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Abstract

Multimodal sentiment analysis is an in-

creasingly popular research area, which

extends the conventional language-based

definition of sentiment analysis to a mul-

timodal setup where other relevant modal-

ities accompany language. In this paper,

we pose the problem of multimodal senti-

ment analysis as modeling intra-modality

and inter-modality dynamics. We intro-

duce a novel model, termed Tensor Fusion

Network, which learns both such dynam-

ics end-to-end. The proposed approach is

tailored for the volatile nature of spoken

language in online videos as well as ac-

companying gestures and voice. In the ex-

periments, our model outperforms state-of-

the-art approaches for both multimodal and

unimodal sentiment analysis.

1 Introduction

Multimodal sentiment analysis (Morency et al.,

2011; Zadeh et al., 2016b; Poria et al., 2015) is

an increasingly popular area of affective comput-

ing research (Poria et al., 2017) that focuses on

generalizing text-based sentiment analysis to opin-

ionated videos, where three communicative modal-

ities are present: language (spoken words), visual

(gestures), and acoustic (voice).

This generalization is particularly vital to part

of the NLP community dealing with opinion min-

ing and sentiment analysis (Cambria et al., 2017)

since there is a growing trend of sharing opinions

in videos instead of text, specially in social media

(Facebook, YouTube, etc.). The central challenge

in multimodal sentiment analysis is to model the

inter-modality dynamics: the interactions between

† means equal contribution

Figure 1: Unimodal, bimodal and trimodal interac-

tion in multimodal sentiment analysis.

language, visual and acoustic behaviors that change

the perception of the expressed sentiment.

Figure 1 illustrates these complex inter-modality

dynamics. The utterance “This movie is sick” can

be ambiguous (either positive or negative) by itself,

but if the speaker is also smiling at the same time,

then it will be perceived as positive. On the other

hand, the same utterance with a frown would be per-

ceived negatively. A person speaking loudly “This

movie is sick” would still be ambiguous. These

examples are illustrating bimodal interactions. Ex-

amples of trimodal interactions are shown in Fig-

ure 1 when loud voice increases the sentiment to

strongly positive. The complexity of inter-modality

dynamics is shown in the second trimodal exam-

ple where the utterance “This movie is fair” is still

weakly positive, given the strong influence of the

word “fair”.

A second challenge in multimodal sentiment

analysis is efficiently exploring intra-modality dy-

namics of a specific modality (unimodal interac-

tion). Intra-modality dynamics are particularly
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challenging for the language analysis since mul-

timodal sentiment analysis is performed on spo-

ken language. A spoken opinion such as “I think

it was alright . . . Hmmm . . . let me think . . . yeah

. . . no . . . ok yeah” almost never happens in writ-

ten text. This volatile nature of spoken opinions,

where proper language structure is often ignored,

complicates sentiment analysis. Visual and acous-

tic modalities also contain their own intra-modality

dynamics which are expressed through both space

and time.

Previous works in multimodal sentiment analysis

does not account for both intra-modality and inter-

modality dynamics directly, instead they either per-

form early fusion (a.k.a., feature-level fusion) or

late fusion (a.k.a., decision-level fusion). Early fu-

sion consists in simply concatenating multimodal

features mostly at input level (Morency et al., 2011;

Pérez-Rosas et al., 2013; Poria et al., 2016). This

fusion approach does not allow the intra-modality

dynamics to be efficiently modeled. This is due to

the fact that inter-modality dynamics can be more

complex at input level and can dominate the learn-

ing process or result in overfitting. Late fusion,

instead, consists in training unimodal classifiers in-

dependently and performing decision voting (Wang

et al., 2016; Zadeh et al., 2016a). This prevents the

model from learning inter-modality dynamics in

an efficient way by assuming that simple weighted

averaging is a proper fusion approach.

