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Introduction. E.M. Patterson and the present author [6] recently studied
vertical and complete lifts of tensor fields and connections from a manifold M
to its cotangent bundle “T(M). When a 1-form is given in an 7-dimensional
manifold M, the 1-form defines a cross-section in the cotangent bundle “T(M),
which is an #n-dimensional submanifold in the 2n-dimensional cotangent
bundle “T(M).

The main purpose of the present paper is to study the behaviour on the
cross-section of the lifts of tensor fields and connections in a manifold M to
its cotangent bundle “7(M).

In §1 and § 2, we review the results obtained in [6] on vertical and
complete lifts of tensor fields and connections from a manifold to its cotangent
bundle “T(M). In §3, we study the behaviour of the lifts of tensor fields and
of Riemann extension of connections [1] on the cross-sections. We examine,
in § 4, the behaviour of the lifts of almost complex structures on the cross-
sections. We show in §5 that the temsor discovered by Slebodzinski [3]
appears in our present theory. Finally we study in §6 the behaviour of the
complete lift of a connection on the cross-sections.

The manifold, functions, vector fields, 1-forms, tensor fields and connections
appearing in the discussion will be supposed to be of the differentiability
class C~.

The indices A, B,C, D, - - - run from 1 to 2n, the indices a, b,c,+- -, h, 1,7,
-+« from 1 to n and the indices 7,b,¢,+++,h,7,j,+++ from n+1 to 2n.
We use the notations z* = (2", 2*) and 2% = p,.

1. Vertical lifts of tensor fields. Let M be an n-dimensional differ-
entiable manifold of class C~, “T'(M) its cotangent bundle, and 7 the projection
“I'(M)— M. Let the manifold M be covered by a system of coordinate
neighbourhoods {U ; 2"}, where (") is a local coordinate system defined in
the neighbourhood U. Let (p;) be the cartesian coordinate system in each
cotangent space ‘“T's(M) at P of M with respect to the natural coframe dz*
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in M, P being an arbitrary point in U whose coordinates are (z*). Then
we can introduce local coordinates (z, p) in the open set 7= (U) of *T(U).
We call them coordinates induced in 7~ (U) from {U;z"} or simply induced
coordinates in = (U). The projection = is represented by (z*, p,) — (z").

In “T(M), there exists a 1-form

(1.1) p= pdx',
which we call the basic 1-form in *T(M). The exterior derivative of p is
1.2) | dp=dp, \ dx'.

We call this the basic 2-form in “T(M). If we put

(1.3) dp = —é—ewdx“/\ dz®,

we see that &; given by
0 of
(1. 4) 803 = ( ) >
-3 0

are components of a tensor field of type (0, 2) in *T(M). Consequently we
can define a tensor field &** of type (2, 0) by

(1.5) & 848 = 83

and find that &°* has components
5 0 —&r
.9 we(® )
We now take a function f in M. The function for in *T(M) induced
from f in M is called the wertical lift of f and is denoted by

1.7) f7=fom.

A vector field X in M is, in a natural way, regarded as a function in
¢T(M). This function is called the wvertical lift of the wector field X to
¢T(M) and is denoted by X”. When X in M has local components X* with
respect to the natural frame 9, in M, X in “T(M) has local expression
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(1' 8) XV: Pin.

When a 1l-form ow=w;dx' is given in M, it is also regarded as a 1-form
in “T(M). If we write ® = ®zdz” then ® has components

‘(BB = (mh 0)

in “T(M). Thus we can define a vector field @,%* in “T(M). We call this
vector field in *T(M) the vertical lift of a 1-form in M to *T(M) and denote
it by ®”. The »” has the components

()

The vertical lift ©” of a 1-form w in M to *T(M) satisfies

o’ fF=0, for any feIYM),

(1.10)
0" X" = (o(X))", for any X e THM),

which characterize ©”, where T5(M) denotes the set of tensor fields of type
(r,s) in M.

When we are given a tensor field F of type (1,1) in M with local compo-
nents F;*, we can easily see that F,dxP= P F*dxt is a l-form in “T(M).
Thus we can define a vector field Fy& in “T(M). We call this the vertical
lift of the tensor field F of type (1, 1) in M to °T(M) and denote it by F”.
The FV has the components

0
(1.11) F" = ( ) .

