TENSOR FIELDS AND CONNECTIONS ON CROSS-SECTIONS IN THE COTANGENT BUNDLE

Kentaro Yano

(Received August 13, 1966)

Introduction. E. M. Patterson and the present author [6] recently studied vertical and complete lifts of tensor fields and connections from a manifold M to its cotangent bundle ${ }^{c} T(M)$. When a 1 -form is given in an n-dimensional manifold M, the 1 -form defines a cross-section in the cotangent bundle ${ }^{c} T(M)$, which is an n-dimensional submanifold in the $2 n$-dimensional cotangent bundle ${ }^{c} T(M)$.

The main purpose of the present paper is to study the behaviour on the cross-section of the lifts of tensor fields and connections in a manifold M to its cotangent bundle ${ }^{c} T(M)$.

In $\S 1$ and $\S 2$, we review the results obtained in [6] on vertical and complete lifts of tensor fields and connections from a manifold to its cotangent bundle ${ }^{c} T(M)$. In $\S 3$, we study the behaviour of the lifts of tensor fields and of Riemann extension of connections [1] on the cross-sections. We examine, in §4, the behaviour of the lifts of almost complex structures on the crosssections. We show in $\S 5$ that the tensor discovered by Slebodzinski [3] appears in our present theory. Finally we study in $\S 6$ the behaviour of the complete lift of a connection on the cross-sections.

The manifold, functions, vector fields, 1 -forms, tensor fields and connections appearing in the discussion will be supposed to be of the differentiability class C^{∞}.

The indices A, B, C, D, \cdots run from 1 to $2 n$, the indices a, b, c, \cdots, h, i, j, \cdots from 1 to n and the indices $\bar{a}, \bar{b}, \bar{c}, \cdots, \bar{h}, \bar{i}, \bar{j}, \cdots$ from $n+1$ to $2 n$. We use the notations $x^{4}=\left(x^{h}, x^{\bar{h}}\right)$ and $x^{\bar{h}}=p_{h}$.

1. Vertical lifts of tensor fields. Let M be an n-dimensional differentiable manifold of class $C^{\infty},{ }^{c} T(M)$ its cotangent bundle, and π the projection ${ }^{c} T(M) \rightarrow M$. Let the manifold M be covered by a system of coordinate neighbourhoods $\left\{U ; x^{h}\right\}$, where $\left(x^{h}\right)$ is a local coordinate system defined in the neighbourhood U. Let $\left(p_{i}\right)$ be the cartesian coordinate system in each cotangent space ${ }^{c} T_{P}(M)$ at P of M with respect to the natural coframe $d x^{i}$
in M, P being an arbitrary point in U whose coordinates are $\left(x^{h}\right)$. Then we can introduce local coordinates $\left(x^{h}, p_{i}\right)$ in the open set $\pi^{-1}(U)$ of ${ }^{c} T(U)$. We call them coordinates induced in $\pi^{-1}(U)$ from $\left\{U ; x^{h}\right\}$ or simply induced coordinates in $\pi^{-1}(U)$. The projection π is represented by $\left(x^{h}, p_{i}\right) \rightarrow\left(x^{h}\right)$.

In ${ }^{c} T(M)$, there exists a 1 -form

$$
\begin{equation*}
p=p_{i} d x^{i} \tag{1.1}
\end{equation*}
$$

which we call the basic 1-form in ${ }^{c} T(M)$. The exterior derivative of p is

$$
\begin{equation*}
d p=d p_{i} \wedge d x^{i} . \tag{1.2}
\end{equation*}
$$

We call this the basic 2 -form in ${ }^{c} T(M)$. If we put

$$
\begin{equation*}
d p=\frac{1}{2} \varepsilon_{C B} d x^{C} \wedge d x^{B} \tag{1.3}
\end{equation*}
$$

we see that $\varepsilon_{C B}$ given by

$$
\varepsilon_{C B}=\left(\begin{array}{cc}
0 & \delta_{i}^{j} \tag{1.4}\\
-\delta_{j}^{i} & 0
\end{array}\right)
$$

are components of a tensor field of type $(0,2)$ in ${ }^{c} T(M)$. Consequently we can define a tensor field $\varepsilon^{B A}$ of type $(2,0)$ by

$$
\begin{equation*}
\varepsilon_{B C} \varepsilon^{A B}=\delta_{C}^{A} \tag{1.5}
\end{equation*}
$$

and find that $\varepsilon^{B A}$ has components

$$
\varepsilon^{B A}=\left(\begin{array}{cc}
0 & -\delta_{i}^{h} \tag{1.6}\\
\delta_{h}^{i} & 0
\end{array}\right)
$$

We now take a function f in M. The function $f \circ \pi$ in ${ }^{c} T(M)$ induced from f in M is called the vertical lift of f and is denoted by

$$
\begin{equation*}
f^{V}=f \circ \pi \tag{1.7}
\end{equation*}
$$

A vector field X in M is, in a natural way, regarded as a function in ${ }^{c} T(M)$. This function is called the vertical lift of the vector field X to ${ }^{c} T(M)$ and is denoted by X^{v}. When X in M has local components X^{h} with respect to the natural frame ∂_{h} in M, X^{v} in ${ }^{c} T(M)$ has local expression,

$$
\begin{equation*}
X^{v}=p_{i} X^{i} . \tag{1.8}
\end{equation*}
$$

When a 1 -form $\omega=\omega_{i} d x^{i}$ is given in M, it is also regarded as a 1 -form in ${ }^{c} T(M)$. If we write $\widetilde{\omega}=\widetilde{\varpi}_{B} d x^{B}$, then $\widetilde{\omega}$ has components

$$
\widetilde{\omega}_{B}=\left(\omega_{i}, 0\right)
$$

in ${ }^{c} T(M)$. Thus we can define a vector field $\widetilde{\omega}_{B} \varepsilon^{B A}$ in ${ }^{c} T(M)$. We call this vector field in ${ }^{c} T(M)$ the vertical lift of a 1-form in M to ${ }^{c} T(M)$ and denote it by ω^{V}. The ω^{V} has the components

$$
\begin{equation*}
\omega^{\nabla}=\binom{0}{\omega_{i}} \tag{1.9}
\end{equation*}
$$

The vertical lift ω^{V} of a 1 -form ω in M to ${ }^{c} T(M)$ satisfies

$$
\begin{cases}\omega^{V} f^{V}=0, & \text { for any } f \in \mathfrak{I}_{0}^{0}(M), \tag{1.10}\\ \omega^{\nabla} X^{V}=(\omega(X))^{\nabla}, & \text { for any } X \in \mathfrak{I}_{0}^{1}(M),\end{cases}
$$

which characterize ω^{∇}, where $\mathfrak{T}_{s}^{r}(M)$ denotes the set of tensor fields of type (r, s) in M.

