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Summary The widespread use of multi-sensor technology and the emergence of big datasets has
highlighted the limitations of standard flat-view matrix models and the necessity to move towards more
versatile data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fun-
damental paradigm shift towards models that are essentially polynomial and whose uniqueness, unlike
the matrix methods, is guaranteed under very mild and natural conditions. Benefiting from the power
of multilinear algebra as their mathematical backbone, data analysis techniques using tensor decompo-
sitions are shown to have great flexibility in the choice of constraints that match data properties, and
to find more general latent components in the data than matrix-based methods. A comprehensive in-
troduction to tensor decompositions is provided from a signal processing perspective, starting from the
algebraic foundations, via basic Canonical Polyadic and Tucker models, through to advanced cause-effect
and multi-view data analysis schemes. We show that tensor decompositions enable natural generaliza-
tions of some commonly used signal processing paradigms, such as canonical correlation and subspace
techniques, signal separation, linear regression, feature extraction and classification. We also cover com-
putational aspects, and point out how ideas from compressed sensing and scientific computing may be
used for addressing the otherwise unmanageable storage and manipulation problems associated with
big datasets. The concepts are supported by illustrative real world case studies illuminating the benefits
of the tensor framework, as efficient and promising tools for modern signal processing, data analysis and
machine learning applications; these benefits also extend to vector/matrix data through tensorization.

Keywords: ICA, NMF, CPD, Tucker decomposition, HOSVD, tensor networks, Tensor Train.

1 Introduction

Historical notes. The roots of multiway analysis can be traced back to studies of homogeneous polyno-
mials in the 19th century, contributors include Gauss, Kronecker, Cayley, Weyl and Hilbert — in mod-
ern day interpretation these are fully symmetric tensors. Decompositions of non-symmetric tensors have
been studied since the early 20th century [1], whereas the benefits of using more than two matrices in fac-
tor analysis [2] became apparent in several communities since the 1960s. The Tucker decomposition for
tensors was introduced in psychometrics [3, 4], while the Canonical Polyadic Decomposition (CPD) was
independently rediscovered and put into an application context under the names of Canonical Decom-
position (CANDECOMP) in psychometrics [5] and Parallel Factor Model (PARAFAC) in linguistics [6].
Tensors were subsequently adopted in diverse branches of data analysis such as chemometrics, food in-
dustry and social sciences [7, 8]. When it comes to Signal Processing, the early 1990s saw a considerable
interest in Higher-Order Statistics (HOS) [9] and it was soon realized that for the multivariate case HOS
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are effectively higher-order tensors; indeed, algebraic approaches to Independent Component Analysis
(ICA) using HOS [10–12] were inherently tensor-based. Around 2000, it was realized that the Tucker
decomposition represents a MultiLinear Singular Value Decomposition (MLSVD) [13]. Generalizing the
matrix SVD, the workhorse of numerical linear algebra, the MLSVD spurred the interest in tensors in
applied mathematics and scientific computing in very high dimensions [14–16]. In parallel, CPD was
successfully adopted as a tool for sensor array processing and deterministic signal separation in wireless
communication [17, 18]. Subsequently, tensors have been used in audio, image and video processing,
machine learning and biomedical applications, to name but a few. The significant interest in tensors and
their fast emerging applications are reflected in books [7,8,12,19–21] and tutorial papers [22–29] covering
various aspects of multiway analysis.

From a matrix to a tensor. Approaches to two-way (matrix) component analysis are well established,
and include Principal Component Analysis (PCA), Independent Component Analysis (ICA), Nonnega-
tive Matrix Factorization (NMF) and Sparse Component Analysis (SCA) [12, 19, 30]. These techniques
have become standard tools for e.g., blind source separation (BSS), feature extraction, or classification.
On the other hand, large classes of data arising from modern heterogeneous sensor modalities have a
multiway character and are therefore naturally represented by multiway arrays or tensors (see Section
Tensorization).

Early multiway data analysis approaches reformatted the data tensor as a matrix and resorted to
methods developed for classical two-way analysis. However, such a “flattened” view of the world and
the rigid assumptions inherent in two-way analysis are not always a good match for multiway data. It is
only through higher-order tensor decomposition that we have the opportunity to develop sophisticated
models capturing multiple interactions and couplings, instead of standard pairwise interactions. In other
words, we can only discover hidden components within multiway data if the analysis tools account for
intrinsic multi-dimensional patterns present — motivating the development of multilinear techniques.

In this article, we emphasize that tensor decompositions are not just matrix factorizations with addi-
tional subscripts — multilinear algebra is much structurally richer than linear algebra. For example, even
basic notions such as rank have a more subtle meaning, uniqueness conditions of higher-order tensor de-
compositions are more relaxed and accommodating than those for matrices [31, 32], while matrices and
tensors also have completely different geometric properties [20]. This boils down to matrices represent-
ing linear transformations and quadratic forms, while tensors are connected with multilinear mappings
and multivariate polynomials [29].

2 Notations and Conventions

A tensor can be thought of as a multi-index numerical array, whereby the order of a tensor is the number
of its “modes” or “dimensions”, these may include space, time, frequency, trials, classes, and dictionaries.
A real-valued tensor of order N is denoted by A ∈ RI1×I2×···×IN and its entries by ai1,i2,...,iN

. Then, an N × 1
vector a is considered a tensor of order one, and an N × M matrix A a tensor of order two. Subtensors are
parts of the original data tensor, created when only a fixed subset of indices is used. Vector-valued sub-
tensors are called fibers, defined by fixing every index but one, and matrix-valued subtensors are called
slices, obtained by fixing all but two indices (see Table 1). Manipulation of tensors often requires their
reformatting (reshaping); a particular case of reshaping tensors to matrices is termed matrix unfolding
or matricization (see Figure 4 (left)). Note that a mode-n multiplication of a tensor A with a matrix B

amounts to the multiplication of all mode-n vector fibers with B, and that in linear algebra the tensor
(or outer) product appears in the expression for a rank-1 matrix: abT = a ◦ b. Basic tensor notations are
summarized in Table 1, while Table 2 outlines several types of products used in this paper.
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Table 1: Basic notation.

A, A, a, a tensor, matrix, vector, scalar

A = [a1, a2, . . . , aR] matrix A with column vectors ar

a(:, i2, i3, . . . , iN) fiber of tensor A obtained by fixing all but one index

A(:, :, i3, . . . , iN) matrix slice of tensor A obtained by fixing all but two indices

A(:, :, :, i4, . . . , iN) tensor slice of A obtained by fixing some indices

A(I1, I2, . . . , IN) subtensor of A obtained by restricting indices to belong to subsets
In ⊆ {1, 2, . . . , In}

A(n) ∈ RIn×I1 I2···In−1 In+1···IN
mode-n matricization of tensor A ∈ RI1×I2×···×IN whose entry at row
in and column (i1 − 1)I2 · · · In−1 In+1 · · · IN + · · ·+ (iN−1 − 1)IN + iN

is equal to ai1i2 ...iN

vec(A) ∈ RIN IN−1···I1 vectorization of tensor A ∈ RI1×I2×···×IN with the entry at position

i1 + ∑
N
k=2[(ik − 1)I1 I2 · · · Ik−1] equal to ai1i2 ...iN

D = diag(λ1, λ2, . . . , λR) diagonal matrix with drr = λr

D = diagN(λ1, λ2, . . . , λR) diagonal tensor of order N with drr···r = λr

AT , A−1, A† transpose, inverse, and Moore-Penrose pseudo-inverse

3 Interpretable Components in Two-Way Data Analysis

The aim of blind source separation (BSS), factor analysis (FA) and latent variable analysis (LVA) is to
decompose a data matrix X ∈ RI×J into the factor matrices A = [a1, a2, . . . , aR] ∈ RI×R and B =
[b1, b2, . . . , bR] ∈ R J×R as:

X = A D BT + E =
R

∑
r=1

λr arbT
r + E

=
R

∑
r=1

λr ar ◦ br + E, (1)

where D = diag(λ1, λ2, . . . , λR) is a scaling (normalizing) matrix, the columns of B represent the un-
known source signals (factors or latent variables depending on the tasks in hand), the columns of A

represent the associated mixing vectors (or factor loadings), while E is noise due to an unmodelled data
part or model error. In other words, model (1) assumes that the data matrix X comprises hidden com-
ponents br (r = 1, 2, . . . , R) that are mixed together in an unknown manner through coefficients A, or,
equivalently, that data contain factors that have an associated loading for every data channel. Figure 2
(top) depicts the model (1) as a dyadic decomposition, whereby the terms ar ◦ br = arbT

r are rank-1
matrices.
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Table 2: Definition of products.