The FV satisfies

Frfr=0, for any feTYM),

(1.12)
F" XV = (FX), for any X< THM),

which characterize F”.
We also have

(1.13) [F",G"] = (FG—GFY, for any E,G e T(M).
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Suppose that there is given a vector-valued 2-form N in M with local
components N;;*. We can easily see that

Nepda’N\dz® = p, N;*da? \Ndx'

is a 2-form in “T(M) and consequently that Nz&% is a tensor field of type
(1, 1) in “T(M). We call this the vertical lift of the vector-valued 2-form
N in M to “T(M), and denote it by N”. The N” has components

0 0
(1.14) NV = ( ) .
PaMia 0

The N7 satisfies
N'e" =0, for any wecZTIM),

1.15) {
NVF" =0, for any FeZTi{(M).

We can repeat the same argument and define the vertical lift of a vector-
valued r-form in M to “T(M).

2. Complete lifts of tensor fields. Suppose that there is given a vector
field X in M. From X we can construct a function X" = p,X* in M. The
gradient X, of X” has components

Xp=(p2: X" X
in “T(M). We can define a vector field —X.&% corresponding to this

gradient in ‘T(M). We call this vector field the complete lift of X in M
to °T(M) and denote it by X°. The X’ has components

X)L
2.1 X = ( ) .
( ) —'Paai Xa

The complete lift of X in M to “T(M) has properties

Xfr=(Xf), forany feZTHM),
2.2) {

XYY" =[X,Y), forany Y eSTYM),

which characterize the complete lift X° The complete lift X° of X in M to
¢T(M) has further properties:
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2.3) [X% @"] = (£0)", for any o<TAM),
where £ denotes the Lie derivative with respect to X,
(2.4) [ X F'l = (&xF), for any FeZT(M),
2.5 N"X? = (Ny)",

for any vector-valued 2-form in M, where Ny is a tensor field of type (1, 1)
such that NyY=NX,Y) for any Y € T{(M), and

(2.6) [X0,Y1=[X,Y], for any X,Y « THM).
We note here that (1.15) and (2.5) characterize the vertical lift N”.
Now take a tensor field F' of type (1,1) in M with local components F;".
Then p,F*dx' is a 1-form in °T(M) and its exterior differential
d(p. F*dx?) = p,0; F°dx’ Ndx' + Fi*dp, \dx
gives, when it is written as %Fcadxc/\dx“, a tensor field of type (0, 2)

whose components are
Foau (PO |
” _F 0o |’

We define a tensor field of type (1, 1) by Fyz&™ and call this tensor field
the complete lift of F in M to °T(M) and denote it by F°. The F¢ has

components

Fy 0
2.7) W:( »

Pa(ai Fnu—anFia) Fni
The complete lift F° has the properties

F’e" = (oF)", for any o€ TYM),
(2.8) F°G" = (GF)", for any G THM),
FX° = (FX)f+(&:F)", for any XeTYM)

which characterize F° where oF denotes a 1-form defined by
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(wF)X) = o(FX), for any XeZTHM).
The complete lift F° of F < TX(M) has further properties

F°NY = (NF)", for any NeTHM),
NVF¢ = (NF), for any NeT{M),

(2.9)

where NF is a tensor field of type (1, 2) defined by
(NF)YX,Y)= N(FY), for any X,Y «T}M), and
(2.10) F°G° + G°F° = (FG+GF)° + (Nrs)",
for any F,G € Ti(M), where Ny ¢ is the Nijenhuis tensor formed with F and G:

(2.11) 2Ny o(X,Y) = [FX,GY] + [GX, FY]
— F[GX,Y] — GIFX,Y] —F[X,GY] — G[X, FY]
+ (FG+GF)[X,Y]

for any X,Y ¢ T{M). From equation (2.10) we have, on putting F=G,
(2.12) (F°? = (F*¥+ NV,

where N is the Nijenhuis tensor formed from F':

(2.13) NX,Y)=[FX,FY|— F[FX, Y] - F[X,FY]| +F[X,Y].

From (2.12), we see that, when F defines a complex structure, that is,
F? = —1 and N =0, its complete lift F° to “T(M) defines an almost complex
structure in *T(M).

We can moreover prove that, F being an almost complex structure,

(2.14) FO 4 %(NF e

is also an almost complex structure. (See, Satd, [2]).

