TENSOR FIELDS AND CONNECTIONS ON A CROSS-SECTION IN THE TANGENT BUNDLE OF ORDER r

By Chorng-Shi Houh and Shigeru Ishihara

§ 0. Introduction.

Let M be an n-dimensional differentiable manifold and $T_r(M)$ the tangent bundle of order r over M, $r \ge 1$ being an integer [1], [3], [4]. The prolongations of tensor fields and connections given in the differentiable manifold M to its tangent bundle of order r have been studied in [1], [2], [3] [4], [7], [8] and [9]. If V is a vector field given in M, V determines a cross-section in $T_r(M)$. For the cases r=1 and r=2, Yano [7] and Tani [5] have studied, on the cross-section determined by a vector field V, the behavior of the prolongations of tensor fields and connections in M to T(M) (i.e., $T_1(M)$) and $T_2(M)$, respectively. The purpose of this paper is to study, on the cross-section determined by a vector field V, the behavior of the prolongations of these geometric objects in M to $T_r(M)$ ($r \ge 1$).

In §1 we summarize the results and properties we need concerning the prolongations of tensor fields and connections in M to $T_r(M)$. Proofs of the statements in §1 can be found in [1], [2], [3], [4] and [8]. In §2 we study the cross-section determined in $T_r(M)$ by a given vector field V in M. In §3 we study the behavior of prolongations of tensor fields on the cross-section. In §4 we study the prolongations of connections given in M to $T_r(M)$ along the cross-section and some of their properties.

We assume in the squel that the manifolds, functions, tensor fields and connections under consideration are all of differentiability of class C^{∞} . Several kinds of indices are used as follows: The indices $\lambda, \mu, \nu, \dots, s, t, u, \dots$ run through the range $0, 1, 2, \dots r$; the indices h, i, j, k, m, \dots run through the range $1, 2, \dots n$. Double indices like $(\nu)h$ are used, where $0 \le \nu \le r, 1 \le h \le n$. The indices A, B, C, \dots run through the range $(1)1, (1)2, \dots, (1)n, (2)1, \dots, (2)n, \dots, (r)1, \dots, (r)n$. For a given function f on M, the notation $f^{(0)}$ is sometimes substituted by $f^{(0)}$ for simplicity. Summation notation $\sum_{i=1}^n$ with respect to $h, i, j, k, m, \dots (=1, 2, \dots n)$ is omitted while summation notation with respect to $\lambda, \mu, \nu, \dots, s, t, u \dots$, from 0 to r, will be kept. For example,

$$\sum_{s=0}^{r} \sum_{h=1}^{n} {r \choose s} \mathcal{L}_{v}^{s} \overline{V}_{j} x^{h} B_{(s)h} \quad \text{will be written in } \sum_{s=0}^{r} {r \choose s} \mathcal{L}_{v}^{s} \overline{V}_{j} x^{h} B_{(s)h}.$$

For differentiable manifold N, we denote by $\mathcal{T}_q^p(N)$ the space of all tensor

Received May 17, 1971.

fields of type (p, q), i.e., of contravariant degree p and covariant degree q $(p, q \ge 0)$ and put

$$\mathcal{I}(N) = \sum_{p,q} \mathcal{I}_p^q(N)$$
.

§1. Prolongations of tensor fields and connections to $T_r(M)$.

Let R be the real line. $T_r(M)$ is the set of all r-jets $J_p^r(F)$ determined by a mapping $F: R \to M$ such that F(0) = P. We denote by $\pi_r: T_r(M) \to M$ the bundle projection, i.e., $\pi_r(J_p^r(F)) = P$. We shall denote π_r simply by π if there is no confusion. Let $\{U, x^h\}$ be a coordinate neighborhood of M at P. If we take an r-jet $J_p^r(F)$ belonging to $\pi^{-1}(U)$ and put

(1.1)
$$y^{(v)h} = \frac{1}{v!} \frac{d^v F^h(0)}{dt^v},$$

where F has the local expression $x^h = F^h(t)$, $t \in R$, in U such that P = F(0), then the r-jet $J_p^r(F)$ is expressed in a unique way by the set $(y^{(v)h})$ $(\nu = 0, 1, \dots, r; h = 1, \dots, n)$, $(y^{(0)h}) = (x^h)$ being the coordinates of P in U. Thus a system of coordinates $(y^{(v)h})$ is introduced in the open set $\pi^{-1}(U)$ of $T_r(M)$. We now call $(y^{(v)h})$ the coordinates induced in $\pi^{-1}(U)$ from $\{U, x^h\}$, or simply the induced coordinates in $\pi^{-1}(U)$. We sometimes denote the *induced coordinates* by (y^A) (see § 0). Thus $T_r(M)$ is a differentiable manifold of (r+1)n dimensions.

For $\lambda=0, 1, \dots, r$, we define the λ -lift $f^{(\lambda)}$ of a function f in M to $T_r(M)$ by

$$(1.2) f^{(1)}(f_p^r(F)) = \frac{1}{\lambda!} \left[\frac{d^{\lambda}(f \circ F)}{dt^{\lambda}} \right]_{\mathfrak{g}},$$

 $F: R \to M$ being an arbitrary mapping such that P = F(0). The λ -lift $f^{(\lambda)}$ of f is well defined in $T_r(M)$, i.e., the value $f^{(\lambda)}(J_p^r(F))$ is independent of the choice of $F: R \to M$. Clearly, $f^0 = f \circ \pi$ ($f^0 = f^{(0)}$, see § 0). For the sake of convenience, we define that $f^{(\lambda)} = 0$ for any negative integer λ . For the lifts of two functions f and g to $T_r(M)$, we have the following formula:

(1.3)
$$(f \circ g)^{(\lambda)} = \sum_{\mu=0}^{\lambda} f^{(\mu)} g^{(\lambda-\mu)}.$$

Let X be a vector field in M with components X^h in a coordinate neighborhood $\{U, x^h\}$. We defined the λ -lift of X to $T_r(M)$, denoted by $X^{(\lambda)}$, to be the vector field \widetilde{X} which locally has components \widetilde{X}^A in the open set $\pi^{-1}(U)$ such that

$$(1.4) \widetilde{X}^{(\nu)h} = (X^h)^{(\nu+\lambda-r)}$$

relative to the induced coordinates $(y^A)=(y^{(\nu)}{}_h)$ in $\pi^{-1}(U)$, where the right-hand side of (1.4) denotes the $(\nu+\lambda-r)$ -lift of the local function X^h . \tilde{X} or $X^{(\lambda)}$ actually determines globally a vector field in $T_r(M)$ (use (1.10)). For the λ -lifts of vector

fields, we have the following formulas:

$$(1.5) X^{(\lambda)} f^{(\mu)} = (Xf)^{(\lambda+\mu-r)}, f \in \mathcal{I}_0^0(M), X \in \mathcal{I}_0^1(M);$$

(1. 6)
$$\frac{\partial}{\partial y^{(\lambda)i}} = \left(\frac{\partial}{\partial x^{i}}\right)^{(r-\lambda)};$$

$$\frac{\partial f^{(\lambda)}}{\partial y^{(P)_k}} = \left(\frac{\partial f}{\partial x^i}\right)^{(\lambda-P)}, \quad f \in \mathcal{G}^0(M);$$

$$(1.8) (fX)^{(\lambda)} = \sum_{\mu=0}^{\lambda} f^{(\mu)} X^{(\lambda-\mu)}, f \in \mathcal{I}_0^0(M), X \in \mathcal{I}_0^1(M);$$

(1. 9)
$$[X^{(\lambda)}, Y^{(\mu)}] = [X, Y]^{(\lambda + \mu - \tau)}, \quad X, Y \in \mathcal{I}_{0}^{1}(M)$$

Let $\{U, x^h\}$ and $\{U', x^{h'}\}$ be two intersecting coordinate neighborhoods of M and the coordinate transformation in $U \cap U'$ be given by

$$x^{h'} = x^{h'}(x^k)$$
.

