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TENSOR FIELDS LIFTED TO COTANGENT BUNDLES AND
DIFFERENTIAL CONCOMITANTS OF TENSOR
FIELDS IN THE BASE MANIFOLDS

By MiNnorU HAYASAKA

Introduction.

Recently, Yano and Ako ([2])* defined an operator @®F(X) associated with a
given tensor field F of type (1,1) and any vector field X in a differentiable mani-
fold M. By applying the operator @¥(X) to any vector field Y in such a way that
OF(X)Y=—(LrF)X, where [y denotes the Lie derivative with respect to Y, they
got the differential concomitant (S, T°) of tensor fields S of type (1,2) and T of type
(1, %), that is a tensor field of type (1,#+2), and the differential concomitant (¢, T")
of tensor fields ¢ of type (0,2) and T of type (1,#), that is a tensor field of type
(0, t+2).

In this paper, we investigate the properties of tensor fields lifted to the
cotangent bundle of M and try to get systematically the differential concomitant
(S, T) of tensor fields S of type (1,s) and T of type (1,¢#), that is a tensor field of
type (1,s+1?), and the differential concomitant (s, ') of tensor fields ¢ of type
0,s) and T of type (1,¢) respectively, that is a tensor field of type (0,s+¢) when
S, T and ¢ are skew-symmetric.

§1. Lifts of tensor fields to cotangent bundles.

Let M be a differentiable manifold of class C* and of dimension #. Let ¢T'(M)
be the cotangent bundle of M. Then ¢T(M) is also a differentiable manifold of
class C> and of dimension 2.

A point P of ¢T(M) is an ordered pair (P, wp) of a point PeM and a covector
wr at P. We denote by z the natural projection ¢T(M)—M given by P=(P, we)—P.

Suppose that the manifold M is covered by a system of coordinate neighbour-
hoods {U, z?} where (z%) is a system of local coordinates in the neighborhood U.
Then, in the open set #~'(U) of ¢T(M), we can introduce local coordinates (x*, %)
or (z1)» for P where we put zi=p; and p; are the components of wp with respect
to the natural coframe dx*. We call (2%, z¥) or (xf) the coordinates in z~}(U) induced
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1) The number between brackets refers to the Bibliography at the end of the paper.

2) For indices, small letters ¢,4, &, --- run over the range 1,2,.--,%, and i=i+# Capital
letters I, /], K, --- run over the range 1,2, ---, 2n.
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from (z%) or simly the induced coordinates in z=*(U).

We denote by g5(M) or symply by g5 the set of tensor fields of class C* and
of type (7,s) in M and similarly by g5(°T(M)) or simply by &7 the corresponding set
of tensor fields in ¢T'(M). And we denote by ’J%,’g5F the sets of elements of
g5, &5 which are skew-symmetric with respect to all covariant indices, respectively.

Suppose that red},; and that ¢ has components z,, ..., in U. We define
an element Q of &¢,, whose components § Iy 1p-1; in a7 (U) are given by

Qg paiis = Tigypyipins
11

~ ~
Q"t+1iz“'fh"'i1 =-=Q Tl 0.

It is well-known that the tensor field ¢! with components in =~%(U) given by

a matrix
0 —J
(eP4)=
I 0

belongs to &2 where I denotes the unit #xX# matrix (cf. [3]).
By putting

1.2 k i"ILIt—r“IlK=QIt"'IlE"Il—1"'115BK’

we can define a tensor field belonging to &! with components given by (1.2) in

a~Y(U). We call this tensor field the /-vertical lift of = and by <%,. And we call the

1-vertical lift of ¢ simply the vertical lift of = and denote by <7 (cf. [3], for s=1).
By (1. 2), the components #;,7,_,..7,% of ¢, in z=%(U) are given by

=, F—
Tipg_gvy — Cogrp_yeagkeg_yagps
(1.3)

% k—z . .=z . k=
32 PERTD S R 7 R i 7 P =0.

Conversely, we can easily see that if, for #ze &}, its components #;,7, ,..r,X in
x~}(U) are given by (1. 3) and 7,4, _;..pkyy_;-0, are functions in M, then ru,, j.gre qeay
define a tensor field € J?,; and are components of = in U.

Thus we have

LemmAa 1. 1. Suppose that vi,, ..., are functions in M, #1,1, ,.1,X functions in
°T(M) and %11, .15 satisfy the condition (1.3). Then t,,, .., define a tensor
field te T3y and are components of © in U, if and only if %11, ,.,% define a
tensor field t=<0,€ I} and are components of t=7l, in =~*(U).

