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Tensor Decomposition for Colour 
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Research in burns has been a continuing demand over the past few decades, and important 

advancements are still needed to facilitate more effective patient stabilization and reduce mortality 
rate. Burn wound assessment, which is an important task for surgical management, largely depends 
on the accuracy of burn area and burn depth estimates. Automated quantification of these burn 
parameters plays an essential role for reducing these estimate errors conventionally carried out by 
clinicians. The task for automated burn area calculation is known as image segmentation. In this paper, 

a new segmentation method for burn wound images is proposed. The proposed methods utilizes a 
method of tensor decomposition of colour images, based on which effective texture features can be 
extracted for classification. Experimental results showed that the proposed method outperforms other 
methods not only in terms of segmentation accuracy but also computational speed.

Burns are among the most life-threatening of traumatic injuries1. Severe burns constitute a major crisis for 
the public health with an implication to a considerable health-economic impact, as they can cause substantial 
morbidity and mortality through infection, sepsis, organ failure, and death, where the mortality rate has been 
reported between 1.4% and 18% (maximum 34%)2.

�e World Health Organization has guidelines for burn treatment that, at least, there must be one bed in a 
burn unit for each 500,000 inhabitants3. A burn unit covers a wide geographic area and a burnt patient is usually 
diagnosed by non-specialized burn experts. In Sweden, for example, there are only two burn centres in the whole 
country: one located in Linköping and the other one in Uppsala.

Burns are categorized into several types by depth: 1st degree, superficial partial-thickness, deep 
partial-thickness, and full-thickness burns4. When calculating the percentage of total body surface area (%TBSA) 
burnt, only super�cial partial-thickness burns and deeper are included in the area calculation, while 1st degree 
burns (with intact epidermis) are excluded. To provide the right clinical treatment to a burn patient, the %TBSA 
of the burn must be calculated as it dictates the early �uid resuscitation. �e actual %TBSA is also useful for later 
surgical planning and for estimating mortality using the revised Baux-score, which has proven to be a reliable 
predictor of both mortality and morbidity even though the %TBSA used is estimated through clinical means5. 
Given limited burn treatment facilities over a large geographic environment, especially in middle and low income 
countries, and the importance of burn area calculation, the demand for developing automated methods for accu-
rate and objective assessment of burn parameters have been increasingly realized in burn research.

This project proposes a new method for the burn-wound image segmentation using a method of ten-
sor decomposition that can extract e�ective luminance-colour texture features for classi�cation of burn and 
non-burn areas. �e tensor decomposition is a generalization of PCA. Both PCA and ICA are still actively applied 
to image segmentation6,7. �e remaining of this paper is organized as follows. Section 2 reviews works relating to 
the proposed method. Section 3 describes the materials and models of the proposed method. Section 4 presents 
the experimental results and discussion. Finally, Section 5 summarizes the research �nding and suggests issues 
for future research.
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Related Works
Segmentation is one of the major research areas in image processing and computer vision. �e goal of image 
segmentation is to extract the region of interest in an image that includes a background and other non-interest 
objects. �ere are many di�erent techniques developed to accomplish the segmentation, such as edge detection, 
histogram thresholding, region growing, active contours or snake algorithm, clustering, and machine-learning 
based methods, as reviewed in8,9, which extract the characteristics that describe image such as: luminance, bright-
ness, colour, texture, and shape9,10. �e combination of these properties, where applicable, is expected to provide 
better segmentation results than those that utilize just one or fewer.

Deng and Manjunath11 proposed the JSEG method, which separates the segmentation process into two stages: 
colour quantization and spatial segmentation. In the �rst stage, colours in the image are quantized to several 
representative classes that can be used to di�erentiate regions in the image. �is quantization is performed in the 
colour space without considering the spatial distributions of the colours. �e image pixel values are then replaced 
by their corresponding colour class labels, thus forming a class-map of the image. �e class-map can be viewed 
as a special kind of texture composition. In the second stage, spatial segmentation is performed directly on this 
class-map without considering the corresponding pixel colour similarity. Cucchiara et al.12 developed a segmen-
tation method for extracting skin lesions based on a recursive version of the fuzzy c-means algorithm13 (FCM) 
for 2D colour histograms constructed by the principal component analysis (PCA) of the CIELab colour space.

