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TENSOR FIELDS LIFTED TO COTANGENT BUNDLES AND
DIFFERENTIAL CONCOMITANTS OF TENSOR

FIELDS IN THE BASE MANIFOLDS

BY MINORU HAYASAKA

Introduction.

Recently, Yano and Akδ ([2])1' defined an operator ΦF(X) associated with a
given tensor field F of type (1,1) and any vector field X in a differentiate mani-
fold M. By applying the operator ΦF(X) to any vector field Y in such a way that
ΦF(X)Y= — (_£YF)X, where £Y denotes the Lie derivative with respect to Y, they
got the differential concomitant (S, T) of tensor fields S of type (1,2) and T of type
(I,/), that is a tensor field of type (1,t+2), and the differential concomitant (σ, T)
of tensor fields σ of type (0,2) and T of type (1, t\ that is a tensor field of type
(0,f+2).

In this paper, we investigate the properties of tensor fields lifted to the
cotangent bundle of M and try to get systematically the differential concomitant
(S, T) of tensor fields S of type (1,5) and T of type (1, f). that is a tensor field of
type (1,5+0, and the differential concomitant (σ, T) of tensor fields σ of type
(0,5) and T of type (1, f) respectively, that is a tensor field of type (Q,s+f) when
S, T and σ are skew-symmetric.

§ 1. Lifts of tensor fields to cotangent bundles.

Let M be a differentiable manifold of class C°° and of dimension n. Let CT(M]
be the cotangent bundle of M. Then °T(M) is also a differentiable manifold of
class C°° and of dimension 2n.

A point P of CT(M) is an ordered pair (P, ωp) of a point PeM and a covector
ωp at P. We denote by π the natural projection °T(M)^M given by P = (P, ωp)—>P.

Suppose that the manifold M is covered by a system of coordinate neighbour-
hoods {UjX1} where (xl) is a system of local coordinates in the neighborhood U.
Then, in the open set π~l(U) of CΊ\M\ we can introduce local coordinates (x\x1}
or (#7)2) for P where we put xl=pi and pi are the components of ωp with respect
to the natural coframe dx\ We call (x\ xl) or (#7) the coordinates in π~\U) induced
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1) The number between brackets refers to the Bibliography at the end of the paper.
2) For indices, small letters i,j,k, run over the range 1, 2, ~,n, and ϊ=i+n Capital
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from (#*) or simly the induced coordinates in π~\U).
We denote by £Γί(M) or symply by £ΓΪ the set of tensor fields of class C°° and

of type (r, 5) in Mand similarly by £r

s(
cT(M)) or simply by 31 the corresponding set

of tensor fields in CT(M). And we denote by '£ΓJ, '31 the sets of elements of
£Π, 3 ί which are skew-symmetric with respect to all covariant indices, respectively.

Suppose that τ€£Γ°+ι and that r has components τ^t+l^Γ.^l in 27. We define
an element Q of 3l+\ whose components Qιt+λιr.ιl in π~l(U) are given by

(i. i) _ *ί+ltί H

It is well-known that the tensor field ε"1 with components in π~l(U} given by
a matrix

Ό -/

/ 0

belongs to 31, where / denotes the unit nxn matrix (cf. [3]).
By putting

(1-2) ^ ϊιtιt-r t*=Qι

we can define a tensor field belonging to 3 \ with components given by (1. 2) in
π~l(U}. We call this tensor field the /-vertical lift of τ and by τζ}. And we call the
1-vertical lift of τ simply the vertical lift of r and denote by τv (cf. [3], for 5=1).

By (1. 2), the components τιtτt_v. ιf of rf i} in π~l(U) are given by

- - -
(1-3)

τith-v i* = *Wt-i"*h"4i ="' = ?Hh-i-hk = °

Conversely, we can easily see that if, for τe^J, its components ^ιtτt_v τf in
TT-^Z/) are given by (1.3) and ί̂_1...^n_r..11 are functions in M, then ^ .̂...̂ ^ .̂..̂ j
define a tensor field τ€£Γ?+ 1 and are components of τ in U.