In this paper, we introduce a new model, termed

Tensor Fusion Network (TFN), which learns both

the intra-modality and inter-modality dynamics

end-to-end. Inter-modality dynamics are modeled

with a new multimodal fusion approach, named

Tensor Fusion, which explicitly aggregates uni-

modal, bimodal and trimodal interactions. Intra-

modality dynamics are modeled through three

Modality Embedding Subnetworks, for language,

visual and acoustic modalities, respectively.

In our extensive set of experiments, we show (a)

that TFN outperforms previous state-of-the-art ap-

proaches for multimodal sentiment analysis, (b) the

characteristics and capabilities of our Tensor Fu-

sion approach for multimodal sentiment analysis,

and (c) that each of our three Modality Embed-

ding Subnetworks (language, visual and acoustic)

are also outperforming unimodal state-of-the-art

unimodal sentiment analysis approaches.

2 Related Work

Sentiment Analysis is a well-studied research area

in NLP (Pang et al., 2008). Various approaches

have been proposed to model sentiment from lan-

guage, including methods that focus on opinionated

words (Hu and Liu, 2004; Taboada et al., 2011; Po-

ria et al., 2014b; Cambria et al., 2016), n-grams and

language models (Yang and Cardie, 2012), senti-

ment compositionality and dependency-based anal-

ysis (Socher et al., 2013; Poria et al., 2014a; Agar-

wal et al., 2015; Tai et al., 2015), and distributional

representations for sentiment (Iyyer et al., 2015).

Multimodal Sentiment Analysis is an emerg-

ing research area that integrates verbal and

nonverbal behaviors into the detection of user

sentiment. There exist several multimodal

datasets that include sentiment annotations,

including the newly-introduced CMU-MOSI

dataset (Zadeh et al., 2016b), as well as other

datasets including ICT-MMMO (Wöllmer et al.,

2013), YouTube (Morency et al., 2011), and

MOUD (Pérez-Rosas et al., 2013), however CMU-

MOSI is the only English dataset with utterance-

level sentiment labels. The newest multimodal sen-

timent analysis approaches have used deep neural

networks, including convolutional neural networks

(CNNs) with multiple-kernel learning (Poria et al.,

2015), SAL-CNN (Wang et al., 2016) which learns

generalizable features across speakers, and support

vector machines (SVMs) with a multimodal dictio-

nary (Zadeh, 2015).

Audio-Visual Emotion Recognition is closely

tied to multimodal sentiment analysis (Poria et al.,

2017). Both audio and visual features have been

shown to be useful in the recognition of emo-

tions (Ghosh et al., 2016a). Using facial expres-

sions and audio cues jointly has been the focus of

many recent studies (Glodek et al., 2011; Valstar

et al., 2016; Nojavanasghari et al., 2016).

Multimodal Machine Learning has been a grow-

ing trend in machine learning research that is

closely tied to the studies in this paper. Creative

and novel applications of using multiple modali-

ties have been among successful recent research

directions in machine learning (You et al., 2016;

Donahue et al., 2015; Antol et al., 2015; Specia

et al., 2016; Tong et al., 2017).

3 CMU-MOSI Dataset

Multimodal Opinion Sentiment Intensity (CMU-

MOSI) dataset is an annotated dataset of video
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Figure 2: Distribution of sentiment across different opinions (left) and opinion sizes (right) in CMU-MOSI.

opinions from YouTube movie reviews (Zadeh

et al., 2016a). Annotation of sentiment has closely

followed the annotation scheme of the Stanford

Sentiment Treebank (Socher et al., 2013), where

sentiment is annotated on a seven-step Likert scale

from very negative to very positive. However,

whereas the Stanford Sentiment Treebank is seg-

mented by sentence, the CMU-MOSI dataset is

segmented by opinion utterances to accommodate

spoken language where sentence boundaries are not

as clear as text. There are 2199 opinion utterances

for 93 distinct speakers in CMU-MOSI. There are

an average 23.2 opinion segments in each video.

Each video has an average length of 4.2 seconds.

