TENSOR FIELDS LIFTED TO COTANGENT BUNDLES AND DIFFERENTIAL CONCOMITANTS OF TENSOR FIELDS IN THE BASE MANIFOLDS

By Minoru Hayasaka

Introduction.

Recently, Yano and Akō ([2] $)^{1)}$ defined an operator $\Phi^{F}(X)$ associated with a given tensor field F of type $(1,1)$ and any vector field X in a differentiable manifold M. By applying the operator $\Phi^{F}(X)$ to any vector field Y in such a way that $\Phi^{F}(X) Y=-\left(\mathcal{L}_{Y} F\right) X$, where \mathcal{L}_{Y} denotes the Lie derivative with respect to Y, they got the differential concomitant (S, T) of tensor fields S of type (1,2) and T of type $(1, t)$, that is a tensor field of type ($1, t+2$), and the differential concomitant (σ, T) of tensor fields σ of type $(0,2)$ and T of type $(1, t)$, that is a tensor field of type ($0, t+2$).

In this paper, we investigate the properties of tensor fields lifted to the cotangent bundle of M and try to get systematically the differential concomitant (S, T) of tensor fields S of type $(1, s)$ and T of type $(1, t)$, that is a tensor field of type ($1, s+t$), and the differential concomitant (σ, T) of tensor fields σ of type $(0, s)$ and T of type ($1, t$) respectively, that is a tensor field of type $(0, s+t)$ when S, T and σ are skew-symmetric.

§ 1. Lifts of tensor fields to cotangent bundles.

Let M be a differentiable manifold of class C^{∞} and of dimension n. Let ${ }^{c} T(M)$ be the cotangent bundle of M. Then ${ }^{c} T(M)$ is also a differentiable manifold of class C^{∞} and of dimension $2 n$.

A point $\widetilde{\mathrm{P}}$ of ${ }^{c} T(M)$ is an ordered pair ($\mathrm{P}, \omega_{\mathrm{P}}$) of a point $\mathrm{P} \in M$ and a covector ω_{P} at P . We denote by π the natural projection ${ }^{c} T(M) \rightarrow M$ given by $\tilde{\mathrm{P}}=\left(\mathrm{P}, \omega_{\mathrm{P}}\right) \rightarrow \mathrm{P}$.

Suppose that the manifold M is covered by a system of coordinate neighbourhoods $\left\{U, x^{i}\right\}$ where (x^{i}) is a system of local coordinates in the neighborhood U. Then, in the open set $\pi^{-1}(U)$ of ${ }^{c} T(M)$, we can introduce local coordinates (x^{i}, x^{i}) or $\left(x^{I}\right)^{2)}$ for $\tilde{\mathrm{P}}$ where we put $x^{i}=p_{i}$ and p_{i} are the components of ω_{P} with respect to the natural coframe $d x^{2}$. We call $\left(x^{2}, x^{i}\right)$ or (x^{I}) the coordinates in $\pi^{-1}(U)$ induced

[^0]from $\left(x^{i}\right)$ or simly the induced coordinates in $\pi^{-1}(U)$.
We denote by $\mathscr{T}_{s}^{r}(M)$ or symply by \mathscr{T}_{s}^{r} the set of tensor fields of class C^{∞} and of type (r, s) in M and similarly by $\mathscr{T}_{s}^{r}\left({ }^{C} T(M)\right.$) or simply by $\widetilde{\mathscr{I}}_{s}^{r}$ the corresponding set of tensor fields in ${ }^{c} T(M)$. And we denote by ' $\mathscr{S}_{s}^{r}, \widetilde{\mathscr{I}}_{s}^{r}$ the sets of elements of $\mathscr{I}_{s}^{r}, \widetilde{\mathscr{I}}_{s}^{r}$ which are skew-symmetric with respect to all covariant indices, respectively.

Suppose that $\tau \in \mathscr{I}_{t+1}^{0}$ and that τ has components $\tau_{2_{t+1} c^{2} \cdot \varepsilon_{1}}$ in U. We define an element \widetilde{Q} of $\widetilde{\mathscr{I}}_{t+1}^{0}$ whose components $\widetilde{Q}_{I_{t+1} I_{t} \cdots I_{1}}$ in $\pi^{-1}(U)$ are given by

$$
\begin{gather*}
\tilde{Q}_{i_{t+1} i_{l} \cdot i_{1}}=\tau_{i_{t+1} i_{l} \cdot i_{1}}, \\
\tilde{Q}_{i_{t+1} i_{l \cdot \cdots} \cdot i_{n} \cdot i_{1}}=\cdots=\tilde{Q}_{i_{t+1} i_{l} \cdots i_{1}}=0 . \tag{1.1}
\end{gather*}
$$