Acha et al.14 worked with the CIELuv colour space for the image segmentation by extracting the colour-texture 
information from a 5 × 5 pixel area around a point that the user selects with the mouse. �ese features are com-
bined, and the Euclidean distance between the previously chosen area and the others is calculated to classify two 
regions of burn and non-burn, using the Otsu’s thresholding method15. Gomez et al.16 developed an algorithm 
based on the CIELab colour space and independent histogram pursuit (IHP) to segment skin lesions images. �e 
IHP is composed by 2 steps: �rstly, the algorithm �nds a combination of spectral bands that enhance the con-
trast between healthy skin and lesion; secondly, it estimates the remaining combinations which enhance subtle 
structures of the image. �e classi�cation is done by the k-means cluster analysis to identify the skin lesion on an 
image.

Papazoglou et al.17 proposed an algorithm for wound segmentation which requires manual input, uses 
the combination of RGB and CIELab colour spaces, as well as the combination of threshold and pixel-based 
colour comparing segmentation methods. Cavalcanti et al.18 used the independent component analysis19,20 
(ICA) to locate skin lesions in an image and to separate it from the healthy skin. Given the ICA results, an ini-
tial lesion localization is obtained, the lesion boundary is then determined by using the level-set method with 
post-processing steps. Wantanajittikul et al.21 utilized the Cr values of the YCbCr colour space to identify the skin 
from the background in the �rst step, secondly the u* and v* chromatic sets of the CIELuv colour space were used 
to capture the burnt region, and �nally, the FCM was used to separate the burn wound region from the healthy 
skin. Loizou et al.22 applied the snake algorithm23 for image segmentation to extract texture and geometrical fea-
tures for the evaluation of wound healing process.

Materials and Proposed Method
Ethics. �is study was approved by the Regional Ethics Committee in Linköping, Sweden (DNr 2012/31/31), 
and conducted in compliance with the “Ethical principles for medical research involving human subjects” of the 
Helsinki Declaration. Guardians for research subjects for this study, which was undertaken in children, were pro-
vided a consent form describing this study and providing su�cient information for subjects to make an informed 
decision about their child’s participation in this study. �e consent form was approved by the Regional Ethics 
Committee in Linköping for the study. Before a subject underwent any study procedure, an informed consent dis-
cussion was conducted and written informed consent was obtained from the legal guardians attending at the visit.

Data acquisition. All RGB images of burn patients were acquired at the Burn Centre of the Linköping 
University Hospital, Linköping, Sweden. �e images were taken in the JPEG format utilizing the smart-phone 
Oneplus2 camera: 13 Mega-pixel, 6 lenses to avoid distortion and colour aberration, OIS, Laser Focus, Dual-LED 
�ash and f/2.0 aperture. �e camera was located approximately 30–50 cm from the burn wound without using the 
�ash. Moreover, the patients were laid in a bed covered by a green sheet.

Colour model. The green and blue components are represented by a* and b* CIELab negative values, 
whereas the skin and the burn wound are represented by positive values. �e purpose of a colour model is to 
facilitate the speci�cation of colours in some standard, generally accepted way. In essence, a colour model is a 
speci�cation of a coordinate system and a subspace within that system, where each colour is represented by a 
single point24. �ere exist several colour models for di�erent functions: (i) RGB model, (ii) CMY and CMYK 
models, (iii) HSI model that decouples the intensity component from the colour-carrying information (hue and 
saturation)24, (iv) YCbCr, CIELab, CIELuv and CIELch, where their components represent the image luminance 
and chromatic scales separately.

