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Abstract—We propose a search-free beamspace tensor-ESPRIT
algorithm for millimeter wave MIMO channel estimation. It is a
multidimensional generalization of beamspace-ESPRIT method
by exploiting the multiple invariance structure of the measure-
ments. Geometry-based channel model is considered to contain
the channel sparsity feature. In our framework, an alternating
least squares problem is solved for low rank tensor decomposition
and the multidimensional parameters are automatically associ-
ated. The performance of the proposed algorithm is evaluated
by considering different transformation schemes.

Index Terms—Tensor decomposition, beamspace ESPRIT, mil-
limeter wave, MIMO, channel estimation

I. INTRODUCTION

Fifth generation (5G) communication networks will likely
adopt millimeter wave (mmWave) and massive multiple-input-
multiple-output (MIMO) technologies [1]. In particular, mm-
wave can provide extremely high data rates to users through
dense spatial multiplexing. While mmWave communications
also face a number of challenges. Among these, sophisticated
beamforming at the transmitter and/or receiver side stands
out. To achieve the highly directional links, knowledge of
the propagation channel is required. Geometry-based channel
modeling is widely used, because it inherently contains the
channel sparsity feature. The dominant multipath components
can be parametrized in terms of their azimuth and elevation
angles at the transmitter and receiver, as well as the corre-
sponding propagation delays and Doppler shifts. Under certain
conditions, estimation of these channel parameters gives rise
to a multidimensional harmonic retrieval problem. Among the
available techniques, maximum-likelihood estimator attains
optimum performance in the presence of white Gaussian noise,
but with heavy computational load because a multidimensional
search is required. Alternatively, subspace method achieves a
good balance between accuracy and complexity [2]. State-of-
the-art subspace methods include multiple signal classification
(MUSIC) [3], estimation of signal parameters via rotational in-
variance techniques (ESPRIT) [4], matrix pencil [5], principal-
singular-vector utilization for modal analysis [6] and their
variants.

In the traditional subspace-based approaches, the R-D sig-
nals are stored in matrices by stacking operations. However,
the multidimensional grid structure inherent in the data is
ignored for such a representation. Tensor is a natural approach

to store and manipulate multidimensional data (R ≥ 3). It can
be thought of as a R-D array, whereby the order of a tensor
is the number of its modes or dimensions; these may include
space, time, frequency, trials and classes [7]. Many real-world
multi-way data are lying on a low dimensional subspace.
Low rank tensor decomposition is a powerful technique to
capture the underlying latent structure of the data [8]. CAN-
DECOMP/PARAFAC (CP) and Tucker are two widely used
techniques for low rank tensor decomposition. CP decomposes
a tensor as a sum of rank-one tensors, and the Tucker decom-
position is a higher-order extension of principal component
analysis [9]. With the development of tensor decomposition
techniques, the subspace methods have been extended to their
multi-dimensional variants, such as R-D MUSIC [10], multi-
dimensional folding (MDF) [11] and tensor-ESPRIT [12].

Comparing with operation in element space, beamspace
model offers a compromise between system performance
and hardware complexity [13]. It has a number of advan-
tages, including reduced computational complexity [14], lower
signal-to-noise ratio (SNR) resolution thresholds, robustness to
sensor perturbations, and deviations from the assumed noise
model [15]. Recently, 3-D beamspace ESPRIT is developed
for channel estimation of a hybrid mmWave massive MIMO
system [16]. The model is described in matrix framework
and singular-value decomposition (SVD) is applied to obtain
the signal subspace. It is interesting to note that, low-rank
tensor decomposition-aided channel estimation for mmWave
MIMO-OFDM systems is developed in [17]. However, for
each dimension, one dimensional search is required and the
complexity of the spectral search may still be unacceptably
high for real-time problems [2]).