Then, if $(y^4)=(y^{(\nu)h})$ and $(y^{A')}=(y^{(\nu)h'})$ are the induced coordinates in $\pi^{-1}(U)$ and $\pi^{-1}(U')$ respectively, the transformation of induced coordinates in $\pi^{-1}(U\cap U')=\pi^{-1}(U)\cap\pi^{-1}(U')$ has the Jacobian matrix of the form

$$(1. 10) \qquad \left(\frac{\partial y^{A'}}{\partial y^{A}}\right) = \left(\frac{\partial y^{(\nu)h'}}{\partial y^{(\mu)h}}\right) = \left(\left(\frac{\partial x^{h'}}{\partial x^{h}}\right)^{(\nu-\mu)}\right).$$

Let a 1-form ω have the local expression $\omega = \omega_i dx^i$ in a coordinate neighborhood $\{U, x^h\}$. Then in $\pi^{-1}(U)$ we denote by $\tilde{\omega}_U$ the local 1-form defined by

(1. 11)
$$\tilde{\omega}_U = \sum_{\mu=0}^{\lambda} \omega_i^{(\mu)} dy^{(\lambda-\mu)i}$$

relative to the induced coordinates $(y^{(\nu)h})$ in $\pi^{-1}(U)$. This actually determines globally a 1-form in $T_r(M)$, which is called the λ -lift of ω and denoted by $\omega^{(\lambda)}$ (use (1.10)). For the λ -lifts of ω , we have the following formulas:

$$(1. 12) \qquad \omega^{(\lambda)}(X^{(\mu)}) = (\omega(X))^{(\lambda+\mu-r)}, \qquad \omega \in \mathcal{I}_0^0(M), \qquad X \in \mathcal{I}_0^1(M);$$

(1. 13)
$$dy^{(\lambda)i} = (dx^i)^{(\lambda)};$$

$$(1. 14) (f\omega)^{(\lambda)} = \sum_{\mu=0}^{\lambda} f^{(\mu)}\omega^{(\lambda-\mu)}, f \in \mathcal{I}_0^0(M), \omega \in \mathcal{I}_1^0(M).$$

The above operations of taking lifts are linear mapping $\mathcal{T}^0_q(M) \to \mathcal{T}^0_q(T_r(M))$, $\mathcal{T}^1_q(M) \to \mathcal{T}^0_q(T_r(M))$ and $\mathcal{T}^0_q(M) \to \mathcal{T}^0_q(T_r(M))$ respectively. They have the properties (1. 3), (1. 8) and (1. 14) respectively. Thus we can now define, for any element K of $\mathcal{T}^p_q(M)$, its λ -lift $K^{(\lambda)}$ (λ =0, 1, ..., r), which belongs to $\mathcal{T}^p_q(T_r(M))$ in such a way that the correspondence $K \to K^{(\lambda)}$ defines a linear mapping $\mathcal{T}^p_q(M) \to \mathcal{T}^p_q(T_r(M))$ which is characterized by the properties

$$(S \otimes T)^{(\lambda)} = \sum_{\mu=0}^{\lambda} S^{(\mu)} \otimes T^{(\lambda-\mu)}$$

for any S, $T \in \mathcal{I}(M)$ and $\lambda = 0, 1, \dots, r$. The tensor field $K^{(\lambda)}$ thus defined is called the λ -lift of the tensor field K in M to $T_r(M)$. For the λ -lifts of tensor fields, we have the following formulas:

$$(1.\ 15) \quad K^{(\lambda)}(X_1^{(\mu)},\,\cdots,\,X_q^{(\mu)}) = (K(X_1,\,\cdots,\,X_q))^{\lambda+q\,(\mu-r)}, \quad K\in\mathcal{I}_q^p(M),\,X_1\,\cdots,\,X_q\in\mathcal{I}_0^1(M);$$

$$(1. 16) \qquad \mathcal{L}_{X^{(\lambda)}}K^{(\mu)} = (\mathcal{L}_{X}K)^{(\lambda+\mu-r)}, \qquad X \in \mathcal{I}_{0}^{1}(M), \quad K \in \mathcal{I}(M);$$

(1. 17)
$$(\omega \wedge \pi)^{(\lambda)} = \sum_{\mu=0}^{\lambda} \omega^{(\mu)} \wedge \pi^{(\lambda-\mu)};$$

$$(1. 18) d\omega)^{(\lambda)} = d\omega^{(\lambda)},$$

 ω and π being arbitrary differential forms of arbitrary order in M, where \mathcal{L}_X denotes the Lie derivation with respect to a vector field X.

Next we shall give local expressions of lifts of tensor fields of special type in M to $T_r(M)$ relative to the induced coordinates $(y^A)=(y^{(v)h})$. Let X be a vector field with local components X^h in M. Then $X^{(\lambda)}$ in $T_r(M)$ has local components of the form

(1. 19)
$$X^{(\lambda)} : \begin{bmatrix} 0 \\ \vdots \\ 0 \\ (X^h)^0 \\ \vdots \\ (X^h)^{(\lambda-1)} \\ (X^h)^{(\lambda)} \end{bmatrix};$$

the lifts of a 1-form ω with local expression $\omega = \omega_i dx^i$ in M have local components of the form

(1. 20)
$$\omega^{(\lambda)} = (\omega_i^{(\lambda)}, \omega_i^{(\lambda-1)}, \dots, \omega_i^{(1)}, \omega_i^{(0)}, 0, \dots, 0);$$

the λ -lift of a tensor field $F \in \mathcal{G}^1_i(M)$ with local components F^n_i in M to $T_r(M)$ has local components of the form

$$(1.21) \qquad F^{(\lambda)} \colon \begin{bmatrix} 0 & 0 & 0 & \cdots & \cdots & 0 \\ & \cdots & \cdots & & \cdots & \cdots & 0 \\ 0 & 0 & 0 & \cdots & \cdots & 0 \\ (F_i^h)^{(0)} & 0 & 0 & \cdots & \cdots & 0 \\ (F_i^h)^{(1)} & (F_i^h)^{(0)} & 0 & \cdots & \cdots & 0 \\ & \cdots & \cdots & \cdots & \cdots & \cdots \\ (F_i^h)^{(\lambda)} & (F_i^h)^{(\lambda-1)} & (F_i^h)^{(\lambda-2)} & \cdots & (F_i^h)^{(0)} & 0 \cdots 0 \end{bmatrix}$$

and the λ -lift of a tensor field $g \in \mathcal{I}_2^0(M)$ with local components g_{ji} in M to $T_r(M)$ has local components of the form

$$(1. 22) g^{(\lambda)}: \begin{bmatrix} (g_{ji})^{(\lambda)} & (g_{ji})^{(\lambda-1)} & \cdots & (g_{ji})^{(1)} & (g_{ji})^{(0)} & 0 & \cdots & 0 \\ (g_{ji})^{(\lambda-1)} & (g_{ji})^{(\lambda-2)} & \cdots & (g_{ji})^{(0)} & 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ (g_{ji})^{(0)} & 0 & \cdots & \cdots & \cdots & 0 \\ 0 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \end{bmatrix}$$

relative to the induced coordinates in $\pi^{-1}(U)$.

Finally, we consider lifts of affine connections. Let V be an affine connection in M with components Γ^h_{Ii} in $\{U, x^h\}$. We now introduce in $\pi^{-1}(U)$ affine connection V^*_U with components $\tilde{\Gamma}^A_{CB}$ relative to the induced coordinates (y^A) such that

$$(1.23) \tilde{\Gamma}_{GB}^{A} = (\Gamma_{ii}^{h})^{(\lambda-\mu-\nu)}$$

for $A=(\lambda)h$, $B=(\mu)i$ and $C=(\nu)j$. According to (1.10) and (1.23), $\Gamma_{\overline{v}}^*$ actually determines globally an affine connection Γ^* in $T_r(M)$ which is called the *lift of the affine connection* Γ and denoted also by Γ^* . We have the following properties of Γ^* :

$$(1. 24) V_X^*(\lambda)K^{(\mu)} = (V_X K)^{(\lambda+\mu-r)}, X \in \mathcal{I}_0^1(M), K \in \mathcal{I}(M);$$

$$(1. 25) \mathcal{L}_{X} \otimes \overline{V}^* = (\mathcal{L}_{X} \overline{V})^{(\lambda)}, X \in \mathcal{I}_{0}^{1}(M).$$

§ 2. Cross-section determined by a vector field.