�e CIELab colour model is the most complete one speci�ed by the International Commission on illumina-
tion. �e CIELab extracts the luminance and the chromatic information of an image utilizing three coordinates: 
the L* coordinate (L* = 0 encloses black and L* = 100 encloses white) that describes the luminance, the a* and b* 
coordinates that represent the pure colours from green to red (a* = −127 encloses green, a* = +128 yields red) 
and from blue to yellow (b* = −127 encloses blue, b* = +128 encloses yellow), respectively. Another important 
characteristic of this model is its uniformity, where the distance between two di�erent colours corresponds to the 
Euclidean one and it coincides to the perceptual di�erence detected by the human visual system25–27. For all these 
reasons, the CIELab colour model was therefore chosen in this study.
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Furthermore, the L*, a* and b* images were �ltered with Gaussian �lters in the frequency domain using the 
Gaussian low-pass �lter function24. �e best �lters’ cut-o� frequency, σ0, which keeps the 99% of the power spec-
trum of the zero-padded discrete Fourier transforms of the CIELab coordinates was estimated with the bisection 
method28.

Tensor decomposition. A tensor is a multidimensional array. More formally, an N-way or Nth-order tensor 
is an element of the tensor product of N vector spaces, each of which has its own coordinate system29–31. �ere are 
two main techniques for tensor decomposition: the CANDECOMP/PARAFAC, and the Tucker tensor decompo-
sition. �e CANDECOMP/PARAFAC, or shortly CP, decomposition factorizes a tensor into the sum of rank-one 
components. For example, a third-order tensor ∈ × ×X I J K is decomposed as:
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where λΛ = diag( ), the symbol “×n” indicates the n-mode product between the core tensor and the factor 
matrices.

On the other hand Tucker decomposition decomposes a tensor X into a core tensor G multiplied (or trans-
formed) by a matrix along each mode. For example, the third-order tensor ∈ × ×X I J K is decomposed as:

≈ × × ×X G U U U , (4)1 1 2 2 3 3

where ∈ × ×G P Q R is the core tensor, whereas ∈ ×U I P
1 , ∈ ×U J Q

2  and ∈ ×U K R
3  are the factor matrices 

considered as the principal components in each mode. Equation (4) can be element-wise written as:

≈x i j k g p q r u i p u j q u k r( , , ) ( , , ) ( , ) ( , ) ( , )1 2 3

where = …i I1, , , = …j J1, , , = …k K1, , , = …p P1, , , = …q Q1, ,  and = …r R1, , .
Both decompositions are a form of higher-order principal component analysis30,31. Equation (3) represents the 

decomposition as a multi-linear product of a core tensor and factor matrices and it is o�en used in signal process-
ing. Equation (4) builds the core tensor with a di�erent dimension for each mode and it is o�en used for data 
compression31. For the purpose of data compression in this study, the Tucker decomposition, known as the 
Tucker3 model30,31, is preferred to the CP. An RGB image ∈ × ×I M N 3 can be converted into the CIELab space, 
and can be expressed as tensor ∈ × ×X I J K, where I, J and K are the number of grey-levels in the L* a* and b* 
image, respectively. Figure 1 graphically shows the Tucker decomposition of the CIELab tensor.

= +X Y E (5)

≈ × × ×G U U U (6)1 1 2 2 3 3

Equations (5) and (6) can be element-wise written as:

= +x i j k y i j k e i j k( , , ) ( , , ) ( , , ) (7)
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where X is the CIELab colour tensor, Y is the tensor to estimate, E is the tensor error, U1, U2 and U3 are the factor 
matrices calculated from the a*, b* and L* mode of the X tensor respectively, whereas i, j and k are the X coordi-
nates and p, q and r are the core tensor G ones.

Setting ρ i j k( , , ) as the CIELab vector module with coordinate i j k( , , ), two tensors, Xd and Xs, are built in 
order to mix the image luminance and colour as follows:
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where ∈ ⁎i a , ∈ ⁎j b , and ∈ ⁎k L . �e tensors Xd and Xs in Equations (9) and (10), contain the normalized values 
of the addition and di�erence of the colour sets in proportion to the luminance, respectively. �e values set to 0 
indicate the background: a* and b* negative values corresponds to the green and blue components respectively; 
whereas δ≤⁎L  de�nes the dark regions where δ is a parameter arbitrarily chosen, in this study δ = 10.

Finally, the estimated Yd and Ys are re-transformed into images Yd and Ys, the chromaticity sources of the I 
image, where the texture features are extracted.

