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TENSOR FIELDS AND CONNECTIONS ON A CROSS-SECTION
IN THE TANGENT BUNDLE OF ORDER r

By CuornNG-SHI HouH AND SHIGERU ISHIHARA

§0. Introduction.

Let M be an n-dimensional differentiable manifold and 7,(M) the tangent bundle
of order » over M, r=1 being an integer [1], [3], [4]. The prolongations of tensor
fields and connections given in the differentiable manifold M to its tangent bundle
of order » have been studied in [1}, [2], [3] [4], [7], [8] and [9]. If V is a vector
field given in M, V determines a cross-section in 7,(M). For the cases =1 and
r=2, Yano [7] and Tani [5] have studied, on the cross-section determined by a
vector field V, the behavior of the prolongations of tensor fields and connections
in M to T(M) (ie., TW(M)) and To(M), respectively. The purpose of this paper is
to study, on the cross-section determined by a vector field V, the behavior of the
prolongations of these geometric objects in M to T.(M) (r=1).

In §1 we summarize the results and properties we need concerning the pro-
longations of tensor fields and connections in M to T.{(M). Proofs of the statements
in 81 can be found in [11, [2], [3], [4] and [8]. In §2 we study the cross-section
determined in 7(M) by a given vector field V in M. In §3 we study the behavior
of prolongations of tensor fields on the cross-section. In §4 we study the prolon-
gations of connections given in M to T,.(M) along the cross-section and some of
their properties.

We assume in the squel that the manifolds, functions, tensor fields and con-
nections under consideration are all of differentiability of class C*. Several kinds
of indices are used as follows: The indices 2, g, v, -+, S, £, %, --- run through the
range 0,1,2, .- r; the indices 4, 4, j, &, m, -« run through the range 1, 2, --- n.
Double indices like (v)% are used, where 0=v=y, 1=/4=n. The indices A4, B, C, -
run through the range (1)1, (1)2, .-, (n, 2)1, ---, 2, ---, N1, ---, (Hm. For a given
function f on M, the notation f is sometimes substituted by f° for simplicity.
Summation notation >,?., with respect to 4, i, j, k, m, -+ (=1, 2, --- n) is omitted
while summation notation with respect to 2, g, v, ---, 5, ¢, % ---, from 0 to 7, will be
kept. For example,

DX <7S’>,L’§,l7,x"B(s>h will be written in 3] <Z>,L’§,ij”B(s)h.
§=0 h=1

§=0

For differentiable manifold N, we denote by I%(N) the space of all tensor
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TENSOR FIELDS AND CONNECTIONS ON A CROSS-SECTION 235

fields of type (p, @), ie., of contravariant degree p and covariant degree g (p, ¢=0)
and put

9’(N)=1)ZEI£I§(N).

§1. Prolongations of tensor fields and connections to 7T.(M).

Let R be the real line. T,(M) is the set of all r-jets J5(F) determined by a
mapping F: R—M such that F(0)=P. We denote by z.: T.(M)—M the bundle
projection, i.e., 7. (J5(F))=P. We shall denote =, simply by = if there is no con-
fusion. Let {U, "} be a coordinate neighborhood of M at P. If we take an r-jet
Ji(F) belonging to »~4(U) and put

1 a@F~0)
v! ar

(1. 1) y(“)h =

where F has the local expression x"=F"{¢), teR, in U such that P=F(0), then the
r-jet Ji(F) is expressed in a unique way by the set (y®*) (b=0,1, .-, 7; £=1,
<y 1), (YO =(z") being the coordinates of P in U. Thus a system of coordinates
(y®*) is introduced in the open set z~YU) of T,(M). We now call (y**) the co-
ordinates induced in z~(U) from {U, 2%}, or simply the induced coordinates in
=Y U). We sometimes denote the induced coordinates by (y4) (see §0). Thus
TAM) is a differentiable manifold of (r41)» dimensions.

For 2=0, 1, ---, r, we define the A-7if¢ f® of a function f in M to T,.(M) by

(.2 o= L5,

F: R—M being an arbitrary mapping such that P=F(0). The a-lift f® of f
is well defined in T.(M), i.e., the value fF®(JHF)) is independent of the choice
of F': R—M. Clearly, fo=fox (f°=7©, see §0). For the sake of convenience,
we define that f® =0 for any negative integer A. For the lifts of two functions
F and ¢ to T(M), we have the following formula:

(1. 3) (fog)® = Zi;ofcﬂ>g<1~#>.