When we are given a tensor field F of type (1,1) in M with local components $F_{i}{ }^{h}$, we can easily see that $\widetilde{F}_{B} d x^{B}=p_{a} F_{i}{ }^{a} d x^{i}$ is a 1 -form in ${ }^{c} T(M)$. Thus we can define a vector field $\widetilde{F}_{B} \varepsilon^{B A}$ in ${ }^{c} T(M)$. We call this the vertical lift of the tensor field F of type $(1,1)$ in M to ${ }^{\circ} T(M)$ and denote it by F^{γ}. The F^{V} has the components

$$
\begin{equation*}
F^{V}=\binom{0}{p_{a} F_{i}^{a}} . \tag{1.11}
\end{equation*}
$$

The F^{v} satisfies

$$
\left\{\begin{array}{l}
F^{V} f^{V}=0, \quad \text { for any } f \in \mathfrak{I}_{0}^{0}(M) \tag{1.12}\\
F^{V} X^{V}=(F X)^{V}, \text { for any } X \in \mathfrak{I}_{0}^{1}(M)
\end{array}\right.
$$

which characterize F^{V}.
We also have

$$
\begin{equation*}
\left[F^{\nabla}, G^{\nabla}\right]=(F G-G F)^{\nabla}, \text { for any } F, G \in \mathfrak{T}_{1}^{1}(M) \tag{1.13}
\end{equation*}
$$

Suppose that there is given a vector-valued 2 -form N in M with local components $N_{j i}{ }^{h}$. We can easily see that

$$
\widetilde{N}_{C B} d x^{c} \wedge d x^{B}=p_{a} N_{j i}{ }^{a} d x^{j} \wedge d x^{i}
$$

is a 2 -form in ${ }^{c} T(M)$ and consequently that $\widetilde{N}_{C B} \varepsilon^{B A}$ is a tensor field of type $(1,1)$ in ${ }^{c} T(M)$. We call this the vertical lift of the vector-valued 2 -form N in M to ${ }^{c} T(M)$, and denote it by N^{V}. The N^{V} has components

$$
N^{V}=\left(\begin{array}{cc}
0 & 0 \tag{1.14}\\
p_{a} N_{j i}{ }^{a} & 0
\end{array}\right)
$$

The N^{V} satisfies

$$
\begin{cases}N^{V} \omega^{V}=0, & \text { for any } \omega \in \mathfrak{T}_{1}^{0}(M), \tag{1.15}\\ N^{V} F^{V}=0, & \text { for any } F \in \mathfrak{T}_{1}^{1}(M) .\end{cases}
$$

We can repeat the same argument and define the vertical lift of a vectorvalued r-form in M to ${ }^{c} T(M)$.
2. Complete lifts of tensor fields. Suppose that there is given a vector field X in M. From X we can construct a function $X^{\nabla}=p_{a} X^{a}$ in M. The gradient \widetilde{X}_{B} of X^{v} has components

$$
\widetilde{X}_{B}=\left(p_{a} \partial_{i} X^{a}, X^{i}\right)
$$

in ${ }^{c} T(M)$. We can define a vector field $-\widetilde{X}_{b} \varepsilon^{B A}$ corresponding to this gradient in ${ }^{c} T(M)$. We call this vector field the complete lift of X in M to ${ }^{c} T(M)$ and denote it by X^{c}. The X^{c} has components

$$
\begin{equation*}
X^{c}=\binom{X^{h}}{-p_{a} \partial_{i} X^{a}} \tag{2.1}
\end{equation*}
$$

The complete lift of X in M to ${ }^{c} T(M)$ has properties

$$
\left\{\begin{array}{lll}
X^{c} f^{V}=(X f)^{V}, & \text { for any } & f \in \mathfrak{T}_{0}^{0}(M), \tag{2.2}\\
X^{c} Y^{V}=[X, Y]^{V}, & \text { for any } & Y \in \mathfrak{T}_{0}^{1}(M),
\end{array}\right.
$$

which characterize the complete lift X^{c}. The complete lift X^{c} of X in M to ${ }^{c} T(M)$ has further properties:

$$
\begin{equation*}
\left[X^{c}, \omega^{V}\right]=\left(\mathfrak{f}_{X} \omega\right)^{V}, \text { for any } \omega \in \mathfrak{T}_{1}^{0}(M) \tag{2.3}
\end{equation*}
$$

where \mathscr{L}_{X} denotes the Lie derivative with respect to X,

$$
\begin{gather*}
{\left[X^{c}, F^{V}\right]=\left(\mathfrak{L}_{X} F\right)^{V}, \text { for any } F \in \mathfrak{T}_{1}^{1}(M)} \tag{2.4}\\
N^{V} X^{c}=\left(N_{X}\right)^{V} \tag{2.5}
\end{gather*}
$$

for any vector-valued 2 -form in M, where N_{X} is a tensor field of type (1, 1) such that $N_{X} Y=N(X, Y)$ for any $Y \in \mathfrak{D}_{0}^{1}(M)$, and

$$
\begin{equation*}
\left[X^{c}, Y^{c}\right]=[X, Y]^{c}, \quad \text { for any } X, Y \in \mathfrak{I}_{0}^{1}(M) \tag{2.6}
\end{equation*}
$$

We note here that (1.15) and (2.5) characterize the vertical lift N^{V}.
Now take a tensor field F of type (1,1) in M with local components $F_{i}{ }^{h}$. Then $p_{a} F_{i}{ }^{a} d x^{i}$ is a 1 -form in ${ }^{c} T(M)$ and its exterior differential

$$
d\left(p_{a} F_{i}{ }^{a} d x^{i}\right)=p_{a} \partial_{j} F_{i}{ }^{a} d x^{j} \wedge d x^{i}+F_{i}{ }^{a} d p_{a} \wedge d x^{i}
$$

gives, when it is written as $\frac{1}{2} \widetilde{F}_{C B} d x^{C} \wedge d x^{B}$, a tensor field of type $(0,2)$ whose components are

$$
\widetilde{F}_{C B}=\left(\begin{array}{cc}
p_{a}\left(\partial_{j} F_{i}{ }^{a}-\partial_{i} F_{j}^{a}\right) & F_{i}{ }^{j} \\
-F_{j}^{i} & 0
\end{array}\right) .
$$

We define a tensor field of type $(1,1)$ by $\widetilde{F}_{C B} \varepsilon^{B A}$ and call this tensor field the complete lift of F in M to ${ }^{c} T(M)$ and denote it by F^{c}. The F^{c} has components

$$
F^{c}=\left(\begin{array}{cc}
F_{i}{ }^{h} & 0 \tag{2.7}\\
p_{a}\left(\partial_{i} F_{h}{ }^{a}-\partial_{h} F_{i}^{a}\right) & F_{h}{ }^{i}
\end{array}\right) .
$$

The complete lift F^{c} has the properties

$$
\begin{align*}
& F^{c} \omega^{V}=(\omega F)^{V}, \quad \text { for any } \omega \in \mathfrak{I}_{1}^{0}(M), \\
& F^{c} G^{v}=(G F)^{V}, \quad \text { for any } G \in \mathfrak{T}_{1}^{1}(M), \tag{2.8}\\
& F^{c} X^{c}=(F X)^{c}+\left(\mathfrak{£}_{X} F\right)^{V}, \quad \text { for any } X \in \mathfrak{I}_{0}^{1}(M)
\end{align*}
$$

which characterize F^{c}, where ωF denotes a 1-form defined by

$$
(\omega F)(X)=\omega(F X), \quad \text { for any } X \in \mathfrak{I}_{0}^{1}(M) .
$$