Now take a vector-valued 2-form N in M with local components Nj;".
Then p,N,2dx’\Ndx' is a 2-form in “T(M) and consequently its exterior
differential

d(Pa Niiadxj/\dxi) = Pa(ak Mia) dxk/\dxj/\dxt + Niia dpa /\dx}/\dxi ’
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gives, when it is written as %NDCdeD Adz° N\ dx®, a tensor field N}m of

type (0, 3) in “T(M), where

Mm = pa.(ak Mla + aJ‘ Mlca + ai Mja) ’
Miﬁ = Mﬁj = szi = Niih >
all the other components being zero, from which we can define a tensor field

of type (1, 2) Nyzp€®™ in “T(M). We call this the complete lift of Nin M
to “T(M) and denote it by N°. The N°¢ has components

ijih = lei” s
Ny = —pu(0; Nuf +3, N+, N;i%)
Ni# = Nist,
Ni# = N,

(2.15)

all the others being zero. The N satisfies

(2.16) NAXY) = (N(X, Y)Y = (&xN)r — (&rN)x + Nixr)”»

which characterizes N°.

We can prove that the Nijenhuis tensor of the complete lift F° of F is
the complete lift N¢ of the Nijenhuis tensor N formed with F.

We know that if F defines a complex structure in M, then F° defines
an almost complex structure in °T(M). Following (2.16) and the fact above,
F¢ actually defines a complex structure in *T(M).

Suppose now that F defines an almost complex structure in M. We know

that F =F°+ %(NF )" defines an almost complex structure in “T(M). We

thus consider the Nijenhuis tensor N of F. The Nijenhuis tensor N of F
has components

(2.17) N;* = N;*,
N;i* = —p(0; Nw® + 0, N,i* + 0, Ny%)
+ % P (F Du(NW ) — Fyt 0N Fy)
— (O Ny Fy¥) — 0N ) Fy!
+ (0, F* — 3,F%) Nt Fyt — (3,F* — 9, F%) Nyt Fy»
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- (aant - anth) Msans + (aiFnt - anFit) staF;s
- (aiFil_aith) Z\ItsaFlh,s + %‘(staNins - NisaNjns)} ’

all the others being zero.

3. Lifts of vector fields on the cross-sections. Suppose that there is
given a global 1-form W in M whose local expression is W = W, (x)dx"
Then the 1-form W defines a cross-section in °7(M), whose parametric
representation is

3.1 xh=x, po=Wya).
Thus the tangent vectors B;4 = 9,24 to the cross-section have components
o
(3. 2) B,',A = ( ) .
oW,
On the other hand, the fibre being represented by
3.3) x"* = const., p, = P,
the tangent vectors C;* = 9;24 to the fibre have components
0
(3.4) CHA=C4= ( ) .
ok

The vectors B;* and Ci4, being linearly independent, form a frame along
the cross-section. We call this the frame (B, C) along the cross-section.
The coframe (B4, C*,) corresponding to this frame is given by

B, = (3, 0)
(3.5)
CEA = ChA = (_ath BZ) .

We call this coframe the coframe (B, C) along the cross-section.
The basic 1-form p=p,dx* has the expression p=W,dx* and the basic
2-form the expression dp = —;—(ajWi—ain) dx’\Ndx' on the cross-section.

The vertical lift ©” of a 1-form e=w;dx* has the expression
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0
(3.6) Ci'o" = Cho, = < )

@;
on the cross-section.

The complete lift X° of a vector field X in M to °7(M), having com-
ponents (2.1) with respect to the natural frame, has components

e
—&xW,

with respect to the frame (B, C) along the cross-section. Thus We have
3.7 X% BAXE— C4(£. W),
from which

PROPOSITION 3.1. The complete lift X° of a wvector field X in M to
“T(M) is tangent to the cross-section determined by a 1-form W in M if
and only if the Lie derivative of W with respect to X vanishes in M.

Suppose now that an affine connection ¥V without torsion is given in M
and denote by I'% the components of the connection. Then

(3.8) ds® = 28p,dxt,
where
(3- 9 Sf’i = dPi - P?idxjf‘n ’

defines a Riemannian metric in “T{M). We call this metric in “T(M) the
Riemann extension of ¥ and denote it by V¥ [1]. With respect to the
Riemann extension V7% the fibre given by dx* = 0 is null and the horizontal
distribution given by 8p,=0 is also null.

