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TENSOR FIELDS AND CONNECTIONS

ON CROSS SECTIONS IN THE COTANGENT BUNDLE
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Introduction. E. M. Patterson and the present author [6] recently studied
vertical and complete lifts of tensor fields and connections from a manifold M
to its cotangent bundle CT(M). When a 1-form is given in an n-dimensional
manifold M, the 1-form defines a cross-section in the cotangent bundle CT(M),
which is an n-dimensional submanifold in the 2?z-dimensional cotangent
bundle CΓ(M).

The main purpose of the present paper is to study the behaviour on the
cross-section of the lifts of tensor fields and connections in a manifold M to
its cotangent bundle CT(M).

In § 1 and § 2, we review the results obtained in [6] on vertical and
complete lifts of tensor fields and connections from a manifold to its cotangent
bundle CT(M). In § 3, we study the behaviour of the lifts of tensor fields and
of Riemann extension of connections [1] on the cross-sections. We examine,
in §4, the behaviour of the lifts of almost complex structures on the cross-
sections. We show in § 5 that the tensor discovered by Slebodzinski [3]
appears in our present theory. Finally we study in §6 the behaviour of the
complete lift of a connection on the cross-sections.

The manifold, functions, vector fields, 1-forms, tensor fields and connections
appearing in the discussion will be supposed to be of the differentiability
class C°°.

The indices A, B,C,D, run from 1 to 2n, the indices a,b,c,' ,h, i,j,
• from 1 to n and the indices a,b,c, , h, i,j, from n-\-l to 2n.
We use the notations xA — (xh, xP) and xn = ph.

1. Vertical lifts of tensor fields. Let M be an rc-dimensional differ-
entiable manifold of class C°°, CT(M) its cotangent bundle, and π the projection
CT(M) —> M. Let the manifold M be covered by a system of coordinate
neighbourhoods {U xh], where (xh) is a local coordinate system defined in
the neighbourhood U. Let (pt) be the cartesian coordinate system in each
cotangent space cTp(M) at P of M with respect to the natural coframe dxι
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in M, P being an arbitrary point in U whose coordinates are (xh). Then

we can introduce local coordinates (xh,pd in the open set 7r~\U) of CT(U).

We call them coordinates induced in ir~ι(U) from [U xh] or simply induced

coordinates in τr~ι(U). The projection TΓ is represented by (xh,pi)^>{xh).

In CT(M), there exists a 1-form

(1.1) p = pidx\

which we call the basic 1-form in CT(M). The exterior derivative of p is

(1. 2) dp = dp, Λ dxi.

We call this the basic 2-form in CT(M). If we put

(1.3) dP = \

we see that €eB given by

(1. 4) San =

are components of a tensor field of type (0, 2) in CT(M). Consequently we
can define a tensor field SBA of type (2, 0) by

(i .5)

and find

( i . 6)

that €BΛ
has

ί

components

εBA =
1°L 0

We now take a function / in M. The function fo -π in CT(M) induced

from / in M is called the vertical lift of f and is denoted by

(1.7) fv=foπ.

A vector field X in M is, in a natural way, regarded as a function in
CT(M). This function is called the vertical lift of the vector field X to
CT(M) and is denoted by XF. When X in M has local components Xh with

respect to the natural frame dh in M, Xv in CT(M) has local expression
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(1.8) XΓ=piX
i.

When a 1-form ω=ωidxi is given in M, it is also regarded as a 1-form

in CΊ(M). If we write ~ω = ~ωBdxB, then ω has components

G)B — \&i> \j)

in CT(M). Thus we can define a vector field ^BSBA in CT(M). We call this
vector field in CT(M) the vertical lift of a 1-form in M to CT(M) and denote
it by ωF The ωF has the components

(°
(1.9) «F =

The vertical lift ωF of a 1-form ω in M to CT(M) satisfies

ω F / F = 0 , for any fe %°(M) ,
(1.10)

' ™ = (ω(X))F, for any X ζ ϊji

which characterize ωF, where SCi(M) denotes the set of tensor fields of type
(r, 5) in M.