There are a total of 26,295 words in the opinion

utterances. These utterance are annotated by five

Mechanical Turk annotators for sentiment. The

final agreement between the annotators is high in

terms of Krippendorf’s alpha α = 0.77. Figure 2

shows the distribution of sentiment across different

opinions and different opinion sizes. CMU-MOSI

dataset facilitates three prediction tasks, each of

which we address in our experiments: 1) Binary

Sentiment Classification 2) Five-Class Sentiment

Classification (similar to Stanford Sentiment Tree-

bank fine-grained classification with seven scale

being mapped to five) and 3) Sentiment Regres-

sion in range [−3, 3]. For sentiment regression, we

report Mean-Absolute Error (lower is better) and

correlation (higher is better) between the model

predictions and regression ground truth.

4 Tensor Fusion Network

Our proposed TFN consists of three major compo-

nents: 1) Modality Embedding Subnetworks take as

input unimodal features, and output a rich modality

embedding. 2) Tensor Fusion Layer explicitly mod-

els the unimodal, bimodal and trimodal interactions

using a 3-fold Cartesian product from modality em-

beddings. 3) Sentiment Inference Subnetwork is a

network conditioned on the output of the Tensor

Fusion Layer and performs sentiment inference.

Depending on the task from Section 3 the network

output changes to accommodate binary classifica-

tion, 5-class classification or regression. Input to

the TFN is an opinion utterance which includes

three modalities of language, visual and acoustic.

The following three subsections describe the TFN

subnetworks and their inputs in detail.

4.1 Modality Embedding Subnetworks

Spoken Language Embedding Subnetwork:

Spoken text is different than written text (reviews,

tweets) in compositionality and grammar. We re-

visit the spoken opinion: “I think it was alright

. . . Hmmm . . . let me think . . . yeah . . . no . . . ok

yeah”. This form of opinion rarely happens in

written language but variants of it are very com-

mon in spoken language. The first part conveys the

actual message and the rest is speaker thinking out

loud eventually agreeing with the first part. The

key factor in dealing with this volatile nature of

spoken language is to build models that are capable

of operating in presence of unreliable and idiosyn-

cratic speech traits by focusing on important parts

of speech.

Our proposed approach to deal with challenges

of spoken language is to learn a rich representa-

tion of spoken words at each word interval and

use it as input to a fully connected deep network

(Figure 3). This rich representation for ith word

contains information from beginning of utterance

through time, as well as ith word. This way as the

model is discovering the meaning of the utterance

through time, if it encounters unusable information

in word i + 1 and arbitrary number of words after,

the representation up until i is not diluted or lost.

Also, if the model encounters usable information

again, it can recover by embedding those in the long

short-term memory (LSTM). The time-dependent
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Figure 3: Spoken Language Embedding Subnet-

work (Ul)

encodings are usable by the rest of the pipeline by

simply focusing on relevant parts using the non-

linear affine transformation of time-dependent em-

beddings which can act as a dimension reducing

attention mechanism. To formally define our pro-

posed Spoken Language Embedding Subnetwork

(Ul), let l = {l1, l2, l3, . . . , lTl
; lt ∈ R

300}, where

Tl is the number of words in an utterance, be the

set of spoken words represented as a sequence of

300-dimensional GloVe word vectors (Pennington

et al., 2014).

A LSTM network (Hochreiter and Schmidhuber,

1997) with a forget gate (Gers et al., 2000) is used

to learn time-dependent language representations

hl = {h1, h2, h3, . . . , hTl
;ht ∈ R

128} for words

according to the following LSTM formulation.









i

f

o

m


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=




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

sigmoid

sigmoid

sigmoid

tanh









Wld

(

XtWle

ht−1

)

ct = f ⊙ ct−1 + i ⊙ m

ht = o ⊗ tanh(ct)

hl = [h1;h2;h3; . . . ;hTl
]

hl is a matrix of language representations formed

from concatenation of h1, h2, h3, . . . hTl
. hl is then

used as input to a fully-connected network that

generates language embedding z
l:

z
l = Ul(l; Wl) ∈ R

128

where Wl is the set of all weights in the Ul net-

work (including Wld , Wle ,Wlfc
, and blfc

), σ is the

sigmoid function.