The Riemann extension V¥ has components

(3 10) el (_2F?ipn 8{ )
' o 0

with respect to the natural frame and components
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3.11) VE ( VWit VW 8{)

5 0.

with respect to the frame (B, C) along the cross-section, from which we
have

PROPOSITION 3.2. If M has an affine connection < without torsion
and “T(M) has the Riemann extension V* as its metric, then the cross-section
determined by a 1-form W in M is null with respect to V® if and only if

(3 12) V;W,; + vin = 0

PROPOSITION 3.3. When M has Riemannian metric ¢ and the Levi-
Civita connection ¥ of g and “T(M) has the Riemann extension VE as its
metric, the cross-section determined by a 1-form W in M is null with
respect to V" if and only if W is a Killing vector field in M.

4. Lifts of almost complex structures on cross-sections. Suppose that
the manifold M has a complex structure F. Then the cotangent bundle
¢“T(M) has the complex structure FY.

Now the F¢ has the components (2.7) with respect to the natural frame
and consequently has components

F} 0
“.1) )

<(91EL“—31LF1“) W, —F'oW,+F'o,W, F'

with respect to the frame (B, C) along the cross-section determined by W.
Thus we have

~1§4 BiB = FihBhA + {(aiFna_an Fia)Wa_Fit at WII,+F/LL ath} c )
4.2) _
F{C:® = F,')C.

Thus the cross-section is analytic if and only if
(4. 3) Pih = (81F/,,a - 8”Fia)Wa - FitatWh + thath = 0.
We can easily verify that P,, are components of a tensor field of type (0, 2)

in M. On the other hand, equation (4.3) is the condition for W; to be
covariant analytic. [5]. Thus we have



42 K. YANO

PROPOSITION 4.1. Suppose that M has a complex structure F. Then
the cross-section determined by a 1-form W in “I(M) with complex structure
F° is analytic if and only if W is covariant analytic in M.

Now suppose that M has an almost complex structure F. Then the

Nijenhuis tensor N of the complete lift F¢ of F has components (2.15) with
respect to the natural frame in “7(M). Thus we have

(4- 4) NCBA BJ'CBzB = Njih BnA - Qm c s
where
(4- 5) Qiin = (aj Niha+ai Nnja+an Nna) Wa.

+ N;'o,W, — N,'o,W, — N, o, W, .

We can easily verify that Q;;, are components of a tensor field of type (0, 3)
in M. From (4.4) we have '

PROPOSITION 4.2. In order that N,ABfB be tangent to the cross-

section determined by a 1-form W, it is necessary and sufficient that Q;y;, =0
in M.

We know that when M has an almost complex structure F, the cotangent
bundle *T(M) has also an almost complex structure

F=F4 %(NF)".
The almost complex structure F has components

(aiFha—anEu%MﬂEx)Wa Fy

with respect to the natural frame in “7()M) and components
Er 0
@F =0, )W FLA W+ B O W+ Nt FAW,)  Fy

with respect to the frame (B, C) along the cross-section determined by the
1-form W. Thus we have
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FABE = FrB,A
(4.6) + (@ =W FAOW,+ 0 W+ — Nt W 3 4,
FiC® = F,'C4.
Thus the cross-section is almost analytic if and only if

(0. F 0, FYW. — FLo,W, + F' o, W, + %NH“ F'W,=0.

But the last equation means that W, is almost covariant analytic [2], [5].
Thus we have

PROPOSITION 4.3. Suppose that M has an almost complex structure F.
Then the cross-section determined by W in “T(M) with almost complex

structure F "+%(NF Y is almost analytic if and only if W is almost

covariant analytic in M.