Suppose V be a vector field in M with components V^i relative to $\{U, x^h\}$. Denote by $F: I \rightarrow M$ the orbit of V passing through a point p in M such that F(0)=p, where I is an interval $(-\varepsilon, \varepsilon)$, ε being some positive number. We denote the r-jet $J_p^r(F)$ by $\gamma_V(p)$. Then the correspondence $p \rightarrow \gamma_V(p)$ defines a mapping $\gamma_V: M \rightarrow T_r(M)$ such that $\pi \circ \gamma_V$ is the identity mapping of M. Thus $\gamma_V: M \rightarrow T_r(M)$ is a cross-section in $T_r(M)$. We call the submanifold $\gamma_V(M)$ imbedded in $T_r(M)$ the cross-section determined by the vector field V. If $\{U, x^h\}$ is a coordinate neighborhood of M, the cross-section $\gamma_V(M)$ is expressed locally in $\pi^{-1}(U)$ by equations

$$y^{(0)} = x^{h} = F^{h}(0),$$

$$y^{(1)} = \frac{dF^{h}(0)}{dt} V^{h}(x^{i}),$$

$$y^{(2)} = \frac{1}{2!} \frac{d^{2}F^{h}(0)}{dt^{2}} = \frac{1}{2} V^{k} \partial_{k} V^{h},$$

$$(2. 1)$$

$$y^{(3)} = \frac{1}{3!} \frac{d^{3}F^{h}(0)}{dt^{3}} = \frac{1}{3!} V^{k} (V^{m} \partial_{k} \partial_{m} V^{h} + \partial_{k} V^{m} \partial_{m} V^{h}),$$
.....,

$$y^{(v)} = \frac{1}{v!} = \frac{d^v F^h(0)}{dt^v}.$$

with respect to the induced coordinates. Let f be a function on M, we have

$$f^{0}(=f^{(0)}) = f,$$

$$f^{(1)} = \frac{d}{dt}(f \circ F) = \partial_{i} f \cdot y^{(1)} = V^{i} \partial_{i} f = (\mathcal{L}_{V} f)^{0}$$

along $\gamma_{\nu}(M)$. A simple calculation yields that along the cross-section $\gamma_{\nu}(M)$

$$f^{(\lambda)} = \frac{1}{\lambda!} \mathcal{L}_{\nu}^{\lambda} f$$

holds, where $\mathcal{L}_{V}^{\lambda} = \mathcal{L}_{V}(\mathcal{L}_{\lambda}^{\lambda-1}f)$ for $\lambda > 1$.

According to (2.1), the submanifold $\gamma_{\nu}(M)$ is locally expressed by a system of equations $y^{(\nu)h} = y^{(\nu)h}(x^i)$ such that

$$y^{(0)h}(x^{i}) = x^{h},$$

$$y^{(1)h}(x^{i}) = V^{h} = (V^{h})^{0},$$

$$y^{(2)h}(x^{i}) = \frac{1}{2} V^{k} \partial_{k} V^{h} = \frac{1}{2} (V^{h})^{(1)},$$

$$\dots,$$

$$y^{(r)h}(x^{i}) = \frac{1}{r} (V^{h})^{(r-1)}$$

with respect to the induced coordinates $(y^{A})=(y^{(v)h})$ in $\pi^{-1}(U)$. Let us put

$$(2. 4) B_{(0)i}^{A} = \partial_i y^{A}(x^{h}).$$

Then we have along $\gamma_{\nu}(M)$ n local vector fields $B_{(0)1}, B_{(0)2}, \dots, B_{(0)n}$ which are tangent to the cross-section. Their components with respect to the induced coordinate $(y^{(\nu)h})$ are

(2. 4)
$$B_{(0)j} = \begin{bmatrix} \frac{\partial_j^h}{\partial^j V^h} \\ \frac{1}{2} \partial_j (V^h)^{(1)} \\ \vdots \\ \frac{1}{r} \partial_j (V^h)^{(r-1)} \end{bmatrix}.$$

For an element X of $\mathcal{I}_0^1(M)$ with local components X^i , we denote by $B_{(0)}X$ the vector field with components

$$B_{(0)i}^{A}X^{i}$$
, i.e. $B_{(0)}X=B_{(0)i}^{A}X^{i}\frac{\partial}{\partial y^{A}}$,

which is defined globally along $\gamma_{V}(M)$ by virtue of (1. 10). For any point σ of $\gamma_{V}(M)$, the mapping $B_{(0)p}\colon T_{p}(M) \to T_{\sigma}(T_{r}(M))$ ($\sigma = \gamma_{V}(p)$) defined by $B_{(0)p}(X_{p}) = (B_{(0)}X)_{\sigma}$ is nothing but the differential $(\gamma_{V})_{p}$ of the cross-section mapping $\gamma_{V}\colon M \to T_{r}(M)$. Thus $B_{(0)p}(T_{p}(M))$ is the tangent space of the cross-section $\gamma_{V}(M)$ at the point $\sigma = \gamma_{V}(p)$.

Along the cross-section $\gamma_r(M)$, for each integer ν such that $0 \le \nu \le r-1$, we consider n local vector fields $B_{(\nu)1}$, $B_{(\nu)2}$, ..., $B_{(\nu)n}$ which have respectively components of the form

(2. 5)
$$(B_{\langle \nu \rangle j}^{\mathbf{A}}) = \begin{bmatrix} 0 \\ \vdots \\ \partial_{j}^{h} \\ \partial_{j} V^{h} \\ \frac{1}{2} \partial_{j} (V^{h})^{(1)} \\ \vdots \\ \frac{1}{r-\nu} \partial_{j} (V^{h})^{(r-\nu-1)} \end{bmatrix}$$

and n local vector fields $B_{(r)1}$, $B_{(r)2}$, ..., $B_{(r)n}$ which have respectively components of the form

$$(B_{(r),j}^{A}) = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ \delta_{r}^{h} \end{bmatrix}$$

relative to the induced coordinates (y^A) . Again we denote by $B_{(\nu)}X$ the vector field with components $B^A_{(\nu)}X^j$, i.e., $B_{(\nu)}X=B^A_{(\nu)}X^j\partial/\partial y^A$. These vector fields are defined globally along $\gamma_V(M)$. For any point σ of $\gamma_V(M)$, the mappings $B_{(\nu)}p$: $T_p(M)$) $\to T_\sigma(T_r(M))$ $(\sigma=\gamma_V(p))$ are defined as follows:

$$B_{(\nu),p}(X_p) = (B_{(\nu)}X)_q \qquad X \in \mathcal{I}_0^1(M).$$

The mappings $B_{(\nu)p}$, including $\nu=0$, are isomorphisms of $T_p(M)$ into $T_\sigma(T_r(M))$.

The (r+1)n vector fields $B_{(\nu)j}$ $(0 \le \nu \le r, 1 \le j \le n)$ form a local family of frames along $\gamma_r(M)$, which we shall call *adapted frames* of $\gamma_r(M)$. The n vector fields $B_{(0)j}$ span at each point σ of $\gamma_r(M)$ the tangent plane $T_{\sigma}(\gamma_r(M))$ of the cross-section $\gamma_r(M)$.

For any element X of $\mathcal{I}_0^i(M)$ with local components X^i , we denote by $B_{(\nu)}X$ the vector field with components

$$B_{(\nu)\imath}^{A}X^{i}$$
, i.e. $B_{(\nu)}X=B_{(\nu)\imath}^{A}X^{i}\frac{\partial}{\partial y^{A}}$.

§ 3. Prolongations of tensor fields in the cross-section.