In this paper, we propose a search-free R-D beamspace
tensor-ESPRIT algorithm for mmWave channel estimation.
The proposed approach is higher-order singular value decom-
position (HOSVD) based and it is the R-D generalization
of the beamspace-ESPRIT method [18]. The standard tensor-
ESPRIT in element space is achieved by using an identity
matrix. Furthermore, multidimensional parameter association
is critical but challenging for both 5G communications and
localization. For the proposed approach, the R-D parameters
are automatically associated. A comparison of the relevant
subspace algorithms is shown in Table I.



TABLE I
A COMPARISON OF THE RELATED SUBSPACE ALGORITHMS

Element space Beamspace

Matrix framework [3]–[6], etc. [14]–[16], [18], [19], etc.

Tensor framework [11], [12], etc. [17], proposed

II. PRELIMINARY AND SYSTEM MODEL

We use (·)H , (·)∗ and (·)−1 to denote Hermitian transpose,
complex conjugate and matrix inverse, respectively. The set
of unitary matrices of size m × n is denoted as Om×n. In
this paper, we follow the tensor operations defined in [20].
The (i1, i2, · · · , iR) entry of an R-D tensor A is denoted as
ai1,i2,··· ,iR . Scalar product of two tensors is defined as

< A,B >=
∑
i1

∑
i2

· · ·
∑
iR

b∗i1,i2,··· ,iRai1,i2,··· ,iR . (1)

The Frobenius norm of a tensor A is written as

‖A‖F =
√
< A,A >. (2)

The product of a tensor A ∈ CI1×I2×···×IR and a matrix
U ∈ CJr×Ir along the rth dimension is denoted by A×r U,
it is an (I1 × I2 × · · · × Ir−1 × Jr × Ir+1 × · · · × IR)-tensor
and the entries are defined as

(A×r U)i1,i2,··· ,ir−1,jr,ir+1,··· ,iR

=
∑
ir

ai1,i2,··· ,ir−1,ir,ir+1,··· ,iRujr,ir . (3)

And A ×Rr=1 Ur denotes the product of a tensor A and
matrices U1, U2, · · · , UR along the r = 1 to Rth dimension
[21]. Matrix [A](r) ∈ RIr×(I1···Ir−1Ir+1···IR) denotes the rth
unfolding of A and IRL ∈ RL×L×···×L is an R-D identity
tensor whose (l, l, · · · , l) entry equals one and zero otherwise,
l = 1, 2, · · · , L.

We consider the following system model. The transmitter
is equipped with a uniform rectangular array (URA) with
(M1 ×M2) elements. The coordinate of the (m1,m2)-th an-
tenna element is (λ2m1,

λ
2m2, 0) in three dimensional Cartesian

coordinate systems, where λ is the wavelength of the carrier
frequency. In both directions, the inter-element spacing is λ/2.
The origin is the array reference point. The receiver is also
equipped with a URA with (M3×M4) elements, the coordinate
of the (m3,m4)-th antenna element is (λ2m3,

λ
2m4, 0). The

corresponding orthogonal frequency division multiplexing for
MIMO channels (MIMO-OFDM) with M5 subcarriers can be
described as a multipath geometry-model with L paths. Each
path l is characterized by its angle of arrival (θR,l, ϕR,l), angle
of departure (θT,l, ϕT,l), delay τl and complex gain αl [13].

Tensor measurements X is denoted as

X = I6
L ×6

r=1 Ar + N ∈ CM1×M2×···×M6 , (4)

where N denotes the noise tensor and M6 is the number of
measurements. For dimension r = 1, 2, · · · , 5,

Ar =
[
ar,1 ar,2 · · · ar,L

]
∈ CMr×L, (5)

with ar,l =
[
ejωr,l ej2ωr,l · · · ejMrωr,l

]T
, and frequen-

cies

ω1,l = π cos(θT,l) sin(ϕT,l), (6)
ω2,l = π sin(θT,l) sin(ϕT,l), (7)
ω3,l = π cos(θR,l) sin(ϕR,l), (8)
ω4,l = π sin(θR,l) sin(ϕR,l), (9)
ω5,l = 2πτl∆f , (10)

where ∆f is the neighboring subcarrier spacing, angles
θT,l, ϕT,l, θR,l and ϕR,l ∈ (−π2 ,

π
2 ). For the 6th dimension,

A6 =
[
a6,1 a6,2 · · · a6,L

]
∈ CM6×L, (11)

with a6,l =
[
αl(1) αl(2) · · · αl(M6)

]T
. Doppler shift

can be considered in a similar way by repeating measurements
consecutively in time and a 7-D measurement is assembled.