C = A×n B
mode-n product of A ∈ RI1×I2×···×IN and B ∈ R Jn×In yields
C ∈ RI1×···×In−1×Jn×In+1×···×IN with entries ci1···in−1 jn in+1···iN

=

∑
In
in=1 ai1···in−1 in in+1···iN

bjn in and matrix representation C(n) = B A(n)

C = JA; B(1), B(2), . . . , B(N)K full multilinear product, C = A×1 B(1) ×2 B(2) · · · ×N B(N)

C = A ◦B tensor or outer product of A ∈ RI1×I2×···×IN and B ∈ R J1×J2×···×JM yields
C ∈ RI1×I2×···×IN×J1×J2×···×JM with entries ci1i2···iN j1 j2···jN = ai1i2···iN

bj1 j2···jM

X = a(1) ◦ a(2) ◦ · · · ◦ a(N) tensor or outer product of vectors a(n) ∈ RIn (n = 1, . . . , N) yields a rank-1

tensor X ∈ RI1×I2×···×IN with entries xi1i2 ...iN
= a

(1)
i1

a
(2)
i2

. . . a
(N)
iN

C = A ⊗ B Kronecker product of A ∈ RI1×I2 and B ∈ R J1×J2 yields C ∈ RI1 J1×I2 J2 with
entries c(i1−1)J1+j1,(i2−1)J2+j2

= ai1i2 bj1 j2

C = A ⊙ B Khatri-Rao product of A = [a1, . . . , aR] ∈ RI×R and B = [b1, . . . , bR] ∈
R J×R yields C ∈ RI J×R with columns cr = ar ⊗ br

The well-known indeterminacies intrinsic to this model are: (i) arbitrary scaling of components, and
(ii) permutation of the rank-1 terms. Another indeterminacy is related to the physical meaning of the
factors: if the model in (1) is unconstrained, it admits infinitely many combinations of A and B. Standard
matrix factorizations in linear algebra, such as the QR-factorization, Eigenvalue Decomposition (EVD),
and Singular Value Decomposition (SVD), are only special cases of (1), and owe their uniqueness to hard
and restrictive constraints such as triangularity and orthogonality. On the other hand, certain properties
of the factors in (1) can be represented by appropriate constraints, making possible unique estimation or
extraction of such factors. These constraints include statistical independence, sparsity, nonnegativity,
exponential structure, uncorrelatedness, constant modulus, finite alphabet, smoothness and unimodality.
Indeed, the first four properties form the basis of Independent Component Analysis (ICA) [12, 33, 34],
Sparse Component Analysis (SCA) [30], Nonnegative Matrix Factorization (NMF) [19], and harmonic
retrieval [35].

4 Tensorization — Blessing of Dimensionality

While one-way (vectors) and two-way (matrices) algebraic structures were respectively introduced as
natural representations for segments of scalar measurements and measurements on a grid, tensors were
initially used purely for the mathematical benefits they provide in data analysis; for instance, it seemed
natural to stack together excitation-emission spectroscopy matrices in chemometrics into a third-order
tensor [7].

The procedure of creating a data tensor from lower-dimensional original data is referred to as ten-
sorization, and we propose the following taxonomy for tensor generation:

1) Rearrangement of lower dimensional data structures. Large-scale vectors or matrices are readily ten-
sorized to higher-order tensors, and can be compressed through tensor decompositions if they ad-
mit a low-rank tensor approximation; this principle facilitates big data analysis [21, 27, 28] (see
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I = 26

(64 × 1)
(8× 8)

+ · · ·+

(2×2×2×2×2×2)

z0

z0 + ∆z

z0 + 2∆z

x
0 + 2∆x

x
0 +

∆x

x
0

y0

y0 + 2∆y
y0 + ∆y

z x

y

Figure 1: Construction of tensors. Top: Tensorization of a vector or matrix into the so-called quantized format; in
scientific computing this facilitates super-compression of large-scale vectors or matrices. Bottom: Tensor formed
through the discretization of a trivariate function f (x, y, z).

Figure 1 (top)). For instance, a one-way exponential signal x(k) = azk can be rearranged into a
rank-1 Hankel matrix or a Hankel tensor [36]:

H =











x(0) x(1) x(2) · · ·
x(1) x(2) x(3) · · ·
x(2) x(3) x(4) · · ·

...
...

...











= a b ◦ b, (2)

where b = [1, z, z2, · · · ]T.

Also, in sensor array processing, tensor structures naturally emerge when combining snapshots
from identical subarrays [17].

2) Mathematical construction. Among many such examples, the Nth-order moments (cumulants) of a
vector-valued random variable form an Nth-order tensor [9], while in second-order ICA snapshots
of data statistics (covariance matrices) are effectively slices of a third-order tensor [12, 37]. Also, a
(channel × time) data matrix can be transformed into a (channel × time × frequency) or (channel × time
× scale) tensor via time-frequency or wavelet representations, a powerful procedure in multichannel
EEG analysis in brain science [19, 38].

3) Experiment design. Multi-faceted data can be naturally stacked into a tensor; for instance, in wire-
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less communications the so-called signal diversity (temporal, spatial, spectral, . . . ) corresponds to
the order of the tensor [18]. In the same spirit, the standard EigenFaces can be generalized to Ten-
sorFaces by combining images with different illuminations, poses, and expressions [39], while the
common modes in EEG recordings across subjects, trials, and conditions are best analyzed when
combined together into a tensor [26].

4) Naturally tensor data. Some data sources are readily generated as tensors (e.g., RGB color images,
videos, 3D light field displays) [40]. Also in scientific computing we often need to evaluate a dis-
cretized multivariate function; this is a natural tensor, as illustrated in Figure 1 (bottom) for a trivari-
ate function f (x, y, z) [21, 27, 28].

The high dimensionality of the tensor format is associated with blessings — these include possibilities
to obtain compact representations, uniqueness of decompositions, flexibility in the choice of constraints,
and generality of components that can be identified.

5 Canonical Polyadic Decomposition

Definition. A Polyadic Decomposition (PD) represents an Nth-order tensor X ∈ RI1×I2×···×IN as a linear
combination of rank-1 tensors in the form

X =
R

∑
r=1

λr b
(1)
r ◦ b

(2)
r ◦ · · · ◦ b

(N)
r . (3)

Equivalently, X is expressed as a multilinear product with a diagonal core:

X = D×1 B(1) ×2 B(2) · · · ×N B(N)

= JD; B(1), B(2), . . . , B(N)K, (4)

where D = diagN(λ1, λ2, . . . , λR) (cf. the matrix case in (1)). Figure 2 (bottom) illustrates these two
interpretations for a third-order tensor. The tensor rank is defined as the smallest value of R for which
(3) holds exactly; the minimum rank PD is called canonical (CPD) and is desired in signal separation. The
term CPD may also be considered as an abbreviation of CANDECOMP/PARAFAC decomposition, see
Historical notes.

The matrix/vector form of CPD can be obtained via the Khatri-Rao products as:

X(n) = B(n)D
(

B(N) ⊙ · · · ⊙ B(n+1) ⊙ B(n−1) ⊙ · · · ⊙ B(1)
)T

(5)

vec(X) = [B(N) ⊙ B(N−1) ⊙ · · · ⊙ B(1)] d. (6)

where d = (λ1, λ2, . . . , λR)
T.

