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In order to investigate whether the spin-orbit force in the theory of nuclear shell
structure is due to the tensor force of the pion-theoretical potential, the doublet splitting of
the p-phase shifts in low energy n-Het scattering is analysed. We get the conclusion that
the major part of the experimental doublet splitting can be reproduced by the strong tensor
force of the pion-theoretical potential. Also it is shown qualitatively what features of the
pion-theoretical potential are important to the binding energy of Het* and the discontinuity
of the binding energies between Het and the system of Het plus one nucleon.

§ 1. Introduction

Recent developments in researches on nuclear forces, made it clear that all the
nucleon-nucleon phenomena up to about 150 Mev are well explained by the pion
theory of nuclear forces”. The pion-theoretical potential has been established quanti-
tatively in the outer region (»=>2X10"®cm) and at least qualitatively in the in-
termediate region (r~1~2X10"*cm), where r is the inter-nueleon distance. The
inner part (#<<1X10"*cm) of nucleon-nucleon interaction, to which the present
day pion theory can not give any reliable prediction, has been determined by the
comparison with experimental data. Thus we know of the phenomenological
effective potential corresponding to main features of nucleon-nucleon interaction in this
inner ragion. At present, our knowledge about nuclear forces is sufficient to attack
problems of nuclei on the basis of two-body interaction.

The characteristic features of the pion theoretical potential differ essentially
from those of phenomenological potentials conventionally adopted so far as will be
shown in §2. The most remarkable one of them is the strong tensor force due
to one-pion-exchange process. It is thus very interesting to investigate the relations
between the strong tensor force and characteristic properties of nuclei. However,
there has yet been no attempt taking into account this feature of two-body inte-
raction. One of important problems in connection with the strong tensor force is
whether the spin-orbit coupling force in the shell model can be accounted for by
this strong tensor force*.

* As will be discussed in § 2, the two-body spin-orbit potential predicted by the pion theory
is too weak to produce the spin-orbit potential in the shell model.
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Tensor Force of the Pion-Theoretical Potential 275

At the present stage, there exist many difficulties in general treatment of this
strong tensor force, because one has to take account of the following situations:
The mixing of states plays an important role in this case, hence the perturbational
approach becomes questionable. Furthermore, significant contributions from the tensor
force may sppear at the nuclear surface, and it is desirable to treat the nucleus
as a finite system not as an infinite medium.

In the case of lightest nuclei, the above mentioned difficulties do not appear
and we can treat the problems directly by adopting the pion-theoretical potential.

The investigation of the doublet splitting of He® and Li® is the crucial test of
the problem whether the strong tensor force is the origin of the spin-orbit coupling

force in the shell model. The effects of the ‘spin-orbit force in He® and Li® appear |

in the most direct fashion as the wide splitting of the doublet p-phase shifts in
the low energy nucleon scattering by He*. The main purpose of this work is to
investigate qualitatively the relation between this wide doublet splitting and the
strong tensor force of the pion-theoretical potential. In the course of this investi-
gation we also consider the binding energy of He* and the reason why there is no
bound state in the system of He* plus one nucleon, while He* is a tightly bound
system. This feature is closely related to the binding energy discontinuity at the
closed shell.

Many authors investigated the effect of a tensor force on the doublet splitting.
Dancoff? estimated the doublet splitting of He® in the second order perturbation.
Feingold®” also calculated it in the variation-perturbational way. In these works,
besides the defect of the perturbational approach, there exists the unsatisfactory
point that the values of the splitting and even its sign depend seriously on the
parameters of the wave function, for they treat He® as the bound system. In
another type of approach”, the doublet splitting is calculated on the basis of the
Fermi gas model in the second order Born approximation with respect to a tensor
potential or a modified tensor potential (zmatrix in Brueckner’s theory). In these
works, however, there are also unsatisfactory points in treating the nuclear surface
effects or the mixing of states due to a tensor force.

Here, we follow the procedure developed by Sugie, Hodgson and Robertson”.
This approach seems to be most reasonable for investigating the spin-orbit coupling
force resulting from the tensor force in He® and Li°. However, they got only the
small splitting of the p-phase shifts (about 309, of the experimental value),
because they used the phenomenological potential with a weaker tensor force than
a central one. As discussed by Sugie et al., the main part of the interaction term
responsible for the splitting of the phase shifts is proportional to the strength of
a tensor force and the mixing ratio of the D-state of He* due to a tensor force.
Therefore, the strong tensor force characteristic of the pion-theoretical potential is
expected to account for the wide experimental splitting. Indeed, it is shown that
the major part (~609%) of the experimental value of the splitting can be re-
produced by the pion-theoretical potential.
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It is to be noted that, although such a strong tensor force to reproduce the
experimental splitting is believed to reduce the binding energy of He* utterly, the
pion-theoretical potential gives its reasonable value mainly due to the strong attrac-
tive force of the two-pion-exchange potential in the singlet even state.

The essential difference between the work of Sugie et al. and ours lies in the
properties of the two-body potential. In §2, we shall show the characteristic
features of the pion-theoretical potential. In § 3, we shall recapitulate the procedure
deriving the spin-orbit coupling term and discuss the approximations used. The
determination of the parameters of the He*' wave function and the calculation of the
binding energy of He* will be made in §4. The qualitative features of the spin-
orbit coupling term and the numerical results derived from the pion-theoretical po-
tential will be presented in §5. §6 will be devoted to discuss various corrections
affecting numerical results. In §7, we shall summarize the main results obtained.

§ 2. Characteristic features of nucleon-nucleon interaction

In this section we summarize the characteristic features of nucleon-nucleon
interaction clarified by the analyses on two-nucleon problems”. It should be noted
that the features of the outer and intermediate parts (»=>1X10""®cm) have been
established pion-theoretically, while those of the inner part (»<1X10"*cm) have
been determined by the comparison with experimental data. These features are
shown in Fig. 1.