Tensor rank. Let X be an Nth-order tensor of size × × ×I I IN1 2 . Then the n-rank of the tensor X, 
rankn X( ), is the dimension of the vector space spanned by the mode-n �bres. Bro et al.29,32 developed a technique, 
called core consistency diagnostics (CORCONDIA), for estimating an optimal number R of rank-one tensor, 
which produces the factor matrices for the CP decomposition. Unfortunately, there is not such a single algorithm 
for the Tucker decomposition, so the core tensor dimensions have to be decided with a reasonable choice.

In this study, the three-mode tensor ∈ × ×X I J K is the CIELab colour space. So, its the upper limit rank is 
rank =X( ) [256, 256, 101], when all the luminance and chroma values de�ne the image; whereas its lower limit 
is rank =X( ) [1, 1, 1], when just one luminance and chroma grey-level de�nes the image. An intuitive choice for 
the rank of the CIELab tensor is the amount of grey levels of each CIELab component that de�nes the image I:
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As being expressed in Equations (9) and (10), the background values are set to 0, there is a further reduction 
which does not involve the background grey-levels of the a* and b* colour sets and the very dark regions by the 
L* set.

Feature extraction. In this study, the grey-level co-occurrence matrix (GLCM)9 were applied on two 
sources of the decomposed luminance and colour components to extract the contrast, homogeneity, correlation 
and energy. �ey were calculated with a mask 5 × 5 with o�sets: 0, 45, 90 and 135. �e means of luminance-colour 

Figure 1. Graphical representation of the third-order CIELab tensor X and its Tucker decomposition.
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images were also included. �e total of 10 values of the 5 features were extracted, 5 for each luminance-colour 
source. �ese feature vectors were used for cluster analysis to identify burn regions.

Cluster analysis. �e cluster analysis was carried out using the FCM algorithm. Since the number clusters 
of colours and their shades with the di�erent luminance levels are unknown, a high value of clusters = 20 was 
selected for the FCM analysis, and then a cluster merging process was performed to distinguish burn from the 
healthy skin background regions.

Figure 2 illustrates the steps of the proposed segmentation method that works as follows. Given an RGB image 
of burn as the input, it is converted into CIELab space, �ltered with a Gaussian �lter, and two image components 
are computed by the Tucker3 decomposition for colour texture feature extraction. �ese features are the inputs of 
the fuzzy c-mean algorithm that divides the image into 20 clusters. �e clusters are then merged in order to obtain 
three main regions of interest: burn wound, skin, and background. Once these 3 regions are obtained, the closing 
morphological operation is applied to obtain the burn-wound contour. However, the user has the possibility of 
choosing the hole �lling a�er the closing operation.

Results and Discussion
Figure 3 shows a burn image of × ×1330 1925 3 pixels of a paediatric patient with a burn wound located on the 
right hand assessed 96 hours a�er the burn injury. �e acquired RGB image was converted into the CIELab colour 
space with standard D65 illuminant and its components were �ltered in the frequency domain with Gaussian 
�lters, keeping the the 99% of the power spectrum of the zero-padded discrete Fourier transforms of them (see 
Fig. 4). Figures 3 and 4 show the e�ect of Gaussian �ltering on the reduction of the re�ection and producing a 
homogeneous background. �is study does not consider the e�ect of illumination, which will be an issue for 
future investigation. Moreover, Fig. 5 shows the CIELab colour space and the CIELab tensor X for the image in 
Fig. 4(a).

Tensors Xd and Xs were constructed as explained in Equations (9) and (10). �e tensor estimations of Yd and 

Ys were obtained by the Tucker3 tensor decomposition technique. �e tensor rank is the amount of a*, b* and L* 
grey-levels: [66, 43, 76]. Since there is a background (the green blanket) and some dark areas (le� side) in the 
image, the core tensors’ rank is reduced by using Equations (9) and (10) to rank =X( ) [51, 38, 68]. It should be 
pointed out that such decomposition was carried out on the number of unique combination of luminance and 
chromatic values instead on the number of pixels in the original image. In this case, the decomposition was per-
formed on × × =51 38 68 131, 784 instead of × × =1925 1330 3 7, 680, 750 pixels, resulting in a data reduc-
tion about 98.3% without losing the image information. Finally, the Yd and Ys values were re-transformed into 
images Yd and Ys with the same size of the original (see Fig. 6).