When we are given a tensor field F of type (1, 1) in M with local compo-
nents Ft

h, we can easily see that FBdxB=paFi

adxi is a 1-form in CT(M).
Thus we can define a vector field JF^a1*4 in CT(M). We call this the vertical
lift of the tensor field F of type (1, 1) in M to CT(M) and denote it by F F

The Fr has the components

/ 0
(1.11) Fv =

The Fv satisfies

Fvfv= 0, for any fe
(1.12)

ΓFXF

 = (FX)r, for any X ζ 2S(M),

which characterize Fv.
We also have

(1.13) [Fv, GF] - (FG-GF)V, for any F, G <
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Suppose that there is given a vector-valued 2-form N in M with local
components NH

h. We can easily see that

NCBdxc/\dxB = pMfdxΐfKdx'

is a 2-form in CT(M) and consequently that NCB8
BΛ is a tensor field of type

(1, 1) in CT(M). We call this the vertical lift of the vector-valued 2-form
N in M to CT(M), and denote it by JNΓ. The iVF has components

/ 0 0
(1.14) Nv =

\ paNH

a 0

The Nv satisfies

Nvωv = 0 , for any ω € £?
(1.15)

NVFV = 0 , for any F Ξ 2;i(M) .

We can repeat the same argument and define the vertical lift of a vector-
valued r-form in M to CT{M).

2. Complete lifts of tensor fields. Suppose that there is given a vector
field X in M. From X we can construct a function Xv = A ^ α m Λ/ The
gradient XB of XF has components

in CT(M). We can define a vector field —XB8BA corresponding to this
gradient in CT(M). We call this vector field the complete lift of X in M
to CT(M) and denote it by XG. The X° has components

Xh

(2.1)

The complete lift of X in M to CT(M) has properties

for any /
(2.2) j

I XΎV = [X, Yf, for any Y £ %\{M),

which characterize the complete lift X°. The complete lift Xc of X in M to
CT(M) has further properties:
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(2. 3) [Xc, ωv] = (£A<o)v, for any ω £ ΪΪ(M) ,

where £ x denotes the Lie derivative with respect to X,

(2.4) \XC,FV] = (£XFY, for any

(2.5) NvXG

for any vector-valued 2-form in M, where Nx is a tensor field of type (1, 1)
such that NXY=N(X,Y) for any Y € $J(M), and

(2. 6) [X*, Y*] = [X, Yf, for any X, Y € 2*(M) .

We note here that (1.15) and (2. 5) characterize the vertical lift Nv.
Now take a tensor field F of type (1, 1) in M with local components Ft

h.
Then paFfdx1 is a 1-form in CT(M) and its exterior differential

d^Ffdx1) = p.djF^dx'Adx1 + FfdPaΛdx1

gives, when it is written as ——FCBdxcf\dxB, a tensor field of type (0, 2)

whose components are

-dW) FJ
FCB —

- F / 0

We define a tensor field of type (1, 1) by FCB8
BΛ and call this tensor field

the complete lift of F in M to CT(M) and denote it by Fc. The Fa has
components

/ f 0
(2. 7)

The complete lift .F0 has the properties

Fc ωr = (ωF)F, for any α> e 2?(

(2. 8) F P G " = (GF)V, for any G € %\{M),

FcX° = (FXY+(£XFY, for any X €

•yvhich characterize F σ , where ωF denotes a 1-form defined by
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(ωF)(X) = ω(FX), for any X 6 %{M).

The complete lift Fc of F e %{(M) has further properties

F° Nv = (NF)r, for any Ne %\(M),
(2.9)

NvFΰ = (NFT, for any

where NF is a tensor field of type (1, 2) defined by

(NF)(X, Y) = Nj(FY), for any X, Y e $J(M), and

(2.10) FCGC + GCF° = (FG+GF) 0 + (ΛTf,^,

for any F, G € £}(-̂ 0> where iY^e is the Nijenhuis tensor formed with F and G:

(2.11) 2Λr,.β(X, Y) = [FX, GY] + [GX, FY]

- F[GX, Y] - G[FX, Y] -F[X, GY] - G[X, FY]

+ (FG+GF)[X,Y]

for any X, Y &X](M). From equation (2.10) we have, on putting F = G,

(2.12) (Fcγ = (Fy + W,

where N is the Nijenhuis tensor formed from F:

(2.13) N(X, Y) = [FX, FY] - F[FX, Y] - F[X, FY] +F"[X, Y].

From (2.12), we see that, when F defines a complex structure, that is,
F 2 = — 1 and N= 0, its complete lift F° to CT(M) defines an almost complex
structure in CT(M).