Let X be a vector field in M with components X* in a coordinate neighbor-
hood {U, z"}.  We defined the a-/ift of X to T.(M), denoted by X™®, to be the
vector field X which locally has components X4 in the open set z~(U) such that

(1. 4) XN(v)hz(Xh)(u-u_r)

relative to the induced coordinates (y4)=(y*,) in z~'(U), where the right-hand
side of (1.4) denotes the (v-+-1—r)-lift of the local function X% X or X actually
determines globally a vector field in T.(M) (use (1.10)). For the 2-lifts of vector
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fields, we have the following formulas:

1.5 XOfO=(Xf oar-n,  feqyM), XegyM)
2 3\
-9 wor=(am)
of® of \G-» .
17 ErCoe (W) ,  FegyM),
2
1.8 (fX)B =3 foXxa-n,  feqyM), XegiyM)
2#=0
1.9 [X®, Y®]=[X, Y]**, X, YeJyM)

Let {U, z*} and {U’, z*'} be two intersecting coordinate neighborhoods of M
and the coordinate transformation in U N U’ be given by

¥ =z (x¥).

Then, if (¥4)=w®") and (y47=(y®") are the induced coordinates in =~Y(U) and
"} U’) respectively, the transformation of induced coordinates in =~ UNnU’)
=z~ U)N="}(U’) has the Jacobian matrix of the form

ayd’ ay(u)n' oxt \ -
(¢ 10 ( oy4 )z(ay""”>=<< ™ ) >
Let a 1-form @ have the local expression w=w;dx® in a coordinate neighbor-
hood {U, z*}. Then in z=}(U) we denote by &y the local 1-form defined by

2
(L. 11) Gr= 3 o dya-"
#=0

relative to the induced coordinates (y®?*) in z~}(U). This actually determines
globally a 1-form in T(M), which is called the A-lift of » and denoted by w®
(use (1.10)). For the A-lifts of w, we have the following formulas:

1.12) 0P (X®)=(0(X)",  weT¥M), XegYM)

(1.13) dy®r=(dz")®;

(1. 14) Fa)P= 3 f®0tb,  FequM),  weT(M).
#=0

The above operations of taking lifts are linear mapping GYM)— YT (M)),
TYM)— IYT(M)) and GYM)— TYT(M)) respectively. They have the properties
(1. 3), (1. 8) and (1. 14) respectively. Thus we can now define, for any element K
of M), its 2-lift K® (1=0,1, -, r), which belongs to g% 7T,(M)) in such a way
that the correspondence K—K® defines a linear mapping gYUM)— IUT((M))
which is characterized by the properties
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a

(S®T>(1) = Z S@ ®T(1~F‘)

#=0

for any S, T€eg' (M) and 2=0,1, ---,». The tensor field K thus defined is called
the 2-fift of the tensor field K in M to T,(M). For the i-lifts of tensor fields, we
have the following formulas:

(1.15)  KD(X®, -+, XP)=(K(Xy, -+ XM, KeTHM), Xi -+, Xee THM);

(L 16) LxwK® = (LK), Xeqy(M),  Kea(M);
2
1. 17) (AT)® = 3T @™ Ag@-5;
#=0
(1. 18) dw)P =dao™®,

o and 7 being arbitrary differential forms of arbitrary order in M, where Ly
denotes the Lie derivation with respect to a vector field X.
Next we shall give local expressions of lifts of tensor fields of special type in
M to T,(M) relative to the induced coordinates (y4)=(y®"). Let X be a vector
field with local components X* in M. Then X% in 7,(M) has local components
of the form
0

0
(1.19) X | (XM

()éh)(x—i)
Gy

the lifts of a 1-form » with local expression w=w;dz* in M have local components
of the form
(1. 20) wu):(w(in’ w%l—l), ] (1)%1), Q)%O), Oy ) 0);

the A-lift of a tensor field Fe (M) with local components F* in M to T.(M) has
local components of the form

r o0 0 0 0
0
0 0 0 0
(1. 21) For | (Fy® 0 0
(FH® (FH© 0 0
{ (F/’LL)(X) ([4";)(1—1) (F’{)(l—z) (F’D(O) 0 0 J

and the A-lift of a tensor field ge TYM) with local components ¢;; in M to T.(M)
has local components of the form
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((gi)® (@) o (g (g 00
(@) (gs)*® - (g;0)® 0 00
(1. 22) g (gﬁ)(o) 0 0
0 0 0

0 0 0

-

relative to the induced coordinates in =='(U).