Suppose X is a given vector field in M. We consider along $\gamma_r(M)$ the λ -lift $X^{(\lambda)}$ of X. We shall describe $X^{(\lambda)}$ with respect to the adapted frames $B_{(0)}$, of

 $\gamma_{V}(M)$. The result is as follows:

Proposition 3.1. Along $\gamma_v(M)$ the λ -lift $X^{(\lambda)}$ of X is written in

(3. 1)
$$X^{(\lambda)} = \sum_{\nu=0}^{\lambda} \frac{1}{\nu!} B_{(r-\lambda+r)} \mathcal{L}_{V}^{\nu} X$$
$$= B_{(r-\lambda)} X + B_{(r-\lambda+1)} \mathcal{L}_{V} X + \frac{1}{2!} B_{(r-\lambda+2)} \mathcal{L}_{V}^{2} X + \cdots$$
$$+ \frac{1}{(\lambda-1)!} B_{(r-1)} \mathcal{L}_{V}^{\lambda-1} X + \frac{1}{\lambda!} B_{(r)} \mathcal{L}_{V}^{\lambda} X.$$

Proof. By (1.19), $X^{(i)}$ has the form

$$X^{(\lambda)} = \sum_{\nu=0}^{\lambda} (X^{\hbar})^{(\nu)} \frac{\partial}{\partial y^{(r-\lambda+\nu)\hbar}}$$

with respect to the natural frame $\{\partial/\partial y^A\}$.

We first calculate $(X^h)^{(\nu)}$ along $\gamma_{\nu}(M)$ as follows:

$$\begin{split} (X^h)^{(0)} &= X^h; \\ (X^h)^{(1)} &= V^j \partial_j X^h = X^i \partial_i V^h + \mathcal{L}_V X^h; \\ (X^h)^{(2)} &= \frac{1}{2} \, V^j \partial_j ((X^h)^{(1)}) \\ &= \frac{1}{2} \, V^k \partial_k (\mathcal{L}_V X^h + X^j \partial_j V^h) \\ &= \frac{1}{2} (\mathcal{L}_V^2 X^h + \partial_j V^h \mathcal{L}_V X^j + V^k \partial_k X^j \partial_j V^h + V^k X^j \partial_k \partial_j V^h) \\ &= \frac{1}{2} [\mathcal{L}_V^2 X^h + \partial_j V^h \mathcal{L}_V X^j + \partial_j V^h (\mathcal{L}_V X^j + X^k \partial_k V^j) + V^k X^j \partial_k \partial_j V^h] \\ &= \frac{1}{2} \mathcal{L}_V^2 X^h + \partial_j V^h \mathcal{L}_V X^j + \frac{1}{2} X^k (\partial_j V^h \partial_k V^j + V^j \partial_j \partial_k V^h) \\ &= \frac{1}{2} \mathcal{L}_V^2 X^h + \partial_j V^h \mathcal{L}_V X^j + \frac{1}{2} \mathcal{L}_V^2 X^h. \end{split}$$

By induction, we have the following formulas:

$$(X^{h}) = \frac{1}{\nu} X^{j} \partial_{j} (V^{h})^{(\nu-1)} + \frac{1}{\nu-1} (\mathcal{L}_{V} X^{j}) \partial_{j} (V^{h})^{(\nu-2)} + \frac{1}{2!(\nu-2)} (\mathcal{L}_{V}^{2} X^{j}) \partial_{j} (V^{h})^{(\nu-3)} + \cdots + \frac{1}{\mu!(\nu-\mu)} (\mathcal{L}_{V}^{\mu} X^{j}) \partial_{j} (V^{h})^{(\nu-\mu-1)} + \cdots$$
(3. 2)

$$+\frac{1}{(\nu-1)!}(\mathcal{L}_{V}^{\nu-1}X^{j})\partial_{j}V^{h}+\frac{1}{\nu!}\mathcal{L}_{V}^{\nu}X^{h}.$$

Thus (3.1) follows from (1.19), (2.5) and (3.2).

Let ω be an element of $\mathcal{I}_i^0(M)$ with local expression $\omega = \omega_i dx^i$. Then, by (1.20), $\omega^{(i)}$ has components of the form

$$\omega^{(\lambda)} = (\omega_i^{(\lambda)}, \, \omega_i^{(\lambda-1)}, \, \cdots, \, \omega_i^{(1)}, \, \omega_i^0, \, 0, \, \cdots, \, 0)$$

with respect to the natural coframe $\{dy^4\}$. Along the cross-section $\gamma_V(M)$, let the coframes dual to the adapted frames $\{B_{(\nu)j}\}$ be $\{B^{(\nu)j}\}$. We denote by $B^{(\nu)}\omega$ the 1-form with components $B_{4}^{(\nu)j}\omega_{j}$ with respect to the coframes $\{dy^4\}$. Then we have

Proposition 3.2. Along $\gamma_V(M)$ the λ -lifts $\omega^{(\lambda)}$ of ω are written in

(3. 3)
$$\omega^{(\lambda)} = \frac{1}{\lambda!} B^{(0)} \mathcal{L}_{V}^{\lambda} \omega + \frac{1}{(\lambda - 1)!} B^{(1)} \mathcal{L}_{V}^{\lambda - 1} \omega + \cdots + \frac{1}{2!} B^{(\lambda - 2)} \mathcal{L}_{V}^{2} \omega + B^{(\lambda - 1)} \mathcal{L}_{V} \omega + B^{(\lambda)} \omega.$$

Proof. By (1.12) we have

$$\omega^{(\lambda)}(X^{(\nu)}) = (\omega(X))^{(\lambda+\nu-r)}$$

and by (2.2)

$$\begin{split} (\omega(X))^{(\lambda+\nu-r)} &= (\omega_i X^i)^{(\lambda+\nu-r)} = \frac{1}{(\lambda+\nu-r)!} \mathcal{L}_{v}^{\lambda+\nu-r}(\omega_i X^i) \\ &= \frac{1}{(\lambda+\nu-r)!} \sum_{\mu=0}^{\lambda+\nu-r} \binom{\lambda+\nu-r}{\mu} (\mathcal{L}_{v}^{\lambda+\nu-r-\mu}\omega_i) (\mathcal{L}_{v}^{\mu} X^i) \\ &= \sum_{\mu=0}^{\lambda+\nu-r} \frac{1}{(\lambda+\nu-r-\mu)! \ \mu!} (\mathcal{L}_{v}^{\lambda+\nu-r-\mu}\omega_i) (\mathcal{L}_{v}^{\mu} X^i), \end{split}$$

where $\binom{\lambda+\nu-r}{\mu}$ denotes the binomial coefficient.

On the other hand, with respect to the coframes $\{B^{(v)j}\}\$, we consider a 1-form $\overline{\omega}^{(\lambda)}$ defined by

$$\bar{\omega}^{(\lambda)} = \sum_{\mu=0}^{\lambda} \frac{1}{(\lambda - \mu)!} B^{(\mu)_{\lambda}} \mathcal{L}_{V}^{\lambda - \mu} \omega_{i}.$$

Then by (3.2) we have

$$\overline{\omega}^{(\lambda)}X^{(\nu)} = \sum_{\mu=0}^{\lambda-r+\nu} \frac{1}{(\lambda-r+\nu-\mu)!\,\mu!} (\mathcal{L}^{\mu}_{r}X^{i})(\mathcal{L}^{\lambda+\nu-r-\mu}_{r}\omega_{i}).$$

Since X is arbitrary in the above formulas, the formula (3.3) follows from $\omega^{(\lambda)}X^{(\nu)} = \overline{\omega}^{(\lambda)}X^{(\nu)}$.