We now consider the Nijenhuis tensor N of F= F¢ +%(NF Y. The N

has components (2.17), or equivalently, by virtue of the relation N;*F,*
= '—Mhs I;‘.*ra,

|

jih = Njih >
4.8 _
N;* = —p(0; Nin® + 9, N,,* + 9, Nj®)
— - plFY N F) = FL BN F)
+ {Oi(Nis* F*) — 9((N;* Fy*)} Fo!
+ (@ F* — 9, F*) Ny Fit — (0, F,* — 9, F;*) N;,* F¢
— 0,F¢ — 2, F)N,# F* + (3, F, — 9, FY) N, F,e
- (aj Fit - ai th) Mhs I"s“

— - (N,*Na* = Nu* N1,
all the others being zero. Thus we have

(4- 9) IV;JBA B]'CBiB = Njih BnA + R]ih c4 s
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where
(4.10) Rjn = — N0, W), — (95 Ni® + 9, Np® + 0, N ) W
— S IF# 3N F) = Fo(Nyw B
+ PN F?) — 0 N;* o)} B!
+ (3,F — 3, Ff) Nu*F\t — (8, F* — 0, F) Nyt F!
— (O;F, — o, F;") Ni* F* + (O, F,! — 9, F}") Ny  F*

— @ F = 0 Ff) Nut Bt = (N3 Nu® = Nus N W

We can easily verify that Rj,,, or rather R;;, minus last term containing
N,;#N,,”’s are components of a tensor field of type (0,2) in M. From (4.9)
we have

PROPOSITION 4.4. The vector Nyz*B,fB® is tangent to the cross-section
determined by W, if and only if Rj,, = 0.

5. The Slebodzinski tensor. From (4.10), we have

(5.1) Rju + Runs + Ruyi = — N9, W, — Nu,t9,W; — N, 3, W,
—30;Ny® + 0,N,* + 0, N;;») W,
— [(Fy'9, N;* + Fi'90, N,j* + Fi'9, N;*) F* W,
— {Ni#@s F5) + N0, Fy') + Nus* (O, Fi')} F* W,
— (@5 Nu® + O, Nus®* + 0 N W,
— {(@,F¢ — 3,Fy) N,#
+ (@ F,t — 0, F') N,y
+ (OnFyt — 0, Fy") N} F* W,
+ %(Nj,“NM‘ + Nt Nojt + Nu* Ny W

But, we have on the other hand

(5.2) 95 Nun® + 9 Nys® + I Ny
- —é— {(aJNmt - aiNJ'ht) + (ai hit — O N”t)
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+ (0w N;! — O; N, )} FP F®
= — 1 N F) = Na‘3,F = 3(Nu' ) + Ny 3, Fy
+ BN F) — Noft o, Fyt — 0Nt FyY) + Noyt 0, Fys
+ 2Nt Fy) — Nyt 9w Fyt — 0y(Nui F¥) + Ny @, F} Fi
= L BN F) + Na'3,F — 2Ny ) — N'3, By
+ 2(Nw FyY) + Noj o Fs — 0u(Ny* Fy) — Nijf 9, Fs
+ ou(Ny' F) + Nyt o, Fyt — 9N F) — Nutt 9, ) Fe
= % (FA@,Ny* — 3, N.*) + F(3, Ny* — 9;N,.%)
+ F,'(9; N;* — 9; Ny*)
+ @ Fi' — 90, Fi") N,w* + (0, F,' — 0, F") N,
+ @ F — 3, F) N,
+ AN O F + Nptd Fy + Nojto o)) Fe.
Thus, we have from (5.1)

(5.3) Rjin + Rins + Ryji
= —(N;!o, W, + Nyu'o,W; + N,i' 0, W) — (0;Nip* 4+ 9 Ny + 0, Ny ") W
— [F'9,N,* + F'9,N,;* + F,'O, Ny’
+ ‘]2; {sz(ai Nnts—‘an an) + Fit(ah ths -—8,- Nnts) + Fh‘(a_,-l\f“s - aiths)}
+ Nnt(anFts - 9: Fns) + Nint<aszs - at Fjs) + Nnjt(atFts - aLFis)
— L (B F =3 F) Nt + (uFy = 0, F) N,y
=+ (anth - aijz) Mis}] FsaWa
- %[szaNmt + Nitalejl + MLLaNjil] Wa. ’
that is
(5.4) Rjin + Rins + Rusi + Quun + Ni'(0; W, — 0, W)
+ N,' O, W, — o0, W3) + Siin* F* W,
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+ -;—(N,-,aN,.,x + NNyt + Not NHYW, =0,
where
(G.5)  Su’ = Fo, Ny + F'9,N, + F'a, Ny
+ % (FAO.Noy* — 0, Nit?) + F(2, Nyt — 3;N,.%)
+ F3f(0; Ni* — 9, N;i*)}
+ N @0 F =2, Fy) + Nyp(@,F;—3, Fy) + No (@, Byt — 3, Fy)
- % (@ F — 0, FY) Nt + (0,F,¢ — 8, F) N,y#
+ @, Ff — 0, FYY N,y .