Figure 6 illustrates that the tensor decompositions can enhance the contrast of tensors Xd and Xs with the 
estimated Yd and Ys a�er the error eliminations Ed and Es, respectively. In the end, 4 and 6 show how Gaussian 
�ltering and tensor decomposition can remove errors and/or artefacts from the image. Based on these estimated 
tensors, one statistical (mean) and four GLCM-based texture (contrast, homogeneity, correlation, and energy) 

Figure 2. Flowchart of the proposed colour-texture segmentation of burn wounds using tensor decomposition.

Figure 3. Burn wound colour image (a) and its CIELab coordinates: L* (b), a* (c) and b* (d) respectively.
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features were extracted. These re-transformed images produce a data reduction about 25 times, from 
× ×[1925 1330 3] to × ×[385 266 3].

�ese features were used in the FCM analysis, which initially grouped the data in 20 di�erent clusters and suc-
cessively manually merged into 3 cluster: burn wound, healthy skin and background (see Fig. 7(a)). On the other 
hand, Fig. 7(b) shows the �nal image segmentation result with the burn contour superimposed over the original 
image. 7(a) and 7(a) are the segmentation result a�er a closing morphological operation with structure element 
disk with radius 2. Moreover it is user choice to �ll or not eventual holes with another morphological operation.

In order to compare the proposed method with others, image segmentation results were obtained using four 
other techniques: Gaussian pre-�ltering, PCA, ICA20 and the JSEG11. Figure 8 shows six segmentation results in 
six rows obtained from the proposed and other four methods, which are discussed as follows. It is obvious in all 
cases that the JSEG can only distinguish the human body from the background but not the burn wound from the 
healthy skin; and therefore not further included in the following comparisons.

For the results shown in the first row, the original image is the one discussed previously with size 
× ×1925 1330 3. �e CIELab and PCA methods present under-segmented areas along the burn wound on the 

le� side, and they took 375 and 1527 seconds for the segmentation, respectively. �e ICA result is comparative 
with the proposed method but it required 2286 seconds for the segmentation. �e proposed method successfully 
detects the burn wound contour a�er 297 seconds and using as Tucker tensor core rank: × ×[51 38 68].

Results in the second row involves a × ×1610 1835 3 image, which shows three burn wounds a�er 96 hours 
of injury, located on the right side of the chest and in the right shoulder of a patient. �e CIELab segmentation 
presents an over-segmentation along the upper side of the chest wound and required 493 seconds for the segmen-
tation task. �e PCA and ICA segmentation show over-segmented results along the right side of the wound in the 
bottom and took 1178 and 1705 seconds, respectively. �e proposed method excludes the central white spot, 
caused by a specular re�ection, from the segmentation and correctly identi�es the burn wound contours in 
358 seconds with Tucker tensor core rank: × ×[45 32 72].

�e third row shows segmentation results for a × ×1895 930 3 image of a burn wound a�er 17 hours of 
injury, located on the le� side of the chest and lower le� �ank of a patient. CIELab segmentation resulted in 
over-segmentation as it joins a smaller burnt area separated by uninjured skin with the rest of the burn. At the 
same time, the CIELab segmentation also resulted in under-segmentation as it excluded a bit of the burnt areas 
on the le� �ank. �e time taken for the CIELab is 239 seconds. �e PCA and ICA present over-segmented results 

Figure 4. Burn wound colour image (a) and its CIELab coordinates (b–d) a�er Gaussian �ltering in the 
frequency domain.

Figure 5. CIELab colour space and the CIELab tensor X for the image in Fig. 4(a).
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Figure 6. Re-transformation of images of ×1925 1330 images of the tensors Xd (a) and Xs (d), their 
estimations Yd (b), Ys (e) and the respective errors Ed (c), Es (f) a�er Tucker3 tensor decompositions using 
rank =X( ) [51, 38, 68].