The complete lift F^{c} of $F \in \mathfrak{T}_{1}^{1}(M)$ has further properties

$$
\begin{array}{ll}
F^{c} N^{V}=(N F)^{V}, & \text { for any } N \in \mathfrak{I}_{2}^{1}(M), \tag{2.9}\\
N^{V} F^{c}=(N F)^{V}, & \text { for any } N \in \mathfrak{I}_{2}^{1}(M),
\end{array}
$$

where $N F$ is a tensor field of type $(1,2)$ defined by

$$
\begin{gather*}
(N F)(X, Y)=N_{X}(F Y), \quad \text { for any } X, Y \in \mathfrak{T}_{0}^{1}(M), \quad \text { and } \\
F^{c} G^{c}+G^{c} F^{c}=(F G+G F)^{c}+\left(N_{F, G}\right)^{r}, \tag{2.10}
\end{gather*}
$$

for any $F, G \in \mathfrak{T}_{1}^{1}(M)$, where $N_{F, G}$ is the Ni jenhuis tensor formed with F and G :

$$
\begin{align*}
2 N_{F, G}(X, Y)= & {[F X, G Y]+[G X, F Y] } \tag{2.11}\\
& -F[G X, Y]-G[F X, Y]-F[X, G Y]-G[X, F Y] \\
& +(F G+G F)[X, Y]
\end{align*}
$$

for any $X, Y \in \mathfrak{I}_{0}^{1}(M)$. From equation (2.10) we have, on putting $F=G$,

$$
\begin{equation*}
\left(F^{c}\right)^{2}=\left(F^{2}\right)^{c}+N^{V} \tag{2.12}
\end{equation*}
$$

where N is the Nijenhuis tensor formed from F :

$$
\begin{equation*}
N(X, Y)=[F X, F Y]-F[F X, Y]-F[X, F Y]+F^{2}[X, Y] \tag{2.13}
\end{equation*}
$$

From (2.12), we see that, when F defines a complex structure, that is, $F^{2}=-1$ and $N=0$, its complete lift F^{c} to ${ }^{c} T(M)$ defines an almost complex structure in ${ }^{c} T(M)$.

We can moreover prove that, F being an almost complex structure,

$$
\begin{equation*}
F^{c}+\frac{1}{2}(N F)^{r} \tag{2.14}
\end{equation*}
$$

is also an almost complex structure. (See, Satô, [2]).
Now take a vector-valued 2 -form N in M with local components $N_{j i}{ }^{h}$. Then $p_{a} N_{j i}{ }^{a} d x^{j} \bigwedge d x^{i}$ is a 2 -form in ${ }^{c} T(M)$ and consequently its exterior differential

$$
d\left(p_{a} N_{j i}{ }^{a} d x^{j} \wedge d x^{i}\right)=p_{a}\left(\partial_{k} N_{j i}{ }^{a}\right) d x^{k} \wedge d x^{j} \wedge d x^{i}+N_{j i}{ }^{a} d p_{a} \wedge d x^{j} \wedge d x^{i}
$$

gives, when it is written as $\frac{1}{3} \widetilde{N}_{D C B} d x^{D} \wedge d x^{C} \wedge d x^{B}$, a tensor field $\widetilde{N}_{D C B}$ of type $(0,3)$ in ${ }^{c} T(M)$, where

$$
\begin{aligned}
& N_{k j i}=p_{a}\left(\partial_{k} N_{j i}{ }^{a}+\partial_{j} N_{i k}{ }^{a}+\partial_{i} N_{k j}{ }^{a}\right), \\
& N_{j i \bar{h}}=N_{i \overline{i n} j}=N_{\bar{h} j i}=N_{j i}{ }^{h},
\end{aligned}
$$

all the other components being zero, from which we can define a tensor field of type (1,2) $\widetilde{N}_{C B E} \varepsilon^{E A}$ in ${ }^{c} T(M)$. We call this the complete lift of N in M to ${ }^{c} T(M)$ and denote it by N^{c}. The N^{c} has components

$$
\begin{align*}
& \widetilde{N}_{j i}{ }^{h}=N_{j i}{ }^{h}, \\
& \widetilde{N}_{j i}{ }^{\bar{h}}=-p_{a}\left(\partial_{j} N_{i h}{ }^{a}+\partial_{i} N_{h j}{ }^{a}+\partial_{h} N_{j i}{ }^{a}\right), \\
& \widetilde{N}_{j i}{ }^{\bar{h}}=N_{j h}{ }^{i}, \tag{2.15}\\
& \widetilde{N}_{j i i}{ }^{\bar{h}}=N_{h i}{ }^{j},
\end{align*}
$$

all the others being zero. The N^{c} satisfies

$$
\begin{equation*}
N^{c}\left(X^{c}, Y^{c}\right)=(N(X, Y))^{c}-\left(\left(£_{X} N\right)_{Y}-\left(£_{Y} N\right)_{X}+N_{[X, Y]}\right)^{V}, \tag{2.16}
\end{equation*}
$$

which characterizes N^{c}.
We can prove that the Nijenhuis tensor of the complete lift F^{c} of F is the complete lift N^{c} of the Nijenhuis tensor N formed with F.

We know that if F defines a complex structure in M, then F^{c} defines an almost complex structure in ${ }^{c} T(M)$. Following (2.16) and the fact above, F^{c} actually defines a complex structure in ${ }^{c} T(M)$.

Suppose now that F defines an almost complex structure in M. We know that $\bar{F}=F^{c}+\frac{1}{2}(N F)^{V}$ defines an almost complex structure in ${ }^{c} T(M)$. We thus consider the Nijenhuis tensor \bar{N} of \bar{F}. The Nijenhuis tensor \bar{N} of \bar{F} has components

$$
\begin{align*}
\bar{N}_{j i}{ }^{h}= & N_{j i}{ }^{h}, \tag{2.17}\\
\bar{N}_{j i}{ }^{\bar{h}}= & -p_{a}\left(\partial_{j} N_{i h}{ }^{a}+\partial_{i} N_{h j}{ }^{a}+\partial_{h} N_{j i}{ }^{a}\right) \\
& +\frac{1}{2} p_{a}\left\{F_{j}{ }^{t} \partial_{t}\left(N_{i s}{ }^{a} F_{h}{ }^{s}\right)-F_{i}{ }^{t} \partial_{t}\left(N_{j s}{ }^{a} F_{h}^{s}\right)\right. \\
& -\left(\partial_{j}\left(N_{i s}{ }^{a} F_{t}^{s}\right)-\partial_{i}\left(N_{j s}{ }^{a} F_{t}{ }^{s}\right)\right) F_{h}{ }^{t} \\
& +\left(\partial_{j} F_{t}^{a}-\partial_{t} F_{j}^{a}\right) N_{i s}{ }^{t} F_{h}{ }^{s}-\left(\partial_{i} F_{t}{ }^{a}-\partial_{t} F_{i}^{a}\right) N_{j s}{ }^{t} F_{h}{ }^{s}
\end{align*}
$$

$$
\begin{aligned}
& -\left(\partial_{j} F_{h}{ }^{t}-\partial_{h} F_{j}^{t}\right) N_{i s}{ }^{a} F_{t}^{s}+\left(\partial_{i} F_{h}{ }^{t}-\partial_{h} F_{i}^{t}\right) N_{j s}{ }^{a} F_{t}^{s} \\
& \left.-\left(\partial_{j} F_{i}^{t}-\partial_{i} F_{j}^{t}\right) N_{t s}{ }^{a} F_{h}^{s}+\frac{1}{2}\left(N_{j s}{ }^{a} N_{i h}{ }^{s}-N_{i s}{ }^{a} N_{j h}{ }^{s}\right)\right\},
\end{aligned}
$$

all the others being zero.
3. Lifts of vector fields on the cross-sections. Suppose that there is given a global 1 -form W in M whose local expression is $W=W_{i}(x) d x^{i}$. Then the 1 -form W defines a cross-section in ${ }^{c} T(M)$, whose parametric representation is

$$
\begin{equation*}
x^{h}=x^{h}, \quad p_{h}=W_{h}(x) . \tag{3.1}
\end{equation*}
$$