Beamspace model (hybrid structure) offers a compromise
between system performance and hardware complexity. Con-
sider a class of separable 6-D precoders or beamformers [19]
that transform the M1×M2× · · ·M6 element space snapshot
into an N1 ×N2 × · · ·N6 beamspace snapshot, according to

Y = I6
L ×6

r=1

(
WH

r Ar

)
+ N ∈ CN1×N2×···×N6 , (12)

where Wr ∈ CMr×Nr is the rth dimension linear transfor-
mation matrix with orthogonal columns. The beamspace array
manifold is defined as

Br = WH
r Ar ∈ CNr×L. (13)

Note that measurements obtained for Wr = IMr
, correspond

to standard element space measurements.W1 and W2 corre-
spond to the precoders used by the transmitter. And W3 and
W4 correspond to the beamformer used by the receiver. While
for the 5th and 6th dimension, transformation is not applied,
W5 = IM5

and W6 = IM6
. Our objective is estimating ωr,l,

for r = 1, · · · , 5 and l = 1, · · · , L, from measurements Y
using the proposed beamspace tensor-ESPRIT method.

A. Higher-Order Singular Value Decomposition

Higher-order orthogonality iteration (HOOI) algorithm [22]
can be used to estimate the signal subspace from noisy
measurements. It solves the following Frobenius norm min-
imization problem,

min
C,U1,··· ,UR

∥∥C ×Rr=1 Ur −Y
∥∥2
F

s.t. Ur ∈ ONr×L, r = 1, 2, · · · , R,
(14)

where C ∈ CL×L×···×L is the core tensor and Ur has
orthonormal columns. Note that with Ur, r = 1, 2, · · · , R,
fixed, the optimal C is given by

C = Y ×Rr=1 UH
r , (15)

we can eliminate C by plugging (15) to (14), and obtain the
following equivalent problem,

min
U1,··· ,UR

∥∥Y ×Rr=1

(
UrU

H
r

)
−Y

∥∥2
F

s.t. Ur ∈ ONr×L, r = 1, 2, · · · , R.
(16)



HOOI [22] alternatively update U1, · · · ,UR by minimizing
(16) with respect to one of them while fixing the remaining
variables. Let superscript (·)(k) be the estimate at the kth
iteration, U

(k)
r can be written as

U(k)
r = arg max

Ur

∥∥UH
r Y(k)

r

∥∥2
F
, s.t. Ur ∈ ONr×L, (17)

where

Y(k)
r =

(
Y ×r−1i=1

(
U

(k)
i

)H ×Ri=r+1

(
U

(k−1)
i

)H)
[r]
. (18)

The solution of (17) can be determined using singular-value
decomposition, simply set U

(k)
r be the matrix containing the

left L leading singular vectors of Y
(k)
r .

B. Tensor-ESPRIT

We first review the element space tensor-ESPRIT method
[12]. The main idea is exploiting the multidimensional shift
invariance property of the measurements. For each dimension,
the array is divided into two subarrays with same number of
elements. The subarrays may overlap and an element may
be shared by the two subarrays. Let Ūr ∈ CMr×L be the
subspace spanned by Ar ∈ CMr×L, which can be obtained by
applying tensor decomposition on X . For the rth dimension,
we have