(i) In the outer region (r=>2X10""cm), the tensor potential is very strong
compared with the central one. This feature, the most characteristic one of the
pion-theoretical potential, results from the one-pion-exchange potential.

2 -
V(M):<V%r>/w2 ,,,(,Tl,,,'fz),,,{(0-1.02)+Sl2(1+¥3¥+ 3 )} ‘., (@

3 Kr (r7)? Kr
where
S =3r"(o,'1) (651) — (0,:03),
k7 '=Hh/pc=1.415X10""cm (¢ is the pion mass)*
and

g, /4m = 0.08.

The potential in this region is completely described by V'™,

(i) In the intermediate region (r~1~2X10""cm), the contributions from
the two-pion-exchange potential V®® become important in addition to V@™, The
tensor part of VU™
V& have been verified, although there remain some quantitative ambiguities due

is important also in this region. The qualitative features of

to different choices of methods in the derivation of V®®. The most essential
feature of V@ is noticed in the strong attractive potentials in the central part of

* We adopt the value zic2=139.4Mev.
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Tensor Force of the Pion-Theoretical Potential 277

the charge triplet states (*E and O)*. The central potentials in *E and 'O and
the tensor potential of V™ are not very effective and their effects can be expressed
by the suppression of magnitude of V%™ in this region. The comparison with
experimental data also supports this feature®.

(iii) The two-body spin-orbit coupling potential predicted by the pion theory
is very small compared with the static potential in the intermediate region®”®.
This potential is not strong enough to produce the spin-orbit coupling force in the
shell model. It is of the wrong sign in the recent calculation using the dispersion
relation®. -Also, the nucleon-nucleon scatterings up to about 150 Mev can be repro-
duced by the pion-theoretical potentials without spin-orbit potentials as predicted by
Signell and Marshak® and by Gammel and Thaler'”. Therefore, the two-body spin-
orbit potential cannot play any essential role, and we can neglect its effect in
qualitative discussions on problems of nuclei. :

(iv) The main features of the exchange character of the pion-theoretical po-
tential can be represented, from the properties (i) and (ii), as follows:

V=(71"75) (61:05) VI + (1,-75) S, VI

. 3+ (7‘1-7'2) {%'{”‘ (0‘1-0‘2) ngn) (30) +~1;;(g;jz_) Vézm) (IE)} . (2'2)
4 4 4

V™ are the radial parts of V@, V& (0) and VI (*E) are those of the two-

pion-exchange-central potentials in *0O and 'E respectively. The minus sign in the

third term is added to make V™ (0) and V¥ ('E) positive for convenience’s

sake.

(v) In the inmost part (<0.5X10 % cm), there exists the hard-core-like
repulsive interaction in all the states. Through comparison with experiments, it has
been shown that the effective potential just outside this hard-core can ke roughly
given by the straight cut-off potential of V"™ + V®® at the region, r=~20.5~1
X 107" cm?.

In choosing the detailed forms of V, (=), etc., in the intermediate and inner regions, the
following should be taken into account. In 3E, V,2% is very small and V=) with the hard-core
cut-off is the most reasonable potential for reproducing the deuteron datal®1b. As will be discussed
in §3, V,(3E) plays an essential role in the phenomena of He? and the system of He* plus one
nucleon, while V,(30) does not. So, in the case of, the present paper, it is allowable to take
Vi=V,1m in the region, r>=1x10"Bcm™. V, = (1E) is stronger than V.2 (0), i. e. V, 2w
(LE) |V ,25) (30) =3 /211D,

Thus on the basis of the features shown in (i)~ (v) and the situations dis-
cussed above, we adopt the potential given by (2-2) as the two-body potential

outside the core region. For convenience of analyses, we take the following ap-

* We use the following simple notation for the classification of the two-nucleon states; 3E
(the triplet even state), 'E (the singlet even state), 30 (the triplet odd state) and 'O (the singlet
odd state).

#* Strictly speaking, V17 (30) should be modified due to V;©@=)(30) so as to be damped in
the region, 7<1.4 X107 18¢cm/),
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proximate form* to the pion-theoretical potential.
Vi =o® 2 exp[ —p® 77,
Vim=o® r? exp[ — v 7]+ 000 #* exp | — v 7], (2-3)
VD (E) =v® rtexp[— 4 77 and  VED(O) = (2/3) VE™ (E)
vP=6.86, v¥=700, v{"="7.45 and v{¥ =456 (in unit of Mev X 10®cm™?),
rP=0.600, x®=1.94, ,=0.388 and »*=1.76 (in unit of 10® cm™?).
In order to obtain a good approximate form to V'™, we use the sum of potentials
with different ranges. The long range part corresponds to (1/3) (g3/4m)pc’
(e7*"/kr) and the short range part to the remainings. The errors caused by these

approximations are very small (several per cent) except at the tail (»=>3X107%cm)
where the potentials themselves are vanishingly small, as shown in Fig. 1.**

>

110,_4 ) 20 , 3‘-0 7107 cm)

1 4 5
triplet even

rA

Fig. 1 (a)

* The reason why we use such a particular form comes from the following situation: If we
choose this form, we can analytically perform the calculation of the binding energy of He# and the
derivation of the interaction kernels in #-He? scattering. Otherwise cumbersome numerical calculations
are necded after eliminating exactly the motion of center of mass. Including the 72-factor, we can
avoid the procedure of Eq. (26) in Sugie et al. The r2-factor plays the role as damping factor in
the inner region, which corresponds to the situation discussed in (v). Also, we can avoid
overestimation of the contributions of the potential in the core region (»<<0'5X1071cm) to the
binding energy of Het and the scattering potential in n-He4, even in the case where no short-range
correlation function is introduced. :

** Because the results depend on the overlap integral of the forces and the wave function, the
errors in the results that arise from the small incorrectness of the tail may be negligible,
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30 r(10-Bem)

~100

—150

Mev

50+

—50F

singlet even

Fig. 1 (b)

r(10~%cm)

Fig. 1 (¢)

T30

singlet odd

Fig. 1 (d)

Fig. 1.