Thus the tangent vectors $B_{i}{ }^{4}=\partial_{i} x^{4}$ to the cross-section have components

$$
\begin{equation*}
B_{i}{ }^{A}=\binom{\delta_{i}^{h}}{\partial_{i} W_{h}} \tag{3.2}
\end{equation*}
$$

On the other hand, the fibre being represented by

$$
\begin{equation*}
x^{h}=\text { const., } \quad p_{h}=p_{h}, \tag{3.3}
\end{equation*}
$$

the tangent vectors $C_{\bar{i}}{ }^{4}=\partial_{\bar{i}} x^{4}$ to the fibre have components

$$
\begin{equation*}
C_{\bar{i}}^{A}=C^{i A}=\binom{0}{\delta_{n}^{i}} \tag{3.4}
\end{equation*}
$$

The vectors $B_{i}{ }^{4}$ and $C_{i}{ }^{-4}$, being linearly independent, form a frame along the cross-section. We call this the frame (B, C) along the cross-section. The coframe (B_{A}^{h}, C_{A}^{\hbar}) corresponding to this frame is given by

$$
\begin{align*}
B^{h}{ }_{A} & =\left(\delta_{i}^{h}, 0\right) \\
C^{\hbar}{ }_{4}=C_{h A} & =\left(-\partial_{i} W_{h}, \delta_{h}^{i}\right) . \tag{3.5}
\end{align*}
$$

We call this coframe the coframe (B, C) along the cross-section.
The basic 1-form $p=p_{i} d x^{i}$ has the expression $p=W_{i} d x^{i}$ and the basic 2 -form the expression $d p=\frac{1}{2}\left(\partial_{j} W_{i}-\partial_{i} W_{j}\right) d x^{j} \bigwedge d x^{i}$ on the cross-section. The vertical lift ω^{V} of a 1 -form $\omega=\omega_{i} d x^{i}$ has the expression

$$
\begin{equation*}
C_{\bar{\imath}}{ }^{4} \omega^{\bar{i}}=C^{i A} \omega_{i}=\binom{0}{\omega_{i}} \tag{3.6}
\end{equation*}
$$

on the cross-section.
The complete lift X^{c} of a vector field X in M to ${ }^{c} T(M)$, having components (2.1) with respect to the natural frame, has components

$$
\binom{X^{h}}{-£_{X} W_{h}}
$$

with respect to the frame (B, C) along the cross-section. Thus We have

$$
\begin{equation*}
X^{c}: B_{i}^{A} X^{i}-C^{i A}\left(\mathscr{L}_{X} W_{i}\right), \tag{3.7}
\end{equation*}
$$

from which
Proposition 3.1. The complete lift X^{c} of a vector field X in M to ${ }^{c} T(M)$ is tangent to the cross-section determined by a 1 -form W in M if and only if the Lie derivative of W with respect to X vanishes in M.

Suppose now that an affine connection ∇ without torsion is given in M and denote by $\Gamma_{j i}^{h}$ the components of the connection. Then

$$
\begin{equation*}
d s^{2}=2 \delta p_{i} d x^{i} \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta p_{i}=d p_{i}-\Gamma_{j i}^{h} d x^{j} p_{h}, \tag{3.9}
\end{equation*}
$$

defines a Riemannian metric in ${ }^{c} T(M)$. We call this metric in ${ }^{c} T(M)$ the Riemann extension of ∇ and denote it by ∇^{R} [1]. With respect to the Riemann extension ∇^{R}, the fibre given by $d x^{h}=0$ is null and the horizontal distribution given by $\delta p_{i}=0$ is also null.

The Riemann extension ∇^{R} has components

$$
\nabla^{R}:\left(\begin{array}{cc}
-2 \Gamma_{j i}^{h} p_{h} & \delta_{i}^{j} \tag{3.10}\\
\delta_{j}^{i} & 0
\end{array}\right)
$$

with respect to the natural frame and components

$$
\nabla^{R}:\left(\begin{array}{cc}
\nabla_{j} W_{i}+\nabla_{i} W_{j} & \delta_{i}^{j} \tag{3.11}\\
\delta_{j}^{i} & 0
\end{array}\right)
$$

with respect to the frame (B, C) along the cross-section, from which we have

Proposition 3.2. If M has an affine connection ∇ without torsion and ${ }^{c} T(M)$ has the Riemann extension ∇^{R} as its metric, then the cross-section determined by a 1 -form W in M is null with respect to ∇^{R} if and only if

$$
\begin{equation*}
\nabla_{i} W_{i}+\nabla_{i} W_{j}=0 \tag{3.12}
\end{equation*}
$$

Proposition 3.3. When M has Riemannian metric g and the LeviCivita connection ∇ of g and ${ }^{c} T(M)$ has the Riemann extension ∇^{R} as its metric, the cross-section determined by a 1-form W in M is null with respect to ∇^{R} if and only if W is a Killing vector field in M.
4. Lifts of almost complex structures on cross-sections. Suppose that the manifold M has a complex structure F. Then the cotangent bundle ${ }^{c} T(M)$ has the complex structure F^{c}.

Now the F^{c} has the components (2.7) with respect to the natural frame and consequently has components

$$
\left(\begin{array}{cc}
F_{i}^{h} & 0 \tag{4.1}\\
\left(\partial_{i} F_{h}{ }^{a}-\partial_{h} F_{i}^{a}\right) W_{a}-F_{i}^{t} \partial_{t} W_{h}+F_{h}{ }^{t} \partial_{i} W_{t}, & F_{h}{ }^{i}
\end{array}\right)
$$

with respect to the frame (B, C) along the cross-section determined by W. Thus we have

$$
\begin{align*}
& \widetilde{F}_{B}^{A} B_{i}^{B}=F_{i}^{h} B_{h}^{A}+\left\{\left(\partial_{i} F_{h}^{a}-\partial_{h} F_{i}^{a}\right) W_{a}-F_{i}^{t} \partial_{t} W_{h}+F_{h}{ }^{\iota} \partial_{i} W_{t}\right\} C^{h .4}, \\
& \widetilde{F}_{B}^{A} C_{\bar{i}}{ }^{B}=F_{t}^{i} C^{t A} . \tag{4.2}
\end{align*}
$$

Thus the cross-section is analytic if and only if

$$
\begin{equation*}
P_{i h}=\left(\partial_{i} F_{h}^{a}-\partial_{h} F_{i}^{a}\right) W_{a}-F_{i}^{t} \partial_{t} W_{h}+F_{h}^{t} \partial_{i} W_{t}=0 . \tag{4.3}
\end{equation*}
$$

We can easily verify that $P_{i n}$ are components of a tensor field of type (0,2) in M. On the other hand, equation (4.3) is the condition for W_{i} to be covariant analytic. [5]. Thus we have

Proposition 4.1. Suppose that M has a complex structure F. Then the cross-section determined by a 1-form W in ${ }^{c} T(M)$ with complex structure F^{c} is analytic if and only if W is covariant analytic in M.