It is well-known that the tensor field ε^{-1} with components in $\pi^{-1}(U)$ given by a matrix

$$
\left(\varepsilon^{B A}\right)=\left(\begin{array}{cc}
0 & -I \\
I & 0
\end{array}\right)
$$

belongs to $\widetilde{\mathscr{I}}_{0}^{2}$, where I denotes the unit $n \times n$ matrix (cf. [3]).
By putting

$$
\begin{equation*}
\tilde{\tau}_{I_{t} I_{t-1} \cdots I_{1}}{ }^{K}=\tilde{Q}_{I_{t} \cdots I_{l} B I_{l-1} \cdots I_{1} \varepsilon^{B K},} \tag{1.2}
\end{equation*}
$$

we can define a tensor field belonging to $\widetilde{\mathscr{I}}_{t}^{1}$ with components given by (1.2) in $\pi^{-1}(U)$. We call this tensor field the l-vertical lift of τ and by $\tau_{(l)}^{V}$. And we call the 1 -vertical lift of τ simply the vertical lift of τ and denote by τ^{V} (cf. [3], for $s=1$).

By (1.2), the components $\tilde{\tau}_{I_{t} I_{t-1} \cdots I_{1}}{ }^{K}$ of $\tau_{(l)}^{V}$ in $\pi^{-1}(U)$ are given by

$$
\begin{align*}
& \tilde{\tau}_{i_{t^{2}} t_{t-1} \cdots \imath_{1}}=\tau_{\tau_{\iota^{2}} t_{t-1} \cdots \imath_{l} k_{l-1} \cdots \imath_{1}}, \tag{1.3}\\
& \tilde{\tau}_{I_{t} I_{t-1} \cdots I_{1}}=\tilde{\tau}_{i_{t} i_{t-1} \cdots i_{h} \cdots i_{1}}{ }^{\bar{k}}=\cdots=\tilde{\tau}_{i_{t} \bar{t}_{t-1} \cdots i_{1}}{ }^{\bar{k}}=0 .
\end{align*}
$$

Conversely, we can easily see that if, for $\tilde{\tau} \in \widetilde{\mathscr{I}}_{t}^{1}$, its components $\tilde{\tau}_{I_{t} I_{t-1} \cdots I_{1}}{ }^{K}$ in $\pi^{-1}(U)$ are given by (1.3) and $\tau_{\imath_{t} t_{-1} \cdots \imath_{l} k_{l_{-1}} \cdots \imath_{1}}$ are functions in M, then $\tau_{\tau_{l} \tau_{t-1} \cdots i_{l} k_{l-1} \cdots v_{1}}$ define a tensor field $\tau \in \mathscr{I}_{t+1}^{0}$ and are components of τ in U.

Thus we have
Lemma 1.1. Suppose that $\tau_{i_{t+1} 1^{2} \cdots \imath_{1}}$ are functions in $M, \tilde{\tau}_{I_{t} I_{t-1} \cdots I_{1}}{ }^{K}$ functions in ${ }^{c} T(M)$ and $\tilde{\tau}_{I_{t} I_{t-1} \cdots I_{1}}{ }^{K}$ satisfy the condition (1.3). Then $\tau_{\tau_{t+1} \imath_{t} \cdots \imath_{1}}$ define a tensor field $\tau \in \mathscr{T}_{t+1}^{0}$ and are components of τ in U, if and only if $\tilde{\tau}_{I_{t} I_{t-1} \cdots I_{1}}{ }^{K}$ define a tensor field $\tilde{\tau}=\tau_{(l)}^{V} \in \widetilde{\mathscr{I}}_{t}^{1}$ and are components of $\tilde{\tau}=\tau_{(l)}^{V}$ in $\pi^{-1}(U)$.

In exactly the same way as above, for $T \in \mathscr{I}_{t+1}^{1}$, we can define the l-vertical lift of T denoted by $T_{(l)}^{V} \in \widetilde{\mathscr{I}}_{t}^{1}$. In order to get $T_{(t)}^{V}$, we replace only $\widetilde{Q}_{\imath_{t+1} \imath_{t} \cdot \imath_{1}}=\tau_{\imath_{t+1} l^{2} \cdot i_{1}}$ in (1.1) by $\widetilde{Q}_{v_{t+1} l^{2} \cdot \imath_{1}}=p_{a} T_{v_{t+1} l^{2} \cdot{ }_{1}}{ }^{a}$, where $T_{v_{t+1} l^{\imath} \cdot \cdot v_{1}}{ }^{k}$ are components of T in U. Thus the components $\widetilde{T}_{I_{t} I_{t-1} \cdots I_{1}}{ }^{K}$ of $T_{(l)}^{V}$ in $\pi^{-1}(U)$ are expressible as follows (cf. [3], for $t=1,2$):

$$
\begin{align*}
& \widetilde{T}_{\imath_{t^{2} t-1} \cdots \imath_{1}}{ }^{\bar{k}}=p_{a} T_{t_{t^{2} t-1} \cdots \imath_{l}{ }^{k \imath_{l-1} \cdots \imath_{1}}}{ }^{a} \text {, } \\
& \tilde{T}_{I_{t} I_{t-1} \cdots I_{1}}{ }^{k}=\tilde{T}_{2_{t}{ }^{2} t-1 \cdots i_{n} \cdots \imath_{1}}{ }^{\bar{k}}=\cdots=\tilde{T}_{\bar{i}_{t^{\bar{t}}-1 \cdots i_{1}}{ }^{\bar{k}}}=0 . \tag{1.4}
\end{align*}
$$