Figure 7. Result of merging of FCM clusters with the burn wound marked in black, the normal skin in grey 
and the background in white (a), and �nal segmentation result with the burn contour superimposed over the 
original image (b).
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along the right side, and required 1952 and 2348 seconds for the task, respectively. �e proposed method detects 
the burn wound contour well with a minor under-segmentation on the upper-right side of the injury in 214 sec-
onds with Tucker tensor core rank: × ×[68 41 80].

Segmentation results shown in the forth row for an × ×1505 835 3 burn image a�er 96 hours a�er injury, 
located next to the right ankle of a patient. Results obtained from the CIELab, PCA and ICA are similar, with 

Figure 8. Segmentation results for six di�erent burn wound images: the 1st column shows the segmentation 
results using the CIELab coordinates as input of the FCM algorithm with 20 clusters; the 2nd and 3rd column 
show the segmentation result using the PCA and ICA sources as input of the FCM algorithm with 20 clusters 
respectively; the 4th column shows the segmentation results using the JSEG technique by Deng and Manjunath; 
in the end, the 5th column shows the segmentation results using the proposed method.
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over-segmentation along the le� side of the image including some normal skin. �ese methods took 208, 800, and 
3275 seconds, respectively. �e proposed method detects the burn wound contour well in 118 seconds with 
Tucker tensor core rank: × ×[42 32 82].

�e ��h row shows the segmentation results for a × ×965 1300 3 image of a burn wound a�er 312 hours of 
injury, located on the le� forearm of a patient. �e CIELab and PCA results show some minor over-segmentation 
on the le� side, requiring 223 and 1430 seconds for the segmentation, respectively. �e ICA extracted the burn 
area well, but it required 3653 seconds for the task. �e segmentation obtained from the proposed method is 
similar to the CIELab and PCA methods, but only took 115 seconds for the task and Tucker tensor core rank: 
× ×[45 40 88].
�e sixth row presents results for a × ×1625 1140 3 burn image a�er 24 hours of injury, located on the fore-

head of a patient. �e CIELab, PCA and ICA segmentations show noisy results caused by the re�ected light and 
they required 308, 958 and 2824 seconds for the segmentation, respectively. Moreover, the CIELab and PCA 
results are of under-segmentation on the bottom-le� side of the wound. �e proposed method can eliminate such 
noise and detects the burn wound contour well in only 185 seconds with Tucker tensor core rank: × ×[32 31 76].

Table 1 illustrates the computational times for the image segmentation obtained from di�erent methods illus-
trated in Fig. 8, except for the JSEG method which produces unsatisfactory results for every images. �e experi-
mental results suggest that the proposed method can provide the best results not only in terms of segmentation 
accuracy but also the computational speed is approximately 10 times faster than the ICA, 5 times faster than the 
PCA, and 1.5 times faster than the CIELab.

Table 2 shows the quantitative measurements that consist of positive predicted value (PPV) and sensitivity 
(SEN) for a segmented image. �e PPV and SEN are de�ned as21

=PPV (12)
The number of pixels correctly segmented by the algorithm

The total number of pixels segmented by the algorithm

=SEN (13)
The number of pixels correctly segmented by the algorithm

The total number of pixels in the segmented region according to the expert

For a perfect segmentation, =PPV 1 and =S 1. In case of under-segmentation, =PPV 1 and <SEN 1, 
whereas in case of over-segmentation, <PPV 1 and =SEN 1. Based on the results shown in Table 2, cases of 
under-segmentation are ICA with image R5 and Tucker with R5; and over-segmentation are CIELab with R6, 
PCA with R2, R3, R4, R5 and R6, ICA with R1, R2, R3, R4 and R6, and Tucker with R4.

Both results shown in Fig. 8 and Table 2 suggest that the proposed method provides better segmentation 
results for the images in the 1st, 2nd, 3rd and 6th row of Fig. 8. �e average PPV and SEN values of the segmentations 
obtained from the proposed method are better than the other three methods in terms of the balance between 
over-segmentation and under-segmentation.