Now suppose that M has an almost complex structure F. Then the Nijenhuis tensor \widetilde{N} of the complete lift F^{c} of F has components (2.15) with respect to the natural frame in ${ }^{c} T(M)$. Thus we have

$$
\begin{equation*}
\widetilde{N}_{C B}{ }^{A} B_{j}{ }^{c} B_{i}{ }^{B}=N_{j i}{ }^{h} B_{h}{ }^{A}-Q_{j i h} C^{h A}, \tag{4.4}
\end{equation*}
$$

where

$$
\begin{align*}
Q_{j i h}=\left(\partial_{j} N_{i h}{ }^{a}\right. & \left.+\partial_{i} N_{h j}{ }^{a}+\partial_{h} N_{j i}{ }^{a}\right) W_{a} \tag{4.5}\\
& +N_{j i}{ }^{t} \partial_{t} W_{h}-N_{i h}{ }^{t} \partial_{j} W_{t}-N_{h j}{ }^{t} \partial_{i} W_{t} .
\end{align*}
$$

We can easily verify that $Q_{j i n}$ are components of a tensor field of type $(0,3)$ in M. From (4.4) we have

Proposition 4.2. In order that $\widetilde{N}_{C B}{ }^{4} B_{j}{ }^{c} B_{i}{ }^{B}$ be tangent to the crosssection determined by a 1-form W, it is necessary and sufficient that $Q_{j i h}=0$ in M.

We know that when M has an almost complex structure F, the cotangent bundle ${ }^{c} T(M)$ has also an almost complex structure

$$
\bar{F}=F^{c}+\frac{1}{2}(N F)^{V} .
$$

The almost complex structure \bar{F} has components

$$
\bar{F}:\left(\begin{array}{cc}
F_{i}{ }^{h} & 0 \\
\left(\partial_{i} F_{h}{ }^{a}-\partial_{h} F_{i}^{a}+\frac{1}{2} N_{i t}^{a} F_{h}{ }^{t}\right) W_{a} & F_{h}^{i}
\end{array}\right)
$$

with respect to the natural frame in ${ }^{c} T(M)$ and components

$$
\bar{F}:\left(\begin{array}{cc}
F_{i}^{h} & 0 \\
\left.\left(\partial_{i} F_{h}^{a}-\partial_{h} F_{i}^{a}\right) W_{a}-F_{i}^{t} \partial_{t} W_{h}+F_{h}{ }^{t} \partial_{i} W_{t}+\frac{1}{2} N_{i t}{ }^{a} F_{h}^{t} W_{a}\right) & F_{h}^{i}
\end{array}\right)
$$

with respect to the frame (B, C) along the cross-section determined by the 1 -form W. Thus we have

$$
\bar{F}_{B}^{A} B_{i}{ }^{B}=F_{i}{ }^{h} B_{h}{ }^{A}
$$

$$
\begin{equation*}
+\left\{\left(\partial_{i} F_{h}^{a}-\partial_{h} F_{i}^{a}\right) W_{a}-F_{i}^{t} \partial_{t} W_{h}+F_{h}{ }^{t} \partial_{i} W_{t}+\frac{1}{2} N_{i t}{ }^{a} F_{h}{ }^{t} W_{a}\right\} C^{h A}, \tag{4.6}
\end{equation*}
$$

$$
\bar{F}_{B}^{A} C^{i B}=F_{h}^{i} C^{h A} .
$$

Thus the cross-section is almost analytic if and only if

$$
\left(\partial_{i} F_{h}^{a}-\partial_{h} F_{i}^{a}\right) W_{a}-F_{i}^{t} \partial_{t} W_{h}+F_{h}{ }^{t} \partial_{i} W_{t}+\frac{1}{2} N_{i t}{ }^{a} F_{h}{ }^{t} W_{a}=0 .
$$

But the last equation means that W_{i} is almost covariant analytic [2], [5]. Thus we have

Proposition 4.3. Suppose that M has an almost complex structure F. Then the cross-section determined by W in ${ }^{c} T(M)$ with almost complex structure $F^{c}+\frac{1}{2}(N F)^{V}$ is almost analytic if and only if W is almost covariant analytic in M.

We now consider the Nijenhuis tensor \bar{N} of $\bar{F}=F^{c}+\frac{1}{2}(N F)^{\bar{r}}$. The \bar{N} has components (2.17), or equivalently, by virtue of the relation $N_{i s}{ }^{a} F_{h}{ }^{s}$ $=-N_{i n}{ }^{s} F_{s}{ }^{a}$,

$$
\begin{align*}
\bar{N}_{j i}{ }^{h}= & N_{j i}{ }^{h}, \\
\bar{N}_{j i}{ }^{\bar{h}}= & -p_{a}\left(\partial_{j} N_{i h}{ }^{a}+\partial_{i} N_{h j}{ }^{a}+\partial_{h} N_{j i}{ }^{a}\right) \tag{4.8}\\
& -\frac{1}{2} p_{a}\left[F_{j}{ }^{t} \partial_{t}\left(N_{i h}{ }^{s} F_{s}^{a}\right)-F_{i}^{t} \partial_{t}\left(N_{j h}{ }^{s} F_{s}^{a}\right)\right. \\
& +\left\{\partial_{j}\left(N_{i s}{ }^{a} F_{t}^{s}\right)-\partial_{i}\left(N_{j s}{ }^{a} F_{t}^{s}\right)\right\} F_{h}{ }^{t} \\
& +\left(\partial_{j} F_{t}^{a}-\partial_{t} F_{j}^{a}\right) N_{i h}^{s} F_{s}^{t}-\left(\partial_{i} F_{t}^{a}-\partial_{t} F_{i}^{a}\right) N_{j h}{ }^{s} F_{s}^{t} \\
& -\left(\partial_{j} F_{h}{ }^{t}-\partial_{h} F_{j}^{t}\right) N_{i i^{s}} F_{s}^{a}+\left(\partial_{i} F_{h}{ }^{t}-\partial_{h} F_{i}^{t}\right) N_{j t}{ }^{s} F_{s}^{a} \\
& -\left(\partial_{j} F_{i}{ }^{a}-\partial_{i} F_{j}^{t}\right) N_{t h}^{s} F_{s}^{a} \\
& \left.-\frac{1}{2}\left(N_{j s}{ }^{a} N_{i h}{ }^{s}-N_{i s}{ }^{a} N_{j h}{ }^{s}\right)\right],
\end{align*}
$$

all the others being zero. Thus we have

$$
\begin{equation*}
\bar{N}_{C B}{ }^{A} B_{j}{ }^{c} B_{i}{ }^{B}=N_{j i}{ }^{h} B_{h}{ }^{4}+R_{j i h} C^{h A}, \tag{4.9}
\end{equation*}
$$

where

$$
\begin{align*}
R_{j i h}= & -N_{j i}{ }^{t} \partial_{t} W_{h}-\left(\partial_{j} N_{i h}{ }^{a}+\partial_{i} N_{h j}{ }^{a}+\partial_{h} N_{j i}{ }^{a}\right) W_{a} \tag{4.10}\\
& -\frac{1}{2}\left[F_{j}^{t} \partial_{t}\left(N_{i h}{ }^{s} F_{s}^{a}\right)-F_{i}^{t} \partial_{t}\left(N_{j h}{ }^{s} F_{s}^{a}\right)\right. \\
& +\left\{\partial_{j}\left(N_{i s}{ }^{a} F_{t}^{s}\right)-\partial_{i}\left(N_{j s}^{a} F_{t}^{s}\right)\right\} F_{h}{ }^{t} \\
& +\left(\partial_{j} F_{t}^{a}-\partial_{t} F_{j}^{a}\right) N_{i h}^{s} F_{s}{ }^{t}-\left(\partial_{i} F_{t}^{a}-\partial_{t} F_{i}^{a}\right) N_{j h}^{s} F_{s}^{t} \\
& -\left(\partial_{j} F_{h}{ }^{t}-\partial_{h} F_{j}^{t}\right) N_{i t}^{s} F_{s}^{a}+\left(\partial_{i} F_{h}{ }^{t}-\partial_{h} F_{i}^{t}\right) N_{j t}{ }^{s} F_{s}^{a} \\
& \left.-\left(\partial_{j} F_{i}^{t}-\partial_{i} F_{j}^{t}\right) N_{t h}{ }^{s} F_{s}^{a}-\frac{1}{2}\left(N_{j s}^{a} N_{i h}{ }^{s}-N_{i s}^{a} N_{j h}^{s}\right)\right] W_{a} .
\end{align*}
$$