Rank. As mentioned earlier, rank-related properties are very different for matrices and tensors. For
instance, the number of complex-valued rank-1 terms needed to represent a higher-order tensor can be
strictly less than the number of real-valued rank-1 terms [20], while the determination of tensor rank is
in general NP-hard [41]. Fortunately, in signal processing applications, rank estimation most often corre-
sponds to determining the number of tensor components that can be retrieved with sufficient accuracy,
and often there are only a few data components present. A pragmatic first assessment of the number
of components may be through the inspection of the multilinear singular value spectrum (see Section
Tucker Decomposition), which indicates the size of the core tensor in Figure 2 (bottom-right). Existing
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X

br

BT

a1

b1

aR

bR
+ · · ·+

(I × J)

λRλ1

c1

a1

b1 bR

cR

(I × R)

(R × R) (R × J)

aR

λRλ1

=
∼=

A

ar

(I × R)

∼=

A

ar
br

(R × R × R) (R × J)

(K × R)

=
BT

D

(I × J × K)

cr

C

X D

+ · · ·+

Figure 2: Analogy between dyadic (top) and polyadic (bottom) decompositions; the Tucker format has a diagonal
core. The uniqueness of these decompositions is a prerequisite for blind source separation and latent variable
analysis.

techniques for rank estimation include the CORCONDIA algorithm (core consistency diagnostic) which
checks whether the core tensor is (approximately) diagonalizable [7], while a number of techniques oper-
ate by balancing the approximation error versus the number of degrees of freedom for a varying number
of rank-1 terms [42–44].

Uniqueness. Uniqueness conditions give theoretical bounds for exact tensor decompositions. A clas-
sical uniqueness condition is due to Kruskal [31], which states that for third-order tensors the CPD is
unique up to unavoidable scaling and permutation ambiguities, provided that kB(1) + kB(2) + kB(3) ≥
2R + 2, where the Kruskal rank kB of a matrix B is the maximum value ensuring that any subset of kB

columns is linearly independent. In sparse modeling, the term (kB + 1) is also known as the spark [30].
A generalization to Nth-order tensors is due to Sidiropoulos and Bro [45], and is given by:

N

∑
n=1

kB(n) ≥ 2R + N − 1. (7)

More relaxed uniqueness conditions can be obtained when one factor matrix has full column rank [46–
48]; for a thorough study of the third-order case, we refer to [32]. This all shows that, compared to
matrix decompositions, CPD is unique under more natural and relaxed conditions, that only require the
components to be “sufficiently different” and their number not unreasonably large. These conditions do
not have a matrix counterpart, and are at the heart of tensor based signal separation.

Computation. Certain conditions, including Kruskal’s, enable explicit computation of the factor ma-
trices in (3) using linear algebra (essentially, by solving sets of linear equations and by computing (gen-
eralized) Eigenvalue Decomposition) [6,47,49,50]. The presence of noise in data means that CPD is rarely
exact, and we need to fit a CPD model to the data by minimizing a suitable cost function. This is typically
achieved by minimizing the Frobenius norm of the difference between the given data tensor and its CP
approximation, or alternatively by least absolute error fitting when the noise is Laplacian [51]. Theoreti-
cal Cramér-Rao Lower Bound (CRLB) and Cramér-Rao Induced Bound (CRIB) for the assessment of CPD
performance were derived in [52] and [53].

Since the computation of CPD is intrinsically multilinear, we can arrive at the solution through a se-

7



quence of linear sub-problems as in the Alternating Least Squares (ALS) framework, whereby the LS cost
function is optimized for one component matrix at a time, while keeping the other component matrices
fixed [6]. As seen from (5), such a conditional update scheme boils down to solving overdetermined sets
of linear equations.

While the ALS is attractive for its simplicity and satisfactory performance for a few well separated
components and at sufficiently high SNR, it also inherits the problems of alternating algorithms and is
not guaranteed to converge to a stationary point. This can be rectified by only updating the factor matrix
for which the cost function has most decreased at a given step [54], but this results in an N-times increase
in computational cost per iteration. The convergence of ALS is not yet completely understood — it is
quasi-linear close to the stationary point [55], while it becomes rather slow for ill-conditioned cases; for
more detail we refer to [56, 57].

Conventional all-at-once algorithms for numerical optimization such as nonlinear conjugate gradi-
ents, quasi-Newton or nonlinear least squares [58, 59] have been shown to often outperform ALS for ill-
conditioned cases and to be typically more robust to overfactoring, but come at a cost of a much higher
computational load per iteration. More sophisticated versions use the rank-1 structure of the terms within
CPD to perform efficient computation and storage of the Jacobian and (approximate) Hessian; their com-
plexity is on par with ALS while for ill-conditioned cases the performance is often superior [60, 61].

An important difference between matrices and tensors is that the existence of a best rank-R approxi-
mation of a tensor of rank greater than R is not guaranteed [20,62] since the set of tensors whose rank is at
most R is not closed. As a result, cost functions for computing factor matrices may only have an infimum
(instead of a minimum) so that their minimization will approach the boundary of that set without ever
reaching the boundary point. This will cause two or more rank-1 terms go to infinity upon convergence
of an algorithm, however, numerically the diverging terms will almost completely cancel one another
while the overall cost function will still decrease along the iterations [63]. These diverging terms indicate
an inappropriate data model: the mismatch between the CPD and the original data tensor may arise due
to an underestimated number of components, not all tensor components having a rank-1 structure, or
data being too noisy.

Constraints. As mentioned earlier, under quite mild conditions the CPD is unique by itself, without
requiring additional constraints. However, in order to enhance the accuracy and robustness with respect
to noise, prior knowledge of data properties (e.g., statistical independence, sparsity) may be incorporated
into the constraints on factors so as to facilitate their physical interpretation, relax the uniqueness condi-
tions, and even simplify computation [64–66]. Moreover, the orthogonality and nonnegativity constraints
ensure the existence of the minimum of the optimization criterion used [63, 64, 67].

Applications. The CPD has already been established as an advanced tool for signal separation in
vastly diverse branches of signal processing and data analysis, such as in audio and speech process-
ing, biomedical engineering, chemometrics, and machine learning [7, 22, 23, 26]. Note that algebraic ICA
algorithms are effectively based on the CPD of a tensor of the statistics of recordings; the statistical inde-
pendence of the sources is reflected in the diagonality of the core tensor in Figure 2, that is, in vanishing
cross-statistics [11,12]. The CPD is also heavily used in exploratory data analysis, where the rank-1 terms
capture essential properties of dynamically complex signals [8]. Another example is in wireless com-
munication, where the signals transmitted by different users correspond to rank-1 terms in the case of
line-of-sight propagation [17]. Also, in harmonic retrieval and direction of arrival type applications, real
or complex exponentials have a rank-1 structure, for which the use of CPD is natural [36, 65].

Example 1. Consider a sensor array consisting of K displaced but otherwise identical subarrays of
I sensors, with Ĩ = KI sensors in total. For R narrowband sources in the far field, the baseband equiv-

alent model of the array output becomes X = AST + E, where A ∈ C Ĩ×R is the global array response,
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S ∈ C J×R contains J snapshots of the sources, and E is noise. A single source (R = 1) can be obtained
from the best rank-1 approximation of the matrix X, however, for R > 1 the decomposition of X is not
unique, and hence the separation of sources is not possible without incorporating additional informa-
tion. Constraints on the sources that may yield a unique solution are, for instance, constant modulus or
statistical independence [12, 68].

Consider a row-selection matrix Jk ∈ CI× Ĩ that extracts the rows of X corresponding to the k-th sub-
array, k = 1, . . . , K. For two identical subarrays, the generalized EVD of the matrices J1X and J2X corre-
sponds to the well-known ESPRIT [69]. For the case K > 2, we shall consider JkX as slices of the tensor
X ∈ CI×J×K (see Section Tensorization). It can be shown that the signal part of X admits a CPD as in

(3)–(4), with λ1 = · · · = λR = 1, JkA = B(1)diag(b
(3)
k1 , . . . , b

(3)
kR ) and B(2) = S [17], and the consequent

source separation under rather mild conditions — its uniqueness does not require constraints such as sta-
tistical independence or constant modulus. Moreover, the decomposition is unique even in cases when
the number of sources R exceeds the number of subarray sensors I, or even the total number of sensors
Ĩ. Notice that particular array geometries, such as linearly and uniformly displaced subarrays, can be
converted into a constraint on CPD, yielding a further relaxation of the uniqueness conditions, reduced
sensitivity to noise, and often faster computation [65].