In exactly the same way as above, for Te J}.;, we can define the /-vertical lift
of T denoted by T%e&} In order to get T%, we replace only Qs,,  u-1,=Trpsp104y
in (1.1) by Qu,,pp1,=0aTssp0p0," Where Ty, .,..,F are components of 7 in U.
Thus the components T“Itzt_l...le of TY, in =~%(U) are expressible as follows
(cf. [3], for =1, 2):
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’f‘ztzt_ruzlk =pa thzt_l-nzlkzl_ln-zla’
(1. 4)

A " Fe 2. R
TILIt_lA..Il —T%%—l"'ih""l = —T’ﬁ't-—l""l —0
From (1. 4), we have a lemma corresponding to Lemma 1. 1.

LemMA 1. 2. Swuppose that T,,p.,..,X are functions in M, Tr1,1,_..0.,X functions
in CT(M) and Tr1, .15 satisfy the condition (1. 4). Then T,, ,..,* define a tensor
field T belonging to Tt and ave components of T in U, if and only if 'IN‘ztlt_l...le
define a tensor field ’sz}’l)e &t and ave components of T=T¥, in z=(U).

For se’q8, we denote by do the exterior derivative of ¢. We can see that
the components of 67,7, ,...;% of (do)”e’ T} are expressible in z~*(U) as follows:

s
~ — 3
ozszs_lnmlk—(‘“l) akaismzl— Z aiha'zs-uzh_lkzhﬂnal ’
h=1

1. 5)

5 k—5 = Ee.—=45. - s E—
OIgIs Iy = Ougeg gipeeng — 00 = Odgl_gdy 0.

Suppose now that Se’dJ’} and S has components S;,, ....* in U. Then
§= ?11— DaSigg_yay AT Adxs=1 N\ -+ Adz“

is an s-form in T (M). Consequently, the exterior derivative d& of & in °T(M)
belongs to '&$%.;,. We now put

do= ~ZS—'|"1_]—.)—'_ §Bs+1Bs-‘.BldeS+1 AdxBs N\« AdzBr.
By putting

(1 6) §1818_1...11K=(—1)”+1§1813_111363K,

we can define a tensor field belonging to ‘&% whose components in z~}(U) are
given by (1.6). We call this tensor field the complete lift of S and denote by S°¢. By
(1. 6), the components Sy, ,..r,X of S¢ in =~(U) are expressible as follows (cf. [3],
for s=1, 2):

S k=S ¥
Vsts—1"01 tsts—101 2

S@s"‘ih‘"hk: e = Sisis—l"‘51k= 0,
~ 7‘.: $
— Z a a
(1 7) S"s"s—l"""l —pa<h_laihS¢S...k‘.,,1 —akSiszs_l...,l ),

~
stn-ihuwlk =Sig sy

~ ~

S E=...=S, . _F—
Sipipigeat= =Sy 1i,F=0.

Suppose that M has a symmetric affine connection /" whose components in U
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are ['% and F denotes the covariant derivative with respect to I". For a tensor
field S belonging to /g whose components in U are S; ;% we here put

-
(L.8) [PSTiyayi®= hi:l Py St —ViSipon
Since the tensor field [F'S] with components in U given by (1. 8) belongs to 'T1,,,
[F'S]” belongs to &L We now put

1.9 SH=SC—[VS]"(e'T%)

and call S¥ the horizontal lift of S (cf. [4], for s=1).
In the sequel, whenever we say the horizontal lifts or the covariant deriva-
tives, we suppose that M has a symmetric affine connection .

§ 2. Differential concomitants of tensor fields in base manifolds.

Let S be a tensor field belonging to 'g’s with components S;...* in U and T
a tensor field belonging to 'g} with components T3,.,,* in U. Suppose that ST
belongs to 'g'i,¢—1, where

ST<X1) Yy X:S—l) Yl) Yy Yt)=S(X1, ) XS—I’ T(Yly RRE) Yb))

for any Xi, -, Xs_1, Y1, -+, Y:€9s. For the tensor fields S and 7, we define an
operator @° which makes a new tensor field belonging to Ji.,—; by

2.1 Q°(S, T)=(ST)°—S°T*°.

When we denote components of @9(S,T) in =~ (U) by 9%,.r5,.05,", (2.1) is ex-
pressible as follows:

2.2 D332 =D6{(S, Tigenggpos® F ST Nigoay g0y
(2. 3) @lcs‘“tz]t"-fz"ﬂ:l:Sis""*za'“TJ:""vr"ha_SismhaTJt"‘”f"]l“
and other remaining components of @%,.s,s,.s,7 are all zero, where

- a b a . b
(S, T)tgetyrpess?=Sigey 0 Toprs® = Topeois 0aSigy

(2. 4) . .
— hZ=:1 Sigeaay?0iy T+ ;}1 T)peg ;20,5 ge0,”
and
t
(2.5) ISV PPRLE ;1ajl(S,-s...zzabT“...,l...h“—Sis...zl“T]r.Aa..‘,l”).

ReMARK. The notation (S, T)igays,-,,° is the generalization of what was
introduced by Yano and Ako for s=1.2 (cf. [2]).

If conditions
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@%..Wt...h..‘hil—:o (l:l, 2, -, t)

are satisfied, then (ST ..,s,.5,¥=0 and consequently we can see that (S, T")iy.0 50-5,"
are components of a tensor field belonging to T, by virtue of Lemma 1.2. We
denote this tensor field by (S, T').

Thus we have

ProposiTION 2.1. Let S and T be tensor fields belonging to 'T: and 'J}
respectively. Suppose that ST belongs to 'Tsii-1. Then

(S, T)=(S, Ttrvs (S, T)eT54e
if and only if OC.agspmiper® (U=1,2, -, t) vanish, that is,
(2. 6) Sigeagd Typogongy "= Sigea; " Tppeag =0 (I=1,2, -, 1).

If we here use the horizontal lift in stead of the complete lift in (2.1), then

we have
OH(S, T)=(S, T)*—S"T*"
2.7
=09(S, T)—{(S, T)+'[S, T1}t+»

by (1.4), (1.7), (1. 8) and (1.9), where (S, T) is a tensor field belonging to Ti,,
whose components are given by

09 XS, T)iyasgpsy*=Sigay P Topos = Topogy“VaSigas®

s 13
— hZ=;l Sigeaa™ Vo Typeg,” + g}l Tptg,*V3Sigea
and ’[ST] is a tensor field belonging to %, whose components are given by
1
(2. 9) /[ST]is""JJL“']lk: tgl le(sis.. zzakTu...zl...]la—Sis...zlaTJt..‘a..,jlk).

If condition (2. 6) is satisfied, then [ST1='[ST]=0 and, by virtue of Proposition
2.1, (S, T)="'(S,T), from which and (2.7), we have @Z(S, T)=0. Conversely, if
QH(S, T)=0, then (2.6) is clearly satisfied.

Thus we have

PROPOSITION 2.2. Let S and T be tensor fields belonging to 'I% and 'q}
respectively. Suppose that ST belongs to "Iy Then

QH(S, T)=0
if and only if condition (2.6) is satisfied.

Now, for elements S of ‘g%, Tof ‘g4 and any Y7, -+, Ve T% we define a tensor
field- @%,(S, T') belonging to i, by

(2. 10) DS, TY X, -+, X)=09(S, T)(X,, -+, X, YE, -, YO,
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where )?2, ey Xie gL
If we denote components of @G,(S,7) by 9%,r,.1,7% then, by (2. 10),

N
@. 11) D11,V =0, .1,5,..5, 1T Br- TP,

where ?ﬁh are components of the complete lift Y ¢ of Y, (A=1,2,---,#). From
(1.7), (2.2), (2.3) and (2.11), we can see that @G,s,.;,/* are expressible as follows:

c —ahC T — — 5C T —
@(Y)Is‘“lzn_@(Y)is"‘ih"‘iz 1= =QFyigs_1ip 1=(),

Dpysyg =6 Rugrggps 2 Y 1+ Y I+ 16 [ST Yty g Y 3o V)
12
—Ds Lgl {(Sismzza.jL T]r-wru]la—‘ Sis-uzlaT]Ln-au-]ljt) Y'Zt " (V_n Y?) o Y{X}’

where we put

@.13) Ruprgsposf=(S, ThigeagsomdyE Atpeagapess+ Bigeagipen s
@.14) Avporgspos = injl TG, (St prtga Topeiess—Stgtge™ Tops)
and

@.15) Biyaysposyt= t;z'l hz; [6, (Styoage Topesgos,®— Sigetiony Topetios, ).
Since

"[STYigayspos Y - Y i

and
t
;}l {(Sigga? Typeagg,® —Sigeay* Typotrg O Yt (7, Y ) Y11}

are components of tensor fields belonging to g% respectively, by virtue of Lemma
1. 2, we can see that R;,.,.;,* are components of a tensor field belonging to I3,

Thus we have

ProPOSITION 2. 3. Suppose that M has a symmetric affine connection I' and V
denotes the covariant derivative with respect to I'. Let S, T and ST be tensor fields
belonging to "I, "Iy and ' Ty vespectively. Then (2.13) defines a temsor field
R belonging to Tty and Rig.ayy,.," are components of R.