We can easily verify that $R_{j i h}$, or rather $R_{j i h}$ minus last term containing $N_{i j}{ }^{e} N_{h u}{ }^{i}$'s are components of a tensor field of type (0,2) in M. From (4.9) we have

Proposition 4.4. The vector $\bar{N}_{C B}{ }^{A} B_{j}{ }^{C} B_{i}{ }^{B}$ is tangent to the cross-section determined by W_{i} if and only if $R_{j i h}=0$.
5. The Slebodzinski tensor. From (4.10), we have

$$
\begin{align*}
R_{j i h}+R_{i h j}+ & R_{h j i}= \tag{5.1}\\
& -N_{j i}{ }^{t} \partial_{t} W_{h}-N_{i h}{ }^{t} \partial_{t} W_{j}-N_{h j}{ }^{t} \partial_{t} W_{i} \\
& -3\left(\partial_{j} N_{i h}{ }^{a}+\partial_{i} N_{h j}{ }^{a}+\partial_{h} N_{j i}{ }^{a}\right) W_{a} \\
- & {\left[\left(F_{j}^{t} \partial_{t} N_{i h}{ }^{s}+F_{i}{ }^{t} \partial_{t} N_{h j}{ }^{s}+F_{h}{ }^{t} \partial_{t} N_{j i}{ }^{s}\right) F_{s}^{a} W_{a}\right.} \\
- & \left\{N_{j i}^{s}\left(\partial_{s} F_{h}{ }^{t}\right)+N_{i h}{ }^{s}\left(\partial_{s} F_{j}^{t}\right)+N_{h j}{ }^{s}\left(\partial_{s} F_{i}^{t}\right)\right\} F_{t}^{a} W_{a} \\
- & \left(\partial_{j} N_{i h}{ }^{a}+\partial_{i} N_{h j}{ }^{a}+\partial_{h} N_{j i}{ }^{a}\right) W_{a} \\
- & \left\{\left(\partial_{j} F_{i}^{t}-\partial_{i} F_{j}^{t}\right) N_{t h}{ }^{s}\right. \\
+ & \left(\partial_{i} F_{h}{ }^{t}-\partial_{h} F_{i}^{t}\right) N_{t j}^{s} \\
+ & \left.\left(\partial_{h} F_{j}^{t}-\partial_{h} F_{j}^{t}\right) N_{t i}^{s}\right\} F_{s}^{a} W_{a} \\
+ & \left.\frac{1}{2}\left(N_{j t}{ }^{a} N_{i h}{ }^{t}+N_{i t}{ }^{a} N_{h j}{ }^{t}+N_{h t}{ }^{a} N_{j i}{ }^{t}\right) W_{a}\right]
\end{align*}
$$

But, we have on the other hand

$$
\begin{align*}
& \partial_{j} N_{i h}{ }^{a}+\partial_{i} N_{h j}{ }^{a}+\partial_{h} N_{j i}{ }^{a} \tag{5.2}\\
& \quad=-\frac{1}{2}\left\{\left(\partial_{j} N_{i h}{ }^{t}-\partial_{i} N_{j h}{ }^{t}\right)+\left(\partial_{i} N_{h j}{ }^{t}-\partial_{h} N_{i j}{ }^{t}\right)\right.
\end{align*}
$$

$$
\begin{aligned}
& \left.+\left(\partial_{h} N_{j i}{ }^{t}-\partial_{j} N_{h i}{ }^{t}\right)\right\} F_{t}{ }^{s} F_{s}{ }^{a} \\
& =-\frac{1}{2}\left\{\partial_{j}\left(N_{i h}{ }^{t} F_{t}^{s}\right)-N_{i h}{ }^{t} \partial_{j} F_{t}^{s}-\partial_{i}\left(N_{j h}{ }^{t} F_{t}^{s}\right)+N_{j h}{ }^{t} \partial_{i} F_{t}{ }^{s}\right. \\
& +\partial_{i}\left(N_{h j}{ }^{t} F_{t}{ }^{s}\right)-N_{h j}{ }^{t} \partial_{i} F_{t}{ }^{s}-\partial_{h}\left(N_{i j}{ }^{t} F_{t}{ }^{s}\right)+N_{i j}{ }^{t} \partial_{h} F_{t}{ }^{s} \\
& \left.+\partial_{h}\left(N_{j i}{ }^{t} F_{t}{ }^{s}\right)-N_{j i}{ }^{t} \partial_{h} F_{t}{ }^{s}-\partial_{j}\left(N_{h i}{ }^{t} F_{t}{ }^{s}\right)+N_{h i}{ }^{t} \partial_{j} F_{t}{ }^{s}\right\} F_{s}{ }^{a} \\
& =\frac{1}{2}\left\{\partial_{j}\left(N_{i t}{ }^{s} F_{h}{ }^{t}\right)+N_{i h}{ }^{t} \partial_{j} F_{t}^{s}-\partial_{i}\left(N_{j t}{ }^{s} F_{h}{ }^{t}\right)-N_{j h}{ }^{t} \partial_{i} F_{t}{ }^{s}\right. \\
& +\partial_{i}\left(N_{h t}{ }^{s} F_{j}^{t}\right)+N_{h j}{ }^{t} \partial_{i} F_{t}{ }^{s}-\partial_{h}\left(N_{i t}{ }^{s} F_{j}{ }^{t}\right)-N_{i j}{ }^{t} \partial_{h} F_{t}{ }^{s} \\
& \left.+\partial_{h}\left(N_{j t}{ }^{s} F_{i}{ }^{t}\right)+N_{j i}{ }^{t} \partial_{h} F_{t}{ }^{s}-\partial_{j}\left(N_{h t}{ }^{s} F_{i}{ }^{t}\right)-N_{h i}{ }^{t} \partial_{j} F_{t}^{s}\right\} F_{s}{ }^{a} \\
& =\frac{1}{2}\left\{F_{j}^{t}\left(\partial_{i} N_{h t}{ }^{s}-\partial_{h} N_{i t}{ }^{s}\right)+F_{i}^{t}\left(\partial_{h} N_{j t}{ }^{s}-\partial_{j} N_{h t}{ }^{s}\right)\right. \\
& +F_{h}{ }^{t}\left(\partial_{j} N_{i t}{ }^{s}-\partial_{i} N_{j t}{ }^{s}\right) \\
& +\left(\partial_{j} F_{i}^{t}-\partial_{i} F_{j}^{t}\right) N_{t h}^{s}+\left(\partial_{i} F_{h}^{t}-\partial_{h} F_{i}^{t}\right) N_{t j}^{s} \\
& +\left(\partial_{h} F_{j}{ }^{t}-\partial_{j} F_{h}{ }^{t}\right) N_{t i}{ }^{s} \\
& \left.+2\left(N_{j i}{ }^{t} \partial_{h} F_{t}^{s}+N_{i h}{ }^{t} \partial_{j} F_{t}^{s}+N_{h j}{ }^{t} \partial_{i} F_{t}{ }^{s}\right)\right\} F_{s}^{a} .
\end{aligned}
$$