Two-body potential. V1) and
V() are the central and tensor parts
of the one-pion-exchange potential,
respectively. The curves denoted by
KMO are the one- plus two-pion-
exchange potentials of ref. Ib). For
other pion-theoretical potentials, see
ref. la). Also, the effective potentials
in the inner region determined by
comparison with the experimental
data are shown. The dotted curves
are the approximate forms given by
(2-3) to the pion-theoretical potential,

1(a) Potential in the triplet even
state.
1(b) Potential in the singlet even
state.®
1(c) Potential in the triplet odd
state.*
1(d) Potential in the singlet odd
state.

* The square well potentials with
the tails of the one-pion-exchange
potential are the effective potentials
which explain the experimental
data.
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In the present paper, we perform the calculation using the exchange operators
instead of (¢-03,) and (7,-7,). If we use the conventional notation for the exchange
operators,

V=37 (P4 m® Py 50 Py +-hD P ) VD (1) + Sy (w0 +m Py) VI (7)
i=1,2
(2-4)
and put
VR (r) = VI CE),

the exchange character given by (2-2) is rewritten as follows :
Vi™: wP=1/3, m®=-—4/3, bsV=-2/3 and hV=2/3,
Vs w®=—5/12, m®=—1/12, ®=1/12 and h”=5/12, (2-5)
Vi w®=-1/3 and mW=-—-2/3

§ 3. Spin-orbit term

In this section, we outline the method to derive the spin-orbit term*. We
discuss what is important to cause the wide splitting of the p-phase shifts in 7n-He*
scattering.

First of all, we assume that He* remains in the ground state during the
scattering process. This will be justified in n-He' scattering at low energy (<5
Mev), because the first excited state of He' is believed to be very high**. He-
reafter, particles 1, 2 and 3 are neutrons, and 4 and 5 are protons. The totally
antisymmetric wave function ¥ of the system is then written in the form

T=¢(—=1)(1) +¢(—2)8(2) +¢(—3)8(3), (3-1)

where ¢ (—7) is the antisymmetric wave function of He! which does not contain
the #th neutron and ¢(i) describes the i-th neutron in the scattering state. The
ground state of He* is considered to be principally the 'Sy-state. Due to the tensor
force it has a small admixture of *Djstates. As the first approximation we neglect
the ®Pp-state probability. And, of all the possible spin-angular wave functions, only
the principal 'Sy~ and °Dj-state wave functions are considered”. We take this ap-
proximation, because our main aim is to see the qualitative feature which the pion-
theoretical potential shows in the lightest nuclei. Then the wave function of He*
is of the form

* The method of derivation is the same as the one given by Sugie et al®, on the whole.
Hence our notations follow what they used in most of the cases. Sometimes, we may omit the
description of meanings of notations when they seem obvious. The reader who is not familiar
with the notations is advised to see the paper by Sugie et al.

** This assumption is justified by the following experimental data. The behavior of the paj
phase shift is well accounted for by the one level formula. The proton reduced width is above
75% of the sum rule limit. (R. K. Adair, Phys. Rev. 86 (1952), 155; D. C. Dodder and J. L.
Gammel, Phys. Rev. 88 (1952), 520.) The py: level is much broader. This shows that for E(7
Mev, the present assumption is not so bad.
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¢ (—1) ={gs% (23, 45) +Cgpw,7(23, 45)}/v/1+C?, (3-2)

where ¢s and ¢, represent the normalized spatial parts of the wave functions for
the principal 1S,- and ®Dj-state, respectively. ¥ is 2 {@(2)3(3) —f(2)a(3)} {a(4)3(5)
—3(4)a(5)} and, if the operand is %,

5
— .2
wl)—— 2 7/;‘7‘S7;'
P> j=2

=3(03ry) (o4ry) +3(0y 1) (04°13) —2(03-04) (ros-rs). (3-3)

The wave function ¢ is obtained from the Schrodinger equation of the n-He'
system '

i Tt 3 Vi) U= (Bat E) 7. (3-4)

>J

Decomposing the wave function ¢ into partial waves
6(1) = %] (fu(r)/m Az, s), (3-5)

we get a set of uncoupled differential equations, each of which is specified by two
good quantum numbers, J and /, since we neglect the virtual excitation of He®*
The equation* for f,,(r) is

? [ d®>  1(l+1)
2M' L dr? r?

8|t

- jdrﬁldy@(—l)m(l)g Vi b (— D11 fur ()

r»

+2de dF (=DM 3 Vi (~2) 1) T

+o (e a0, (D IO Vi Bl (D132 40D,
’ (3-6)
where
B=CM /M) E, M'=(4/5) M,
r=r,— (1/4) (ry+r;+r,+ry)
r'=r,— (1/4) (r;+rs+r,+r;). (3-7)
and

The explicit form of ¢(-—1) is given in the next section. We calculate the S-S
terms and the S-D cross terms, neglecting the effect of the D-D terms.