Visual Embedding Subnetwork: Since opin-

ion videos consist mostly of speakers talking to

the audience through close-up camera, face is the

most important source of visual information. The

speaker’s face is detected for each frame (sampled

at 30Hz) and indicators of the seven basic emotions

(anger, contempt, disgust, fear, joy, sadness, and

surprise) and two advanced emotions (frustration

and confusion) (Ekman, 1992) are extracted using

FACET facial expression analysis framework1. A

set of 20 Facial Action Units (Ekman et al., 1980),

indicating detailed muscle movements on the face,

are also extracted using FACET. Estimates of head

position, head rotation, and 68 facial landmark loca-

tions also extracted per frame using OpenFace (Bal-

trušaitis et al., 2016; Zadeh et al., 2017).

Let the visual features v̂j = [v1

j , v
2

j , v
3

j , . . . , v
p
j ]

for frame j of utterance video contain the set of p

visual features, with Tv the number of total video

frames in utterance. We perform mean pooling

over the frames to obtain the expected visual fea-

tures v = [E[v1], E[v2], E[v3], . . . , E[vl]]. v is

then used as input to the Visual Embedding Sub-

network Uv. Since information extracted using

FACET from videos is rich, using a deep neural

network would be sufficient to produce meaningful

embeddings of visual modality. We use a deep neu-

ral network with three hidden layers of 32 ReLU

units and weights Wv. Empirically we observed

that making the model deeper or increasing the

number of neurons in each layer does not lead to

better visual performance. The subnetwork output

provides the visual embedding z
v:

z
v = Uv(v; Wv) ∈ R

32

Acoustic Embedding Subnetwork: For each

opinion utterance audio, a set of acoustic fea-

tures are extracted using COVAREP acoustic anal-

ysis framework (Degottex et al., 2014), including

12 MFCCs, pitch tracking and Voiced/UnVoiced

segmenting features (using the additive noise ro-

bust Summation of Residual Harmonics (SRH)

method (Drugman and Alwan, 2011)), glottal

source parameters (estimated by glottal inverse

filtering based on GCI synchronous IAIF (Drug-

man et al., 2012; Alku, 1992; Alku et al., 2002,

1997; Titze and Sundberg, 1992; Childers and Lee,

1991)), peak slope parameters (Degottex et al.,

2014), maxima dispersion quotients (MDQ) (Kane

and Gobl, 2013), and estimations of the Rd shape

parameter of the Liljencrants-Fant (LF) glottal

model (Fujisaki and Ljungqvist, 1986). These ex-

tracted features capture different characteristics of

human voice and have been shown to be related to

emotions (Ghosh et al., 2016b).

1http://goo.gl/1rh1JN
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Figure 4: Left: Commonly used early fusion (multimodal concatenation). Right: Our proposed tensor

fusion with three types of subtensors: unimodal, bimodal and trimodal.

For each opinion segment with Ta audio frames

(sampled at 100Hz; i.e., 10ms), we extract the set

of q acoustic features âj = [a1

j , a
2

j , a
3

j , . . . , a
q
j ] for

audio frame j in utterance. We perform mean

pooling per utterance on these extracted acous-

tic features to obtain the expected acoustic fea-

tures a = [E[a1], E[a2], E[a3], . . . , E[q]]. Here, a

is the input to the Audio Embedding Subnetwork

Ua. Since COVAREP also extracts rich features

from audio, using a deep neural network is suffi-

cient to model the acoustic modality. Similar to

Uv, Ua is a network with 3 layers of 32 ReLU units

with weights Wa.