Thus we have

LEMMA 1.1. Suppose that Tit+llt...τι are functions in M, τιtιt_v ιf functions in
CT(M) and τιtιt_1 ~ι1

κ satisfy the condition (1. 3). Then τlt+^Γ.ll define a tensor
field τ€£Γί+ι and are components of τ in U, if and only if ^/ .̂../.̂  define a
tensor field τ = rζ )€3 ij and are components of τ = τjζ) in π~l(U}.

In exactly the same way as above, for T€ £Γί+ι, we can define the /-vertical lift
of T denoted by T^e^J. In order to get Tζ}, we replace only Q^t+l^Γ.^1=τ^t+l^Γ•^l

in (1.1) by Q^t+l^t...^l=PaT^t+l^t...^ί

a, where Tlt+lH...ll

k are components of T in U.
Thus the components Ti^^^.if of Tfn in π~l(U] are expressible as follows
(cf. [3], for f =1,2):
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7^ E_.A T a
L î !-.*! —pΛJ-τ^t-vΉ^l-l-^ »

(1-4) „ * ~
TItlt-ι~ lιk = TWt-i"*h"+i ="'= THH-r~hk = °

From (1. 4), we have a lemma corresponding to Lemma 1.1.

LEMMA 1. 2. Suppose that Tlt+lZt...Zl

κ are functions in M, ^7i/i_r..j1

x functions
in CT(M) and T^/ .̂../^ satisfy the condition (1. 4). Then Tίt+lZt...Zl

k define a tensor
field T belonging to £Γj+ι and are components of T in U, if and only if jΓ/ί/ί_1.../1'

κ'
define a tensor field T=Tγι:>€3Ί and are components of T=T^ in π~l(U).

For σ€'£Γί, we denote by dσ the exterior derivative of σ. We can see that
the components of σιsrs_r..n

κ of (dσY^'Sl are expressible in π~l(U) as follows:

(1.5)

r Ί- Σ

Suppose now that Se'S's and S has components Si^_1...tl

fc in U. Then

-r-
o.

is an 5-form in °T(M). Consequently, the exterior derivative dσ of σ in CT(M)
belongs to '£Π+ι. We now put

By putting

(1- 6) SIsIs_r..^=(-l)^SIsIs_lIlB^

we can define a tensor field belonging to '£?! whose components in π~l(U} are
given by (1. 6). We call this tensor field the complete lift of S and denote by S°. By
(1. 6), the components 5/s/5_1...71

jί: of S° in π~l(U) are expressible as follows (cf. [3],
for s=l,2):

c jc— ς. k0 - - — ° - * »

a.?) .̂..̂ ^ (̂Σ .̂A. ̂  M -̂̂ .̂,.̂

Suppose that M has a symmetric affine connection Γ whose components in U
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are Γ% and F denotes the covariant derivative with respect to Γ. For a tensor
field S belonging to '£Γi whose components in U are Si^^f, we here put

(i. 8) irs]w*= Σ ^A *-ια- ,̂.,Λ
Λ,=l

Since the tensor field [PS] with components in U given by (1. 8) belongs to 7£Γi+ι,
[PS]V belongs to '3\ We now put

(1.9) SH=Sc-ψSY(s'3$

and call SH the horizontal lift of S (cf. [4], for 5=1).
In the sequel, whenever we say the horizontal lifts or the covariant deriva-

tives, we suppose that M has a symmetric affine connection Γ.

§ 2. Differential concomitants of tensor fields in base manifolds.
Let S be a tensor field belonging to '£Γi with components Sif..^

k in U and T
a tensor field belonging to '£ΓJ with components T3t...j

k in U. Suppose that ST
belongs to '£Π+ί-ι, where

ST(X19 -,-Xi-ι, Γi, •••, Yύ = S(Xί9 -,-Xi-ι, T(Yί9 -, Yΰ)

for any Xly •• ,Jζ?_1, Ylt •••, Fί€£ΓJ. For the tensor fields S and T, we define an
operator Φ° which makes a new tensor field belonging to 3Ί+t-ι by

(2. 1) Φ°(S, T) = (ST)C-SGT°.