Ar = ŪrD̄r, (19)

where D̄r ∈ CL×L is a non-singular matrix. We further define
two sub-matrices,

Ūr1 = J̄r1,nŪr and Ūr2 = J̄r2,nŪr, (20)

where J̄r1,n and J̄r2,n are two selection matrices,

J̄r1,n =
[
IMr−n 0(Mr−n)×n

]
,

J̄r2,n =
[
0(Mr−n)×n IMr−n

]
, (21)

where In denotes identity matrix of size n × n and 0m×n
denotes zero matrix of size m×n. For convenience, we focus
on n = 1, J̄r1,1 and J̄r2,1 are simplified as J̄r1 and J̄r2 . Then
we have

J̄r1Ar = J̄r2ArΦr, (22)

where

Φr = diag
[
e−jωr,1 e−jωr,2 · · · e−jωr,L

]
. (23)

Substituting (19) and (20) into (22), we obtain

Ūr1 = Ūr2Ψr, (24)

where
Ψr = D̄rΦrD̄

−1
r ∈ CL×L. (25)

The equations in (24) is over-determined. The simplest
choice to estimate Ψr is using least squares method and the
resulting closed-form solution is given by

Ψ̂r =
(
Ūr2

)†
Ūr1 , (26)

where † denotes the Moore-Penrose matrix inverse. Let
λr,1, λr,2, · · · , λr,L be the eigenvalues of Ψ̂r, the mode r
frequencies are estimated by using

ωr,l = −∠ (λr,l) , l = 1, 2, · · · , L, (27)

where ∠(·) denotes the argument of a complex number.
Note that (27) ignores the correct association of the param-

eters across the dimensions. In ESPRIT-type algorithms [23],
the association is usually achieved by joint approximate eigen-
decomposition [24] or simultaneous Schur decomposition [25].

III. R-D BEAMSPACE TENSOR-ESPRIT

Before introducing the proposed R-D beamspace tensor-
ESPRIT method, let’s first define two selection matrices,

Jr1 =
[
INr−1 0(Nr−1)×1

]
,

Jr2 =
[
0(Nr−1)×1 INr−1

]
. (28)

In beamspace, the transitional invariance structure in the array
manifold is altered by the row transformation WH

r , and
consequently

Jr1Br 6= Jr2BrΦr. (29)

In general, it is difficult to restore this property after
beamspace transformation [18]. However, if Wr has a similar
shift invariance structure as (22), the lost shift invariance
structure can be restored. Similar to (22), we want to find
a non-singular Nr ×Nr matrix Fr to satisfy

Jr1Wr = Jr2WrFr. (30)

The least squares estimation of Fr is given by

F̂r =
(
Jr2Wr

)†
Jr1Wr. (31)

Theorem 1: Let Fr be defined as in (30) and

WH
r =

[
w1 w2 · · · wMr

]
∈ CNr×Mr . (32)

If there exists a Qr ∈ CNr×Nr , such that{
QrwMr

= 0Nr×1,

QrF
H
r w1 = 0Nr×1,

(33)

then
QrF

H
r Br = QrBrΦ

H
r . (34)

Proof: See Appendix A.
It is worth noting that Qr in (33) can be found by forming

a projection matrix corresponding to the orthogonal subspace
of R{wMr

,FHr w1}. Then

Q̂r = INr
−wMr

wH
Mr
−
(
FHr w1

) (
FHr w1

)H
. (35)

Comparing (22) and (34), the array shift invariance structure
in beamspace is restored. Replacing Br by the estimated signal
subspace Ur,

Br = UrDr, (36)

where Dr ∈ CL×L is a non-singular matrix. The transformed
shift invariance equation then becomes

QrF
H
r Ur = QrUrΓr (37)



where
Γr = DrΦrD

−1
r ∈ CL×L. (38)

For simplicity, least squares technique is used to solve (37).
The resulting close-form solution is given by

Γ̂r =
(
QrUr

)†
QrF

H
r Ur. (39)

The lth eigenvalue of Γr is given by ejωr,l . Frequency ωr =
{ωr,1, ωr,2, · · · , ωr,L} can be estimated from the eigenvalues
of Γr. Note that each column of Ur is characterized by the
associated frequency ωr,l.