6 Tucker Decomposition

Figure 3 illustrates the principle of Tucker decomposition which treats a tensor X ∈ RI1×I2×···×IN as a
multilinear transformation of a (typically dense but small) core tensor G ∈ RR1×R2×···×RN by the factor

matrices B(n) = [b
(n)
1 , b

(n)
2 , . . . , b

(n)
Rn

] ∈ RIn×Rn , n = 1, 2, . . . , N [3, 4], given by

X =
R1

∑
r1=1

R2

∑
r2=1

· · ·
RN

∑
rN=1

gr1r2···rN

(

b
(1)
r1

◦ b
(2)
r2

◦ · · · ◦ b
(N)
rN

)

(8)

or equivalently

X = G×1 B(1) ×2 B(2) · · · ×N B(N)

= JG; B(1), B(2), . . . , B(N)K. (9)

Via the Kronecker products (see Table 2) Tucker decomposition can be expressed in a matrix/vector form
as:

X(n) = B(n)G(n)(B
(N) ⊗ · · · ⊗ B(n+1) ⊗ B(n−1) ⊗ · · · ⊗ B(1))T (10)

vec(X) = [B(N) ⊗ B(N−1) ⊗ · · · ⊗ B(1)] vec(G). (11)

Although Tucker initially used the orthogonality and ordering constraints on the core tensor and factor
matrices [3, 4], we can also employ other meaningful constraints (see below).

Multilinear rank. For a core tensor of minimal size, R1 is the column rank (the dimension of the
subspace spanned by mode-1 fibers), R2 is the row rank (the dimension of the subspace spanned by
mode-2 fibers), and so on. A remarkable difference from matrices is that the values of R1, R2, . . . , RN can
be different for N ≥ 3. The N-tuple (R1, R2, . . . , RN) is consequently called the multilinear rank of the
tensor X.
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Figure 3: Tucker decomposition of a third-order tensor. The column spaces of A, B, C represent the signal sub-
spaces for the three modes. The core tensor G is nondiagonal, accounting for possibly complex interactions among
tensor components.

Links between CPD and Tucker decomposition. Eq. (8) shows that Tucker decomposition can be
considered as an expansion in rank-1 terms (polyadic but not necessary canonical), while (4) represents
CPD as a multilinear product of a core tensor and factor matrices (but the core is not necessary minimal);
Table 3 shows various other connections. However, despite the obvious interchangeability of notation,
the CP and Tucker decompositions serve different purposes. In general, the Tucker core cannot be diag-
onalized, while the number of CPD terms may not be bounded by the multilinear rank. Consequently,
in signal processing and data analysis, CPD is typically used for factorizing data into easy to interpret
components (i.e., the rank-1 terms), while the goal of unconstrained Tucker decompositions is most often
to compress data into a tensor of smaller size (i.e., the core tensor) or to find the subspaces spanned by
the fibers (i.e., the column spaces of the factor matrices).

Uniqueness. The unconstrained Tucker decomposition is in general not unique, that is, factor ma-
trices B(n) are rotation invariant. However, physically, the subspaces defined by the factor matrices in
Tucker decomposition are unique, while the bases in these subspaces may be chosen arbitrarily — their
choice is compensated for within the core tensor. This becomes clear upon realizing that any factor matrix
in (9) can be post-multiplied by any nonsingular (rotation) matrix; in turn, this multiplies the core tensor
by its inverse, that is

X = JG; B(1), B(2), . . . , B(N)K

= JH; B(1)R(1), B(2)R(2), . . . , B(N)R(N)K,

H = JG; R(1)−1
, R(2)−1

, . . . , R(N)−1
K, (12)

where R(n) are invertible.
Multilinear SVD (MLSVD). Orthonormal bases in a constrained Tucker representation can be ob-

tained via the SVD of the mode-n matricized tensor X(n) = UnΣnVT
n (i.e., B(n) = Un, n = 1, 2, . . . , N).

Due to the orthonormality, the corresponding core tensor becomes

S = X×1 UT
1 ×2 UT

2 · · · ×N UT
N . (13)

Then, the singular values of X(n) are the Frobenius norms of the corresponding slices of the core tensor
S: (Σn)rn,rn = ‖S(:, :, . . . , rn, :, . . . , :)‖, with slices in the same mode being mutually orthogonal, i.e., their
inner products are zero. The columns of Un may thus be seen as multilinear singular vectors, while the
norms of the slices of the core are multilinear singular values [13]. As in the matrix case, the multilinear
singular values govern the multilinear rank, while the multilinear singular vectors allow, for each mode
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Table 3: Different forms of CPD and Tucker representations of a third-order tensor X ∈ RI×J×K.

CPD Tucker Decomposition

Tensor representation, outer products

X =
R
∑

r=1
λr ar ◦ br ◦ cr X =

R1

∑
r1=1

R2

∑
r2=1

R3

∑
r3=1

gr1 r2 r3 ar1 ◦ br2 ◦ cr3

Tensor representation, multilinear products

X = D×1 A ×2 B ×3 C X = G×1 A ×2 B ×3 C

Matrix representations

X(1) = A D (C ⊙ B)T X(1) = A G(1) (C ⊗ B)T

X(2) = B D (C ⊙ A)T X(2) = B G(2) (C ⊗ A)T

X(3) = C D (B ⊙ A)T X(3) = C G(3) (B ⊗ A)T

Vector representation

vec(X) = (C ⊙ B ⊙ A)d vec(X) = (C ⊗ B ⊗ A) vec(G)

Scalar representation

xijk =
R
∑

r=1
λr ai r bj r ck r xijk =

R1

∑
r1=1

R2

∑
r2=1

R3

∑
r3=1

gr1 r2 r3 ai r1
bj r2

ck r3

Matrix slices Xk = X(:, :, k)

Xk = A diag(ck1, ck2, . . . , ckR)BT Xk = A
R3

∑
r3=1

ckr3
G(:, :, r3)BT

separately, an interpretation as in PCA [8].
Low multilinear rank approximation. Analogous to PCA, a large-scale data tensor X can be approxi-

mated by discarding the multilinear singular vectors and slices of the core tensor that correspond to small
multilinear singular values, that is, through truncated matrix SVDs. Low multilinear rank approximation
is always well-posed, however, the truncation is not necessarily optimal in the LS sense, although a good
estimate can often be made as the approximation error corresponds to the degree of truncation. When it
comes to finding the best approximation, the ALS type algorithms exhibit similar advantages and draw-
backs to those used for CPD [8, 70]. Optimization-based algorithms exploiting second-order information
have also been proposed [71, 72].

Constraints and Tucker-based multiway component analysis (MWCA). Besides orthogonality, con-
straints that may help to find unique basis vectors in a Tucker representation include statistical indepen-
dence, sparsity, smoothness and nonnegativity [19,73,74]. Components of a data tensor seldom have the
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Figure 4: Multiway Component Analysis (MWCA) for a third-order tensor, assuming that the components are:
principal and orthogonal in the first mode, nonnegative and sparse in the second mode and statistically indepen-
dent in the third mode.

same properties in its modes, and for physically meaningful representation different constraints may be
required in different modes, so as to match the properties of the data at hand. Figure 4 illustrates the
concept of MWCA and its flexibility in choosing the mode-wise constraints; a Tucker representation of
MWCA naturally accommodates such diversities in different modes.