From (1.4), we have a lemma corresponding to Lemma 1.1.
Lemma 1.2. Suppose that $T_{i_{t+1} t^{2} \cdots r_{1}}{ }^{K}$ are functions in $M, \tilde{T}_{I_{t} I_{t-\cdots} \cdots I_{1}}{ }^{K}$ functions in ${ }^{C} T(M)$ and $\widetilde{T}_{I_{t} I_{t-1} \cdots I_{1}}{ }^{K}$ satisfy the condition (1.4). Then $T_{i_{t+1} t^{2}, \cdots 1_{1}}{ }^{k}$ define a tensor field T belonging to $\mathfrak{T}_{\tilde{T}}^{1+1}{ }^{1}$ and are components of T in U, if and only if $\tilde{T}_{I_{t} t_{t-1} \cdots I_{1}}{ }^{K}$ define a tensor field $\widetilde{T}=T_{(l)}^{V} \in \widetilde{\mathscr{I}}_{t}^{1}$ and are components of $\widetilde{T}=T_{(l)}^{V}$ in $\pi^{-1}(U)$.

For $\sigma \epsilon^{\prime} \mathscr{I}_{s}^{0}$, we denote by $d \sigma$ the exterior derivative of σ. We can see that the components of $\tilde{\sigma}_{I_{s} I_{s-1} \cdots I_{1}}$ of $(d \sigma)^{V} \epsilon^{\prime} \widetilde{\mathscr{I}}_{s}^{1}$ are expressible in $\pi^{-1}(U)$ as follows:

$$
\begin{align*}
& \tilde{\boldsymbol{\sigma}}_{\tau_{s} \imath_{s-1} \cdots \imath_{1}}{ }^{\bar{k}}=(-1)^{s}\left\{\partial_{k} \sigma_{i_{s} \cdots \imath_{1}}-\sum_{h=1}^{s} \partial_{i_{h}} \sigma_{\imath_{s} \cdots l_{h-1} k \imath_{h+1} \cdots \imath_{1}}\right\}, \tag{1.5}\\
& \tilde{\sigma}_{I_{s} I_{s-1} \cdots I_{1}}{ }^{k}=\tilde{\sigma}_{\imath_{s} \imath_{s-1} \cdots i_{h} \cdots i_{1}}{ }^{k}=\cdots=\tilde{\sigma}_{i_{s} \bar{i}_{s-1} \cdots i_{1}}{ }^{k}=0 .
\end{align*}
$$

Suppose now that $S \epsilon^{\prime} \mathscr{I}_{s}^{1}$ and S has components $S_{i_{s} \varepsilon_{s-1} \cdots_{1}}{ }^{k}$ in U. Then

$$
\tilde{\sigma}=\frac{1}{s!} p_{a} S_{i_{s} \imath_{s-1} \cdots \imath_{1}} a^{a} d x^{\imath_{s}} \wedge d x^{q_{s-1}} \wedge \cdots \wedge d x^{\imath_{1}}
$$

is an s-form in ${ }^{\sigma} T(M)$. Consequently, the exterior derivative $d \tilde{\sigma}$ of $\tilde{\sigma}$ in ${ }^{c} T(M)$ belongs to ${ }^{\prime} \widetilde{\mathscr{I}}_{s+1}^{0}$. We now put

$$
d \tilde{\sigma}=\frac{1}{(s+1)!} \tilde{S}_{B_{s+1} B_{s} \cdots B_{1}} d x^{B_{s+1}} \wedge d x^{B_{s}} \wedge \cdots \wedge d x^{B_{1}}
$$

By putting

$$
\begin{equation*}
\tilde{S}_{I_{s} I_{s-1} \cdots I_{1}}{ }^{K}=(-1)^{s+1} \tilde{S}_{I_{s} I_{s-1} I_{1} B \varepsilon^{B K}}, \tag{1.6}
\end{equation*}
$$

we can define a tensor field belonging to ' $\widetilde{\mathscr{I}}_{s}^{1}$ whose components in $\pi^{-1}(U)$ are given by (1.6). We call this tensor field the complete lift of S and denote by S^{C}. By (1.6), the components $\widetilde{S}_{I_{s} I_{s-1} \cdots I_{1}}{ }^{K}$ of S^{C} in $\pi^{-1}(U)$ are expressible as follows (cf. [3], for $s=1,2)$:

$$
\begin{aligned}
& \tilde{S}_{i_{s} \imath_{s-1} \cdots \imath_{1}}^{k}=S_{i_{s} \imath_{s-1} \cdots \imath_{1}}, \\
& \tilde{S}_{\imath_{s} \cdots i_{n} \cdots \imath_{1}}^{k}=\cdots=\widetilde{S}_{\bar{S}_{s} \bar{i}_{s-1} \cdots \tilde{n}_{1}}^{k}=0,
\end{aligned}
$$

$$
\begin{align*}
& \tilde{S}_{\imath_{s} \cdots i_{n} \cdots i_{1}}{ }^{\bar{k}}=S_{i_{s} \cdots \cdots \cdots \imath_{1}}{ }^{\imath_{n}} \text {, } \tag{1.7}\\
& \widetilde{S}_{\imath_{s} \cdots i_{l} \cdots i_{n} \cdots i_{1}}{ }^{k}=\cdots=\widetilde{S}_{i_{s_{s}} \bar{i}_{s-1} \cdots i_{1}}{ }^{k}=0 .
\end{align*}
$$

Suppose that M has a symmetric affine connection Γ whose components in U
are $\Gamma_{j i}^{h}$ and ∇ denotes the covariant derivative with respect to Γ. For a tensor field S belonging to \mathscr{I}_{s}^{1} whose components in U are $S_{i_{s} s_{s-1} \cdots n_{1}}{ }^{k}$, we here put

$$
\begin{equation*}
[\nabla S]_{i_{s} \cdots \imath_{1}}{ }^{a}=\sum_{n=1}^{s} \nabla_{\imath_{h}} S_{i_{s} \cdots k \cdots l_{1}}{ }^{a}-\nabla_{k} S_{i_{s} \cdots 1_{1}}{ }^{a} \tag{1.8}
\end{equation*}
$$

Since the tensor field $[\nabla S]$ with components in U given by (1.8) belongs to ${ }^{\prime} \mathscr{I}_{s+1}^{1}$, $[\nabla S]^{V}$ belongs to ${ }^{\prime} \widetilde{\mathscr{I}}_{s}^{1}$. We now put

$$
\begin{equation*}
S^{H}=S^{C}-[\nabla S]^{V}\left(\epsilon^{\prime} \widetilde{\mathscr{I}}_{s}^{1}\right) \tag{1.9}
\end{equation*}
$$

and call S^{H} the horizontal lift of S (cf. [4], for $s=1$).
In the sequel, whenever we say the horizontal lifts or the covariant derivatives, we suppose that M has a symmetric affine connection Γ.

§ 2. Differential concomitants of tensor fields in base manifolds.

Let S be a tensor field belonging to ' \mathscr{I}_{s}^{1} with components $S_{i_{s} \cdot r_{1}}{ }^{k}$ in U and T a tensor field belonging to ' \mathscr{I}_{t}^{1} with components $T_{J_{t} \ldots J_{1}}{ }^{k}$ in U. Suppose that $S T$ belongs to ${ }^{\prime} \mathscr{I}_{s+t-1}^{1}$, where

$$
S T\left(X_{1}, \cdots, X_{s-1}, Y_{1}, \cdots, Y_{t}\right)=S\left(X_{1}, \cdots, X_{s-1}, T\left(Y_{1}, \cdots, Y_{t}\right)\right)
$$

for any $X_{1}, \cdots, X_{s-1}, Y_{1}, \cdots, Y_{t} \in \mathbb{I}_{0}^{1}$. For the tensor fields S and T, we define an operator Φ^{c} which makes a new tensor field belonging to $\widetilde{\mathscr{I}}_{s+t-1}^{1}$ by

$$
\begin{equation*}
\Phi^{c}(S, T)=(S T)^{c}-S^{c} T^{c} \tag{2.1}
\end{equation*}
$$

When we denote components of $\Phi^{C}(S, T)$ in $\pi^{-1}(U)$ by $\Phi_{I_{s} \cdots I_{2} J_{t} \cdots J_{1}}^{I_{1}}$, (2.1) is expressible as follows:

$$
\begin{align*}
& \Phi_{\imath_{\xi} \cdots \cdots_{2} J_{l} \cdots 1_{1}}{ }^{i_{1}}=p_{b}\left\{(S, T)_{i_{s} \cdots i_{1} J_{l} \cdots \rho_{1}}{ }^{b}+[S T]_{i_{s} \cdots 1_{1} J_{t} \cdots \rho_{1}}{ }^{b}\right\}, \tag{2.2}
\end{align*}
$$

and other remaining components of $\Phi_{2 s \cdots I_{2} J_{t} \cdots J_{1}}^{I_{1}}$ are all zero, where