* In deriving the equation, we assume Hy¢(—1)=FE.¢(—1)---(a). Sugie et al. assumed only
(9Hyp) =E,--(b). By doing so, they included the contribution from S, and Ss; -terms in their
Eq. (34). However, the splitting should be given only by S;,- and S;; -terms if we could find the
exact wave function of He4, and so these terms are of physical significance. Then we assume the
relation (a), though in actual calculations we use the approximate form for ¢ (—1).
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Equation (3-6) can be expressed in the following abbreviated form*

[ L= DL f () =W ) + (K G  fitrydr

dr? r?
+ ; Y ) Fur (Y d. (3-8)

The first term in the right-hand side is the so-called potential term. This term is
derived from the central potentials without the space exchange operator in the
direct terms and those with the space exchange operators in the antisymmetrized
terms. The kernel of the second term arises from (1) the remaining parts of the
central potentials in the direct and antisymmetrized terms, (2) the J-independent
parts from the tensor force in the antisymmetrized terms and (3) the term related
to the kinetic energy in the antisymmetrized terms. The J-dependence of the
second term in the right-hand side of Eq. (3-8) is caused only by that of the
wave function f,,(r). Hence this term does not give direct contribution to the
spin-orbit splitting. The kernel k%4/(», »’) itself in the last term depends on J,
hence it contributes directly to the splitting. In the following, we discuss this term
in detail.

First of all we must mention that the direct tensor terms do not give any
contribution. Then the antisymmetrization is essential in the spin-orbit splitting.
After integrating the exchange tensor term over all coordinates except r and 7/,
there remain the scalar quantities of the following types :

(I)  (scalar function of r and ')
and

()  (o- (@ Xr")) - (scalar function of r and r’)**.

It is evident that the spin-orbit splitting results only from the terms of the type
(IT). Expanding the scalar functions of r and r/ in terms of the Legendre poly-

N
nomials £, (cos(r, r’)), we obtain the linear combination of the {following ex-
pressions*** by integrating the terms belonging to the type (II) over d¥ and d%’;

j (=D 1) i(es (rX1')) DY@ YR A (—2)dLdy

=g 11 Cypyp, (3-9)
where

[ o I+1
oty Cyyiqpg = F
5711 1,0-1/2,031

, for [5£0.
2041

C —
NS VLN

* The explicit expressions of each term are given in §5 and the Appendix.
** This type does not result from the exchange S-D term but from the exchange D-S term in
our treatment.
*** This relation is derived by Sugie et al.®
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The exchange D-S tensor term with Majorana exchange character (D(—1)]|
S1aPy 1l S(—2)) is equal to that of Wigner type, since the wave function gs(—2)
1(—=2) f.,(+")/7" is invariant under the exchange of the coordinates r,r, Thus,
the splitting term has the factor (w®+m®), which means that only the tensor
force in *[E contributes.

We get the following summary as to the splitting kernel k% (r, »/).

(i) Antisymmetrization is essential to the splitting kernel. '

(i) The splitting kernel is expressed as

By = @O m?) (5

>‘v, CE)llo-UIA(afol; r, 7). (3-10)

Here llo-1|| is the eigen-value of the operator o-l, resulting from the numerator of

CZJZ:FI 5
for J=I[+1/2

na-lH:[ |
—(I4+1) for J=I—1/2.

« and 8 mean the spreads of the 'Sy- and °))- wave functions of He*, respectively,
and v is the range of the tensor force. From the expression (3-10), we see that
the tensor force contributes to the splitting in two ways: (1) proportionally to
the strength of the tensor force and (2) through the D-state mixing ratio C of
He*. The strong tensor force characteristic of the pion-theoretical potential is then
expected to be favorable to the wide splitting. The remaining part of this paper
will show this is the case. As shown in §4 and §5, the sign of £ is the same
as what the shell model assumes,, because

(W +m®)v,(E) <0, C<0 and A>0.v

It will be worth mentioning that also in the case of more general nuclei we
expect to get the spin-orbit coupling of the type (3-9) from a tensor force, when
we take into account the antisymmetrization and the mixing of the core states due

to tensor forces between core nucleons.

§4. Wave function and binding energy of He*

The available data on He* are as follows: Its spin is zero, parity even and the
experimental binding energy~28 Mev. Because its spin is zero, we cannot get any
information from the E2 and M1 moments. The high energy electron scattering
experiments showed that the charge distribution of He* can ke best fitted by the
Gaussian radial distribution with r.m.s. radius 1.61 X107 ® cm'.

Asin Eq. (3-2), we chose the spin-angular wave functions. Taking account of
the results of the high energy electron scattering experiments, Gaussian radial wave
functions are chosen, namely
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gs=Nsexp{— L m} 5 9p=N,exp{—3ip L m} (4-1)%*

i>j=2 i>5=2
Usually, the parameters of the wave function are determined by the variational
calculation. But we do not follow this procedure, because it may be meaningless
to determine the values of the parameters, particularly of «, by this method when
the wave function has no short-range correlation. Instead of this, we use the
result of the high energy eHe4 scattering experiments in determining a. As the
contributlon from the °Dystate is estimated to be smaller than 59, we determine
parameter « to fit the experimental value of the r.m.s. radius~1.61X107" cm.
Regardless of the finite charge distribution of proton, we obtain a~0.11X
10 cm™ from the relation {(r*)”=9/32a. But through the electron scattering ex-
periments, it has also been shown that the r.m.s. radius of the charge distribution
of proton is about 0.7~0.8X10"%®cm'™. Taking this fact into account, we obtain
the next formula :

(ri) P = )P +{r?),,

where (7*)” is the mean square radius of the charge distribution of He* including
the effect of the proton finite size, and (r?), is that of proton. Substituting the
values 1.61X107"cm and 0.7 X107 cm for /(275 and /(,?), respectively, we
obtain 1/ (%7 =1.4X107" cm, from which we determine a@=0.14X10%cm™.
This value is considerably smaller than those obtained so far by other authors using
the variational calculation without the short-range correlation. Later we shall discuss
this point.