Now we shall write down the λ -lifts of tensor fields of special type in M with respect to the adapted frame. For an element h of $\mathcal{I}_2^0(M)$ with local components h_{ij} , we have

$$(3.4) \quad h^{(2)} : \begin{bmatrix} \frac{1}{\lambda!} \mathcal{L}_{V}^{2} h_{ji} & \frac{1}{(\lambda-1)!} \mathcal{L}_{V}^{2-1} h_{ji} \cdots \frac{1}{2!} \mathcal{L}_{V}^{2} h_{ji} & \mathcal{L}_{V} h_{ji} & h_{ij} & 0 \cdots 0 \\ \frac{1}{(\lambda-1)!} \mathcal{L}_{V}^{2-1} h_{ji} & \frac{1}{(\lambda-1)!} \mathcal{L}_{V}^{2-2} h_{ji} \cdots & \mathcal{L}_{V} h_{ji} & h_{ij} & 0 & \cdots 0 \\ & \cdots & \cdots & \cdots & \cdots & \cdots \\ \frac{1}{2!} \mathcal{L}_{V}^{2} h_{ji} & \mathcal{L}_{V} h_{ji} & \cdots & \cdots & 0 \\ \mathcal{L}_{V} h_{ji} & h_{ij} & \cdots & \cdots & 0 \\ h_{ij} & 0 & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & \cdots & \cdots & 0 \end{bmatrix}$$

and, for an element F of $\mathfrak{T}_{i}^{1}(M)$ with local components F_{i}^{h} ,

$$(3.5) \qquad F^{(\lambda)} \colon \begin{bmatrix} 0 & 0 & \cdots & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\ 0 & 0 & \cdots & \cdots & 0 \\ F_i^h & 0 & \cdots & \cdots & 0 \\ \mathcal{L}_V F_i^h & F_i^h & \cdots & \cdots & 0 \\ \frac{1}{2!} \mathcal{L}_V^2 F_i^h & \mathcal{L}_V F_i^h & \cdots & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \frac{1}{(\lambda - 1)!} \mathcal{L}_V^{i - 1} F_i^h \cdots \frac{1}{(\lambda - 2)!} \mathcal{L}_V^{r - 2} F_i^h \cdots F_i^h & 0 & 0 \cdots 0 \\ \frac{1}{\lambda!} \mathcal{L}_V^{i} F_i^h & \cdots \frac{1}{(\lambda - 1)!} \mathcal{L}_V^{i - 1} F_i^h \cdots \mathcal{L}_V F_i^h & F_i^h & 0 \cdots 0 \end{bmatrix}$$

For an element S of $\mathcal{I}_{2}^{1}(M)$ with local component S_{ji}^{h} , we have

$$(S^{(\lambda)})_{\nu(f)_{\omega}(k)}{}^{\mu(i)} = \frac{1}{(\lambda + \mu - r - \nu - \omega)!} \mathcal{L}_{V}^{\lambda + \mu - r - \nu - \omega} S_{jk}^{t},$$

$$= 0 \qquad \text{if} \quad \lambda + \mu < r + \nu + \omega.$$

In §2 we have shown that for the mapping γ_r : $M \to \gamma_r(M)$, $\gamma_r'(X) = B_{(0)}X$ for any X in $\mathcal{G}^1_0(M)$. $B_{(0)}$: $T(M) \to T((\gamma_r'(M)))$ is a linear isomorphism. Let $B_{(0)}^{-1}$ be the inverse of this linear isomorphism $B_{(0)}$. Then $B_{(0)}^{-1}$: $T(\gamma_r(M)) \to T(M)$. The dual map $(B_{(0)}^{-1})^*$ of $B_{(0)}^{-1}$ sends $\mathcal{G}^0_1(M)$ to $\mathcal{G}^0_1(\gamma_r(M))$. $(B_{(0)}^{-1})^*$ is nothing but $B^{(0)}$. We now denote $B^{(0)}$ also by γ_r' , i.e., $\gamma_r'(\omega) = B^{(0)}\omega$ for $\omega \in \mathcal{G}^0_1(M)$. Then we can extend the mapping γ_r' to a linear mapping γ_r' : $\mathcal{G}(M) \to \mathcal{G}(\gamma_r(M))$ by setting

$$\gamma_{V}'(P \otimes Q) = \gamma_{V}'(P) \otimes \gamma_{V}'(Q)$$

for arbitrary tensor fields P, Q in M.

Now we shall define an operation, denoted by #, in $\mathcal{I}(T_r(M))$ as follows: If $\widetilde{X} \in \mathcal{I}_0^1(T_r(M))$, $\widetilde{X} = \sum_{\nu=0}^r \widetilde{X}^{(\nu)i}B_{(\nu)i}$, then $\widetilde{X}^{\sharp} = \widetilde{X}^{(0)i}B_{(0)i} \in \mathcal{I}_0^1(\gamma_V(M))$;

If $\tilde{\omega}$ is a tensor field of type (0,1) in $T_r(M)$ defined along $\gamma_r(M)$, then

$$\tilde{\omega}^{\sharp}(B_{(0)}X) = \tilde{\omega}(B_{(0)}X);$$

If \tilde{h} is a tensor field of type (0,2) in $T_r(M)$ defined along $\gamma_r(M)$, then

$$\tilde{h}^{\sharp}(B_{(0)}X, B_{(0)}Y) = \tilde{h}(B_{(0)}X, B_{(0)}Y);$$

If \widetilde{F} is a tensor field of type (1, 1) in $T_r(M)$ such that, for any vector field \widetilde{A} tangent to $\gamma_r(M)$ $\widetilde{F}\widetilde{A}$ is also tangent to $\gamma_r(M)$, then $F^*(B_{(0)}X) = \widetilde{F}(B_{(0)}X)$;

If \tilde{S} is a tensor field of type (1, 2) in $T_r(M)$ such that, for any vector fields \tilde{A} , \tilde{B} tangent to $\gamma_r(M)$, $\tilde{B}(\tilde{A}, \tilde{B})$ is also tangent to $\gamma_r(M)$, then

$$\tilde{S}^{\sharp}(B_{(0)}X, B_{(0)}Y) = \tilde{S}(B_{(0)}X, B_{(0)}Y).$$

In the above definitions the relations are supposed to hold for arbitrary elements X and Y in $\mathcal{I}_0^1(M)$. We sometimes call \tilde{h}^{\sharp} , \tilde{F}^{\sharp} and \tilde{S}^{\sharp} respectively the *tensor fields induced in* $\gamma_F(M)$ from h, F and S.

For the operation #, we have the following propositions by (3.1), (3.3) and (3.4):

PROPOSITION 3.3. (a) For any X in $\mathcal{I}_0^1(M)$, $(X^{(\lambda)})^{\sharp}=0$ if $\lambda=0, 1, \dots, r-1$. $X^{(r)}$ is tangent to $\gamma_V(M)$, if and only if $\mathcal{L}_VX=0$, and in this case $X^{(r)}=\gamma_V'X$.

- (b) For any ω in $\mathfrak{T}_1^0(M)$, $(\omega^{(\lambda)})^{\sharp} = \frac{1}{\lambda!} \gamma_V'(\mathcal{L}_V^{\lambda}\omega)$, $\lambda = 0, 1, \dots, \gamma$.
- (c) For any h in $\mathcal{G}_{2}^{0}(M)$, $(h^{(\lambda)})^{*} = \frac{1}{\lambda!} \gamma'_{V}(\mathcal{L}_{V}^{2}h)$, $\lambda = 0, 1, \dots, r$. $(h^{0})^{*} (B_{(0)}X, B_{(0)}Y) = (h(X, Y))^{0}.$

COROLLARY. Let g be a Riemannian metric in M. Then $(g^0)^{\frac{1}{2}}$ is a Riemannian metric in $\gamma_V(M)$ and γ_V is an isometry with respect to g in M and $g^{(0)^{\frac{1}{2}}}$ in $\gamma_V(M)$.

Let \tilde{F} be a (1,1) tensor field defined along $\gamma_{V}(M)$. If $T_{\circ}(\gamma_{V}(M))$, $\sigma \in \gamma_{V}(M)$, is invariant by the action of the tensor F, the cross-section $\gamma_{V}(M)$ is said to be *invariant* by F.