$$
\begin{align*}
& (S, T)_{t_{s} \cdots t_{1} J_{t} \cdots \jmath_{1}}{ }^{b}=S_{i_{s} \cdots l_{1}}{ }^{a} \partial_{a} T_{J_{t} \cdots \rho_{1}}{ }^{b}-T_{J_{t} \cdots \jmath_{1}}{ }^{a} \partial_{a} S_{i_{s} \cdots l_{1}}{ }^{b} \tag{2.4}\\
& -\sum_{n=1}^{s} S_{i_{s} \cdots \cdots \cdots_{1}}{ }^{b} \partial_{i_{h}} T_{J_{l} \cdots \jmath_{1}}{ }^{a}+\sum_{l=1}^{t} T_{J_{t} \cdots a \ldots \jmath_{1}}{ }^{b} \partial_{J_{l}} S_{i_{s} \cdots l_{1}}{ }^{a}
\end{align*}
$$

and

$$
\begin{equation*}
[S T]_{i_{3} \cdots l_{1} J_{l} \cdots \rho_{1}}{ }^{b}=\sum_{l=1}^{t} \partial_{J_{l}}\left(S_{i_{s} \cdots i_{2} a}{ }^{b} T_{J_{t} \cdot \cdot_{1} \cdots \jmath_{1}}{ }^{a}-S_{i_{s} \cdots 1_{1}}{ }^{a} T_{J_{l} \cdots a \cdots \rho_{1}}{ }^{b}\right) . \tag{2.5}
\end{equation*}
$$

Remark. The notation $(S, T)_{i_{s} \cdots v_{1} J_{t} \cdots J_{1}}{ }^{k}$ is the generalization of what was introduced by Yano and Akō for $s=1.2$ (cf. [2]).

If conditions

$$
\Phi_{\imath_{s} \cdots i_{2} J J_{t} j_{l} \cdots \rho_{1}}^{i_{1}}=0 \quad(l=1,2, \cdots, t)
$$

are satisfied, then $(S T)_{i_{s} \cdots l_{1} J_{l} \cdot J_{1}}{ }^{k}=0$ and consequently we can see that $(S, T)_{\left.i_{s} \cdot \cdots_{1} J_{l} \cdots\right]_{1}{ }_{1}}{ }^{k}$ are components of a tensor field belonging to \mathscr{T}_{s+t}^{1} by virtue of Lemma 1.2. We denote this tensor field by (S, T).

Thus we have
Proposition 2.1. Let S and T be tensor fields belonging to ' \mathscr{I}_{s}^{1} and ' \mathscr{I}_{t}^{1} respectively. Suppose that $S T$ belongs to ' \mathscr{I}_{s+t-1}^{1}. Then

$$
\Phi^{C}(S, T)=(S, T)_{(t+1)}^{V}, \quad(S, T) \in \mathscr{T}_{s+t}^{1}
$$

if and only if $\Phi_{\imath_{s} \cdots v_{2} l_{l} \cdots j_{l} \cdots \rho_{1}}^{i_{1}}(l=1,2, \cdots, t)$ vanish, that is,

$$
\begin{equation*}
S_{i_{s} \cdots v_{2} a^{l}} T_{J_{t} \cdots v_{1} \cdots \jmath_{1}}{ }^{a}-S_{i_{s} \cdots 1_{1}}{ }^{a} T_{j_{l} \cdots \cdots \cdots \cdots_{1}}{ }^{l}=0 \quad(l=1,2, \cdots, t) \tag{2.6}
\end{equation*}
$$

If we here use the horizontal lift in stead of the complete lift in (2.1), then we have

$$
\begin{align*}
\Phi^{H}(S, T) & =(S, T)^{H}-S^{H} T^{H} \\
& =\Phi^{C}(S, T)-\left\{{ }^{\prime}(S, T)+{ }^{\prime}[S, T]\right\}_{(t+1)}^{V} \tag{2.7}
\end{align*}
$$

by (1.4), (1.7), (1.8) and (1.9), where ${ }^{\prime}(S, T)$ is a tensor field belonging to \mathfrak{I}_{s+t}^{1}, whose components are given by

$$
\begin{align*}
& { }^{\prime}(S, T)_{i_{s} \cdots l_{1} J_{l} \cdots ज_{1}}{ }^{k}=S_{i_{s} \cdots l_{1}}{ }^{a} V_{a} T_{J_{l} \cdots \jmath_{1}}{ }^{k}-T_{j_{l} \cdots \cdots_{1}}{ }^{a} \nabla_{a} S_{i_{s} \cdots l_{1}}{ }^{k} \tag{2.8}\\
& -\sum_{h=1}^{s} S_{i_{s} \cdots a \cdots l_{1}}{ }^{k} V_{l_{k}} T_{J_{t} \cdots \jmath_{1}}{ }^{a}+\sum_{l=1}^{t} T_{l_{l} \ldots a \cdots \jmath_{1}}{ }^{k} \nabla_{J_{l}} S_{S_{s} \cdots l_{1}}{ }^{a},
\end{align*}
$$

and '[ST] is a tensor field belonging to \mathscr{L}_{s+t}^{1} whose components are given by

$$
\begin{equation*}
\prime[S T]_{i_{s} \cdots 1_{1} J_{l} \cdots \jmath_{1}}{ }^{k}=\sum_{l=1}^{t} \nabla_{J_{l}}\left(S_{i_{s} \cdot \imath_{2} a^{k}} T_{J_{t} \cdots \imath_{1} \cdots \jmath_{1}}{ }^{a}-S_{i_{s} \cdots l_{1}}{ }^{a} T_{J_{l} \cdots a \cdots \jmath_{1}}{ }^{k}\right) . \tag{2.9}
\end{equation*}
$$