Fixing the parameter « to this value, we determine the other parameters £

and C by the variational calculation. With nuclear forces of (7*XGauss) type
‘radial dependence, the variational expression of the total energy of He' becomes

1 1
«= [ —— (18a+265C* + > {9 P2\ —
F (1o ( a pC?) P m’o (o +m) 5 /U

+C < rrrrrrrr (wtmAbHh) AP (w m+b—h) A"

(w+m+b+h A/7/2 ) } \W z{ﬁ 5C )] (t) B/ ) 1” 77777

) )2f9+/’ 7 0 0V Clm®) a+f+y
21 5 7 1 "
+C? < O Y B2 L (q® () B7/2> P ]
g (@ ) o (W Em®) 2ﬁ+ui

where

* Such functions have no two-body correlation : for example, exp {—%aXr; 2t =exp{—2a>r2}
where r; is the coordinate of the i-th nucleon relative to the center of mass of Het.
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_ Za . p_ 28 .
Qa4 24y’
2 LA\ b2
A= 28 : ‘[3/2_252w <,,f2f.9ﬁ> <*2_1éaz_/9_> ) (4-2)
23+ a+f \a+f/ \atfF+v

This is minimized with respect to 3 and C. The results are shown in Table 1.

Table 1 Binding energy of He? calculated using the pion-theoretical potential
without the short-range correlation from Eq. (4+2).

B=0.35X102%6cm™2; C=—0.30 (a=0.14x102% cm™2)

SS (K. E.» 46 (Mev)
(Central 1m) —11
(Central 27} —55

SD (Tensor 1z} —21

DD (K. E.» 16
(Central 1z) —0.3
(Central 2z) —5.9
(Tensor 1x) —1.9
Total —33 (Mev)

As seen in Table 1, V@™ (*E) plays an important role, and V{* (*E) also yields
large contribution. Without them He* will hardly be bound. It is noted that
Ve (30) and V™ (*0O) do not contribute to the 8S and SD terms, respectively.
Obviously, the total binding energy is too large*. This is due to the fact that we
take no account of the short-range correlation, the main effect of which is to in-
crease the SS(K.E.). Although it is difficult to say anything about this effect
quantitatively, we estimate this roughly in §6 using a trial correlation function

Il (1—exp(—77r})). From this result we may say qualitatively that: 1) we
i>g=2
get the reasonable minimum total energy, 2) the value of a minimizing the total

energy tends to be much smaller than that determined variationally without cor-
relation (a¢=0.50X10"cm™?; B.E.=120 Mev. See Fig. 5(d)), 3) the values of C
and [ are insensitive to the correlation function in our case.

So far, many authors':'¥ have calculated the binding energy of He* to deter-

<

mine the “ consistent” phenomenological potentials. From their results it is seen
that we could not obtain sufficient binding energy if the tensor force was predominant
in *E. In our case, the pion-theoretical potential has two central parts with different
ranges, ie. VU™ and V@ ; so, although its tensor force is strong and the con-
tribution of V@™ is small, it can reproduce the binding energy of He* reasonably

as shown above. Moreover, the strong tensor force results in a large value of

* Since, in the intermediate region, V,2=) is known only qualitatively, so our choice of V,@=)
‘and the value of the total energy should not be taken seriously. The latter is very sensitive to
the choice of the detailed form of the former.
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C?*~99,, which is very advantageous for reproducing the wide splitting of the p-
phase shifts in 7-He' scattering, while the value of C® is about 49, according to
other authors. Also, by our method of determining the value of «, the brems-
strahlung-weighted cross section' in the y-He' reaction is naturally reproduced.

About the corrections due to the correlation and additional °D, states, we shall
discuss briefly in § 6.

§ 5. Effective potentials and phase shifts

In this section we discuss the p- and s-phase shifts in n-He scattering and
show the numerical results.
5-a) Effective potentials
The explicit expression of the integro-differential equation is derived from Eq.
(3-6) using Egs. (2-3), (3:2) and (4-1). The result is given in the Appendix.
In order to find out the characteristic features of the interaction terms we
rewrite the terms which contain kernelc in the form of the effective potential.
The abbreviated form for /=1 is
(L= B A = (W WD+ W) fo) 5D
2M \dr® r) 7 ' ,,, '
where

”

j/e(r, ) F2r dr!

1274 —J , 5.2

/() e (5-2)
oo |5 2 .
T e

F2(#r) is a solution in the square well potential reproducing nearly the experimental
splitting. This procedure is allowable, if /) does not differ much from £, inside
the force range and then the convergence of the iteration in solving the integro-
differential equation is good. In our case, we can find such £ as seen in the fol-
lowing. These potentials and the phase shifts are plotted in Fig. 2. /

In W(r), V& vanishes exactly because of its exchange character. Conse-
quently, V@™ is essential in this scattering problem because it composes the whole
W () which is the main part of the effective potentials. Besides V™, the tensor
force, which is important in binding four nucleons, has no effect on extra neutron
in the direct term. These circumstances seem to be the reason why five nucleons
do not bind, although the p;-level of this system is just above the zero energy.
W(r) is shown in Fig. 3 (a) with the use of the parameters decided in § 4.

In W/(r) the main part arises from the V™, V, and the kinetic energy in
the antisymmetrized effect (the last term in Eq. (3-6)). They cancel each other
to some extent in »<3.0. Out of this region, only the kinetic energy term is
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150°F

100°

50°

o° Eab

Fig. 2(a). p-phase shift.

1 Experiment of n-Het (J. D. Seagrave, Phys. Rev.
92 (1953) 1222; Levintov et al, Soviet Phys.
JETP 5 (1957) N 2258)
Calculated from experiments of p-Het (K. W.
Brockman, Jr. Phys. Rev. 102 (1956), 391. We
wish to thank Dr. Brockman for sending his
data prior to the publication.