Finally, we consider lifts of affine connections. Let ¥ be an affine conection
in M with components I'% in {U, z"}. We now introduce in =~!(U) affine connec-
tion F¥ with components 4, relative to the induced coordinates (y4) such that

. 23) o= ()"~

for A=(h, B=(y)i and C=(v)j. According to (1.10) and (1. 23), F} actually de-
termines globally an affine connection F* in T,(M) which is called the lift of the
affine connection V and denoted also by F*. We have the following properties
of F*:

(1. 24) PEoK® =(Vx K)o+, XegyM), KeT (M)

(L. 25) Lxal*=(LxV)?, Xegy(M).

§2. Cross-section determined by a vector field.

Suppose V' be a vector field in M with components V¢ relative to {U, z"}.
Denote by F: I—-M the orbit of ¥V passing through a point p in M such that
F(0)=p, where I is an interval (—e¢, ¢), ¢ being some positive number. We denote
the 7-jet JH(F) by yv(p). Then the correspondence p—yp(p) defines a mapping
rvi M—T(M) such that zoyy is the identity mapping of M. Thus yp: M—T,(M)
is a cross-section in T7(M). We call the submanifold yy(M) imbedded in 7(M) the
cross-section determined by the vector field V. If {U, x*} is a coordinate neighbor-
hood of M, the cross-section yy(M) is expressed locally in ==*(U) by equations

YO =ah=FH0),

yo =20 yas)
1 d2Fn0) 1
D - N7 k n
o vE=gr g g VeV
: 3R
yo= PO L g 0, Vi 0 V0, T,

31 a3l
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oL _ 4T
v! ar

with respect to the induced coordinates.
Let f be a function on M, we have

FA=F™)=1,
d A A
FO = (foP)=0uf -y D= Vouf =(Lrf)
along yy(M). A simple calculation yields that along the cross-section yy(M)
1
fO=— Ly

holds, where % =_rv(_£3-1f) for i>1.
According to (2. 1), the submanifold y»(M) is locolly expressed by a system of
equations y®Wr=y®"(z?) such that

yOHa)=at,
YO = V=V,

2.3) YOHa) = VRO VR (VHD,

y(r)h(x.i) — %’_( Vh) -1

with respect to the induced coordinates (y4)=(y®?*) in z~*(U). Let us put
2. 4) B4, =0,y4(z").

Then we have along y»(M) n local vector fields Bwyi, Bawye *++» Bawa Which are
tangent to the cross-section. Their components with respect to the induced co-
ordinate (y™?") are

— h, i
9

i
1
@ 4) Buw,=| 3V"®

_l ' hrY(r-1)
kil
For an element X of JY(M) with local components X¢, we denote by B X
the vector field with components
]

B X1, ie. BoX=B§HX? oyt
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which is defined globally along (M) by virtue of (1.10). For any point ¢ of
7v(M), the mapping B y: Tp(M)—T(T(M)) (o=7v(p)) defined by B y(Xp)=(BwX)s
is nothing but the differential (yv), of the cross-section mapping yv: M—T(M).
Thus Bay(Tp(M)) is the tangent space of the cross-section y#(M) at the point

o=yv(p).

Along the cross-section y»(M), for each integer v such that 0=v=yr—1, we
consider # local vector fields Biy1, Buys -+ Bayn Which have respectively compo-
nents of the form

C0 )
&
o;vr
(2- 5) (Bé)j)= %3],( Vh)(l)
1 :
- @—v-1)
L 7= 3;(V™) )

and #» local vector fields Buyi, Bes, -+, Binn Which have respectively components
of the form

0
(2. 6) Bh=|
%

relative to the induced coordinates (y4). Again we denote by B, X the vector
field with components B¢, X7, ie., Bo,X=B%,X3/oy4. These vector fields are de-
fined globally along yv(3). For any point ¢ of yp(M), the mappings Beyp: Tp(M))
—T(T{M)) (c=yvr(p)) are defined as follows:

B(u)p(Xp)=(B(v)X)v XG g}](M)

The mappings B, including v=0, are isomorphisms of T,(M) into T,(T.(M)).
The (r+1)» vector fields By, (0=v=r, 1=j=#»n) form a local family of
frames along y»(M), which we shall call adapted frames of yy(M). The n vector
fields By, span at each point ¢ of y¢(M) the tangent plane T.(;#(M)) of the cross-
section yp(M).
For any element X of g¥M) with local components X% we denote by B, X

the vector field with components
]

Bé)in, ie. B(V)XZBé)ZXi—ay—A'

§3. Prolongations of tensor fields in the cross-section.