We can moreover prove that, F being an almost complex structure,

(2.14) F° + -±-(NF)v

is also an almost complex structure. (See, Sato, [2]).
Now take a vector-valued 2-form N in M with local components NH

h.
Then paNH

adxj/\dxι is a 2-form in CT(M) and consequently its exterior
differential

d(paNH

adx5t\dxι) = pa(dkNH

a)dxkAd^Adxι + NH

adpaΛdxj/\dxι,
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gives, when it is written as ——NDCBdxD/\dxc/\dxB, a tensor field NMB of
ό

type (0, 3) in CT(M\ where

iNfa = N&j = Nnji = NH

h,

all the other components being zero, from which we can define a tensor field
of type (1, 2) NCBE£EA in CT(M). We call this the complete lift of N in M
to CT(M) and denote it by Nc. The N° has components

(2.15)

all the others being zero. The N° satisfies

(2.16) N%Xΰ, Y°) = (N(X,

which characterizes N°.
We can prove that the Nijenhuis tensor of the complete lift F° of F is

the complete lift Nc of the Nijenhuis tensor N formed with F.
We know that if F defines a complex structure in M, then Fc defines

an almost complex structure in CT(M). Following (2.16) and the fact above,
F° actually defines a complex structure in CT{M).

Suppose now that F defines an almost complex structure in M. We know

that F = Fc+^-(NF)v defines an almost complex structure in CT(M). We
£j

thus consider the Nijenhuis tensor N of F. The Nijenhuis tensor N of F
has components

(2.17) NJS = N
H

- dt Ff) Nis* Fh' - (3 t Ft° - dt Ff
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-(d,Fi'-dιFi')Nt.''Fl

all the others being zero.

3. Lifts of vector fields on the cross-sections. Suppose that there is
given a global 1-form W in M whose local expression is W = Wi(x) dxi.
Then the 1-form W defines a cross-section in CT(M), whose parametric
representation is

/q -ι\ γh — γh J, __ rτr (Ύ\

Thus the tangent vectors Bt

A — dt x
A to the cross-section have components

δ?
(3. 2)

On the other hand, the fibre being represented by

the tangent vectors CjA — dτxΛ to the fibre have components

0
(3.4) CjA = Cu =

The vectors Bt

A and CjA, being linearly independent, form, a frame along
the cross-section. We call this the frame (B, C) along the cross-section.
The coframe (B"A, O'A) corresponding to this frame is given by

B\ = (8f, 0)
(3.5)

We call this coframe the coframe (B, Q along the cross-section.
The basic 1-form p=pidxi has the expression p=Widxι and the basic

2-form the expression dp = (djWi — diWj)dxβ/\dxi on the cross-section.

The vertical lift ωv of a 1-form ω — ωidx1 has the expression
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0
(3.6) Cτ

Λωτ=CίΛωt =

on the cross-section.

The complete lift Xc of a vector field X in M to CT(M), having com-

ponents (2.1) with respect to the natural frame, has components

Xh

with respect to the frame (B, C) along the cross-section. Thus We have

(3.7) Xc: B^X'-O\£xWi),

from which

PROPOSITION 3.1. The complete lift X° of a vector field X in M to
CT(M) is tangent to the cross-section determined by a 1-form W in M if

and only if the Lie derivative of W with respect to X vanishes in M.

Suppose now that an affine connection V without torsion is given in M

and denote by Γjt the components of the connection. Then

(3.8) ds2 = 2hρidxt,

where

(3.9) $pt = dpt-T%dx>ph9

defines a Riemannian metric in CT(M). We call this metric in CT(M) the

Riemann extension of V and denote it by VΛ [1]. With respect to the

Riemann extension \7R, the fibre given by dxh = 0 is null and the horizontal

distribution given by Spi=O is also null.

The Riemann extension V22 has components

l-2Y%ph δ{
(3.10) V f f :

\ 8J 0

with respect to the natural frame and components
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(3.11) V7*
V

0

with respect to the frame (B, C) along the cross-section, from which we
have

PROPOSITION 3.2. If M has an affine connection V without torsion

and CT(M) has the Riemann extension Vβ as its metric, then the cross-section

determined by a lform W in M is null with respect to Vβ if and only if

(3.12) S/fWt + VtWj = 0 .

PROPOSITION 3.3. When M has Riemannian metric g and the Levί-

Civita connection V of g and CT(M) has the Riemann extension V s as its

metric, the cross-section determined by a 1-form W in M is null with

respect to Vβ if and only if W is a Killing vector field in M.

4. Lifts of almost complex structures on cross-sections. Suppose that

the manifold M has a complex structure F. Then the cotangent bundle
CT(M) has the complex structure FG.

Now the F° has the components (2. 7) with respect to the natural frame

and consequently has components

/ Ff 0
(4.1)

t

with respect to the frame (B, O) along the cross-section determined by W.