From (3.5), we have

$$F^{(\nu)}(B_{(0)}X) = B_{(r-\nu)}(FX) + B_{(r-\nu+1)}((\mathcal{L}_{V}F)X) + \frac{1}{2!}B_{(r-\nu+2)}((\mathcal{L}_{V}^{2}F)X) + \frac{1}{\mu!}B_{(r-\nu+\mu)}((\mathcal{L}_{V}^{n}F)X) + \dots + \frac{1}{\nu!}B_{(r)}((\mathcal{L}_{V}^{n}F)X)$$

for any vector field X in M. Thus we have

Proposition 3. 4. For $F \in \mathcal{I}_1^1(M)$, the cross-section $\gamma_V(M)$ is invariant by $F^{(r)}$ if and only if $\mathcal{L}_V F = 0$. In this case $(F^{(r)})^{\sharp} = \gamma_V' F$ holds. The lifts $F^{(1)}$ ($\lambda = 0, 1, \dots, r-1$) do not leave $\gamma_V(M)$ invariant unless F = 0.

PROPOSITION 3.5 If F is an almost complex structure in M such that $\mathcal{L}_v F = 0$, then $(F^{(r)})^*$ is an almost complex structur in $\gamma_v(M)$.

If (g, F) is an almost Hermitian structure in M and $\mathcal{L}_{V}F=0$ holds, then

$$(g^{0})^{\sharp}((F^{(r)})^{\sharp}B_{(0)}X, (F^{(r)})^{\sharp}B_{(0)}Y) = (\gamma'_{r}g)((\gamma'_{r}F)B_{(0)}X, (\gamma'_{r}F)B_{(0)}Y)$$
$$= (g(FX, FY))^{0}.$$

Thus we have

PROPOSITION 3. 6. Suppose that there is given an almost Hermitian structure (g, F) in M. If $\mathcal{L}_V F = 0$, then $((g^{(0)})^{\sharp}, (F^{(r)})^{\sharp})$ is an almost Hermitian structure in $\gamma_V(M)$.

By (3.6), we have for any $S \in \mathcal{I}_2^1(M)$

$$\begin{split} S^{(\lambda)}(B_{(0)}X,\,B_{(0)}Y) \!=\! B_{(r-\lambda)}(S\!(X,Y)) \!+\! B_{(r-\lambda+1)}((\mathcal{L}_{V}\!S)\!(X,Y)) \\ + \! \frac{1}{2!} B_{(r-\lambda+2)}((\mathcal{L}_{V}^{2}\!S)\!(X,Y)) \!+\! \cdots \!+\! \frac{1}{\lambda!} B_{(r)}((\mathcal{L}_{V}^{1}\!S)\!(X,Y)). \end{split}$$

Thus we have

PROPOSITION 3.7. If $S \in \mathcal{I}_2^1(M)$, the vector field $S^{(r)}(B_{(0)}X, B_{(0)}Y)$ is tangent to $\gamma_V(M)$ for arbitrary X, Y of $\mathcal{I}_2^1(M)$, if and only if $\mathcal{L}_V S = 0$, and in this case $(S^{(r)})^{\frac{1}{2}} = \gamma_V' S$. The vector fields $S^{(1)}(B_{(0)}X, B_{(0)}Y)$ $(0 < \lambda < r)$ are not tangent to $\gamma_V(M)$ unless S = 0.

Let F be a tensor of type (1, 1) in M and N_F its Nijenhuis tensor. Then it is easy to check that $\mathcal{L}_V F_i^2 = 0$ implies $\mathcal{L}_V (N_F)_{ij}^k = 0$. Thus we have

COROLLARY 1. Let F be an element of $\mathfrak{I}_{\mathfrak{i}}^{\mathfrak{l}}(M)$ such that $\mathcal{L}_{V}F=0$, then $(N_{F})^{(r)}(B_{(0)}X, B_{(0)}Y)$ is tangent to $\gamma_{V}(M)$ for arbitaary elements X and Y of $\mathfrak{I}_{\mathfrak{d}}^{\mathfrak{l}}(M)$. In this case $((N_{F})^{(r)})^{\sharp}=\gamma'_{V}N_{F}$.

COROLLARY 2. If a complex structure F in M satisfies the condition $\mathcal{L}_{v}F=0$, then $(F^{(r)})^{\sharp}$ is a complex structure in $\gamma_{v}(M)$.

§ 4. Prolongations of affine connections in the cross-section.

Suppose an affine connection V with coefficients Γ_{ji}^h is given in M. For a vector field X with components X^i and a tensor field P of type (1, 2) with component P_{ji}^h , we have the following formulas [6]:

$$\mathcal{L}_{V}(\mathcal{V}_{j}X^{h}) - \mathcal{V}_{j}(\mathcal{L}_{V}X^{h}) = (\mathcal{L}_{V}\Gamma^{h}_{ji})X^{i},$$

$$\mathcal{V}_{k}(\mathcal{L}_{V}\Gamma^{h}_{ji}) - (\mathcal{V}_{j}(\mathcal{L}^{A}\Gamma^{h}_{ki}) = \mathcal{L}_{V}R_{kj}^{h},$$

$$\mathcal{L}_{V}(\nabla_{k}P_{ij}^{h}) - \nabla_{k}(\mathcal{L}_{V}P_{ij}^{h}) = (\mathcal{L}_{V}\Gamma_{km}^{h})P_{ij}^{m} - (\mathcal{L}_{V}\Gamma_{kj}^{m})P_{mi}^{h} - (\mathcal{L}_{V}\Gamma_{kj}^{m})P_{im}^{h}$$

where $R_{kj_i}^h$ are components of the curvature tensor of Γ .

Using the third formula for any tensor field P with local componente $P_{I_i}^h$, we have easily

$$\mathcal{L}_{V}^{q}(\mathcal{V}_{j}X^{h}) - \mathcal{V}_{j}(\mathcal{L}_{V}^{q}X^{h}) = \sum_{s=0}^{q-1} \binom{n}{s} (\mathcal{L}_{V}^{q-s}\Gamma_{jk}^{h})(\mathcal{L}_{V}^{s}X^{k}),$$

$$(4.2) \quad V_{k}(\mathcal{L}_{V}^{q}\Gamma_{ji}^{h}) - V_{j}(\mathcal{L}_{V}^{q}\Gamma_{ki}^{h}) + \sum_{s=1}^{q-1} {q \choose s} [(\mathcal{L}_{V}^{q-s}\Gamma_{ji}^{m})(\mathcal{L}_{V}^{s}\Gamma_{km}^{h}) - (\mathcal{L}_{V}^{q-s}\Gamma_{ki}^{m})(\mathcal{L}_{V}^{s}\Gamma_{jm}^{h})] = \mathcal{L}_{V}^{q}R_{kj}^{h}$$

$$(4.3) \quad \partial_k(\mathcal{L}_V^q \Gamma_{ji}^h) - \partial_j(\mathcal{L}_V^q \Gamma_{ki}^h) + \sum_{s=0}^{q-1} \binom{q}{s} [(\mathcal{L}_V^{q-s} \Gamma_{ji}^m)(\mathcal{L}_V^s \Gamma_{km}^h) - (\mathcal{L}_V^{q-s} \Gamma_{ki}^m)(\mathcal{L}_V^s \Gamma_{jm}^h)] = \mathcal{L}_V^q R_{kj}^h$$

for any positive integer q.