— - — @ — ~ — Calculated by the zeroth order wave function.
— — ~—x— — — Theoretical values at the first step.
~~~~~ A-——~— Theoretical values at the second step. At the

third step they scarcely change.

15+ S ()
- /—-—-——'—m

1.0}

0.5 3.0

T T T T T T T rooo
0 10 20 | 30 40 50 60 70 80 (10~ cm)
—10 | ‘

Mev|
*Mzgv i J=1/2 Zeroth order potential
—30 J=3/2

Mev
—40 k

Mev

Fig. 2(b). Zeroth order potentials and their wave functions for /=1.
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50+
Mev

40 50 ,

T

(X10"®cm)

Win(r)

_.50 -
Mev

)

Zeroth order “ Center potential’

Mev/

Mev,

—10
Mev

—15
Mev

{W &)+ W) )

1.0 2.0 3.0

-
(X10~*cm)

I~

Zeroth order splitting potential

Wi () [lo -1
Ist step

Fig. 3(b). Effective spin-orbit potential W,/ (r) for [=1.

effective but small and attractive. As k(r, #/) itself has no J-dependence, the J-
dependence of W,/ (7) is small. Its effect to the splitting is reductive in »<<3.0
and constructive in 72>3.0. This is shown in Fig. 3 (a).

In the last term of Eq. (5-1) the kernels £4,(, »’) themselves split depending
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on the total angular momentum J, proportionally to the factor [lo-l]. Now
W () /llo-1| is shown in Fig. 3 (b). There we find that the effective spin-orbit
potential Wg,(r) has only small J-dependence except the kinematical factor
llo-1il.

The J-dependence of the effective potentials through that of £,(») is small.
This feature comes from the situation that in spite of the wide splitting of the
p-phase shifts the wave functions f3,,(7) and f,,,(#) are not very different inside
the potential range (r<<2.5) below 5 Mev of the incident energy, (e.g. see Fig.
2. (a)), and outside the range the kernels are small.

5-b) Numerical calculation

In the next place, we solve the integro-differential equation (3-8) and calculate
the p-phase shifts. As the first step we consider Eq. (5-1) given in terms of
effective potentials. Further steps will be discussed in § 6.

The energy dependence of f,(r) inside the potential range is very small below
5 Mev of the incident energy. Consequently, in this energy range, we use Eq.
(6-1) with the effective potentials defined by Egs. (5-2) and (5-3) at a definite
energy.

The wide splitting of the p-phase shifts is related to the  critical.” situation
that the pylevel is just above the zero energy, while the p,level is not so.
Therefore, the p-phase shifts are very sensitive to the details of the potentials,
particularly in the p;p-state. Then, we can hardly obtain the reasonable “ center
potential 7 to reproduce approximately the weighted mean value of the experimental
p-phase shifts, unless we have the very detailed knowledge of two-body interactions
and of the treatment of the system. It is readily seen in practice that our effective
potentials fail to reproduce the experimental mean phase shift, mainly because W (r)
is somewhat too strong. It is, however, noted that we have not taken into con-
sideration the hard-core of the nuclear force and the short-range correlation between
two. nucleons. Consequently, if we took account of these points, the potential W ()
should be reduced by some amount, particularly for small ». However, we can
hardly estimate this effect definitely. So we are obliged to decide this ¢ center
potential ” phenomenologically by the following procedure.

At first we neglect the outside part (»==3.5X10"%cm) of W, (#) because of
its smallness, and for 7 <3.5X10"*cm adopt the mean value W,,(7) of Wy, (r)
and Wi, (7), neglecting the small J-dependence of W,(r). We then solve the
following differential equation

? 2_”7%77 £ — T (o , .4 »
’iM‘f’("EF‘M r?) F(r)y =W (D), (5-4)

where W”(r) has the same form as W (») + W, () at »=>2X10"® cm but the

<

inner part of W" (») is to be decided to give the “ center potential ”. Second, we

solve the following differential equation
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SG): Zeroth order wave function

10 20 3.0

(X10"*cm)

\Zeroth order potential

- 1.0
0.5
0
-—0.5
50 —1.0
Mev 5
: (W) - W) }
1.
—100 +—2.0
Mev

Fig. 4(a). Zeroth order potential, its wave function and effective potentials
' for I=0.

fli Ei, (Mev)

Fig. 4(b). s-phase shift.

I

(.__,.@_,.4_

—— e X e —

Experiment of n-Het. See the caption of Fig. 2 (a)
Calculated from experiments of p-Het. See the caption of
Fig. 2 (a)

Calculated by 0-th order wave function.

Theoretical value.
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2 2

(L E= 2 ) L =W WIS (55)
In spite of our approximations we can get the essential feature so far as the spin-
orbit coupling is concerned. In order to obtain better solutions, we continue the
iteration in the original equation, (3-8).

The results are shown in Fig. 3 (a) and Fig. 2 (b). In Fig. 3 (a) the “ center
potential 7 W" () is shown. It is seen that the tensor force of the pion-theoretical
potential gives about 609 of the experimental splitting at the second step iteration.
This result is reasonable in comparison with that of Sugie et al. obtaining 309
by the week tensor force in Fig.l (a). The values of the Wi,(r)/|lo-l]| at the
third step (obtained by using the second step solution) are almost equal to those
at the second step. This shows that the convergence of the iteration is good.

Finally, we calculate the s-phase shift. Also in this case the discussion is
pushed in the same manner as the p-phase shifts, and the differential equation

becomes
ﬁz CZ2 2\ — . 14 .
L <.CZ;§--+/@> Folr) = (W () + WY (7)) fo (), (5-6)
where
[ e e ar
Wi () = : 5-7)

W (r) is the same as that in (5-1) and %(r, »/) is abbreviated from the kernels
for /=01in (A-1). A’(r) is solved by the similar potential to the * center potential ”
for /=1, reproducing the experimental s-phase shift. In this case, Wy/(7) is mainly
repulsive contrary to the p-waves and so the effective potential W (r) + Wy () has
a reasonable strength. Although the p-waves are very sensitive to the details of
the interaction terms, the s-phase shift is almost determined by the main feature
of the effective potential. This is because the s-state is not at the ¢ critical ”
situation. The potentials and the phase shifts are shown in Fig. 4. It can be