Here, we also empirically observed that mak-

ing the model deeper or increasing the number

of neurons in each layer does not lead to better

performance. The subnetwork produces the audio

embedding z
a:

z
a = Ua(a;Wa) ∈ R

32

4.2 Tensor Fusion Layer

While previous works in multimodal research has

used feature concatenation as an approach for multi-

modal fusion, we aim to build a fusion layer in TFN

that disentangles unimodal, bimodal and trimodal

dynamics by modeling each of them explicitly. We

call this layer Tensor Fusion, which is defined as

the following vector field using three-fold Carte-

sian product:
{

(zl, zv, za) | zl ∈

[

z
l

1

]

, zv ∈

[

z
v

1

]

, za ∈

[

z
a

1

] }

The extra constant dimension with value 1 gener-

ates the unimodal and bimodal dynamics. Each

neural coordinate (zl, zv, za) can be seen as a 3-D

point in the 3-fold Cartesian space defined by the

language, visual, and acoustic embeddings dimen-

sions [zl1]T , [zv1]T , and [za1]T .

This definition is mathematically equivalent to a

differentiable outer product between z
l, the visual

representation z
v, and the acoustic representation

z
a.

z
m =

[

z
l

1

]

⊗

[

z
v

1

]

⊗

[

z
a

1

]

Here ⊗ indicates the outer product between vectors

and z
m ∈ R

129×33×33 is the 3D cube of all pos-

sible combination of unimodal embeddings with

seven semantically distinct subregions in Figure 4.

The first three subregions z
l, z

v, and z
a are uni-

modal embeddings from Modality Embedding Sub-

networks forming unimodal interactions in Tensor

Fusion. Three subregions z
l ⊗ z

v, z
l ⊗ z

a, and

z
v ⊗ z

a capture bimodal interactions in Tensor

Fusion. Finally, z
l ⊗ z

v ⊗ z
a captures trimodal

interactions.

Early fusion commonly used in multimodal re-

search dealing with language, vision and audio,

can be seen as a special case of Tensor Fusion with

only unimodal interactions. Since Tensor Fusion

is mathematically formed by an outer product, it

has no learnable parameters and we empirically

observed that although the output tensor is high

dimensional, chances of overfitting are low.
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We argue that this is due to the fact that the out-

put neurons of Tensor Fusion are easy to interpret

and semantically very meaningful (i.e., the mani-

fold that they lie on is not complex but just high

dimensional). Thus, it is easy for the subsequent

layers of the network to decode the meaningful

information.

4.3 Sentiment Inference Subnetwork

After Tensor Fusion layer, each opinion utterance

can be represented as a multimodal tensor z
m. We

use a fully connected deep neural network called

Sentiment Inference Subnetwork Us with weights

Ws conditioned on z
m. The architecture of the net-

work consists of two layers of 128 ReLU activation

units connected to decision layer. The likelihood

function of the Sentiment Inference Subnetwork

is defined as follows, where φ is the sentiment

prediction:

arg max
φ

p(φ | zm;Ws) = arg max
φ

Us(z
m;Ws)

In our experiments, we use three variations of the

Us network. The first network is trained for binary

sentiment classification, with a single sigmoid out-

put neuron using binary cross-entropy loss. The

second network is designed for five-class sentiment

classification, and uses a softmax probability func-

tion using categorical cross-entropy loss. The third

network uses a single sigmoid output, using mean-

squarred error loss to perform sentiment regression.

5 Experiments

In this paper, we devise three sets of experiments

each addressing a different research question:

Experiment 1: We compare our TFN with previ-

ous state-of-the-art approaches in multimodal sen-

timent analysis.

Experiment 2: We study the importance of the

TFN subtensors and the impact of each individual

modality (see Figure 4). We also compare with the

commonly-used early fusion approach.

Experiment 3: We compare the performance

of our three modality-specific networks (language,

visual and acoustic) with state-of-the-art unimodal

approaches.

Section 5.4 describes our experimental method-

ology which is kept constant across all experiments.

Section 6 will discuss our results in more details

with a qualitative analysis.