As shown in (18), the subspaces Ur, r = 1, 2, · · · , 5
are alternatively updated. The lth column of Ur, for all r,
corresponds to the same source. For the rth dimension, the
L frequencies {ωr,1, ωr,2, · · · , ωr,L} can be estimated jointly
from (39), but the association between dimensions is lost. To
solve this problem, instead of estimating the frequencies di-
rectly from (39), we propose the following parallel estimation
scheme, which automatically associates the R-D frequencies
across dimensions.

Let ur,l be the lth column of Ur, then we have

ϕr,l =
(
Qrur,l

)†
QrF

H
r ur,l, (40)

the lth frequency of the rth dimension ωr,l is obtained from the
phase angle of ϕr,l. While for each dimension step (40) is im-
plemented in parallel for l = 1, 2, · · · , L and r = 1, 2, · · · , 5.
And {ω1,l, ω2,l, · · · , ω5,l} are corresponding to the same
source, then channel parameters {θT,l, ϕT,l, θR,l, ϕR,l, τl} can
be recovered from the estimated frequencies, according to
(6)-(10). Thus, the multidimensional parameter association
problem is solved, and it can also be applied to the standard
tensor-ESPRIT.

The proposed beamspace tensor-ESPRIT is summarized in
Algorithm 1.

Algorithm 1: R-D Beamspace Tensor-ESPRIT

for r = 1, 2, to 5 do
Obtain Ur by taking tensor decomposition on Y .

end

for r = 1, 2, to 5 do
Estimate Fr and Qr from (31) and (35).

Estimate Γr from (39).

for l = 1, 2, to L do
Estimate ϕr,l from (40).

end
end
for l = 1, 2, to L do

Frequencies of the lth source are associated as
{ω1,l, ω2,l, · · · , ω5,l}.

Channel parameters {θT,l, ϕT,l, θR,l, ϕR,l, τl} are
recovered via (6)-(10).

end

IV. SIMULATION SETUP AND NUMERICAL RESULTS

Numerical simulations have been carried out to evaluate
the performance of the proposed method for R-D HR in the
presence of white Gaussian noise. The performance is assessed
by the total root-mean square error (RMSE) on the estimated
parameters. The total RMSE of the angle-of-departure and the
angle-of-arrival is defined as

RMSE =

√√√√ 1

4L
Et

{
4∑
r=1

L∑
l=1

(ωr,l − ω̂r,l)2
}

(41)

where ω̂r,l is an estimate of ωr,l, and Et denotes the average
based on t = 500 Monte-Carlo trials. The RMSE performance
of the delays can be calculated in a similar way.

In the following test, 5-D channel estimation from noisy ob-
servations is considered. Both transmitter and receiver consist
of a URA with 8 × 8 elements, M1 = M2 = M3 = M4,
the number of subcarriers is M5 = 8 and the number of
measurements is K = 1. The subcarrier spacing is ∆f = 2
MHz and the signal-to-noise ratio (SNR) is defined as

SNR =
‖Y −N ‖2F
‖N ‖2F

. (42)

For dimensions r = 1, 2, 3, 4, the nr-th column of transfor-
mation matrix Wr ∈ CMr×Nr , is constructed as

wnr =
[
1 ejπωnr · · · ejπ(Mr−1)ωnr

]T ∈ CNr×1, (43)

where random number ωmr is drawn from uniform distribution
U(0, 1). For the 5th dimension, W5 = IM5 .

A. Channel Estimation and Parameter Association

In the first two tests, the three sets of channel parameters
(θT,l, ϕT,l, θR,l, ϕR,l, τl) are

l = 1 : (−14◦, 8◦,−20◦,−30◦, 30 ns),
l = 2 : (60◦, 65◦, 10◦, 50◦, 40 ns),
l = 3 : (−70◦, 75◦, 15◦,−5◦, 50 ns).

