|y|≤|α|}

|(B − B̂)(y, . . . , y)|

≤ |α|r||B − B̂||2
≤ ε|α|r||B||F .

ε(

n
∑

i=1

(D̄ + Di))
r/2





∑

i1,...,ir

A2
i1,...,ir

∏r
j=1 Dij





1/2

≤ ε2r/2c(

n
∑

i=1

Di)

where c is the bound on the core-strength, noting that
∑

i(D̄+Di) = 2
∑

i Di. This proves Theorem
3.

Remark We could have carried this out with any “scaling” vector α. The current choice turns
out to be useful for the two important special cases here. Note that we are able to add the D̄
almost “for free” since we have

∑

i Di + D̄ ≤ 2
∑

Di. If we did not add the D̄ term, then nodes
with very low degrees would cause us trouble.

3.1 Metric tensors

Lemma 7. Let A be an r-dimensional tensor satisfying the following local density condition:

∀ i1, . . . , ir ∈ V, Ai1,...,ir ≤ c

rnr−1

r
∑

j=1

Dij

where c is a constant. Then A is a core-dense hypergraph with core-strength c.
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Proof. We need to bound the core-strength of A. To this end,

∑

i1,i2,...,ir∈V

A2
i1,...,ir

∏r
j=1(Dij + D̄)

≤ c

rnr−1

∑

i1,i2,...,ir∈V

Ai1,...,ir

∑r
j=1 Dij

∏r
j=1(Dij + D̄)

≤ c

rnr−1

∑

i1,i2,...,ir∈V

Ai1,...,ir

r
∑

j=1

1
∏

k∈{1,...,r}\j(Dik + D̄)

≤ c

rnr−1





∑

i1,i2,...,ir∈E

Ai1,...,ir





r

D̄r−1

=
c

(
∑n

i=1 Di)r−2
.

Thus, the core-strength is at most

(
n
∑

i=1

Di)
r−2

∑

i1,i2,...,ir∈E

A2
i1,...,ir

∏r
j=1(Dij + D̄)

≤ c.

Theorem 4 follows directly from Lemma 7 and Theorem 3. We next prove Corollary 5 for
metrics.

Proof. (of Corollary 5) For r = 2, the condition of Theorem 4 says that for any i, j ∈ V ,

Ai,j ≤
c

2n
(Di + Dj).

We will verify that this holds for a metric MAX-2CSP with c = 2. When the entries of A form a
metric, for any i, j, k, we have

Ai,j ≤ Ai,k + Ak,j

and so

Ai,j ≤ 1

n

(

n
∑

k=1

Ai,k +

n
∑

k=1

Aj,k

)

=
1

n
(Di + Dj).

We are going to extend now the notion of a metric. A nonnegative real function d defined on
M × M is called quasimetric (cf. [MS79], [S03]; [MP00]) if

d(x, y) = 0 exactly when x = y, d(x, y) = d(y, x), and d(x, z) ≤ C(d(x, y) + d(y, z)) (3)

the last for some positive real number C, and all x, y, z ∈ M . Thus if (3) holds with C = 1,
then d is a metric on M . The proof of Corollary 5 easily extends to quasimetrics. An interesting
property of a quasimetric d(x, y) is that d(x, y)a is also a quasimetric for every positive real number
a (cf.[MS79]). Thus this notion encompasses a large number of interesting distance functions which
are not metrics, like the squares of Euclidean distances used in clustering applications.
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3.2 Core-dense graphs

We now confine attention to the case of graphs. As we saw already, dense graphs are core-dense
graphs, but the converse is not in general true. One simple example is a graph consisting of a dense
graph on Ω(n3/4) vertices, up to O(n) edges in the subraph defined by the rest of the vertices and
up to O(n5/4) edges from high-degree vertices of the dense subgraph to the rest. We show below
that as in this example, in fact there are always “large” dense subgraphs in a core-dense graph.

Theorem 8. A core-dense graph with m edges contains a dense induced subgraph with θ(
√

m)
vertices.

Proof. Since G is core-dense, we have

∑

i,j∈E

1

(di + d̄)(dj + d̄)
≤ c

for some c.
We assume that m < n2/16c; otherwise, G itself is a dense graph.
We partition the vertices of the graph into 3 subsets R,S, T according to their degrees:

R = {i ∈ V : di ≥ 8
√

m}

S = {i ∈ V :

√
m

64c
≤ di < 8

√
m}

T = {i ∈ V : di <

√
m

64c
}

We will prove that |S| ≥ √
m/8. Suppose not for a contradiction.

Using the density condition, the number of edges in the subgraph induced by T is at most

c

(√
m

64c
+

m

n

)2

<
m

16
.

Similarly, the number of edges between S and T is at most

c(8
√

m +
m

n
)(

√
m

64c
+

m

n
) <

m

8
.

Next, the number of vertices in R is at most 2m/8
√

m =
√

m/4. Thus the total number of edges
in the graph induced by R is at most m/32. Also, the number of edges between R and S is at most

|S|
√

m

4
<

m

32
.

Addding up these bounds, the total number of edges in G not in the subgraph induced by S is at
most m/2. Therefore, the number of vertices in S is at least

m

8
√

m
=

√
m

8

which contradicts our assumption.
Thus G contains an induced subgraph with

√
m/8 vertices and minimum degree

√
m/64c.
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