Multimodal
Baseline

Binary 5-class Regression

Acc(%) F1 Acc(%) MAE r

Random 50.2 48.7 23.9 1.88 -
C-MKL 73.1 75.2 35.3 - -
SAL-CNN 73.0 - - - -
SVM-MD 71.6 72.3 32.0 1.10 0.53
RF 71.4 72.1 31.9 1.11 0.51
TFN 77.1 77.9 42.0 0.87 0.70
Human 85.7 87.5 53.9 0.71 0.82

∆SOTA ↑ 4.0 ↑ 2.7 ↑ 6.7 ↓ 0.23 ↑ 0.17

Table 1: Comparison with state-of-the-art ap-

proaches for multimodal sentiment analysis. TFN

outperforms both neural and non-neural approaches

as shown by ∆SOTA.

5.1 E1: Multimodal Sentiment Analysis

In this section, we compare the performance of

TFN model with previously proposed multimodal

sentiment analysis models. We compare to the

following baselines:

C-MKL (Poria et al., 2015) Convolutional

MKL-based model is a multimodal sentiment clas-

sification model which uses a CNN to extract tex-

tual features and uses multiple kernel learning for

sentiment analysis. It is current SOTA (state of the

art) on CMU-MOSI.

SAL-CNN (Wang et al., 2016) Select-Additive

Learning is a multimodal sentiment analysis model

that attempts to prevent identity-dependent infor-

mation from being learned in a deep neural network.

We retrain the model for 5-fold cross-validation us-

ing the code provided by the authors on github.

SVM-MD (Zadeh et al., 2016b) is a SVM

model trained on multimodal features using early

fusion. The model used in (Morency et al., 2011)

and (Pérez-Rosas et al., 2013) also similarly use

SVM on multimodal concatenated features. We

also present the results of Random Forest RF-MD

to compare to another non-neural approach.

The results first experiment are reported in Ta-

ble 1. TFN outperforms previously proposed neu-

ral and non-neural approaches. This difference is

specifically visible in the case of 5-class classifica-

tion.

5.2 E2: Tensor Fusion Evaluation

Table 4 shows the results of our ablation study. The

first three rows are showing the performance of

each modality, when no intermodality dynamics are

modeled. From this first experiment, we observe

that the language modality is the most predictive.
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Baseline
Binary 5-class Regression

Acc(%) F1 Acc(%) MAE r

TFNlanguage 74.8 75.6 38.5 0.99 0.61
TFNvisual 66.8 70.4 30.4 1.13 0.48
TFNacoustic 65.1 67.3 27.5 1.23 0.36

TFNbimodal 75.2 76.0 39.6 0.92 0.65
TFNtrimodal 74.5 75.0 38.9 0.93 0.65
TFNnotrimodal 75.3 76.2 39.7 0.919 0.66

TFN 77.1 77.9 42.0 0.87 0.70

TFNearly 75.2 76.2 39.0 0.96 0.63

Table 2: Comparison of TFN with its subtensor

variants. All the unimodal, bimodal and trimodal

subtensors are important. TFN also outperforms

early fusion.

As a second set of ablation experiments, we test

our TFN approach when only the bimodal subten-

sors are used (TFNbimodal) or when only the tri-

modal subtensor is used (TFNbimodal). We observe

that bimodal subtensors are more informative when

used without other subtensors. The most interest-

ing comparison is between our full TFN model

and a variant (TFNnotrimodal) where the trimodal

subtensor is removed (but all the unimodal and bi-

modal subtensors are present). We observe a big

improvement for the full TFN model, confirming

the importance of the trimodal dynamics and the

need for all components of the full tensor.

We also perform a comparison with the early fu-

sion approach (TFNearly) by simply concatenating

all three modality embeddings < zl, za, zv > and

passing it directly as input to Us. This approach

was depicted on the left side of Figure 4. When

looking at Table 4 results, we see that our TFN

approach outperforms the early fusion approach2.

5.3 E3: Modality Embedding Subnetworks

Evaluation

In this experiment, we compare the performance

of our Modality Embedding Networks with state-

of-the-art approaches for language-based, visual-

based and acoustic-based sentiment analysis.