For beamspace T-ESPRIT, the data dimension is N1 ×N2 ×
N3×N4×N5, and different values of Nr are considered for all
r. Fig. 1 plots the RMSE under different SNRs. The proposed
beamspace method is compared with element space T-ESPRIT
algorithm. We observe that RMSE is reduced by increasing the
size of the transformation matrix, and it is close to the RMSE
of element space ESPRIT when a larger Nr is selected.

A correct parameter association is critical but challenging
in R-D channel estimation. In this second test, the automatic
association example of the proposed method is shown. Beam
dimension N1 × N2 × N3 × N4 × N5 is 8 × 8 × 8 × 8 × 8,
and SNR is 20 dB. As shown in Fig. 2, the 5-D parameters
are associated for the proposed beamspace tensor-ESPRIT
method. But with some outliers, it is caused by the way we
generate the transformation matrix Wr. As shown in (43), if
two ωmr

are close to each other, then the information provided
by them is redundant. It may cause rank deficiency of the
transformation matrix.



0 5 10 15 20

10−0.2

100

100.2

SNR (dB)

R
M

SE
(d

eg
re

e)
Beamspace T-ESPRIT: 8 x 8 x 8 x 8

Beamspace T-ESPRIT: 12 x 12 x 12 x 12

Beamspace T-ESPRIT: 16 x 16 x 16 x 16

T-ESPRIT: 8 x 8 x 8 x 8

(a) Angle

0 5 10 15 20
10−2

10−1

100

101

SNR (dB)

R
M

SE
(n

s)

Beamspace T-ESPRIT: 8 x 8 x 8 x 8

Beamspace T-ESPRIT: 12 x 12 x 12 x 12

Beamspace T-ESPRIT: 16 x 16 x 16 x 16

T-ESPRIT: 8 x 8 x 8 x 8

(b) Delay

Fig. 1. 5-D channel estimation performance versus SNR for the proposed
beamspace tensor-ESPRIT method.

B. Numerical Results for Distributed Sources

In the following simulations, two widely used distributed
source models, Gaussian distributed [26] and Lambertian
scattering [27] are considered.

1) Gaussian Distributed Model: In this simulation, we as-
sume three Gaussian incoherently distributed sources. For each
path, 20 scatters are generated, the 5-D channel parameters of
the scatters are drawn independently from a Gaussian distribu-
tion. Central angle and delay are same as the simulation setup
in Section IV-A. Different standard deviation of angular and
delay spreads are considered. In our evaluation we consider
various levels of angular and delay spread. As shown in Fig. 3,
deterioration of RMSE performance occurs for T-ESPRIT and
the proposed method with increased angular and delay spread
levels. Again RMSE is reduced by increasing the size of the
transformation matrix.

2) Lambertian Scattering Model: In this experiment we
evaluate the performance of estimating parameters of specular
reflections. Specular reflections originate at flat surfaces and
are characterized by equal incident and reflected angle at
the surface. To ensure a realistic scenario we deteriorate
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(b) The channel parameters are θR,l, φR,l and τl and l = 1, 2, 3.

Fig. 2. Parameter association (5-D) example for the proposed beamspace
tensor-ESPRIT method.

the specular reflection with diffuse scattering stemming from
rough surfaces. We describe the impact from diffuse scattering
by placing scatter points at each reflective surface. The scatter
points are drawn from a scattering distribution which is
calculated based on Lambertian scattering.