Equation (5.4) shows the tensor character of S;;,°. This is the tensor
first introduced by Slebodzinski. [3]. (The expression of Slebodzinski tensor in
Math. Rev. 30 (1965), p. 652, 3438, should be read as 2[ ]+[ 1+2[ 1-[ 1)
T. J. Willmore [4] showed that this tensor is identically zero.

6. Complete lift of a connection on cross-sections. Suppose that there
is given a symmetric affine connection V in M whose components are T';.
Then (3.10) defines a Riemannian metric in °T(M) which is called the
Riemann extension of V.

We construct the Levi-Civita connection V¢ from this Riemann extension
and call it complete lift of the symmetric affine connection ¥/ to the cotangent
bundle ‘T(M). The complete lift V¢ has components 1%, given by

Toh i T T T
ji:Pji, P.ﬁ:O, F]-i:o, ij:O.

6.1) T} = pu@, T — 9,T% — 9T + 2Tal%),
I‘;’%z =T, i;%i: - T, N?I'_ZTZ 0,

and the curvature tensor of the complete lift V¢ components Rt given by

Rkjih = Rkjih ’

kkiiﬁ = (vthjia - ViRkjna
(6.2) :
+ T Ryt + ThRu' + Th Ryt + T% Riin") Pus

Rm" = “Rm'hz > Rkﬁ" = —Rhikj s R}Zjiﬁ = _Rhijk ’

all the others being zero, where R,;" are components of the curvature tensor
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of V.

Suppose now that there is given a global 1-form W in M. Then the W
defines a cross-section in “7(M). The vectors (3.2) are tangent to the cross-
section and (3.4) are 7 linearly independent vectors which are not tangent
to the cross-section. We take the vectors C* as normals to the cross-section
and define an affine connection induced on the cross-section. The components
of the induced affine connection are given by

(6.3) (0B + Tt B B*) Bty = T .
From this equation we see that the quantity
(6.4) 9;B + T4BSB® — T';B,*

is a linear combination of the vectors C;%. To find the coefficients, we put
A=h in (6.4) and find
ajaiW,, + Wa(ahr}“i - a,— Pgh - ai I‘?’L + 2].1;:51‘31)
—I'%o, W, — o, W, — %9, W,
= V;ViW, + Ru*W,.

Thus representing (6.4) by 'V; B*, we have
(6.5) 'ViBA = (V;ViW, + R, W,) CH4,

which is the equation of Gauss for the cross-section determined by W,.
Thus we have

PROPOSITION 6.1. In order that the cross-section in “T(M) determined
by a 1-form W in M with symmetric affine connection \J be totally geodesic,
it is necessary and sufficient that W satisfies

(6. 6) ViViWi + Ru* W, = 0.

On the other hand, since the components I'4; are given by (6.1) we can
easily verify that
9,C* + T4 B C;» — TGt = 0,
that is
9;C + T4 B C*® — T%,C4 = 0.
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Thus denoting by 'V;C“4 the left hand member of this equation, we get
6.7) \7,C4 = 0.

This is the equation of Weingarten for the cross-section.
Applying the operator 'V, to (6.5), we find

Wi'ViBit = ViV VW, + Ryt W,) C
from which, remembering that
"Vi' VBt = 'V Ve Bi* = Ryt B B Bi® — Ryy* B/,
we find

(6~ 8) I’\éwﬁl BkDBjCBiB - Rkjih B4 = [(kahiia —V; Rhika) W,
- Rkh'a Va, Wh - Rlcjha viWa, + Rhija vlc Wa, - Rhilca vj Wa] ChA .

Thus we have

PROPOSITION 6.2. In order that Rwﬁ‘BkD By’ B,® is tangent to the cross-
section, it is necessary and sufficient that

(6- 9) (vk Rnw‘a - vj Rhika) Wa,
= Rkjia vaW}L + Rk.‘iha viWa - Rnija ViWa + Ry VjWa .
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