Suppose X is a given vector field in M. We consider along pv(M) the a-lift
X® of X, We shall describe X with respect to the adapted frames B, of
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1v(M). The result is as follows:

Prorosition 3.1. Along yv(M) the A-lift X® of X is written in

LI}
XD = Z —)J—‘B(T—-l+r)=£”i’X

v=0
1
3.1 =B(T—I)X+B(r—1+l)£VX+‘§TB(T—1+2)a£’%fX+"'
B Ly Xt =By L1 X
(2 1), -1 +—ZT Ly X
Proof. By (1.19), X» has the form
0

Jyr-ren

XD = ZVI'_‘ (XM
v=0

with respect to the natural frame {3/0y4}.
We first calculate (X*)® along yy(M) as follows:
(XM =X
(XM =Vig, X=X, V*+ _Lv X"

(X0 @ =L Vi (X))

- % VEou( Ly X+ X9, V)

= %(I XM +0, VE Ly X+ VFp X780,V + VEXI9:0, V')

=%L£’§/X" +3,Vr Ly XI+0, VM Ly X+ X*0: V) + VEXI0:0, V]

=%£’§X’L+31 V"Iva—F%X"(a] V*ou VI+ V76,0, V")

=—21~Xfaj( PRy 49, V",CVXJ'-I—%,E%,X".

By induction, we have the following formulas:
(XM= lXjaj( prye-n 4 % (Ly XNo,(Vrye-»

3 r( % i (LY XNV )eD 4

G.2)

1 & Gt e
+m(£VXj)3j(V")( b4
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_]Z___(Iv—lXj)aAVh_l_ _.]'_.va Xh
-1 y p! =7V

Thus (3. 1) follows from (1. 19), (2. 5) and (3. 2).

+

Let w be an element of gYM) with local expression w=w;dz?. Then, by
(1. 20), @ has components of the form

—_ 2 2—
o= ((l)() w( 1) ‘o (l)é), wir O) R 0)

with respect to the natural coframe {dy4}. Along the cross-section yy(}), let the
coframes dual to the adapted frames {B,;} be {B®J. We denote by B®w the
1-form with components BYw, with respect to the coframes {dy4}. Then we have

ProrosiTioN 3. 2. Along yv(M) the 2-lifts o™ of @ are written in

a)“):—B(o),wa-l— (,2 11)' (I)I%/"la)-l"

3. 3)

+ %B(“z),f%w + B4 _Lyp+BPaw.

Proof. By (1.12) we have

oW(XO)=(o(X))a+=
and by (2.2)
N S
(l—l—u—r)'
=T & (et xy
2tv—r 1

= 2 et e X,

(@(X))@= =X = )

where (**7") denotes the binomial coefficient.

On the other hand, with respect to the coframes {B®7), we consider a 1-form
@@ defined by

L1

=) — B(,un A= gt i
BO= LB L
Then by (3. 2) we have
_ A=r+y 1 .
aPXO= 3 Ly XL ).

=0 (A—r+v—plpu

Since X is arbitrary in the above formulas, the formula (3.3) follows from
w(l)X(") = (B(DX(”).
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Now we shall write down the 2-lifts of tensor fields of special type in M with
respect to the adapted frame. For an element ~2 of M) with local components
hij, we have

B 1 1 1 h
=1L ——(2_1)!I§71 s oy Lt Lvhju by 00
1 i-1p __1____951—-2 g L N /™ 0 0
G=Dr=v gy N v Y
3.4 ACH *;—',E%/hjz Lvhj 0
Lvhy isg 0
hij 0 0
0 0
L 0 0 0.

and, for an element F of gi(M) with local components Fp,

- 0 0 Oﬁ
0 0 0
F 0 0
.;EVth' th 0
(3.5) F; %mey LvFh 0
1 LRk _I_Ir—an o FR 0 00
@=D1=r S0 =Y ¢
1 1
L qpOvFE e O F e LyFE FE 000 )

For an element S of g3(M) with local component Sj%, we have

1
A+ p—r—v—o)!

=0 if 24+p<r+vto.