In our simulations we consider a street scenario with two
buildings facing each other with a distance of 20 m (see
Figure 4). The transmitter is located next to building 1 with a
distance of 2 m at height 5 m; and the receiver is located next to
building 2 with distance 6 m and height 2 m. Both transceivers
are separated by 12 m and 3 m along the y- and x-axis. They
are equipped with an URA of 8× 8 elements, with M5 = 8,
K = 1, ∆f = 2 MHz. Assuming a single, specular reflection
at the ground surface and each building, we get a line-of-sight
(LOS) path (l = 1), a ground reflection (l = 2) and reflections
at both buildings (l = 3, 4). The parameters of the LOS and
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Fig. 3. 5-D channel estimation performance versus angular and delay for
the proposed beamspace tensor-ESPRIT method under a Gaussian distributed
model.
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Fig. 4. Lambertian scattering. Illustration of street scenario consisting of a
line of sight plus 3 reflections, in total L = 4 paths. Dots represent scatter
points.

the specular reflections are

l = 1 : (78.69◦, 101.10◦,−101.31◦, 78.90◦, 51.9 ns),
l = 2 : (78.69◦, 114.59◦,−101.31◦, 114.59◦, 56.0 ns),
l = 3 : (−80.03◦, 98.86◦,−98.97◦, 81.14◦, 64.9 ns),
l = 4 : (81.87◦, 98.05◦, 98.13◦, 81.95◦, 71.4 ns).

The specular paths are deteriorated by undesired scattering. We
draw 20 scattering points per specular reflection, as illustrated
in Figure 4. The noise parameters are calculated based on
the scattering point locations. In our evaluation we consider
various levels of power ratios between power of specular and
diffuse scattering paths.

It is worth noting that the multipath parameters are calcu-
lated based on a realistic environment setup where both trans-
mitter and receiver are located at similar heights. Hence, the
multipath parameters are not well separated. Strong similarities
can be observed at the delay and elevation domain which
makes the parameter estimation sensitive to additive noise.
Figure 5 illustrates the RMS error of angles (left) and delays
(right) for various levels of specular-to-scattering power ration
(SSPR). At high SSPRs the paths are resolvable. Reducing
the SSPR yields an increased RMS error. At SSPRs below 3
the algorithm is not able to separate paths l = 3 and l = 4
anymore.
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Fig. 5. RMSE error for angle (left) and delay estimation (right) under the
Lambertian scattering model.

V. CONCLUSIONS

We propose a search-free R-D beamspace tensor-ESPRIT
algorithm for mmWave MIMO channel estimation. It is a
generalization of beamspace-ESPRIT method from matrix to
tensor framework. The 5-D channel parameters are automati-
cally associated. The performance of the proposed algorithm
is evaluated by considering different precoders and combiners.
Furthermore, the effect of the size of the precoder and com-
biner is also investigated by considering both the reflectors
and scatters.
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APPENDIX A
PROOF OF SHIFT INVARIANCE STRUCTURE IN BEAMSPACE

From (33), we have

QrW
H
r = QrW

H
r JHr1Jr1 . (44)

Multiplying Ar from left side of (44), we obtain

QrBr = QrW
H
r Ar = QrW

H
r JHr1Jr1Ar. (45)

Since
WH

r JHr1 = FHr WH
r JHr2 (46)

and
Jr1Ar = Jr2ArΦr. (47)

Substituting (46) and (47) into (45), we have

QrBrΦ
H
r = QrF

H
r WH

r JHr2Jr2Ar. (48)

Similar to (44), we have

QrF
H
r WH

r = QH
r FHr WH

r JHr2Jr2 . (49)

Multiplying matrix Ar on both sides of (49), we have

QrF
H
r Br = QH

r FHr WH
r JHr2Jr2Ar. (50)

Comparing (48) and (50), we have

QrF
H
r Br = QrBrΦ

H
r . (51)

REFERENCES

[1] A. Shahmansoori, G. E. Garcia, G. Destino, G. Seco-Granados, and
H. Wymeersch, “Position and orientation estimation through millimeter-
wave MIMO in 5g systems,” IEEE Transactions on Wireless Communi-
cations, vol. 17, no. 3, pp. 1822–1835, Mar. 2018.
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[13] R. W. Heath, N. González-Prelcic, S. Rangan, W. Roh, and A. M.
Sayeed, “An overview of signal processing techniques for millimeter
wave MIMO systems,” IEEE Journal of Selected Topics in Signal
Processing, vol. 10, no. 3, pp. 436–453, Apr. 2016.