Other applications. We have shown that Tucker decomposition may be considered as a multilinear
extension of PCA [8]; it therefore generalizes signal subspace techniques, with applications including
classification, feature extraction, and subspace-based harmonic retrieval [25, 39, 75, 76]. For instance, a
low multilinear rank approximation achieved through Tucker decomposition may yield a higher Signal-
to-Noise Ratio (SNR) than the SNR in the original raw data tensor, making Tucker decomposition a very
natural tool for compression and signal enhancement [7, 8, 24].

7 Block Term Decompositions

We have already shown that CPD is unique under quite mild conditions, a further advantage of ten-
sors over matrices is that it is even possible to relax the rank-1 constraint on the terms, thus opening
completely new possibilities in e.g. BSS. For clarity, we shall consider the third-order case, whereby, by

replacing the rank-1 matrices b
(1)
r ◦ b

(2)
r = b

(1)
r b

(2) T
r in (3) by low-rank matrices ArBT

r , the tensor X can
be represented as (Figure 5, top):

X =
R

∑
r=1

(ArBT
r ) ◦ cr. (14)

Figure 5 (bottom) shows that we can even use terms that are only required to have a low multilinear rank
(see also Section Tucker Decomposition), to give:

X =
R

∑
r=1

Gr ×1 Ar ×2 Br ×3 Cr. (15)

These so-called Block Term Decompositions (BTD) admit the modelling of more complex signal compo-
nents than CPD, and are unique under more restrictive but still fairly natural conditions [77–79].

12



Figure 5: Block Term Decompositions (BTDs) find data components that are structurally more complex than the
rank-1 terms in CPD. Top: Decomposition into terms with multilinear rank (Lr, Lr, 1). Bottom: Decomposition into
terms with multilinear rank (Lr, Mr, Nr).

Example 3. To compare some standard and tensor approaches for the separation of short duration
correlated sources, BSS was performed on five linear mixtures of the sources s1(t) = sin(6πt) and s2(t) =
exp(10t) sin(20πt), which were contaminated by white Gaussian noise, to give the mixtures X = AS +
E ∈ R5×60, where S(t) = [s1(t), s2(t)]T and A ∈ R5×2 was a random matrix whose columns (mixing
vectors) satisfy aT

1 a2 = 0.1, ‖a1‖ = ‖a2‖ = 1. The 3Hz sine wave did not complete a full period over the

60 samples, so that the two sources had a correlation degree of
|sT

1 s2|
‖s1‖2‖s2‖2

= 0.35. The tensor approaches,

CPD, Tucker decomposition and BTD employed a third-order tensor X of size 24 × 37 × 5 generated
from five Hankel matrices whose elements obey X(i, j, k) = X(k, i + j − 1) (see Section Tensorization).
The average squared angular error (SAE) was used as the performance measure. Figure 6 shows the
simulation results, illustrating that:

• PCA failed since the mixing vectors were not orthogonal and the source signals were correlated, both
violating the assumptions for PCA.

• ICA (using the JADE algorithm [10]) failed because the signals were not statistically independent, as
assumed in ICA.

• Low rank tensor approximation: a rank-2 CPD was used to estimate A as the third factor matrix,
which was then inverted to yield the sources. The accuracy of CPD was compromised as the com-
ponents of tensor X cannot be represented by rank-1 terms.

• Low multilinear rank approximation: Tucker decomposition (TKD) for the multilinear rank (4, 4, 2)
was able to retrieve the column space of the mixing matrix but could not find the individual mixing
vectors due to the non-uniqueness of TKD.

• BTD in multilinear rank-(2, 2, 1) terms matched the data structure [78], and it is remarkable that the
sources were recovered using as few as 6 samples in the noise-free case.

13



0.05 0.1 0.15 0.2

−0.3

−0.2

−0.1

0

0.1

Time (seconds)

s
1
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Figure 6: Blind separation of the mixture of a pure sine wave and an exponentially modulated sine wave using
PCA, ICA, CPD, Tucker decomposition (TKD) and BTD. The sources s1 and s2 are correlated and of short duration;
the symbols ŝ1 and ŝ2 denote the estimated sources.

8 Higher-Order Compressed Sensing

The aim of Compressed Sensing (CS) is to provide faithful reconstruction of a signal of interest when the
set of available measurements is (much) smaller than the size of the original signal [80–83]. Formally, we
have available M (compressive) data samples y ∈ RM, which are assumed to be linear transformations of
the original signal x ∈ RI (M < I). In other words, y = Φx, where the sensing matrix Φ ∈ RM×I is usually
random. Since the projections are of a lower dimension than the original data, the reconstruction is an
ill-posed inverse problem, whose solution requires knowledge of the physics of the problem converted
into constraints. For example, a 2D image X ∈ RI1×I2 can be vectorized as a long vector x = vec(X) ∈ RI

(I = I1 I2) that admits sparse representation in a known dictionary B ∈ RI×I , so that x = Bg, where the
matrix B may be a wavelet or discrete cosine transform (DCT) dictionary. Then, faithful recovery of the
original signal x requires finding the sparsest vector g such that:

y = Wg, with ‖g‖0 ≤ K, W = ΦB, (16)

where ‖ · ‖0 is the ℓ0-norm (number of non-zero entries) and K ≪ I.
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Since the ℓ0-norm minimization is not practical, alternative solutions involve iterative refinements of
the estimates of vector g using greedy algorithms such as the Orthogonal Matching Pursuit (OMP) algo-
rithm, or the ℓ1-norm minimization algorithms (‖g‖1 = ∑

I
i=1 |gi|) [83]. Low coherence of the composite

dictionary matrix W is a prerequisite for a satisfactory recovery of g (and hence x) — we need to choose
Φ and B so that the correlation between the columns of W is minimum [83].

When extending the CS framework to tensor data, we face two obstacles:

• Loss of information, such as spatial and contextual relationships in data, when a tensor X ∈ RI1×I2×···×IN

is vectorized.

• Data handling, since the size of vectorized data and the associated dictionary B ∈ RI×I easily be-
comes prohibitively large (see Section Curse of Dimensionality), especially for tensors of high
order.

Fortunately, tensor data are typically highly structured – a perfect match for compressive sampling –
so that the CS framework relaxes data acquisition requirements, enables compact storage, and facilitates
data completion (inpainting of missing samples due to a broken sensor or unreliable measurement).

Kronecker-CS for fixed dictionaries. In many applications, the dictionary and the sensing ma-
trix admit a Kronecker structure (Kronecker-CS model), as illustrated in Figure 7 (top) [84]. In this
way, the global composite dictionary matrix becomes W = W(N) ⊗ W(N−1) ⊗ · · · ⊗ W(1), where each
term W(n) = Φ

(n)B(n) has a reduced dimensionality since B(n) ∈ RIn×In and Φ
(n) ∈ RMn×In . Denote

M = M1M2 · · · MN and I = I1 I2 · · · IN , and since Mn ≤ In, n = 1, 2, . . . , N, this reduces storage require-

ments by a factor ∑n In Mn

MI . The computation of Wg is affordable since g is sparse, however, computing
WTy is expensive but can be efficiently implemented through a sequence of products involving much
smaller matrices W(n) [85]. We refer to [84] for links between the coherence of factors W(n) and the coher-
ence of the global composite dictionary matrix W.

Figure 7 and Table 3 illustrate that the Kronecker-CS model is effectively a vectorized Tucker de-
composition with a sparse core. The tensor equivalent of the CS paradigm in (16) is therefore to find the
sparsest core tensor G such that:

Y ∼= G×1 W(1) ×2 W(2) · · · ×N W(N), (17)

with ‖G‖0 ≤ K, for a given set of mode-wise dictionaries B(n) and sensing matrices Φ
(n) (n = 1, 2, . . . , N).

Working with several small dictionary matrices, appearing in a Tucker representation, instead of a large
global dictionary matrix, is an example of the use of tensor structure for efficient representation, see also
Section Curse of Dimensionality.