concluded that the pion-theoretical potential explains the s-phase shift.

§ 6. Supplementary discussions

6-a) Short-range correlations

In the previous calculation the nuclear size parameter @ was fixed from the
information of the high energy e-He' scattering. In the following we show that
our value of « is consistent with that determined by the variational method, if the
short-range correlation between two nucleons is taken into account.

Let us use the following correlation function so that the calculation can be
performed analytically :
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I (1—exp(—77)). (6-1)

i>
Generally, introducing the correlation function, we obtain an additional kinetic energy
as the most important effect. Since this additional energy increases with «, the
value of @ which minimizes the binding energy is to be reduced. - However, this type
of the correlation function may not be realistic in the core region of nuclear force,
because the actual wave function vanishes there. The additional kinetic energy derived
from this correlation function has a (negative) contribution in the core region, so
we should eliminate this unrealistic contribution by cutting off.

MeV MeV MeV MeV
150/— 7=6-10%cm™ 150} y=8.10%cm™*  150}— y=10-10"cm™* - 7=

(KE.
ry=0.2:10"%cm

50—

- (X10¥%em™?) - (X10%ecm™ [ (X10%em™?) O_ (><102°cm'2)iz
a Opb— ™ T T > & T T
[ 014 016 018 0.20 | 0.14 0.16 0.18 0.20 020 030 0.40 0.50
M e —
total

- - total I~ total

0 T T T T
L.0.14 0.16 0.18 0.20
e S

— 50— — 50— — 50—
- — I~ —100

—100

(P.E.) —200

—150— — 150 —150

(a) (b) ) ((') (d)

Fig. 5. The &’s minimizing the total energy of Het are shown for several cases. Solid
lines are obtained by fixing B and C to 0.35X10%cm™2 and —0.30, respectively
(Table 1).

Figs. (a), (b) and €c) show the results with short-range correlation function

II 1—exp(—77r3;%)). (a), (b) and (c) correspond to y=6, 7 and 8x102 cm™2,
P> G=2
respectively.. 7y is the range -of cutting off. In these calculations, we include only

two-body clusters, since the effects from the higher clusters are negligible in our
cases. The values of C and B are insensitive to the correlation function when
a<0.2%X10% cm™2 and y=>6X10% cm™2.

5 (d) shows the results without short-range correlation (y=oc0). The wvariational
calculation with respect to all parameters «, 8 and C gives the result shown by the
cross point (B. E.=120 Mev, a=0.5X10%6cm™2, §=0.8X10% cm™2 and C=—0.5).
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Using (6-1), we obtain the following results. Fig. 5 shows the values of a
that give the minimum binding energy for fixed 8, C, the range of cutting off and
several values of 7*. It is seen from Fig. 5 that owing to the introduction of the
correlation function the value of @ minimizing the binding energy is much reduced
to «<0.2X10*cm™ from @=0.5X10" cm™ without correlation. In spite of above

> if we adopt a more

rough estimation, we can expect to get a~0.14X10*cm™
realistic correlation function. The situation is same also in the three-body problem,
as already studied by Kikuta et al.’’, that is, adopting a correlation function which

is consistent with the hard core, the parameter (corresponding to our «) becomes

smaller than the value without the correlation.

Moreover, it is to be noted that the short-range correlation does not affect our
determination of the value of @ through the r.m.s. radius, because in the expectation
value of 7* the contribution from the region, where the correlation is important, is
negligibly small.

2 of «is

From the above discussions we conclude that the value 0.14X 10® cm™
consistent with the whole variational treatment with the hard core and it is rather
appropriate to n-He* scattering problem.

Speaking of n-He* scattering in relation to «, the magnitude of the splitting
of the scattering potential and so the p-phase shifts are rather insensitive to the
change of @ near a~0.14X10%cm™ as seen from Eq. (A-6)**,

6-b) Corrections to the numerical value of the splitting

(1) The additional °D, states in He*. According to Abraham et al.'*”, the
additional °D, states have some effect on the binding energy of He'. So, intro-
ducing these states in our problem, they would make the binding energy and the
splitting of the p-phase shifts larger, since their effect seems to be at least additive
to the principal °D, state.

(2) So-called S, and Ss terms discussed in §8. There remain two
independent terms, S,, and Ss,, with respect to the tensor terms, if the wave function

of He* is not exact. While S, term is independent of the splitting, S,, becomes -

the same as S,, after the interchange 1722, hence in the kernel from S, the co-
ordinates r and r’ exchange each other as compared with that from §),. Then,
speaking about the splitting, we now get &, (7r7') +kg,(+' r) instead of kg, (r 7')
in (3-8). This additional kernel may increase the splitting of the p-phase shifts.

* In the next step, we estimated the effect of short-range correlation to 8 and C fixing « to
@=0.14%10%cm™2. We found that C and B are insensitive to the correlation function in our case.

*#* It is because, firstly, the integrand of the splitting potential, in which @ appears in the form
of a+p, is not so affected by the change of & on account of @</8 in our case, and secondly, the
fractional variation with respect to « of the other factor, which depends on 7, is nearly equal to
daja over the region where the contribution to the splitting is most important.

As for the effect to the result by the change of 8, the effect may be estimated to be small as
seen in Sugie et al., provided that our § should be replaced for their 2a because «<# in our case.
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However, the contribution of all kernels resulting from inaccuracy of the wave func-
tion of He!, including this additional splitting kernel, tends to vanish as the wave
function of He* becomes exact. Therefore, we cannot say anything definite about
this effect.

(8) J-dependence of W, and iteration. Finally we speak about the ap-
proximations in the calculation of phase shifts. In §5, we neglected the small