[14] Z. Tian and H. L. V. Trees, “Beamspace MODE,” in Proc. Thirty-Fifth
Asilomar Conference on Signals, Systems and Computers, vol. 2, Pacific
Grove, California, Nov. 2001, pp. 926–930.

[15] M. D. Zoltowski, G. M. Kautz, and S. D. Silverstein, “Beamspace root-
music,” IEEE Transactions on Signal Processing, vol. 41, no. 1, pp.
344–364, Jan. 1993.

[16] J. Zhang and M. Haardt, “Channel estimation and training design for
hybrid multi-carrier mmwave massive MIMO systems: The beamspace
ESPRIT approach,” in Proc. 25th European Signal Processing Confer-
ence, 2017, pp. 385–389.

[17] Z. Zhou, J. Fang, L. Yang, H. Li, Z. Chen, and R. S. Blum, “Low-
rank tensor decomposition-aided channel estimation for millimeter wave
MIMO-OFDM systems,” IEEE Journal on Selected Areas in Communi-
cations, vol. 35, no. 7, pp. 1524–1538, Jul. 2017.

[18] G. Xu, S. D. Silverstein, R. H. Roy, and T. Kailath, “Beamspace
ESPRIT,” IEEE Transactions on Signal Processing, vol. 42, no. 2, pp.
349–356, Feb. 1994.

[19] J. A. Gansman, M. D. Zoltowski, and J. V. Krogmeier, “Multidimen-
sional multirate DOA estimation in beamspace,” IEEE Transactions on
Signal Processing, vol. 44, no. 11, pp. 2780–2792, Nov. 1996.

[20] L. De Lathauwer, B. D. Moor, and J. Vandewalle, “A multilinear
singular value decomposition,” SIAM Journal on Matrix Analysis and
Applications, vol. 21, no. 4, pp. 1253–1278, 2000.

[21] Y. Xu, “Fast algorithms for higher-order singular value decomposition
from incomplete data,” Journal of Computational Mathematics, vol. 35,
no. 4, pp. 395–420, 2017.

[22] L. D. Lathauwer, B. D. Moor, and J. Vandewalle, “On the best rank-
1 and rank-(R1, R2, · · · , RN ) approximation of higher-order tensors,”
SIAM Journal on Matrix Analysis and Applications, vol. 21, no. 4, pp.
1324–1342, Jan. 2000.

[23] F. Roemer, M. Haardt, and G. D. Galdo, “Analytical performance
assessment of multi-dimensional matrix- and tensor-based ESPRIT-type
algorithms,” IEEE Transactions on Signal Processing, vol. 62, no. 10,
pp. 2611–2625, May 2014.

[24] T. Fu and X. Gao, “Simultaneous diagonalization with similarity trans-
formation for non-defective matrices,” in Proc. IEEE International Con-
ference on Acoustics Speech and Signal Processing, Toulouse, France,
May 2006, pp. 1137–1140.

[25] M. Haardt and J. A. Nossek, “Simultaneous Schur decomposition of
several nonsymmetric matrices to achieve automatic pairing in multidi-
mensional harmonic retrieval problems,” IEEE Transactions on Signal
Processing, vol. 46, no. 1, pp. 161–169, Jan. 1998.

[26] S. Valaee, B. Champagne, and P. Kabal, “Parametric localization of
distributed sources,” IEEE Transactions on Signal Processing, vol. 43,
no. 9, pp. 2144–2153, Sep. 1995.

[27] V. Degli-Esposti, F. Fuschini, E. M. Vitucci, and G. Falciasecca, “Mea-
surement and modelling of scattering from buildings,” IEEE Transac-
tions on Antennas and Propagation, vol. 55, no. 1, pp. 143–153, 2007.