A higher-order extension of the OMP algorithm, referred to as the Kronecker-OMP algorithm [85],
requires K iterations to find the K non-zero entries of the core tensor G. Additional computational ad-
vantages can be gained if it can be assumed that the K non-zero entries belong to a small subtensor of G,
as shown in Figure 7 (bottom); such a structure is inherent to e.g., hyperspectral imaging [85, 86] and
3D astrophysical signals. More precisely, if the K = LN non-zero entries are located within a subtensor of
size (L × L × · · · × L), where L ≪ In, then the so-called N-way Block OMP algorithm (N-BOMP) requires
at most NL iterations, which is linear in N [85]. The Kronecker-CS model has been applied in Magnetic
Resonance Imaging (MRI), hyper-spectral imaging, and in the inpainting of multiway data [84, 86].

Approaches without fixed dictionaries. In Kronecker-CS the mode-wise dictionaries B(n) ∈ RIn×In

can be chosen so as best to represent physical properties or prior knowledge about the data. They can
also be learned from a large ensemble of data tensors, for instance in an ALS type fashion [86]. Instead
of the total number of sparse entries in the core tensor, the size of the core (i.e., the multilinear rank) may
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be used as a measure for sparsity so as to obtain a low-complexity representation from compressively
sampled data [87, 88]. Alternatively, a PD representation can be used instead of a Tucker representation.
Indeed, early work in chemometrics involved excitation-emission data for which part of the entries was
unreliable because of scattering; the CPD of the data tensor is then computed by treating such entries as
missing [7]. While CS variants of several CPD algorithms exist [59, 89], the “oracle” properties of tensor-
based models are still not as well understood as for their standard models; a notable exception is CPD
with sparse factors [90].

Example 2. Figure 8 shows an original 3D (1024 × 1024 × 32) hyperspectral image X which contains
scene reflectance measured at 32 different frequency channels, acquired by a low-noise Peltier-cooled
digital camera in the wavelength range of 400–720 nm [91]. Within the Kronecker-CS setting, the tensor
of compressive measurements Y was obtained by multiplying the frontal slices by random Gaussian
sensing matrices Φ

(1) ∈ RM1×1024 and Φ
(2) ∈ RM2×1024 (M1, M2 < 1024) in the first and second mode,

respectively, while Φ
(3) ∈ R32×32 was the identity matrix (see Figure 8 (top)). We used Daubechies

wavelet factor matrices B(1) = B(2) ∈ R1024×1024 and B(3) ∈ R32×32, and employed N-BOMP to recover
the small sparse core tensor and, subsequently, reconstruct the original 3D image as shown in Figure 8
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Figure 8: Multidimensional compressed sensing of a 3D hyperspectral image using Tucker representation with a
small sparse core in wavelet bases.
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(bottom). For the Sampling Ratio SP=33% (M1 = M2 = 585) this gave the Peak Signal to Noise Ratio
(PSNR) of 35.51dB, while taking 71 minutes to compute the required Niter = 841 sparse entries. For the
same quality of reconstruction (PSNR=35.51dB), the more conventional Kronecker-OMP algorithm found
0.1% of the wavelet coefficients as significant, thus requiring Niter = K = 0.001 × (1024 × 1024 × 32) =
33, 555 iterations and days of computation time.

9 Large-Scale Data and Curse of Dimensionality

The sheer size of tensor data easily exceeds the memory or saturates the processing capability of standard
computers, it is therefore natural to ask ourselves how tensor decompositions can be computed if the ten-
sor dimensions in all or some modes are large or, worse still, if the tensor order is high. The term curse
of dimensionality, in a general sense, was introduced by Bellman to refer to various computational bottle-
necks when dealing with high-dimensional settings. In the context of tensors, the curse of dimensionality
refers to the fact that the number of elements of an Nth-order (I × I × · · · × I) tensor, IN , scales expo-
nentially with the tensor order N. For example, the number of values of a discretized function in Figure
1 (bottom), quickly becomes unmanageable in terms of both computations and storing as N increases.
In addition to their standard use (signal separation, enhancement, etc.), tensor decompositions may be
elegantly employed in this context as efficient representation tools. The first question is then which type
of tensor decomposition is appropriate.

Efficient data handling. If all computations are performed on a CP representation and not on the raw
data tensor itself, then instead of the original IN raw data entries, the number of parameters in a CP
representation reduces to NIR, which scales linearly in N (see Table 4). This effectively bypasses the
curse of dimensionality, while giving us the freedom to choose the rank R as a function of the desired
accuracy [14]; on the other hand the CP approximation may involve numerical problems (see Section
Canonical Polyadic Decomposition).

Compression is also inherent to Tucker decomposition, as it reduces the size of a given data tensor from
the original IN to (NIR + RN), thus exhibiting an approximate compression ratio of ( I

R )
N . We can then

benefit from the well understood and reliable approximation by means of matrix SVD, however, this is
only meaningful for low N.

Table 4: Storage complexities of tensor models for an Nth-order tensor X ∈ RI×I×···×I , whose original storage
complexity is O(IN).

1. CPD O(NIR)

2. Tucker O(NIR + RN)

3. TT O(NIR2)

4. QTT O(NR2 log2(I))

Tensor networks. A numerically reliable way to tackle curse of dimensionality is through a concept
from scientific computing and quantum information theory, termed tensor networks, which represents
a tensor of a possibly very high order as a set of sparsely interconnected matrices and core tensors of
low order (typically, order 3). These low-dimensional cores are interconnected via tensor contractions
to provide a highly compressed representation of a data tensor. In addition, existing algorithms for the
approximation of a given tensor by a tensor network have good numerical properties, making it possible
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Figure 10: Efficient computation of the CP and Tucker decompositions, whereby tensor decompositions are com-
puted in parallel for sampled blocks, these are then merged to obtain the global components A, B, C and a core
tensor G.

to control the error and achieve any desired accuracy of approximation. For example, tensor networks
allow for the representation of a wide class of discretized multivariate functions even in cases where the
number of function values is larger than the number of atoms in the universe [21, 27, 28].

Examples of tensor networks are the hierarchical Tucker (HT) decompositions and Tensor Trains (TT)
(see Figure 9) [15, 16]. The TTs are also known as Matrix Product States (MPS) and have been used by
physicists more than two decades (see [92, 93] and references therein). The PARATREE algorithm was
developed in signal processing and follows a similar idea, it uses a polyadic representation of a data
tensor (in a possibly nonminimal number of terms), whose computation then requires only the matrix
SVD [94].

For very large-scale data that exhibit a well-defined structure, an even more radical approach can be
employed to achieve a parsimonious representation — through the concept of quantized or quantic tensor
networks (QTN) [27, 28]. For example, a huge vector x ∈ RI with I = 2L elements can be quantized
and tensorized through reshaping into a (2 × 2 × · · · × 2) tensor X of order L, as illustrated in Figure
1 (top). If x is an exponential signal, x(k) = azk, then X is a symmetric rank-1 tensor that can be rep-
resented by two parameters: the scaling factor a and the generator z (cf. (2) in Section Tensorization).
Non-symmetric terms provide further opportunities, beyond the sum-of-exponential representation by
symmetric low-rank tensors. Huge matrices and tensors may be dealt with in the same manner. For in-
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stance, an Nth-order tensor X ∈ RI1×···×IN , with In = qLn , can be quantized in all modes simultaneously
to yield a (q × q × · · · × q) quantized tensor of higher order. In QTN, q is small, typically q = 2, 3, 4,
for example, the binary encoding (q = 2) reshapes an Nth-order tensor with (2L1 × 2L2 × · · · × 2LN ) el-
ements into a tensor of order (L1 + L2 + · · ·+ LN) with the same number of elements. The tensor train
decomposition applied to quantized tensors is referred to as the quantized TT (QTT); variants for other
tensor representations have also been derived [27, 28]. In scientific computing, such formats provide the
so-called super-compression — a logarithmic reduction of storage requirements: O(IN) → O(N logq(I)).