(S(D)v(j)w(k)”(i) = I%}H‘—-T—v—-wsj;é,

3.6

In §2 we have shown that for the mapping yr: M—yv(M), y(X)=BwX for
any X in G{M). Bw: T(M)—T((yy(M)) is a linear isomorphism. Let Bgl be the
inverse of this linear isomorphism Be,. Then Bg: TGv(M))—T(M). The dual
map (Bgh)* of Bg sends M) to Tyr(M)). (Bzh)* is nothing but B®». We now
denote B™ also by 75, ie., ri{w)=B®w for weTYM). Then we can extend the
mapping r to a linear mapping 7% T(M)— T (yv(M)) by setting
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(PRQ)=r7(P)Qrv(Q)
for arbitrary tensor fields P, @ in M.
Now we shall define an operation, denoted by ¥, in g(T(M)) as follows:
If XeGyT.M)), X=51,XiBey, then  Xt=K©1Biyie Tip(M));
If @ is a tensor field of type (0,1) in T(M) defined along yy(M), then

By X)=&(BwX);
If & is a tensor field of type (0, 2) in T(M) defined along yv(M), then
RBwX, B Y)=h(BwX, BoY);

o~

If F is a tensor field of type (1,1) in 7.(M) such that, for any vector field A
tangent to yy(M) FA is also tangent to y»(M), then F¥{BwX)=FBwX);

If § is a tensor field of type (1,2) in T(M) such that, for any vector fields
;1, B tangent to yy(M), E(;l, E) is also tangent to yy(M), then

S BwX, B»Y)=SBwX, BnY).

In the above definitions the relations are supposed to hold for arbitrary elements
X and Y in g¥M). We sometimes call A%, F* and S* respectively the fensor fields
induced in yy(M) from 4, F and S.

For the operation #, we have the following propositions by (3.1), (3.3)
and (3. 4):

ProrosiTiON 3.3. (a) For any X in JiM), (X®¥=0 ¢f 2=0,1, -, r—1.
X® is tangent to yv(M), if and only if .LvX=0, and in this case X" =ypX.

(b) For any o in THM), (@F=rrib( L), =01, 7.

(¢) For amy h in GYM), (h<3>)*=%7;,( o, 2=0,1, 1.

(¥ B X, BaoyY)=h(X, Y))

COROLLARY. Let g be a Riemannian metric in M. Then (¢°) is @ Riemmanwnian
metric in yr(M) and yv is an isometry with respect to g in M and g% in yv(M).

Let F be a (1,1) tensor field defined along yw(M). If T.(yv(M)), ceyv(M), is
invariant by the action of the tensor F, the cross-section yy(M) is said to be in-
variant by F.

From (3.5), we have

1
FO(BwyX)=B-wFX)+Bipn (LvF)X) +—2-‘—Bcr—u+2)((,£’zyF)X)
1 1
+ ?B(r—»Jr,;)((,E“VF)X) +eee —yTBm((,f?fF)X)

for any vector field X in M, Thus we have
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Prorosition 3. 4. For FeJ (M), the cross-section yv(M) is invariant by F™ if
and only if Lv F=0. In this case (FDY¥=y,F holds. The lifts F» (1=0,1, .-, r—1)
do not leave yv(M) invariant unless F=0.

ProrosiTioN 3.5 If F is an almost complex structure in M such that LyF=0,
then (B is an almost complex structur in yv(M).
If (g, F) is an almost Hermitian structure in M and _LvF=0 holds, then
(@ W(FPPBwX, (FPPBwY )=t GrF)BoX, (vF)BwY)
=((FX, FY)).
Thus we have
ProrosiTiON 3. 6. Suppose that ihere is given an almost Hermitian structure

(0, F) in M. If LyF=0, then (g, (F™W) is an almost Hermitian structure
in pr(M).

By (3. 6), we have for any Se g M)
SP(BwX, By Y)=Bu-n(S(X, Y))+ Bor-1:5(LvSYX, Y))

+~21w<r-x+2><wvs><x, V)t %Bcn((of%’SXX’ Y-

Thus we have
ProrosiTiON 3. 7. If SeTYM), the vector field S™(BwX, B Y) is tangent to
(M) for arbitrary X,Y of GYUM), if and only if LvS=0, and in this case (S

=11S. The vector fields SP(BwX, BwY) (0<2<¥) are not tangent to yy(M)
unless S=0.