If condition (2.6) is satisfied, then $[S T]={ }^{\prime}[S T]=0$ and, by virtue of Proposition 2.1, $(S, T)=^{\prime}(S, T)$, from which and (2.7), we have $\Phi^{H}(S, T)=0$. Conversely, if $\Phi^{H}(S, T)=0$, then (2.6) is clearly satisfied.

Thus we have
Proposition 2.2. Let S and T be tensor fields belonging to ' \mathscr{I}_{s}^{1} and ' \mathscr{I}_{t}^{1} respectively. Suppose that $S T$ belongs to ' \mathscr{I}_{s+l-1}^{1}. Then

$$
\Phi^{H}(S, T)=0
$$

if and only if condition (2.6) is satisfied.
Now, for elements S of \mathscr{I}_{s}^{1}, T of \mathscr{I}_{t}^{1} and any $Y_{1}, \cdots, Y_{t} \in \mathscr{I}_{0}^{1}$, we define a tensor field $\Phi_{(T)}^{C}(S, T)$ belonging to $\widetilde{\mathbb{I}}_{s-1}^{1}$ by

$$
\begin{equation*}
\Phi_{(Y)}^{C}(S, T)\left(\tilde{X}_{s}, \cdots, \tilde{X}_{2}\right)=\Phi^{c}(S, T)\left(\tilde{X}_{s}, \cdots, \tilde{X}_{2}, Y_{t}^{c}, \cdots, Y_{1}^{c}\right) \tag{2.10}
\end{equation*}
$$

where $\tilde{X}_{2}, \cdots, \tilde{X}_{s} \in \widetilde{\mathscr{I}}_{0}^{1}$.
If we denote components of $\Phi_{(Y)}^{C}(S, T)$ by $\Phi_{(Y) I_{s} \cdots I_{2}}^{I_{1}}$, then, by (2.10),

$$
\begin{equation*}
\Phi_{(Y) I_{s} \cdots I_{2}}^{C} I_{1}=\Phi_{\imath_{s} \cdots I_{2} B_{t} \cdots B_{1}}^{I_{1}} \tilde{Y}_{t}^{B_{t} \ldots \tilde{Y}_{1}^{B_{1}},} \tag{2.11}
\end{equation*}
$$

where $\tilde{Y}_{h}^{B h}$ are components of the complete lift Y_{h}^{C} of $Y_{h}(h=1,2, \cdots, t)$. From (1.7), (2.2), (2.3) and (2.11), we can see that $\Phi_{(Y) I_{s} \cdots I_{2}}^{C}{ }^{I_{1}}$ are expressible as follows:

$$
\begin{aligned}
& \Phi_{(Y) I_{s} \cdots I_{2}{ }^{1_{1}}}^{C}=\Phi_{(Y) i_{s} \cdots i_{n} \cdots i_{2}}^{C}=\cdots=\Phi_{(Y) i_{s} \bar{i}_{s} \cdots \cdots i_{2}}^{C}=0, \\
& \Phi_{(Y) \imath_{s} \cdots \sim_{2}}^{C}{ }^{i_{1}}=p_{b}\left(R_{\tau_{s} \cdots l_{1} J_{t} \cdots j_{1}}{ }^{b} Y_{t}^{\left.j_{t} \ldots Y_{1}^{j_{1}}\right)}+p_{b}\left({ }^{\prime}[S T]_{i_{s} \cdots \imath_{1} j_{t} \cdots \rho_{1}}{ }^{b} Y_{t}^{j_{t}} \ldots Y_{1}^{j_{1}}\right)\right.
\end{aligned}
$$

where we put
and

Since

$$
\prime[S T]_{i_{s} \cdots थ_{1} j_{t} \cdots{ }_{1}}{ }^{k} Y_{t}^{j_{t} \ldots} Y_{1}^{j_{1}}
$$

and

$$
\sum_{l=1}^{t}\left\{\left(S_{i_{s} \cdots 2_{2} a}{ }^{j} T_{J_{t} \cdots q_{1} \cdots \omega_{1}}{ }^{a}-S_{i_{s} \cdots l_{1}}{ }^{a} T_{J_{l} \cdots a \cdots \cdots_{1}}{ }^{j_{l}}\right) Y_{t}^{\left.j_{t} \ldots\left(\nabla_{J_{l}} Y_{l}^{k}\right) \cdots Y_{1}^{j_{1}}\right\}}\right.
$$

are components of tensor fields belonging to \mathscr{T}_{s}^{1} respectively, by virtue of Lemma 1. 2, we can see that $R_{i_{s} \cdot r_{1} \imath^{2} \cdots j_{1}}{ }^{k}$ are components of a tensor field belonging to \mathscr{T}_{s+t}^{1}.