When we denote components of ΦG(S, Γ) in π~\U) by Φ<ίf..ι2jt;..j1

l1, (2. 1) is ex-
pressible as follows:

(2. 2) Φfr ̂

(2. 3) Φίs...l2jt...jl...j1

ll = Sis...Z2a
JLTjΓ.lr..jl —Sis...l:L ΊJt...a...j1

Jί

and other remaining components of Φ?y..ι2jt...jl

l1 are all zero, where

(S, T)ts ..t1jt...j1

ύ = Sis...Zl

adaTjt...j1

b—TjΓ.j1

adaSis...ll

b

(2.4)

and

(2. 5)

REMARK. The notation (S, T}is..^jt...3l

k is the generalization of what was
introduced by Yano and Akδ for 5=1. 2 (cf. [2]).

If conditions
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are satisfied, then (SΓ)ίί...ΐlι7ί...ι;1*=0 and consequently we can see that (S, T}is..^lJr.j*
are components of a tensor field belonging to £Γs+έ by virtue of Lemma 1. 2. We
denote this tensor field by (S, T).

Thus we have

PROPOSITION 2. 1. Let S and T be tensor fields belonging to '£Γl and '£Π
respectively. Suppose that ST belongs to '3Ί+t-ι. Then

Φ°(s, Γ)=(s, r)5+1), (

Φfβ. ^r Ji-.ίi1"1 (/=!, 2, ••-,£) vanish, that is,

(2. 6) SvV^r H^ια-V*ια^r-^=° ('=1, 2, -, /).

If we here use the horizontal lift in stead of the complete lift in (2. 1), then
we have

φff(S, Γ) = (S, T)H-SHTH

by (1. 4), (1. 7), (1. 8) and (1. 9), where '(S, T) is a tensor field belonging to £rί+ί,
whose components are given by

f(Q 7^. /b— Q. «/7 T k_T α/7 C. Λ
(A -* Λθ"*l.7r .7l — ̂ V H V^λH'"3\ LΠ-3\ Va,^»*

(2. 8)

and X[ST] is a tensor field belonging to £Π+έ whose components are given by

(2.9)

If condition (2. 6) is satisfied, then [SΓ] = /[SΓ]=0 and, by virtue of Proposition
2.1, (S, T)-X(S, 71), from which and (2.7), we have Φ*(S, Γ)=0. Conversely, if
φB(s, T)=0, then (2.6) is clearly satisfied.

Thus we have

PROPOSITION 2. 2. Lβ£ S and T be tensor fields belonging to '£Π and f<2\
respectively. Suppose that ST belongs to 'ίJi+ί-i. Then

φH(S, Γ)=0

z/ «:̂ J 6>^fy ^/ condition (2. 6) fs satisfied.

Now, for elements S of '£Π, Γof 7£Tt and any Fi, •••, Fί€£ri, we define a tensor
field Φg^S, Γ) belonging to Sl-i by

(2.10) Φfr)(S, 7%Yβ, -.., XJ = Φ°(S, T)(XS, -.., i2, Ff, -, F?),
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where X2, —,XS€&1
If we denote components of 0?F)(S, Ί) by ΦfF)/s.../2

Zl, then, by (2.10),

(2.H) Φ^^V^^r.-VrV^ ^Λ

where Ϋ%h are components of the complete lift Yg of Yh (h=l, 2, ••-,£)• From
(1. 7), (2. 2), (2. 3) and (2.11), we can see that Φ?F)/s.../2

Jl are expressible as follows:

i' Ff>) +Λ('[SZV.,1,r.,1»ΪT - FfO

,r4lV-$r*ιβ^rWOΠ' (W) m

where we put

(2.13) #v.,ιy,.