Thus we have

FiB<*=Ft*BS + KdiFS-dt
(4 2) _

F?CB FιCtΛ

Thus the cross-section is analytic if and only if

(4.3) Pih = {σtF^ - 3hFnWa - F^Wn + FJdiW, = 0.

We can easily verify that Pih are components of a tensor field of type (0, 2)

in M. On the other hand, equation (4.3) is the condition for Wt to be

covariant analytic. [5]. Thus we have
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PROPOSITION 4.1. Suppose that M has a complex structure F. Then
the cross-section determined by a 1-form W in CT(M) with complex structure
Fc is analytic if and only if W is covariant analytic in M.

Now suppose that M has an almost complex structure F. Then the
Nijenhuis tensor N of the complete lift Fc of F has components (2.15) with
respect to the natural frame in CT(M). Thus we have

(4.4) NCBABfB* = NH

hBh

A - QmOA ,

where

(4.5) QHh =

We can easily verify that QHh are components of a tensor field of type (0, 3)
in M. From (4.4) we have

PROPOSITION 4.2. In order that NCB

ABfBi

B be tangent to the cross-
section determined by a 1-forτn W, it is necessary and sufficient that Qji/i = O
in M.

We know that when M has an almost complex structure F, the cotangent
bundle CT(M) has also an almost complex structure

The almost complex structure F has components

Ft

h 0

F:
1 '^ J? a O fP a \ -1- ΛT a J? t\ TIT J? ί

with respect to the natural frame in CΊ\M) and components

Ff

with respect to the frame (B, C) along the cross-section determined by the
1-form W. Thus we have
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(4. 6) + {(PiFh*-dhFi

a)Wa-Fi

t3tWh + F^Wt +

FjfCiB= Fh

lChA.

Thus the cross-section is almost analytic if and only if

(dίFh

a-dhFί

a)Wa - FSdtWn + FSdiWt+^-NjFSWa = 0.

But the last equation means that Wt is almost covariant analytic [2], [5],
Thus we have

PROPOSITION 4.3. Suppose that M has an almost complex structure F.
Then the cross-section determined by W in CT(M) with almost complex

structure FC + ——(NF)V is almost analytic if and only if W is almost

covariant analytic in M.

We now consider the Nijenhuis tensor N of F = Fc + -j-(NF)r. The N

has components (2.17), or equivalently, by virtue of the relation iVis

α Fh

s

= —N-h

sFa

(4 8)

all the others being zero. Thus we have

(4.9) NCB

Λ BfBf = NH" Bh

Λ + RHh C^ ,
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where

(4.10) R m = - NH

( dt Wh - φ} Λk« + d, Nhi + 9 f t N)t") Wa

+

- ( 3 , ^ - 3tF/) N , , ' ^ - -i-C^i."^' - Nu

aNih y\ Wa .

We can easily verify that RHh, or rather RHh minus last term containing
Nif ΛΓΛu

4's are components of a tensor field of type (0, 2) in M. From (4.9)
we have

PROPOSITION 4.4. The vector NCB

ABj

cBι

B is tangent to the cross-section
determined by Wt if and only if RHh = 0.

5. The Slebodzinski tensor. From (4.10), we have

(5.1) RM + Rm + RhH = - NH< dt Wh - Nih

{ dt W, - Nh)' dt Wt

n

a + dtNhi

a + d>Nit

a)Wa

Ft'dtN» + F^N^F.'Wa

NJid.F/) + NnttdiFS)} Ft

aWa

(dιFh'-dlιFi

t)Nt/

H

s}Fs

aWa

it"Nhf + Nht'NH*)Wa]

But, we have on the other hand

(5.2) djN^ + dtNΛi + dkN
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£l

FS) - NJdiFS - d^NJFS) + NJd^Ft*

FS) - NiSdiFS - Θ/JVM'F/) + N^djFrf Fs

a

- - l - t ^ W t ' ^ O + Nih'd,Ft' - diiNn'FJ) - N^dtFS

+ dtWsFS) + N^diFt* - djiN^FS) - Nu'dM Fs

{FXdN - a*/••) + FXdM - aΛΓ )

Nu - dtNlt')

FS + Nn'VjFs +

Thus, we have from (5.1)

(5. 3) Rm + Rih} + RhH

= -(Nn'dtW, + Nih

tdtwj + N./dtW

- ίF/dtN^ + F t 'a (Ww + Fh'3tNJt

+ {FX

4" K^^'-^F/)^^ +

that is

(5.4) RHh + Rihj + RhH + QHh + NihχBiWt - 3tW,)