Furthermore, the proposed method is also compared with the simple linear iterative clustering (SLIC) super-
pixel33, the e�cient graph-based image segmentation34, and the SegNet35 methods that are discussed as follows.

�e SLIC superpixel method performs on the local clustering of CIELab values and pixel coordinates. It is 
fast and requires the speci�ed number of superpixels as the input. Figure 9 shows the segmentation results of the 
original burn image as shown in Fig. 3(a) obtained from the superpixel method using 5, 20, 100, 500 and 1000 as 

Method R1 R2 R3 R4 R5 R6 Average

CIELab 375 493 239 208 223 308 307.66

PCA 1527 1178 1952 800 1430 958 1307.5

ICA 2286 1705 2348 3275 3653 2824 2073

Proposed method 297 358 214 118 115 185 214.5

Table 1. Computational times (seconds) for image segmentation results obtained from di�erent methods as 
shown in Fig. 8, where R1, …, R6 stand for images shown in rows 1, …, row 6 of Fig. 8, respectively.

CIELab PCA ICA Tucker

PPV SEN PPV SEN PPV SEN PPV SEN

R1 0.9366 0.9449 0.9371 0.9324 0.8848 0.9952 0.9508 0.9467

R2 0.8567 0.9767 0.9334 0.9711 0.9156 0.9853 0.9444 0.9674

R3 0.9462 0.9283 0.9018 0.9688 0.8568 0.9869 0.9478 0.9562

R4 0.8474 0.9992 0.8639 0.9967 0.8581 0.9969 0.9047 0.9953

R5 0.9666 0.9825 0.9597 0.9949 0.9936 0.9004 0.9935 0.9147

R6 0.9080 0.9795 0.9149 0.9787 0.9023 0.9916 0.9518 0.9732

Average 0.9102 0.9685 0.9184 0.9737 0.9018 0.9760 0.9488 0.9589

Table 2. Quantitative measurements for image segmentation results obtained from di�erent methods as shown 
in Fig. 8, where R1, …, R6 stand for images shown in rows 1, …, row 6 of Fig. 8, respectively.
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the numbers of desired superpixels. It is quite obvious that the bigger the number of superpixels are, the better the 
segmentation result is obtained, but it is very di�cult assign to which class a superpixel belongs to. �e algorithm 
distinguishes quite well the skin from the background but then encounters a problem in classifying a superpixel as 
skin or burn wound, resulting in either under- or over-segmentation. Being similar to the proposed method, the 
SLIC superpixel technique requires a manual merging process in order to distinguish the three classes of interest. 
However, an advantage of the proposed method over the superpixel method is that the merging process can be 
carried out faster since the number of clusters speci�ed for the proposed method is much smaller than that for the 
SLIC superpixel technique to achieve a good �nal segmentation result as shown in Fig. 7(a).

�e e�cient graph-based image segmentation method de�nes a predicate to highlight the boundary between 
2 or more regions using a graph-based representation of the image of interest. Figure 10 shows the segmentation 
results of the original burn image as shown in Fig. 3(a) obtained from the graph-based image segmentation 
method, where its input parameters σ = . .0 5, 0 8, and =k 100, 300, 500, 800, 1000, where σ is the standard 

Figure 9. SLIC superpixel segmentation result using 5 (a), 20 (b), 100 (c), 500 (d) and 1000 (e) as the number of 
desired superpixels.

Figure 10. E�cient graph-based image segmentation results using various values of σ and k.
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deviation of the Gaussian �lter in the pre-processing and k is a scaling parameter. It is easy to observe that all the 
results are not satisfactory as they were largely over-segmented.