Thus, we have from (5.1)

$$
\begin{align*}
& R_{j i h}+R_{i n j}+R_{h j i} \tag{5.3}\\
& =-\left(N_{j i}{ }^{t} \partial_{t} W_{h}+N_{i n}{ }^{t} \partial_{t} W_{j}+N_{h j}{ }^{t} \partial_{t} W_{i}\right)-\left(\partial_{j} N_{i h}{ }^{a}+\partial_{i} N_{h j}{ }^{a}+\partial_{h} N_{j i}{ }^{a}\right) W_{a} \\
& -\left[F_{j}{ }^{t} \partial_{t} N_{i n}{ }^{s}+F_{i}{ }^{t} \partial_{t} N_{h j}{ }^{s}+F_{h}{ }^{t} \partial_{t} N_{j i}{ }^{s}\right. \\
& +\frac{1}{2}\left\{F_{j}{ }^{t}\left(\partial_{i} N_{h t}{ }^{s}-\partial_{h} N_{i t}{ }^{s}\right)+F_{i}^{t}\left(\partial_{h} N_{j t}{ }^{s}-\partial_{j} N_{h t}{ }^{s}\right)+F_{h}{ }^{t}\left(\partial_{j} N_{i t}{ }^{s}-\partial_{i} N_{j t}{ }^{s}\right)\right\} \\
& +N_{j i}{ }^{t}\left(\partial_{h} F_{t}^{s}-\partial_{t} F_{h}{ }^{s}\right)+N_{i h}{ }^{t}\left(\partial_{j} F_{t}^{s}-\partial_{t} F_{j}{ }^{s}\right)+N_{h j}{ }^{t}\left(\partial_{i} F_{t}^{s}-\partial_{t} F_{i}{ }^{s}\right) \\
& -\frac{1}{2}\left\{\left(\partial_{j} F_{i}^{t}-\partial_{i} F_{j}^{t}\right) N_{t h}^{s}+\left(\partial_{i} F_{h}^{t}-\partial_{h} F_{i}^{t}\right) N_{t j}^{s}\right. \\
& \left.\left.+\left(\partial_{h} F_{j}{ }^{t}-\partial_{j} F_{h}{ }^{t}\right) N_{t i}{ }^{s}\right\}\right] F_{s}{ }^{a} W_{a} \\
& -\frac{1}{2}\left[N_{j t}{ }^{a} N_{i l t}{ }^{t}+N_{i t}{ }^{a} N_{h j}{ }^{t}+N_{h t}{ }^{a} N_{j i}{ }^{t}\right] W_{a},
\end{align*}
$$

that is

$$
\begin{align*}
R_{j i h}+R_{i h j}+R_{h j i}+ & Q_{j i h}+N_{i h}{ }^{t}\left(\partial_{j} W_{t}-\partial_{t} W_{j}\right) \tag{5.4}\\
& +N_{h j}{ }^{t}\left(\partial_{i} W_{t}-\partial_{t} W_{i}\right)+S_{j i h}{ }^{s} F_{s}^{a} W_{a}
\end{align*}
$$

$$
+\frac{1}{2}\left(N_{j t}^{a} N_{i h}{ }^{t}+N_{i t}{ }^{a} N_{h j}{ }^{t}+N_{h t}{ }^{a} N_{j i}{ }^{t}\right) W_{a}=0,
$$

where

$$
\begin{align*}
S_{j i h}^{s}= & F_{j}^{t} \partial_{t} N_{i h}{ }^{s}+F_{i}^{t} \partial_{t} N_{h j^{s}}+F_{h}{ }^{t} \partial_{t} N_{j i}^{s} \tag{5.5}\\
& +\frac{1}{2}\left\{F_{j}^{t}\left(\partial_{i} N_{h t}^{s}-\partial_{h} N_{i t}^{s}\right)+F_{i}^{t}\left(\partial_{h} N_{j t}^{s}-\partial_{j} N_{h t}{ }^{s}\right)\right. \\
& \left.+F_{h}^{t}\left(\partial_{j} N_{i t}{ }^{s}-\partial_{i} N_{j t}^{s}\right)\right\} \\
& +N_{j i}{ }^{t}\left(\partial_{h} F_{t}^{s}-\partial_{t} F_{h}^{s}\right)+N_{i h}^{t}\left(\partial_{j} F_{t}^{s}-\partial_{t} F_{j}^{s}\right)+N_{h j}^{t}\left(\partial_{i} F_{t}^{s}-\partial_{t} F_{i}^{s}\right) \\
& -\frac{1}{2}\left\{\left(\partial_{j} F_{i}^{t}-\partial_{i} F_{j}^{t}\right) N_{t h}{ }^{s}+\left(\partial_{i} F_{h}^{t}-\partial_{h} F_{i}^{t}\right) N_{t j}^{s}\right. \\
& \left.+\left(\partial_{h} F_{j}^{t}-\partial_{j} F_{h}^{t}\right) N_{t i}^{s}\right\} .
\end{align*}
$$

Equation (5.4) shows the tensor character of $S_{j i h^{\prime}}{ }^{s}$. This is the tensor first introduced by Slebodzinski. [3]. (The expression of Slebodzinski tensor in Math. Rev. 30 (1965), p. 652, 3438, should be read as $2[\mathrm{]}+[\mathrm{]}+2[\mathrm{l}$ [].) T. J. Willmore [4] showed that this tensor is identically zero.
6. Complete lift of a connection on cross-sections. Suppose that there is given a symmetric affine connection ∇ in M whose components are $\Gamma_{j i}^{k}$. Then (3.10) defines a Riemannian metric in ${ }^{c} T(M)$ which is called the Riemann extension of ∇.

We construct the Levi-Civita connection ∇^{c} from this Riemann extension and call it complete lift of the symmetric affine connection ∇ to the cotangent bundle ${ }^{c} T(M)$. The complete lift ∇^{c} has components $\widetilde{\Gamma}_{C B}^{A}$ given by

$$
\begin{gather*}
\widetilde{\Gamma}_{j i}^{h}=\Gamma_{j i}^{h}, \quad \widetilde{\Gamma}_{j \bar{i}}^{h}=0, \quad \widetilde{\Gamma}_{j i}^{h}=0, \quad \widetilde{\Gamma}_{\bar{j} \bar{i}}^{h}=0 \\
\widetilde{\Gamma}_{j i}^{\bar{h}}=p_{a}\left(\partial_{h} \Gamma_{j i}^{a}-\partial_{j} \Gamma_{i h}^{a}-\partial_{i} \Gamma_{j h}^{a}+2 \Gamma_{h t}^{a} T_{j i}^{t}\right), \tag{6.1}\\
\widetilde{\Gamma}_{j i}^{\bar{h}}=-\Gamma_{j h}^{i}, \quad \widetilde{\Gamma}_{j i}^{\bar{h}}=-\Gamma_{h i}^{j}, \quad \widetilde{\Gamma}_{\bar{j} \bar{i}}^{\vec{h}}=0,
\end{gather*}
$$

and the curvature tensor of the complete lift ∇^{C} components $\widetilde{R}_{D C B}{ }^{A}$ given by