J-dependence of W,/(»). It is reductive in »<<3.0X10 " cm and constructive in
=>3.0X10"%cm to the splitting. Its net effect on the splitting of the p-phase
shifts is estimated to be reductive, 159 at most. Our result in the previous section
was obtained at the second step of the iteration method. At the third step it is

found that the effective potentials W¥,(r)/llo-I|| reconstructed by using the second .

step solution scarcely change. There is a reason* to consider that the successive
effective splitting potentials fall inside the bounded region between the second step
ones for J=1/2 and J=3/2. Thus we estimate the error of our result which
arises by successive iteration to be negligible.

After all, as for the splitting, we conclude that these various corrections will
not change essentially the results that the tensor force of the pion-theoretical potential
explains about 609, of the splitting of the p-phase shifts.

§7. Concluding remarks

Applying the pion-theoretical potential to He* and n-He*, we obtained valuable
information on the relations between the characteristic features of nucleon-nucleon
interaction and important properties of nuclei. We summarize the main results in
the following.

(i) The wide splitting of the p-phase shifts in the low energy n-He* scattering
can be explained by the strong tensor force of the one-pion-exchange potential in
the triplet even state, if we take into accout the Pauli principle and the mixing of
of *Dy-states of He* due to this tensor force. Basing upon this results, therefore,
we can expect that the spin-orbit coupling in the shell model is originated from the

* At the second step, the reduction of Wi,1/2(r) is mainly due to the reduction in the overlap
integral S/espllﬂfl/z(l)dr/ arising from the change of the form of the effective potential. Although
this reduction of W,1/2(7) makes the total scattering potential a few Mev deeper for »<1.2X10™cm
and so the wave function f;/,® somewhat larger at this region, the change of Wy,/2(r) constructed
by this fi/,® is much smaller than that of the first step to the second step. The trend is to make
Ws,l/2(7) smaller because of the division of the larger value of fi/;®, but, of course, Wy),/2 does
not become smaller than Wyg,3/2(») at the second step. On the other hand, the reduction of
Wis,32(r) is partly due to that in the overlap integral and partly, in 7<1.2X10™8cm, due to the
division by fs/s®, which is larger than fy,(® because of the large discrepancy between the effective
scattering potentials there. The smaller W, 32(r) becomes, the smaller f3/, becomes and then
W2 (7) at the next step becomes larger, but the absolute value of the change is very small.
Thus the effective potential W,3/2(r) will converge at a slightly larger absolute value than that
of the second step.
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strong tensor forces between an extra nucleon and core particles, through the ex-
change effects among these particles and the mixing of the core states due to the
tensor forces acting between core particles.® **

(ii) The binding energy of He* can be explained by the following main features
of nucleon-nucleon interaction : the strong short-range attractive force of the two-pion-
exchange potential in the singlet even state, the strong tensor force of the one-pion-
exchange potential in the triplet even state and the short-range repulsion. The
parameter representing the spread of the wave function is consistent with the ex-
perimental data of e-He* scattering, if we properly take into account the short-range
correlation effects due to the hard-core-like repulsive interaction. In three-dody
system, essential contributions to the energy seem to come from the above men-
tioned three parts of nucleon-nucleon interaction. Therefore, we expect that the
pion-theoretical potential may explain all data of the nuclei with A=4.

(iii) The strong tensor force gives an important contribution to the binding
energy of He'. On the other hand, in the system of He* plus one nucleon, the
direct (non-exchange) contribution from the tensor force to the interaction acting
on the extra nucleon vanishes exactly, even though we include the °Dj-state. The
main contribution from the one-pion-exchange central potential also vanishes. These
situations help us to explain the discontinuity in the binding energy at the closed
shell. Also in this case we see the importance of the attractive force of the two-
pion-exchange potential in the two-nucleon charge triplet states.

The authors are indebted to professor M. Kobayasi and the members of his
laboratory for their helpful discussions.

Appendix

Eq. (3-6) is rewritten with the use of Egs. (2-3), (3-2) and (4-1) as follows:-

ﬁz dz 2_—-£(.Z,—tl)_ e (r J / 7 7
L e D £ =W 1)+ [ B 0 7S

+ &G sy a4 |20 ) sty + (5.0 ) sy ar,
| (A-1)

where kb (7, /) is derived from the kinetic energy in the antisymmetrized term,
k. (r, ') is from the central potentials and k/(r, r') is from the tensor potential.
These have no J-dependence.

* This program is now being pushed in the case of general nuclei by Takagi, Watari

and Yasuno.
## T, Terasawa and T. Terasawa and A. Arima obtained about half the doublet splittings of

the energy levels of Hes, N1 and OV in the second order perturbation, by taking into account the

same effect.
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k& (r, r') is the splitting kernel derived from the tensor potential. The ex-

pressions of W () and these kernels are given in the following.

W (r) = 35, (40 + 250 —mO—2h0) -2 i (poor* 4 ) exp(—peor),

+C2
16«
s P A-2
Poy= 16at 34D (A-2)
1 32 /[ 3a\Y% ,{ i 8(Z+3)
klx.ﬁ;.(ﬁ r') = 1+C® Tg(';‘) C2{<16a2+7’2 ; +— 732) gzﬂn(/’rr )

8 2
(‘“6<15> a. (A-3)
Hrap(2) E'xiz j.(ix), where j, is the spherical Bessel function of order /
RE(r, ) =R (r, 7)) +EA(r, 1),

. ; : X 16 \*/ 3a\'* 18«
' N — A © L ORE g 2 p® < _) <~#> —
kc (7", 7") z§2( m + h‘ w ) 1+C2 T 4@——‘3/»5(7:)
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In %k'(a, "), (1) and (2) do not denote the number of exchanged pion in potentials.

£ ) == 3 O bm®) €

S. Nagata, T. Sasakawa, T. Sawada and R. Tamagaki
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