Let F be a tensor of type (1,1) in M and Ny its Nijenhuis tensor. Then it
is easy to check that £yF}=0 implies _Ly(Np)};=0. Thus we have

CoroLLARY 1. Let F be an element of G M) such that _LvF=0, then
(Np)™(BwyX, By Y) is tangent to yv(M) for arbitaary elements X and Y of G{M).
In this case (Np)™) =y Nz.

COROLLARY 2. If a complex structure F in M satisfies the condition [LyF=0,
then (F™Y is a complex structure in yv(M).

§4. Prolongations of affine connections in the cross-section.

Suppose an affine connection F with coefficients I}t is given in M. For a
vector field X with components X* and a tensor field P of type (1, 2) with compo-
nent Pj%, we have the following formulas [6]:

L, XM =T Lv XM =(Lv[ )XY,
Vo Lvl ) — A LAT )= Ly Ruf,
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Ly PR =V Ly PR)=(Lv W) PR —( Ly L) Phs — ( Ly T8 Pl

where Ryj/; are components of the curvature tensor of /.
Using the third formula for any tensor field P with local componente P, we
have easily
g—1
@ £, x0 -rr3xn= 5 (%) (LT,

§=0

q—1
4.2) PULITI—TL3TR) + 3 (1 )L8- TR L Tb) — (L TRCLIT )] = L3R

4.3) LI = L3TE)+ % (1) (LH TRLI B~ (LF TR LI B = L3R

for any positive integer g.
Let * be the lift of the affine connection V. Then F* is an affine connection
in 7(M). We shall now prove

r—3

ProposiTiON 4. 1. F¥w;Bwr= Z} ,(,Eyl”m) Biwhn.
Proof. By (1.24) and (3. 1), we have

4. 4) VEm XD =rX)™= Z 51 (IVVYXh)OB(s)h
On the other hand, we have

FamX" = Y(r)<Zo_’_'(°EVXh> B(s)h)
4. 4y
r 1
Z =T (LY XV Eon+ Z Y’B (LY X Besya.
For any oepy(M) there is a vector field ¥V in M with initial condition Y= Y79/,
LvY=0, -, %Y =0 at p=n(¢). Then Y =Y’'B,, at . Taking the coefficients

of Y7 in right-hand sides of (4. 4) and (4. 4), we have
Z —T (L3P X" B = Z (LY XM T B+ Z ST (6J£3X”)°B(s)n

Hence we have

r

r 1
Z (IVXh)°V§(0)jB(s>n Z <1 (LY, X2 —0; L5X™)°Bon

r 1
=Z (oCVVXh P, Ly X4+ T L5 XD Beon

§=0

z 1 > S S —u h U Yk 0
=2 b (LY ) LEXF) ) B,

o sl \uzo\u



TENSOR FIELDS AND CONNECTIONS ON A CROSS-SECTION 247

where we have used (4.1). Since X is arbitrary, we may compare the coefficients
of (X*¥)®, (LyXBH®, (_LZX%)®, ... in the equation above and have

(®.5) Pl Boe= T = (LETH Bayon
which is to be proved.

Putting
4. 6) "TEB =V ;Bwi— ()" B,

then we have

= 1
"V¥Bsy= Z—:l ZT(II%F%)OB(Hu)h’ s=0,1, -, r=1;
@7
IV;RB(T)iIO-

Thus we have now

ProposiTiON 4. 2. The cross-section yv(M) is totally geodesic in T.(M) with re-
spect to the commection V¥ if and only if the vector field V is infinitesimal affine
transformation in M with respect to V, i.e., Ly =0.

For any X of gy{M) we get, from (4. 6),
(XO)" T FBeoy=(X)VEp jBeori— (X)) Born

and then
VE(O)]‘(B(O)X) =, X")°Bwoyn+(X®)"F¥Bwn.

So, for any YeJi(M), we get
4. 8 V% r(Bw X)=Bwoy(Fr X) + (X" (Y7)°F ¥ Boyn.

Thus By (FrX) is the tangent component to y»(M) of I}, r(BwX), according to
(4. 7). We can now define an affine connection F* in y»(M) by the equation

(4. 9) V#B(O)YB(O)X:B(O)(VYX>'

We then have some propositions concerning /2.