Computation of the decomposition/representation. Now that we have addressed the possibilities
for efficient tensor representation, the question that needs to be answered is how these representations
can be computed from the data in an efficient manner. The first approach is to process the data in smaller
blocks rather than in a batch manner [95]. In such a “divide-and-conquer” approach, different blocks
may be processed in parallel and their decompositions carefully recombined (see Figure 10) [95, 96]. In
fact, we may even compute the decomposition through recursive updating, as new data arrive [97]. Such
recursive techniques may be used for efficient computation and for tracking decompositions in the case
of nonstationary data.

The second approach would be to employ compressed sensing ideas (see Section Higher-Order Com-

pressed Sensing) to fit an algebraic model with a limited number of parameters to possibly large data.
In addition to completion, the goal here is a significant reduction of the cost of data acquisition, manipu-
lation and storage — breaking the Curse of Dimensionality being an extreme case.

While algorithms for this purpose are available both for low rank and low multilinear rank represen-
tation [59, 87], an even more drastic approach would be to directly adopt sampled fibers as the bases in
a tensor representation. In the Tucker decomposition setting we would choose the columns of the factor
matrices B(n) as mode-n fibers of the tensor, which requires addressing the following two problems: (i)
how to find fibers that allow us to best represent the tensor, and (ii) how to compute the corresponding
core tensor at a low cost (i.e., with minimal access to the data). The matrix counterpart of this problem
(i.e., representation of a large matrix on the basis of a few columns and rows) is referred to as the pseu-
doskeleton approximation [98], where the optimal representation corresponds to the columns and rows that
intersect in the submatrix of maximal volume (maximal absolute value of the determinant). Finding the
optimal submatrix is computationally hard, but quasi-optimal submatrices may be found by heuristic so-
called “cross-approximation” methods that only require a limited, partial exploration of the data matrix.
Tucker variants of this approach have been derived in [99–101] and are illustrated in Figure 11, while
cross-approximation for the TT format has been derived in [102]. Following a somewhat different idea,
a tensor generalization of the CUR decomposition of matrices samples fibers on the basis of statistics
derived from the data [103].

10 Multiway Regression — Higher Order PLS (HOPLS)

Multivariate regression. Regression refers to the modelling of one or more dependent variables (responses),
Y, by a set of independent data (predictors), X. In the simplest case of conditional MSE estimation, ŷ =
E(y|x), the response y is a linear combination of the elements of the vector of predictors x; for multivariate
data the Multivariate Linear Regression (MLR) uses a matrix model, Y = XP+ E, where P is the matrix of

coefficients (loadings) and E the residual matrix. The MLR solution gives P =
(

XTX
)−1

XTY, and involves

inversion of the moment matrix XTX. A common technique to stabilize the inverse of the moment matrix
XTX is principal component regression (PCR), which employs low rank approximation of X.

Modelling structure in data — the PLS. Notice that in stabilizing multivariate regression PCR uses
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Figure 11: Tucker representation through fiber sampling and cross-approximation: the columns of factor matri-
ces are sampled from the fibers of the original data tensor X. Within MWCA the selected fibers may be further
processed using BSS algorithms.

only information in the X-variables, with no feedback from the Y-variables. The idea behind the Partial
Least Squares (PLS) method is to account for structure in data by assuming that the underlying system is
governed by a small number, R, of specifically constructed latent variables, called scores, that are shared
between the X- and Y-variables; in estimating the number R, PLS compromises between fitting X and
predicting Y. Figure 12 illustrates that the PLS procedure: (i) uses eigenanalysis to perform contraction of
the data matrix X to the principal eigenvector score matrix T = [t1, . . . , tR] of rank R; (ii) ensures that the
tr components are maximally correlated with the ur components in the approximation of the responses
Y, this is achieved when the ur’s are scaled versions of the tr’s. The Y-variables are then regressed on the
matrix U = [u1, . . . , uR]. Therefore, PLS is a multivariate model with inferential ability that aims to find
a representation of X (or a part of X) that is relevant for predicting Y, using the model

X = T PT + E =
R

∑
r=1

tr pT
r + E, (18)

Y = U QT + F =
R

∑
r=1

ur qT
r + F. (19)

The score vectors tr provide an LS fit of X-data, while at the same time the maximum correlation between
t- and u-scores ensures a good predictive model for Y-variables. The predicted responses Ynew are then
obtained from new data Xnew and the loadings P and Q.

In practice, the score vectors tr are extracted sequentially, by a series of orthogonal projections fol-
lowed by the deflation of X. Since the rank of Y is not necessarily decreased with each new tr, we may
continue deflating until the rank of the X-block is exhausted, so as to balance between prediction accuracy
and model order.

The PLS concept can be generalized to tensors in the following ways:

1. By unfolding multiway data. For example X(I × J × K) and Y(I × M × N) can be flattened into
long matrices X(I × JK) and Y(I × MN), so as to admit matrix-PLS (see Figure 12). However, the
flattening prior to standard bilinear PLS obscures structure in multiway data and compromises the
interpretation of latent components.

2. By low rank tensor approximation. The so-called N-PLS attempts to find score vectors having maximal
covariance with response variables, under the constraints that tensors X and Y are decomposed as
a sum of rank-one tensors [104].
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Figure 12: The basic PLS model performs joint sequential low-rank approximation of the matrix of predictors X
and the matrix of responses Y, so as to share (up to the scaling ambiguity) the latent components — columns of the
score matrices T and U. The matrices P and Q are the loading matrices for predictors and responses, and E and F are
the corresponding residual matrices.

3. By a BTD-type approximation, as in the Higher Order PLS (HOPLS) model shown in Figure 13 [105].
The use of block terms within HOPLS equips it with additional flexibility, together with a more
realistic analysis than unfolding-PLS and N-PLS.

The principle of HOPLS can be formalized as a set of sequential approximate decompositions of the
independent tensor X ∈ RI1×I2×···×IN and the dependent tensor Y ∈ R J1×J2×···×JM (with I1 = J1), so as to
ensure maximum similarity (correlation) between the scores tr and ur within the loadings matrices T and
U, based on

X ∼=
R

∑
r=1

G
(r)
X ×1 tr ×2 P

(1)
r · · · ×N P

(N−1)
r (20)

Y ∼=
R

∑
r=1

G
(r)
Y ×1 ur ×2 Q

(1)
r · · · ×N Q

(M−1)
r . (21)

A number of data-analytic problems can be reformulated as either regression or “similarity analysis”
(ANOVA, ARMA, LDA, CCA), so that both the matrix and tensor PLS solutions can be generalized across
exploratory data analysis.

Example 4: Decoding of a 3D hand movement trajectory from the electrocorticogram (ECoG). The
predictive power of tensor-based PLS is illustrated on a real-world example of the prediction of arm
movement trajectory from ECoG. Fig. 14(left) illustrates the experimental setup, whereby 3D arm move-
ment of a monkey was captured by an optical motion capture system with reflective markers affixed to the
left shoulder, elbow, wrist, and hand; for full detail see (http://neurotycho.org). The predictors (32
ECoG channels) naturally build a fourth-order tensor X (time×channel no×epoch length×frequency)
while the movement trajectories for the four markers (response) can be represented as a third-order ten-
sor Y (time×3D marker position×marker no). The goal of the training stage is to identify the HOPLS

parameters: G
(r)
X ,G

(r)
Y , P

(n)
r , Q

(n)
r , see also Figure 13. In the test stage, the movement trajectories, Y∗, for

the new ECoG data, X∗, are predicted through multilinear projections: (i) the new scores, t∗r , are found

from new data, X∗, and the existing model parameters: G
(r)
X , P

(1)
r , P

(2)
r , P

(3)
r , (ii) the predicted trajectory is
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Figure 13: The principle of Higher Order PLS (HOPLS) for third-order tensors. The core tensors GX and GY are
block-diagonal. The BTD-type structure allows for the modelling of general components that are highly correlated
in the first mode.

calculated as Y∗ ≈ ∑
R
r=1 G

(r)
Y ×1 t∗r ×2 Q

(1)
r ×3 Q

(2)
r ×4 Q

(3)
r . In the simulations, standard PLS was applied

in the same way to the unfolded tensors.
Figure 14(right) shows that although the standard PLS was able to predict the movement correspond-

ing to each marker individually, such prediction is quite crude as the two-way PLS does not adequately
account for mutual information among the four markers. The enhanced predictive performance of the
BTD-based HOPLS (red line in Fig.14(right)) is therefore attributed to its ability to model interactions
between complex latent components of both predictors and responses.
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Figure 14: Prediction of arm movement from brain electrical responses. Left: Experiment setup. Middle: Construc-
tion of the data and response tensors and training. Right: The new data tensor (bottom) and the predicted 3D arm
movement trajectories (X, Y, Z coordinates) obtained by tensor-based HOPLS and standard matrix-based PLS
(top).