�e SegNet consists of an encoder network and a corresponding decoder network followed by a pixel-wise 
classi�cation layer. It is composed of an encoder sub-network and a corresponding decoder sub-network. �e 
depth of such network is speci�ed by a scalar D that determines the number of times an input image is downsam-
pled or upsampled as it is processed. �e encoder network downsamples the input image by a factor of 2D. �e 
decoder network performs the opposite operation and upsamples the encoder network output by a factor of 2D. 
Two types of the SegNet were designed: i) encoder and decoder with D = 4, and ii) the network is initialized using 
the VGG-16 weights and D = 5. Using these two networks with 11 images as training and 2 as testing, the accura-
cies achieved a�er 10 epochs and with learning rate = 10−3 are 26% and 25%, respectively. A reason for the poor 
results produced by SegNet can be that SegNet was primarily designed for scene understanding applications (road 
and indoor scenes), while the data domain in this study is medical imaging of burn wounds. Another possible 
reason is the very small training sample size (11 images) used for training the SegNet in this study, which was not 
su�cient for the deep network to capture the feature map information for correct learning, particularly the vague 
boundary information between the skin and burn areas.

It should be pointed out that good outcome of automated merging of the fuzzy clusters obtained from the 
FCM depends on su�cient training data for various types of burn, as shown in Fig. 11, where the assignment 
of new fuzzy clusters to the trained ones is based on the minimum distance criterion. A dataset with about 220 
clusters centres (8 belong to the background, 135 to healthy skin, and 77 to burn wound) was developed and as 
reference to assign each new cluster centre extracted from an image under the current analysis to the class of the 
reference centre that has the minimum distance. As the number of the reference cluster centres are limited, the 
automated merging fails sometimes. �erefore, the user has the opportunity to do this process manually and then 
adds the new labelled cluster into the reference set.

Regarding the su�cient data and training process, at present it is di�cult to optimally determine how much 
more data would be needed for the good training of the proposed algorithm. In fact, sample size planning for 
classi�ers is an area of research in its own right. Most methods of sample size planning for developing classi�ers 
require non-singularity of the sample covariance matrix of the covariates36. In biomedicine, methods for sample 
size planning for classi�cation models were developed on the basis of learning curves that show the classi�ca-
tion performance as the function of the training sample size to appropriately select the sample size needed to 
train a classi�er. However, these methods require extensive previous data that attempted to di�erentiate the same 
classes37, or suggest sizes between 75–100 samples to achieve only reasonable accuracy in the validation38. �is 
issue will certainly be investigated in our future research when more clinical data become available.

Conclusion
�e proposed method has been shown to be able to extract burn wounds from the complex background with 
relatively fast computational time. �e tensor decomposition is independent from the camera resolution, because 
it works on the CIELab tensor model instead on the number of pixels of the image. �e proposed method results 
in a big data reduction without any information lost for the image source estimation, and therefore applicable 
for real-time processing. �e CIELab, PCA and ICA do not consistently provide good segmentation results over 
various burn images, showing over/under-segmentation errors. Moreover, these techniques require longer com-
putational times than the proposed method.

Besides, the fuzzy burn wound centres extracted by the FCM during the cluster analysis, in this paper used 
to distinguish partial-thickness burns from normal skin and 1st degree burns, but they could also be used to 
identify the depth of the burn and classify it into: super�cial partial-thickness burn, deep partial-thickness, and 
full-thickness burns. �e 1st degree burns are not included in the total area of burn estimation and should there-
fore not be included in this estimation.

Figure 11. Example of desirable (a), and undesirable (b) segmentation results with automatic merging of fuzzy 
clusters, depending on su�cient training data.
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�e strategy for colour image segmentation with fuzzy integral and mountain clustering39 which does not 
require an initial estimate of the number of fuzzy clusters, is worth investigating for improving the proposed 
approach in terms of limited training data for cluster merging. It would be desirable to utilize the proposed 
method for segmenting images captured with a polarized camera that can eliminate the light re�ection problem, 
and try to extract features on the CIELab tensor instead of the re-constructed images. As another issue for future 
research, it is worth investigating the segmentation of burn areas on 3D images to include curves and depth to 
further improve the segmentation accuracy. Furthermore, there exist many image segmentation techniques such 
as semantic segmentation35,40, superpixels segmentation33,41, spectral clustering42, fully connected conditional 
random �elds43, and mask R-CNN44. However, all these techniques require a huge amount of training data to 
achieve a high degree of accuracy. To utilize such techniques, developing a method for simulating and generating 
a large quantity of burn images would be an important area of research to pursue in our future work.
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