Let V^* be the lift of the affine connection V. Then V^* is an affine connection in $T_r(M)$. We shall now prove

Proposition 4.1.
$$V_{B(0)j}^*B_{(s)k} = \sum_{u=0}^{r-s} \frac{1}{u!} (\mathcal{L}_{v}^{u} \Gamma_{jk}^{h})^{0} B_{(s+u)h}$$

Proof. By (1.24) and (3.1), we have

$$(4.4) V_{Y(r)}^* X^{(r)} = (V_r X)^{(r)} = \sum_{s=0}^r \frac{1}{s!} (\mathcal{L}_Y^s V_r X^h)^0 B_{(s)h}.$$

On the other hand, we have

$$(4.4)'$$

$$= V_{Y(r)}^{*}X^{(r)} = V_{Y(r)}^{*}\left(\sum_{s=0}^{r} -\frac{1}{s!}(\mathcal{L}_{V}^{s}X^{h})^{0}B_{(s)h}\right)$$

$$= \sum_{s=0}^{r} \frac{1}{s!}(\mathcal{L}_{V}^{s}X^{h})^{0}V_{Y(s)h}^{*} + \sum_{s=0}^{r} \frac{1}{s!}Y^{i}\partial_{i}(\mathcal{L}_{V}^{s}X^{h})^{0}B_{(s)h}.$$

For any $\sigma \in \gamma_V(M)$ there is a vector field Y in M with initial condition $Y = Y^j \partial/\partial x^j$, $\mathcal{L}_V Y = 0$, ..., $\mathcal{L}_V^r Y = 0$ at $p = \pi(\sigma)$. Then $Y^{(r)} = Y^j B_{(0)j}$ at σ . Taking the coefficients of Y^j in right-hand sides of (4.4) and (4.4)', we have

$$\sum_{s=0}^{r} \frac{1}{s!} (\mathcal{L}_{V}^{s} \nabla_{j} X^{h})^{0} B_{(s)h} = \sum_{s=0}^{r} (\mathcal{L}_{V}^{s} X^{h})^{0} \nabla_{B(0)j}^{*} B_{(s)h} + \sum_{s=0}^{r} \frac{1}{s!} (\partial_{j} \mathcal{L}_{V}^{s} X^{h})^{0} B_{(s)h}.$$

Hence we have

$$\begin{split} \sum_{s=0}^{r} \frac{1}{s!} (\mathcal{L}_{V}^{s} X^{h})^{0} \overline{V}_{B(0)j}^{*} B_{(s)h} &= \sum_{s=0}^{r} \frac{1}{s!} (\mathcal{L}_{V}^{s} \overline{V}_{j} X^{h} - \partial_{j} \mathcal{L}_{V}^{s} X^{h})^{0} B_{(s)h} \\ &= \sum_{s=0}^{r} \frac{1}{s!} (\mathcal{L}_{V}^{s} \overline{V}_{j} X^{h} - \overline{V}_{j} \mathcal{L}_{V}^{s} X^{h} + \Gamma_{ji}^{h} \mathcal{L}_{V}^{s} X^{i})^{0} B_{(s)h} \\ &= \sum_{s=0}^{r} \frac{1}{s!} \left(\sum_{v=0}^{s} \binom{s}{u} (\mathcal{L}_{V}^{s-u} \Gamma_{jk}^{h}) (\mathcal{L}_{V}^{u} X^{k}) \right)^{0} B_{(s)h}, \end{split}$$

where we have used (4.1). Since X is arbitrary, we may compare the coefficients of $(X^k)^{(0)}$, $(\mathcal{L}_V X^k)^{(0)}$, $(\mathcal{L}_V^2 X^k)^{(0)}$, ... in the equation above and have

$$V_{B(0)j}^* B_{(s)k} = \sum_{v=0}^{r-s} \frac{1}{w!} (\mathcal{L}_v^u \Gamma_{jk}^h)^0 B_{(s+u)h}$$

which is to be proved.

Putting

$$(4. 6) ' \nabla_{j}^{*} B_{(s)i} = \nabla_{B(0)j}^{*} B_{(s)i} - (\Gamma_{ji}^{h})^{0} B_{(s)h},$$

then we have

$$' \mathcal{V}_{j}^{*} B_{(s)z} = \sum_{u=1}^{r-s} \frac{1}{u!} (\mathcal{L}_{\mathcal{V}}^{u} \Gamma_{ji}^{h})^{0} B_{(s+u)h}, \quad s=0, 1, \dots, r-1;
' \mathcal{V}_{j}^{*} B_{(r)z} = 0.$$

Thus we have now

Proposition 4.2. The cross-section $\gamma_{V}(M)$ is totally geodesic in $T_{r}(M)$ with respect to the connection V^* if and only if the vector field V is infinitesimal affine transformation in M with respect to V, i.e., $\mathcal{L}_{V}\Gamma_{ii}^{n}=0$.

For any X of $\mathcal{I}_0^1(M)$ we get, from (4.6),

$$(X^k)^{0}{}' \Gamma_j^* B_{(0)i} = (X^i)^0 \Gamma_{B_{(0)j}}^* B_{(0)i} - (X^i)^0 (\Gamma_{ji}^h)^0 B_{(0)h}$$

and then

$$V_{B(0),i}^*(B_{(0)}X) = (V_jX^h)^0B_{(0),h} + (X^h)^{0}V_j^*B_{(0),h}.$$

So, for any $Y \in \mathcal{I}_0^1(M)$, we get

$$(4.8) V_{B(0)Y}^*(B_{(0)}X) = B_{(0)}(V_YX) + (X^h)^0(Y^j)^0V_j^*B_{(0)h}.$$

Thus $B_{(0)}(\nabla_r X)$ is the tangent component to $\gamma_r(M)$ of $\nabla_{B_{(0)}}^* r(B_{(0)} X)$, according to (4.7). We can now define an affine connection ∇^* in $\gamma_r(M)$ by the equation

$$(4.9) V_{B(0)}^* Y B_{(0)} X = B_{(0)} (V_Y X).$$

We then have some propositions concerning Γ^{\sharp} .

Proposition 4.3. For an element h of $\mathfrak{I}_{2}^{0}(M)$ and an element Z of $\mathfrak{I}_{6}^{1}(M)$, we have

$$(4. 10) V_{B(0)}^{\sharp} = (V_Z h)^{(0)\sharp}.$$

Especially, let g be a Riemannian metric in M and V the Riemannian connection determined by g in M, then the connection V^* induced in $\gamma_V(M)$ from V is the Riemannian connection determined by the induced metric $g^{(0)*}$ of $\gamma_V(M)$.

Proof. First we have

$$\begin{split} (B_{(0)}Z)(h^{(0)}(B_{(0)}X,B_{(0)}Y)) &= \mathcal{V}^{\sharp}_{B_{(0)}Z}(h^{(0)}(B_{(0)}X,B_{(0)}Y)) \\ &= (\mathcal{V}^{\sharp}_{B_{(0)}Z}h^{(0)}(B_{(0)}X,B_{(0)}Y) \\ &+ h^{(0)}(\mathcal{V}^{\sharp}_{B_{(0)}Z}B_{(0)}X,B_{(0)}Y) \\ &+ h^{(0)}(B_{(0)}X,\mathcal{V}^{\sharp}_{B_{(0)}Z}B_{(0)}Y) \end{split}$$

By Proposition 3.3(c) and (4.9), we get

$$\begin{split} h_{(0)}^{\ \ \dagger}(B_{(0)}X,\,B_{(0)}Y) = &(h(X,\,Y))^{\scriptscriptstyle 0},\,\, h^{(0)}^{\ \ \dagger}(\vec{\mathcal{V}}_{B_{(0)}Z}^{\ \ }B_{(0)}X,\,B_{(0)}Y) = &(h(\vec{\mathcal{V}}_ZX,\,Y))^{\scriptscriptstyle 0},\\ h^{(0)}^{\ \ \dagger}(B_{(0)}X,\,\vec{\mathcal{V}}_{B_{(0)}Z}^{\ \ \ }B_{(0)}Y) = &(h(X,\,\vec{\mathcal{V}}_ZY))^{\scriptscriptstyle 0}. \end{split}$$

On the other hand, we have

$$(Zh(X,Y))^0 = ((\nabla_Z h)(XY))^0 + (h(\nabla_Z X,Y))^0 + (h(X,\nabla_Z Y))^0.$$

Thus, we have

$$\begin{split} \mathbb{V}_{B_{(0)}Z}^{\sharp}h^{(0)\sharp}(B_{(0)}X,B_{(0)}Y) = & (Zh(X,Y))^{0} - (h(\mathbb{F}_{Z}X,Y))^{0} - (h(X,\mathbb{F}_{Z}Y))_{0} \\ = & ((\mathbb{F}_{Z}h)(X,Y))^{0} = & (\mathbb{F}_{Z}h)^{(0)\sharp}(B_{(0)}X,B_{(0)}Y), \end{split}$$

which implies (4.10) because X and Y are arbitrary.

For the case h=g, $V_Zg=0$ implies $V_{B_{(0)}}^*Zg^{(0)}=0$. It is also clear by (4.9) that if V is without torsion, so is V^* . Hence Proposition 4.3 is proved.