11 Linked Multiway Component Analysis and Tensor Data Fusion

Data fusion concerns joint analysis of an ensemble of data sets, such as multiple “views” of a particular
phenomenon, where some parts of the “scene” may be visible in only one or a few data sets. Examples
include fusion of visual and thermal images in low visibility conditions, or the analysis of human elec-
trophysiological signals in response to a certain stimulus but from different subjects and trials; these are
naturally analyzed together by means of matrix/tensor factorizations. The “coupled” nature of the anal-
ysis of multiple datasets ensures that there may be common factors across the datasets, and that some
components are not shared (e.g., processes that are independent of excitations or stimuli/tasks).

The linked multiway component analysis (LMWCA) [106], shown in Figure 15, performs such de-
composition into shared and individual factors, and is formulated as a set of approximate joint Tucker

decompositions of a set of data tensors X(k) ∈ RI1×I2×···×IN , (k = 1, 2, . . . , K):

X(k) ∼= G(k) ×1 B(1,k) ×2 B(2,k) · · · ×N B(N,k), (22)

where each factor matrix B(n,k) = [B
(n)
C , B

(n,k)
I ] ∈ RIn×Rn has: (i) components B

(n)
C ∈ RIn×Cn (with
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Figure 15: Coupled Tucker decomposition for linked multiway component analysis (LMWCA). The data tensors
have both shared and individual components. Constraints such as orthogonality, statistical independence, sparsity
and non-negativity may be imposed where appropriate.

0 ≤ Cn ≤ Rn) that are common (i.e., maximally correlated) to all tensors, and (ii) components B
(n,k)
I ∈

RIn×(Rn−Cn) that are tensor-specific. The objective is to estimate the common components B
(n)
C , the indi-

vidual components B
(n,k)
I , and, via the core tensors G(k), their mutual interactions. As in MWCA (see Sec-

tion Tucker Decomposition), constraints may be imposed to match data properties [73, 76]. This enables
a more general and flexible framework than group ICA and Independent Vector Analysis, which also
perform linked analysis of multiple data sets but assume that: (i) there exist only common components
and (ii) the corresponding latent variables are statistically independent [107, 108], both quite stringent
and limiting assumptions. As an alternative to Tucker decompositions, coupled tensor decompositions
may be of a polyadic or even block term type [89, 109].

Example 5: Feature extraction and classification of objects using LMWCA. Classification based on
common and distinct features of natural objects from the ETH-80 database
(http://www.d2.mpi-inf.mpg.de/Datasets) was performed using LMWCA, whereby the dis-
crimination among objects was performed using only the common features. This dataset consists of 3280
images in 8 categories, each containing 10 objects with 41 views per object. For each category, the training
data were organized in two distinct fourth-order (128 × 128 × 3 × I4) tensors, where I4 = 10 × 41 × 0.5p,
with p the fraction of training data. LMWCA was applied to these two tensors to find the common and
individual features, with the number of common features set to 80% of I4. In this way, eight sets of com-
mon features were obtained for each category. The test sample label was assigned to the category whose
common features matched the new sample best (evaluated by canonical correlations) [110]. Figure 16
shows the results over 50 Monte Carlo runs and compares LMWCA with the standard K-NN and LDA
classifiers, the latter using 50 principal components as features. The enhanced classification results for
LMWCA are attributed to the fact that the classification only makes use of the common components and
is not hindered by components that are not shared across objects or views.
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12 Software

The currently available software resources for tensor decompositions include:

• The Tensor Toolbox, a versatile framework for basic operations on sparse and dense tensors, in-
cluding CPD and Tucker formats [111].

• The TDALAB and TENSORBOX, which provide a user-friendly interface and advanced algorithms
for CPD, nonnegative Tucker decomposition and MWCA [112, 113].

• The Tensorlab toolbox builds upon the complex optimization framework and offers numerical algo-
rithms for computing the CPD, BTD and Tucker decompositions. The toolbox includes a library of
constraints (e.g. nonnegativity, orthogonality) and the possibility to combine and jointly factorize
dense, sparse and incomplete tensors [89].

• The N-Way Toolbox, which includes (constrained) CPD, Tucker decomposition and PLS in the con-
text of chemometrics applications [114]. Many of these methods can handle constraints (e.g., non-
negativity, orthogonality) and missing elements.

• The TT Toolbox, the Hierarchical Tucker Toolbox and the Tensor Calculus library provide tensor
tools for scientific computing [115–117].

• Code developed for multiway analysis is also available from the Three-Mode Company [118].

13 Conclusions and Future Directions

We live in a world overwhelmed by data, from multiple pictures of Big Ben on various social web links to
terabytes of data in multiview medical imaging, while we may need to repeat the scientific experiments
many times to obtain ground truth. Each snapshot gives us a somewhat incomplete view of the same
object, and involves different angles, illumination, lighting conditions, facial expressions, and noise.

We have cast a light on tensor decompositions as a perfect match for exploratory analysis of such
multifaceted data sets, and have illustrated their applications in multi-sensor and multi-modal signal
processing. Our emphasis has been to show that tensor decompositions and multilinear algebra open
completely new possibilities for component analysis, as compared with the “flat view” of standard two-
way methods.

Unlike matrices, tensors are multiway arrays of data samples whose representations are typically
overdetermined (fewer parameters in the decomposition than the number of data entries). This gives us
an enormous flexibility in finding hidden components in data and the ability to enhance both robustness
to noise and tolerance to missing data samples and faulty sensors. We have also discussed multilinear
variants of several standard signal processing tools such as multilinear SVD, ICA, NMF and PLS, and
have shown that tensor methods can operate in a deterministic way on signals of very short duration.

At present the uniqueness conditions of standard tensor models are relatively well understood and
efficient computation algorithms do exist, however, for future applications several challenging problems
remain to be addressed in more depth:

• A whole new area emerges when several decompositions which operate on different datasets are
coupled, as in multiview data where some details of interest are visible in only one mode. Such
techniques need theoretical support in terms of existence, uniqueness, and numerical properties.
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• As the complexity of advanced models increases, their computation requires efficient iterative al-
gorithms, extending beyond the ALS class.

• Estimation of the number of components in data, and the assessment of their dimensionality would
benefit from automation, especially in the presence of noise and outliers.

• Both new theory and algorithms are needed to further extend the flexibility of tensor models, e.g.,
for the constraints to be combined in many ways, and tailored to the particular signal properties in
different modes.

• Work on efficient techniques for saving and/or fast processing of ultra large-scale tensors is urgent,
these now routinely occupy tera-bytes, and will soon require peta-bytes of memory.

• Tools for rigorous performance analysis and rule of thumb performance bounds need to be further
developed across tensor decomposition models.

• Our discussion has been limited to tensor models in which all entries take values independently
of one another. Probabilistic versions of tensor decompositions incorporate prior knowledge
about complex variable interaction, various data alphabets, or noise distributions, and so promise
to model data more accurately and efficiently [119, 120].

It is fitting to conclude with a quote from Marcel Proust “The voyage of discovery is not in seeking new
landscapes but in having new eyes”. We hope to have helped to bring to the eyes of the Signal Process-
ing Community the multidisciplinary developments in tensor decompositions, and to have shared our
enthusiasm about tensors as powerful tools to discover new landscapes. The future computational, vi-
sualization and interpretation tools will be important next steps in supporting the different communities
working on large-scale and big data analysis problems.
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