Now, in (2. 3) we make the skew-symmetric part with respect to covariant
indices s, -++, 21, Js, -+, J1. Then we can see easily that

k—=RB. .. . k=
Aﬁs""’lh"']lj —Bms""‘lft“'h] ——0,

from which and Proposition 2. 3, we see that (S, T')ig.q,s,-.2° define a tensor field
belonging to 'g%,.. Moreover we have
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(s+1)!
_—S!T“ (Sy T)[is'"h]c"']l]k = [S) T]is-"llh-“hk’

where [S, T is the notation induced by Frolicher and Nijenhuis (cf. [1]).
Thus we nave

CorROLLARY 2.4. Under the same suppositions as in Proposition 2.3,
(S, T)iigeagsp-s1® define a temsor field belonging to 'Tiy, and

(s+1)!

sl (S, T)[is"'h]c"-h]k:[s, T]is"'tllr--hk-

RemARK. In the case where s=1, we denote S* by F% If F is an almost
complex structure in M, then we can see that the condition (2. 6) is equivalent to
the condition that T is pure. A pure tensor field 7 is said to be almost analytic,
if (F, T)=0. Consequently, for Te’qg}, ®°(F, T)=0 if and only if 7T is pure and
almost analytic. If T is pure, then @H(F, T)=0.

Next, let ¢ be a tensor field belonging to 'g? with components o;,.., in U and
T a tensor field €’g} with components T),.,* in U. Suppose that ¢oT belongs to
’ggn-h where

G°T<Xh ) X’ YJ: RRP) YS—1)=0(T(X1! Tty Xt)r Yl’ R YS-I)

for any Xi, -, X;, Yy, -+, Ys_1€ L. For the tensor fields ¢ and 7, we define an
operator ¥ which makes a new tensor field belonging to &i.,—1 by

(2.16) U(o, T)=(o0T)*—a* T,
where
o*=(—1)"*Y(do)¥ and (oo T)*=(—=1)**Yalc-T))".

When we denote by ¥,.s,7,_,..r,”¢ the components of ¥(s, T) in z~%(TU), (2. 16) is
expressible as follows:

@.17) L G, % S

and other components ¥,.ss,_,.1,% are all zero, where
t s
@18 (T 0)spsisens=Topeny 00100, — 2 0000 Thypengeaiss sy + 20 Otgeaeisdsn Ty

ReMARK. The notation (7, 0);,..;y1,-4, is the generalization of what was intro-
duced by Yano and Ako for ¢=1,2 (cf. [2]).

By making use of Lemma 1.1, we can see that (7,0),,.,y,.«, are components
of a tensor field belonging to g,..
Thus we have



TENSOR FIELDS LIFTED TO COTANGENT BUNDLES 167

ProposiTION 2.5. Let ¢ and T be tensor fields belonging to 'S and 'J}
respectively. Suppose that ooT belongs to 'Tiii-1. Then

W(a: T)=_<Ty U)K)y (T’ O')G gg+t~

ReMARK. In the case where ¢=1, we denote 7% by F% If F is an almost
complex structure in M, then we can see that the condition that soF belongs to
' is equivalent to the condition that ¢ is pure. A pure tensor field ¢ is called to
be almost analytic, if (#,0)=0. Consequently, for a tensor field ¢ belonging to
'qs, W(e, F)=0 if and only if ¢ is pure and almost analytic.

ReEMArRk. We can verify that

st ¢
(T, G)Ut...]l;s..ﬂ,l]: m [T, G]Jt"'fl 1y (_1)5—'1 m [I, go T]Jt'"h'bs""l

where [T,¢] and [I,0oT] are the notations introduced by Frolicher and Nijenhuis
(cf. [1]) and [ is the unit tensor with components d%.

The author wishes to express his hearty thanks to Prof. K. Yano and Prof. S.
Ishihara for their kind help during the preparation of this paper and also his
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