Thus we have
Proposition 2.3. Suppose that M has a symmetric affine connection Γ and $\bar{\sigma}$ denotes the covariant derivative with respect to Γ. Let S, T and $S T$ be tensor fields belonging to ' \mathscr{I}_{s}^{1}, ' \mathscr{I}_{t}^{1} and ${ }^{\prime} \mathscr{I}_{s+t-1}^{1}$ respectively. Then (2.13) defines a tensor field R belonging to \mathscr{T}_{s+t}^{1} and $R_{i_{s} \cdots \cdots_{1} J_{\cdots} \cdots 1_{1}}{ }^{k}$ are components of R.

Now, in (2.3) we make the skew-symmetric part with respect to covariant indices $i_{s}, \cdots, i_{1}, j_{t}, \cdots, j_{1}$. Then we can see easily that

$$
A_{\left[i_{s} \cdots q_{1} j_{t} \cdots j_{1}\right]}{ }^{k}=B_{\left[i_{s} \cdots i_{1} j_{t} \cdots j_{1}\right]}{ }^{k}=0,
$$

from which and Proposition 2.3, we see that $(S, T)_{\left[i_{s} \cdot i_{1} j_{l} \cdot j_{1}\right]}^{k}$ define a tensor field belonging to \mathscr{I}_{s+t}^{1}. Moreover we have

$$
\frac{(s+t)!}{s!t!}(S, T)_{\left[s_{\left.s \cdots 1_{1} J_{l} \cdots \mathcal{I}_{1}\right]}^{k}\right.}=[S, T]_{i_{s} \cdots \cdots_{1} J_{l} \cdots J_{1}}{ }^{k},
$$

where $[S, T]$ is the notation induced by Frölicher and Nijenhuis (cf. [1]).
Thus we nave
Corollary 2.4. Under the same suppositions as in Proposition 2.3, (S, $T)_{\left[i_{s} \cdots l_{1} J_{l} \cdots \cdots_{1}\right]^{k}}$ define a tensor field belonging to \mathscr{I}_{s+t}^{1} and

$$
\frac{(s+t)!}{s!t!}(S, T)_{\left[i_{s} \cdots \imath_{1} J \cdots_{1} J_{1}\right.}{ }^{k}=[S, T]_{i_{s \cdots 1_{1}} j_{t} \cdots \jmath_{1}}{ }^{k} .
$$

Remark. In the case where $s=1$, we denote $S_{\imath_{1}}^{k}$ by F_{\imath}^{k}. If F is an almost complex structure in M, then we can see that the condition (2.6) is equivalent to the condition that T is pure. A pure tensor field T is said to be almost analytic, if $(F, T)=0$. Consequently, for $T \epsilon^{\prime} \mathscr{I}_{t}^{1}, \Phi^{c}(F, T)=0$ if and only if T is pure and almost analytic. If T is pure, then $\Phi^{H}(F, T)=0$.

Next, let σ be a tensor field belonging to ' \mathscr{I}_{s}^{0} with components $\sigma_{i_{s} \cdot 2_{1}}$ in U and T a tensor field $\epsilon^{\prime} \mathscr{I}_{t}^{1}$ with components $T_{J_{t} \cdots w_{1}}{ }^{k}$ in U. Suppose that $\sigma \circ T$ belongs to ' \mathscr{I}_{s+t-1}^{0}, where

$$
\sigma \circ T\left(X_{1}, \cdots, X_{t}, Y_{1}, \cdots, Y_{s-1}\right)=\sigma\left(T\left(X_{1}, \cdots, X_{t}\right), Y_{1}, \cdots, Y_{s-1}\right)
$$

for any $X_{1}, \cdots, X_{t}, Y_{1}, \cdots, Y_{s-1} \in \mathscr{I}_{0}^{1}$. For the tensor fields σ and T, we define an operator Ψ which makes a new tensor field belonging to $\widetilde{\mathscr{I}}_{s+t-1}^{1}$ by

$$
\begin{equation*}
\Psi(\sigma, T)=(\sigma \circ T)^{*}-\sigma^{*} \circ T^{c}, \tag{2.16}
\end{equation*}
$$

where

$$
\sigma^{*}=(-1)^{s+1}(d \sigma)^{V} \quad \text { and } \quad(\sigma \circ T)^{*}=(-1)^{s+t}(\alpha(\sigma \circ T))^{V} .
$$