(2.14) A,..vr

and

(2.15) Bls...lίH...,<<= Σ Σ i
1=1 Λ,=2

Since

and

Σi

are components of tensor fields belonging to £Π respectively, by virtue of Lemma
1. 2, we can see that Ris...liίr.^ are components of a tensor field belonging to £Π+ί

Thus we have

PROPOSITION 2. 3. Suppose that M has a symmetric affine connection Γ and V
denotes the covariant derivative with respect to Γ. Let S, T and ST be tensor fields
belonging to '£ΓJ, 7£ΓJ and '£Γi+ί-ι respectively. Then (2. 13) defines a tensor field
R belonging to £Π+ί and Rif.^jr.j* are components of R.

Now, in (2. 3) we make the skew-symmetric part with respect to covariant
indices isy •••,/!, jt, •••,/!. Then we can see easily that

from which and Proposition 2. 3, we see that (S, T\ίs..4lJr.JlΊ

k define a tensor field
belonging to '£ΓJ+ί Moreover we have
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(s+t)\ k

where [S, T] is the notation induced by Frolicher and Nijenhuis (cf. [1]).
Thus we nave

COROLLARY 2. 4. Under the same suppositions as in Proposition 2. 3,
(S, T)Lis...llJr.j^

k define a tensor field belonging to '£Γί+ί and

k k

REMARK, In the case where s=l, we denote Sk

τι by F*. If F is an almost
complex structure in M, then we can see that the condition (2. 6) is equivalent to
the condition that T is pure. A pure tensor field T is said to be almost analytic,
if (F, Γ)=0. Consequently, for Γ€'£Π, ΦC(F,T)=Q if and only if T is pure and
almost analytic. If T is pure, then ΦH(F, Γ)=0.

Next, let σ be a tensor field belonging to '£Π with components σ .̂.̂  in £7 and
T a tensor field €'£Π with components TH...jk in £7. Suppose that <joT belongs to
'SΓί+ί-i, where

for any -Xi, ••-,-X'ί, Fi, •••, F,_ι€£Γo For the tensor fields σ and T, we define an
operator $" which makes a new tensor field belonging to Sl+t-i by

(2. 16) gr(<7, Γ)=((joΓ)*-<j*oΓσ,

where

and (<τoΓ)* = (-l)4t+ί(α(^°3π))F

When we denote by ΨjΓ^ι9_r..ι^
lB the components of Ψ(σ, T) in π-^ί/), (2. 16) is

expressible as follows:

(2.17) ^^Λ^V^-ί^^r ̂ r-i

and other components ?Γjί...j 1/s_r../1

7« are all zero, where

ί 5

(2. 18) (Γ, σ) .̂.,/!* .̂-!̂  Tj^j^daffi^— Σ djifaTϊjΓ+r ws-i"*! + Σ Oi^a^^Tj^.j^

REMARK. The notation (T, σ)̂ ...̂ ...̂  is the generalization of what was intro-
duced by Yano and Ako for f=l,2 (cf. [2]).

By making use of Lemma 1. 1, we can see that (T,σ)Jr.JlZs...ll are components
of a tensor field belonging to £ΓS+ί.

Thus we have
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PROPOSITION 2. 5. Let σ and T be tensor fields belonging to '£Γ* and '£Π
respectively. Suppose that σoT belongs to '£Π+ί-ι Then

REMARK. In the case where ί=l, we denote T\ by F]. If F is an almost
complex structure in M, then we can see that the condition that σ°F belongs to
'£Π is equivalent to the condition that σ is pure. A pure tensor field σ is called to
be almost analytic, if (F,σ)=Q. Consequently, for a tensor field σ belonging to
'£Γί, Ψ(σ,F)=Q if and only if σ is pure and almost analytic.

REMARK. We can verify that

sltl t"

where [T, σ] and [7, σ°T] are the notations introduced by Frolicher and Nijenhuis
(cf. [1]) and / is the unit tensor with components <5J.
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Ishihara for their kind help during the preparation of this paper and also his
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