Let an element F of $\mathcal{I}_1^1(M)$ satisfy $\mathcal{L}_{\mathcal{V}}F=0$. Then, for any vector field \widetilde{A} tangent to $\gamma_{\mathcal{V}}(M)$, by Proposition 3. 4, $F^{(r)}\widetilde{A}$ is also tangent to $\gamma_{\mathcal{V}}(M)$. We can then define an element $F^{(r)*}$ of $\mathcal{I}_1^1(\gamma_{\mathcal{V}}(M))$ by

(4.11)
$$F^{(r)}(B_{(0)}X) = F^{(r)}(B_{(0)}X), \quad X \in \mathcal{I}_0^1(M).$$

Proposition 4.4. Let F be an element of $\mathfrak{I}_{i}(M)$ satisfying $\mathcal{L}_{v}F=0$, then

- (a) $(\nabla_{B_{(0)}}^{\sharp}Z(F^{(r)})^{\sharp})(B_{0}X) = B_{(0)}((\nabla_{Z}F)X), \quad X, Z \in \mathcal{I}_{0}^{1}(M);$
- (b) If $\nabla F = 0$ in M, then $\nabla^* F^{(r)} = 0$ in $\gamma_V(M)$;
- (c) If (g, F) is a Kählerian structure in M, so is $(g^{(0)}, F^{(r)})$ in $\gamma_V(M)$.

Proof. We have only to prove (a). By use of (4.9), we have

$$(4. 12) \hspace{3.1em} V^{\sharp}_{B_{(0)}Z}(F^{(r)\sharp}(B_{(0)}X)) = (V^{\sharp}_{B_{(0)}Z}F^{(r)\sharp})(B_{(0)}X) + F^{(r)\sharp}(B_{(0)}V_ZX).$$

On the other hand, since $F^{(r)}(B_{(0)}X)$ is tangent to $\gamma_{\nu}(M)$, we get $F^{(r)}(B_{(0)}X) = B_{(0)}F^{(r)}(B_{(0)}X)$. Using (4. 9), (3. 5) and the fact $\mathcal{L}_{\nu}F = 0$, we have

$$V_{B_{(0)}}^{\sharp}(F^{(r)})^{\sharp}(B_{(0)}X)) = V_{B_{(0)}Z}^{\sharp}(F^{(r)}(B_{(0)}X))$$

$$= V_{B_{(0)}Z}^{\sharp}(B_{(0)}FX)$$

$$= B_{(0)}V_{Z}(FX).$$

Noticing that $F^{(r)}(B_{(0)}\overline{V}_ZX) = F^{(r)}(B_{(0)}\overline{V}_ZX)$, from (4.12) and (4.13), we have

$$\begin{split} & V_{B_{(0)}Z}^{\$}(F^{(r)\$})(B_{(0)}X) \!=\! B_{(0)}V_{Z}(FX) \!-\! F^{(r)}(B_{(0)}V_{Z}X) \\ & = \! B_{(0)}((V_{Z}F)X) \!+\! B_{(0)}(FV_{Z}X) \!-\! F^{(r)}(B_{(0)}V_{Z}X) \\ & = \! B_{(0)}((V_{Z}F)X), \end{split}$$

since $B_{(0)}(FV_ZX) = F^{(r)}(B_{(0)}V_ZX)$.

Finally, we shall calculate the curvature tensor of V^* along the cross-section $\gamma_V(M)$. By (4.5), we have

$$\begin{split} & V_{B(0)k}^* V_{B(0)j}^* B_{(0)i} = V_{B(0)k}^* \left(\sum_{s=0}^r \frac{1}{s!} (\mathcal{L}_V^s \Gamma_{ji}^h)^0 B_{(s)h} \right) \\ &= \sum_{s=0}^r \frac{1}{s!} \left[\partial_k (\mathcal{L}_V^s \Gamma_{ji}^h)^0 B_{(s)h} + (\mathcal{L}_V^s \Gamma_{ji}^h)^0 \sum_{u=0}^{r-s} \frac{1}{u!} (\mathcal{L}_V^u \Gamma_{kh}^m)^0 B_{(s+u)m} \right] \\ &= \sum_{s=0}^r \frac{1}{s!} \left[\partial_k (\mathcal{L}_V^s \Gamma_{ji}^m)^0 + \sum_{u=0}^s \binom{s}{u} (\mathcal{L}_V^u \Gamma_{ji}^h)^0 (\mathcal{L}_V^{s-u} \Gamma_{kh}^m)^0 \right] B_{(s)m} \end{split}$$

and hence

$$\begin{split} & V_{B(0)k}^{*} V_{B(0)j}^{*} B_{(0)} - V_{B(0)j}^{*} V_{B(0)k}^{*} B_{(0)k} \\ &= \sum_{s=0}^{r} \frac{1}{s!} \bigg[\partial_{k} (\mathcal{L}_{V}^{s} \Gamma_{ji}^{m})^{0} - \partial_{j} (\mathcal{L}_{V}^{s} \Gamma_{ki}^{m})^{0} \\ &\quad + \sum_{u=0}^{s} \binom{s}{u} \{ (\mathcal{L}_{V}^{u} \Gamma_{ji}^{h})^{0} (\mathcal{L}_{V}^{s-u} \Gamma_{kh}^{m})^{0} - (\mathcal{L}_{V}^{u} \Gamma_{ki}^{h})^{0} (\mathcal{L}_{V}^{s-u} \Gamma_{jh}^{m})^{0} \} \bigg] B_{(s)m}. \end{split}$$

Now, by (4.3), have

$$V_{B(0)k}^* V_{B(0)j}^* B_{(0)i} - V_{B(0)j}^* V_{B(0)k}^* B_{(0)k} B_{(0)i} = \sum_{s=0}^r \frac{1}{s!} (\mathcal{L}_V^s R_{xj_i}^h)^0 B_{(s)h}.$$

Thus we have, for the curvature tensor R^* of V^* ,

(4. 14)
$$R^*(B_{(0)k}, B_{(0)j})B_{(s)i} = \sum_{s=0}^r \frac{1}{s!} (\mathcal{L}_V^s R_{kji})^0 B_{(s)h}.$$

As a direct consequence of (4.14), we have

PROPOSITION 4.5. For arbitrary elements X and Y of $\mathcal{I}^1_{\mathfrak{o}}(M)$, the curvature transformation $R^*(B_{(0)}X, B_{(0)}Y)$ leaves the tangent space of $\gamma_V(M)$ invariant at each point if and only if $\mathcal{L}_V R_{k_f}^h = 0$. In this case $R^{**} = \gamma_V' R$.

BIBLIOGRAPHY

- [1] Morimoto, A., Prolongations of geometric structures. Lecture Note, Mathematical Institute, Nagoya University (1969).
- [2] ———, Prolongations of G-structures to tangent bundles. Nagoya Math. J. 32 (1968), 67-108.

- [3] MORIMOTO, A., Prolongations of G-structures to tangent bundles of higher order. Nagoya Math. J. 38 (1970), 153-179.
- [4] ——, Lifting of tensor fields and connections to tangent bundles of higher order. Nagoya Math. J. 40 (1970), 99-120.
- [5] TANI, M., Tensor fields and connections in cross-sections in the tangent bundle of order 2. Kōdai Math. Sem. Rep. 21 (1969), 310-325.
- [6] YANO, K., The theory of Lie derivatives and its applications. North-Holland Publ. Co., Amsterdam (1957).
- [7] YANO, K., Tensor fields and connections on cross-sections in the tangent bundle of a differentiable manifold. Proc. Royal Soc. of Edinburgn 67 (1967), 277-288.
- [8] YANO, K., AND S. ISHIHARA, Differential geometry of tangent bundles of order 2. Ködai Math. Sem. Rep. 20 (1968), 318-354.
- [9] YANO, K., AND S. KOBAYASHI, Prolongations of tensor fields and connections to tangent bundle I, II. J. Math. Soc. Japan 18 (1966), 194-210, 236-246.

WAYNE STATE UNIVERSITY, AND TOKYO INSTITUTE OF TECHNOLOGY.