ProrosiTION 4.3. For an element h of IYXM) and an element Z of TYM),
we have
4. 10) V% o0y 2 = (V2 i) ™2,
Especially, let ¢ be a Riemannian metric in M and V the Riemannian connection

determined by g in M, then the conmection V¥ induced in yv(M) from V is the
Riemannian connection determined by the induced metric g% of yy(M).

Proof. First we have
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(B Z YO BwX, Bw Y )=V}, 2(h " BwX, B»Y))
=% 28O (BwX, B Y)
+hO¥ V% 2B X, By Y)
+AO B X, V2B Y)
By Proposition 3. 3(c) and (4. 9), we get
ho (BwX, BwY)=0(X, Y)), h(O)’(V%(o)ZB(o)Xy By Y)=AVzX,Y)),
hO BwX, Ve, zBw Y)=(WX, VzY))".
On the other hand, we have
ChX, Y)' =((Pzh)( XY )+ (V2 X, Y)' + (WX, V2Y))°.
Thus, we have
V50,28 (B X, B Y)=(ZWX,Y))’—(h(VzX, V)"~ (WX, VzY))o
=((Vzh)( X, Y))'=Vzh) 4B X, BnyY),

which implies (4. 10) because X and Y are arbitrary.
For the case =g, Vzg=0 implies V’,’g(O)Zg(“)*:O. It is also clear by (4.9) that
if 7 is without torsion, so is /% Hence Proposition 4. 3 is proved.

Let an element F of gi(M) satisty LyF=0. Then, for any vector field A tan-
gent to yp(M), by Proposition 3.4, F™A is also tangent to y»(M). We can then
define an element F@* of girv(M)) by

(4. 11) FOU B X)=F"(BpX), XegYM).
ProrosiTiON 4. 4. Let F be an element of GNM) satisfying LvF=0, then
(a) (Pyz2(FOM(BoX)=Bwoy((FzF)X), X, ZeTYM);

(b) If VF=0 in M, then V*F™*=0 in ry(M);
(¢) If (g9, F) is a Kéhlerian structure in M, so is (g%, F% in yy(M).

Proof. We have only to prove (a). By use of (4.9), we have
4. 12) V% 0y 2(F OBy X)) = (Vg gy 2F OBy X) + FOHBoy V2. X).

On the other hand, since F™(BX) is tangent to yp(}M), we get F(BpX)
=BwnF"(BwxnX). Using (4.9), (3.5) and the fact _LyF=0, we have

Vs 0 (FOPH B X)) =V, 2(F"(Bw X))
(4 13) :V%(Q)Z(B(O)FX)
=Bw/V(FX).

Noticing that F"¥BFzX)=F™(BlzX), from (4.12) and (4. 13), we have
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Py 2O Beo X)=BeoyVa(FX) = FO(Beoy Ve X)
=By ((VzF)X)+ B FVzX)—F(BwylzX)
=Bw((VzF)X),

since B(o)(FVzX)=F(7)(B(o)VzX).
Finally, we shall calculate the curvature tensor of F* along the cross-section
yv(M). By (4.5), we have

ViV S iBon=VEqos <Z ] — (LH)° B(s)n)

r 1

= 2 LT Bt (LI T (LB Beon |
r 1

= Zo?r[ak(oEVF 3"+ Z < y >(I%ngz oLy ;cnh)O:lB(s)m

and hence

V§(0)k’7§(0)jB(0)"‘Vﬁ(o)ng(o)kB(o)z
= 5 [ aosrnr-acoirey
+ 3 (0 JOLHTIPLs T = (AR LT3 | Beom

Now, by (4. 3), have

o1
% * —
V}k?(o)kVEOUB(o)i—VB(o)jVBw)/cB(O)%_ Z s,'(I%Rrj’f)oBmh-
§=0 O
Thus we have, for the curvature tensor R* of /¥,

4. 14) R*(Bwyr, Bw j)Bun= Z (,L’VRkM)OB(sm

8§=0

As a direct consequence of (4. 14), we have

ProposiTION 4.5. For arbitrary elements X and Y of TYM), the curvature
transformation R¥(BwX, BwY) leaves the tangent space of yv(M) invariant at
each point if and only if LvRift=0. In this case R¥=y,R.
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