When we denote by $\Psi_{J_{t} \cdots J_{1} I_{s-1} \cdots I_{1}} I_{s}$ the components of $\Psi(\sigma, T)$ in $\pi^{-1}(U),(2.16)$ is expressible as follows:

$$
\begin{equation*}
\Psi_{J_{l} \cdots \cdots_{1} l_{s-1} \cdots l_{1}}=-(T, \sigma)_{J_{t} \cdots \jmath_{1} l_{s} \cdots l_{1}} \tag{2.17}
\end{equation*}
$$

and other components $\Psi_{J_{l} \cdots J_{1} I_{s-1} \cdots I_{1}}^{I_{s}}$ are all zero, where

$$
\begin{equation*}
(T, \sigma)_{J_{l} \cdot \cdot j_{1} l_{s} \cdots l_{1}}=T_{J_{t} \cdots \jmath_{1}}{ }^{a} \partial_{a} \sigma_{i_{s} \cdots l_{1}}-\sum_{l=1}^{t} \partial_{\jmath_{l}}(\sigma \circ T)_{J_{t} \cdots v_{s} \cdots j_{1} J_{s-1} \cdots v_{1}}+\sum_{n=1}^{s} \sigma_{i_{s} \cdots a \cdots i_{1}} \partial_{i_{h}} T_{J_{t} \cdots \jmath_{1}}{ }^{a} . \tag{2.18}
\end{equation*}
$$

Remark. The notation $(T, \sigma)_{g_{l} \cdot \cdots_{1} l_{s \cdots l_{1}}}$ is the generalization of what was introduced by Yano and Ako for $t=1,2$ (cf. [2]).

By making use of Lemma 1.1, we can see that $(T, \sigma)_{J_{l} \cdots J_{1} l_{s} \cdots q_{1}}$ are components of a tensor field belonging to \mathscr{L}_{s+t}^{0}.

Thus we have

Proposition 2.5. Let σ and T be tensor fields belonging to \mathscr{I}_{s}^{o} and \mathscr{I}_{t}^{1} respectively. Suppose that $\sigma \circ T$ belongs to ${ }^{\prime} \mathscr{I}_{s+t-1}^{0}$. Then

$$
\Psi(\sigma, T)=-(T, \sigma)_{(s)}^{V}, \quad(T, \sigma) \in \mathscr{I}_{s+t}^{0} .
$$

Remark. In the case where $t=1$, we denote $T_{\jmath_{1}}^{k}$ by $F_{\jmath_{1}}^{k}$. If F is an almost complex structure in M, then we can see that the condition that $\sigma \circ F$ belongs to \mathscr{I}_{s}^{0} is equivalent to the condition that σ is pure. A pure tensor field σ is called to be almost analytic, if $(F, \sigma)=0$. Consequently, for a tensor field σ belonging to $' \mathscr{I}_{s}^{o}, \Psi(\sigma, F)=0$ if and only if σ is pure and almost analytic.

Remark. We can verify that

$$
(T, \sigma)_{\left[J_{t} \cdot \jmath_{1} l_{\left.s-\cdots \imath_{1}\right]}\right.}=\frac{s!t!}{(s+t)!}[T, \sigma]_{g^{\cdots \cdots \rho_{1} \imath_{s} \cdots l_{1}}}-(-1)^{t-1} \frac{t}{s+t}[I, \sigma \circ T]_{g^{\cdots \cdots \rho_{1} l_{s} \cdots l_{1}}}
$$

where $[T, \sigma]$ and $[I, \sigma \circ T]$ are the notations introduced by Frölicher and Nijenhuis (cf. [1]) and I is the unit tensor with components δ_{j}^{k}.

The author wishes to express his hearty thanks to Prof. K. Yano and Prof. S. Ishihara for their kind help during the preparation of this paper and also his thanks deeply to Prof. I. Sato for his kind and valuable advices.

Bibliography

[1] Frölicher, A., and A. Nijenhuis, Some new cohomology invariant for complex manifold I. Proc. Kon. Ned. Wet. Amsterdam 59 (1956), 540-552.
[2] Yano, K., and M. Akō, On certain operators associated with tensor fields. Kōda1 Math. Sem. Rep. 20 (1968), 414-436.
[3] Yano, K., and E. M. Patterson, Vertical and complete lifts from a manifold to its cotangent bundle. J. Math. Soc. Japan 19 (1967) 91-113.
[4] Yano, K., and E. M. Patterson, Horizontal lifts from a manıfold to its cotangent bundle. J. Math. Soc. Japan 19 (1967), 185-198.

[^0]: Received June 18, 1970.

 1) The number between brackets refers to the Bibliography at the end of the paper.
 2) For indices, small letters i, j, k, \cdots run over the range $1,2, \cdots, n$, and $i=i+n$ Capital letters I, J, K, \cdots run over the range $1,2, \cdots, 2 n$.