+ Nh)\dtWt - 3tWt) + Sith F. Wa
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+ JL(JV]ViA' + Nu NJ + Nn NjfiWa = 0,

where

(5.5) SHh° = F/ dt Nlh* + Fΐ dt NM + Fh' dt Nit

+ \ {FftdM - 3ΛNtt') + FS&Nu' - d,NM')

+ FSidsNu - 34iV)}

+ NH\dh Ft' - dt F,*) + NM Ft°-dt F/) + NuKdt Ft -dt

+ (d>Fi

t-dJFh

t)Ntt'}.

Equation (5.4) shows the tensor character of Sjίh,
s. This is the tensor

first introduced by Slebodzinski. [3], (The expression of Slebodzinski tensor in
Math. Rev. 30 (1965), p. 652, 3438, should be read as 2[ ] + [ ] + 2[ ]-[ ].)
T. J. Willmore [4] showed that this tensor is identically zero.

6. Complete lift of a connection on cross-sections. Suppose that there
is given a symmetric affine connection V in M whose components are Tβ.
Then (3.10) defines a Riemannian metric in CT(M) which is called the
Riemann extension of V.

We construct the Levi-Civita connection V^ from this Riemann extension
and call it complete lift of the symmetric affine connection V to the cotangent
bundle CT(M). The complete lift Vσ has components YCB given by

n = τ%, f; τ=o, r£ = o, rfΓ = o.

(6.1) Γ | = />α(3AΓJ, - djT?, - dtT% + 2Γ&ΓJ0 ,

τ}= -τjh, r£= - π , , rj7 = o,

and the curvature tensor of the complete lift \/c components RDC/ given by

h _ D h

(6. 2)
+ TΊCE. ~D t i T"ltt ~D t i ΎΛύ, ~D t i T~1(I ~D t\ J^

± M-Γ^kji "t" J- kt-^ihj "τ~ 1βI^hik ~τ~ L it-Γ^kjh ) Fa >

~D _h E> i Z ? - Λ Z? .7 Ί? - h 7? fc

all the others being zero, where Rk)t

h are components of the curvature tensor
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of V.

Suppose now that there is given a global 1-form W in M. Then the W

defines a cross-section in CT(M). The vectors (3. 2) are tangent to the cross-

section and (3.4) are n linearly independent vectors which are not tangent

to the cross-section. We take the vectors CiA as normals to the cross-section

and define an afifine connection induced on the cross-section. The components

of the induced affine connection are given by

(6. 3) (djBS + TcίBfBf) B\ = Γji.

From this equation we see that the quantity

(6.4) Θ A " + TύBBfBt

B - T%Bh

A

is a linear combination of the vectors CjΛ. To find the coefficients, we put

A=h in (6. 4) and find

d^W, + Wa(dhT% - 3,Γ?Λ - 3fΓJfA + 2Γ&ΓJ.)

Thus representing (6.4) by 'Vj-B/, we have

(6. 5) ' V, BS = (V, Vi Wh + RM

a Wa) (?Λ,

which is the equation of Gauss for the cross-section determined by Wt.

Thus we have

PROPOSITION 6.1. In order that the cross-section in CT(M) determined

by a 1-form W in M with symmetric affine connection V be totally geodesic,

it is necessary and sufficient that W satisfies

(6.6) V,VιWh + RMS

aWa = 0.

On the other hand, since the components TCB are given by (6.1) we can

easily verify that

j = o ,
that is

djCίA + YA

BBfCiB - Y)hC
hA = 0.
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Thus denoting by 'VjCίΛ the left hand member of this equation, we get

(6.7) 's/jCiA = 0.

This is the equation of Weingarten for the cross-section.
Applying the operator 'Vfc to (6.5), we find

from which, remembering that

'Vt'ViBf - 'V/ V*B/ = RBcέBfBfBf - RUi

h

we find

(6.8) RMi BfBfB? - RkH

h Bh

A = [(V* RMi

a - V, Rhlk

a) Wa

- RkH

a VaWh - Rkjh

a ViWa + RhiJ

a VhWa - RM

Thus we have

PROPOSITION 6.2. In order that R^f Bk

D Bf Bf is tangent to the cross-
section, it is necessary and sufficient that

(6.9) ( V f c i W - V,RM

= RkH VaWh + Rkjh

a ViWa - Rhij

a VkWa + Rhik

a VjWa .
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