$$
\begin{align*}
\widetilde{R}_{k j i}^{h}= & R_{k j i}{ }^{h}, \\
\widetilde{R}_{k j i}^{\bar{h}}= & \left(\nabla_{h} R_{k j i}^{a}-\nabla_{i} R_{k j h}^{a}\right. \\
& \left.+\Gamma_{h t}^{a} R_{k j i}^{t}+\Gamma_{k t}^{a} R_{i h j}^{t}+\Gamma_{j t}^{a} R_{h i k}^{t}+\Gamma_{i t}^{a} R_{k j h}^{t}\right) p_{a}, \tag{6.2}\\
\widetilde{R}_{k j \bar{i}^{\bar{h}}}= & -R_{k j h}^{i}, \quad \widetilde{R}_{k j i^{\bar{h}}}=-R_{h i k^{j}}, \quad \widetilde{R}_{\overline{k j}_{j i}{ }^{\bar{h}}}=-R_{h i i^{k}},
\end{align*}
$$

all the others being zero, where $R_{k j i}{ }^{h}$ are components of the curvature tensor
of ∇.
Suppose now that there is given a global 1-form W in M. Then the W defines a cross-section in ${ }^{c} T(M)$. The vectors (3.2) are tangent to the crosssection and (3.4) are n linearly independent vectors which are not tangent to the cross-section. We take the vectors $C^{i d}$ as normals to the cross-section and define an affine connection induced on the cross-section. The components of the induced affine connection are given by

$$
\begin{equation*}
\left(\partial_{j} B_{i}{ }^{A}+\widetilde{\Gamma}_{C B}^{A} B_{j}{ }^{c} B_{i}{ }^{B}\right) B_{A}^{h}=\Gamma_{j i}^{h} . \tag{6.3}
\end{equation*}
$$

From this equation we see that the quantity

$$
\begin{equation*}
\partial_{j} B_{i}{ }^{A}+\widetilde{\Gamma}_{C B}^{A} B_{j}{ }^{c} B_{i}{ }^{B}-\Gamma_{j i}^{h} B_{h}{ }^{A} \tag{6.4}
\end{equation*}
$$

is a linear combination of the vectors $C_{\bar{i}}{ }^{4}$. To find the coefficients, we put $A=\bar{h}$ in (6.4) and find

$$
\begin{aligned}
\partial_{j} \partial_{i} W_{h} & +W_{a}\left(\partial_{h} \Gamma_{j i}^{a}-\partial_{j} \Gamma_{i h}^{a}-\partial_{i} \Gamma_{j h}^{a}+2 \Gamma_{h t}^{a} \Gamma_{j i}^{t}\right) \\
& -\Gamma_{j h}^{a} \partial_{i} W_{a}-\Gamma_{h i}^{a} \partial_{j} W_{a}-\Gamma_{j i}^{a} \partial_{a} W_{h} \\
= & \nabla_{j} \nabla_{i} W_{h}+R_{h i j}^{a} W_{a} .
\end{aligned}
$$

Thus representing (6.4) by ${ }^{\prime} \nabla_{j} B_{i}{ }^{4}$, we have

$$
\begin{equation*}
{ }^{\prime} \nabla_{j} B_{i}{ }^{4}=\left(\nabla_{j} \nabla_{i} W_{h}+R_{h i j}{ }^{a} W_{a}\right) C^{h A}, \tag{6.5}
\end{equation*}
$$

which is the equation of Gauss for the cross-section determined by W_{i}. Thus we have

PROPOSITION 6.1. In order that the cross-section in ${ }^{c} T(M)$ determined by a 1-form W in M with symmetric affine connection ∇ be totally geodesic, it is necessary and sufficient that W satisfies

$$
\begin{equation*}
\nabla_{j} \nabla_{i} W_{h}+R_{h i j}{ }^{a} W_{a}=0 . \tag{6.6}
\end{equation*}
$$

On the other hand, since the components $\widetilde{\Gamma}_{C B}^{A}$ are given by (6.1) we can easily verify that

$$
\partial_{j} C_{\bar{i}}^{A}+\widetilde{\Gamma}_{C_{B}}^{A} B_{j}{ }^{c} C_{\bar{\imath}}{ }^{B}-\Gamma_{j h}^{i} C_{\bar{h}}{ }^{A}=0
$$

that is

$$
\partial_{j} C^{i A}+\widetilde{\Gamma}_{C B}^{A} B_{j}{ }^{c} C^{i B}-\Gamma_{j h}^{i} C^{h A}=0 .
$$

Thus denoting by ${ }^{\prime} \nabla_{j} C^{i 4}$ the left hand member of this equation, we get

$$
\begin{equation*}
{ }^{\prime} \nabla_{j} C^{i A}=0 \tag{6.7}
\end{equation*}
$$

This is the equation of Weingarten for the cross-section.
Applying the operator ' ∇_{k} to (6.5), we find

$$
{ }^{\prime} \nabla_{k}{ }^{\prime} \nabla_{j} B_{i}{ }^{A}=\nabla_{k}\left(\nabla_{j} \nabla_{i} W_{h}+R_{h i j}{ }^{a} W_{a}\right) C^{h \Lambda},
$$

from which, remembering that

$$
{ }^{\prime} \nabla_{k}{ }^{\prime} \nabla_{j} B_{i}{ }^{4}-{ }^{\prime} \nabla_{j}^{\prime} \nabla_{k} B_{i}{ }^{4}=\widetilde{R}_{D C B}{ }^{A} B_{k}{ }^{D} B_{j}{ }^{c} B_{i}{ }^{B}-R_{k j i}{ }^{h} B_{h}{ }^{4},
$$

we find

$$
\begin{align*}
& \widetilde{R}_{D C B B}^{A} B_{k}{ }^{D} B_{j}{ }^{c} B_{i}{ }^{B}-R_{k j i}{ }^{h} B_{h}{ }^{A}=\left[\left(\nabla_{k} R_{h i j}{ }^{a}-\nabla_{j} R_{h i k}{ }^{a}\right) W_{a}\right. \tag{6.8}\\
& \left.\quad-R_{k j i}^{a} \nabla_{a} W_{h}-R_{k j h}{ }^{a} \nabla_{i} W_{a}+R_{h i j}{ }^{a} \nabla_{k} W_{a}-R_{h i k}{ }^{a} \nabla_{j} W_{a}\right] C^{h A} .
\end{align*}
$$

Thus we have
Proposition 6.2. In order that $\widetilde{R}_{D C B}^{A} B_{k}{ }^{D} B_{j}{ }^{c} B_{i}{ }^{B}$ is tangent to the crosssection, it is necessary and sufficient that

$$
\begin{align*}
& \left(\nabla_{k} R_{h i j}{ }^{a}-\nabla_{j} R_{h i k}{ }^{a}\right) W_{a} \tag{6.9}\\
& \quad=R_{k j i}{ }^{a} \nabla_{a} W_{h}+R_{k j h}{ }^{a} \nabla_{i} W_{a}-R_{h i j}{ }^{a} \nabla_{k} W_{a}+R_{h i k}{ }^{a} \nabla_{j} W_{a} .
\end{align*}
$$

Bibliography

[1] E. M. Patterson and A. G. Walker, Riemann extensions. Quart. Journ. of Math., 3(1952), 19-28.
[2] I. SATô, Almost analytic vector fields in almost complex manifolds, Tôhoku Math. Journ., 17(1965), 185-199.
[3] W. Slebodzinski, Contribution à la géométrie différentielle d'un tenseur mixte de valence deux, Collog. Math., 13(1964), 49-54.
[4] T. J. Willmore, Note on the Slebodzinski tensor of an almost complex structure, to appear.
[5] K. Yano, Differential geometry on complex and almost complex spaces, Pergamon Press, 1965.
[6] K. Yano and E. M. Patterson, Vertical and complete lifts from a manifold to its cotangent bundle, to appear.

University of Aberdeen,
Scotland.