5.3.1 Language Sentiment Analysis

We selected the following state-of-the-art ap-

proaches to include variety in their techniques,

2We also performed other comparisons with variants of the
early fusion model TFNearly where we increased the number
of parameters and neurons to replicate the numbers from our
TFN model. In all cases, the performances were similar to
TFNearly (and lower than our TFN model). Because of space
constraints, we could not include them in this paper.

Language
Baseline

Binary 5-class Regression

Acc(%) F1 Acc(%) MAE r

RNTN
- - - - -

(73.7) (73.4) (35.2) (0.99) (0.59)

DAN
73.4 73.8 39.2 - -

(68.8) (68.4) (36.7) - -

D-CNN
65.5 66.9 32.0 - -

(62.1) (56.4) (32.4) - -

CMKL-L 71.2 72.4 34.5 - -
SAL-CNN-L 73.5 - - - -
SVM-MD-L 70.6 71.2 33.1 1.18 0.46
TFNlanguage 74.8 75.6 38.5 0.98 0.62

∆SOTA
language ↑ 1.1 ↑ 1.8 ↓ 0.7 ↓ 0.01 ↑ 0.03

Table 3: Language Sentiment Analysis. Compari-

son of with state-of-the-art approaches for language

sentiment analysis. ∆SOTA
language shows improvement.

based on dependency parsing (RNTN), distribu-

tional representation of text (DAN), and convolu-

tional approaches (DynamicCNN). When possible,

we retrain them on the CMU-MOSI dataset (per-

formances of the original pre-trained models are

shown in parenthesis in Table 3) and compare them

to our language only TFNlanguage.

RNTN (Socher et al., 2013)The Recursive Neu-

ral Tensor Network is among the most well-known

sentiment analysis methods proposed for both bi-

nary and multi-class sentiment analysis that uses

dependency structure.

DAN (Iyyer et al., 2015) The Deep Average Net-

work approach is a simple but efficient sentiment

analysis model that uses information only from

distributional representation of the words and not

from the compositionality of the sentences.

DynamicCNN (Kalchbrenner et al., 2014) Dy-

namicCNN is among the state-of-the-art models

in text-based sentiment analysis which uses a con-

volutional architecture adopted for the semantic

modeling of sentences.

CMK-L, SAL-CNN-L and SVM-MD-L are

multimodal models from section using only lan-

guage modality 5.1.

Results in Table 3 show that our model using

only language modality outperforms state-of-the-

art approaches for the CMU-MOSI dataset. While

previous models are well-studied and suitable mod-

els for sentiment analysis in written language, they

underperform in modeling the sentiment in spoken

language. We suspect that this underperformance is

due to: RNTN and similar approaches rely heavily

on dependency structure, which may not be present
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Visual
Baseline

Binary 5-class Regression

Acc(%) F1 Acc(%) MAE r

3D-CNN 56.1 58.4 24.9 1.31 0.26
CNN-LSTM 60.7 61.2 25.1 1.27 0.30
LSTM-FA 62.1 63.7 26.2 1.23 0.33
CMKL-V 52.6 58.5 29.3 - -
SAL-CNN-V 63.8 - - - -
SVM-MD-V 59.2 60.1 25.6 1.24 0.36
TFNvisual 69.4 71.4 31.0 1.12 0.50

∆SOTA
visual ↑ 5.6 ↑ 7.7 ↑ 1.7 ↓ 0.11 ↑ 0.14

Table 4: Visual Sentiment Analysis. Comparison

with state-of-the-art approaches for visual senti-

ment analysis and emotion recognition. ∆SOTA
visual

shows the improvement.

in spoken language; DAN and similar sentence em-

beddings approaches can easily be diluted by words

that may not relate directly to sentiment or mean-

ing; D-CNN and similar convolutional approaches

rely on spatial proximity of related words, which

may not always be present in spoken language.

5.3.2 Visual Sentiment Analysis

We compare the performance of our models using

visual information (TFNvisual) with the following

well-known approaches in visual sentiment anal-

ysis and emotion recognition (retrained for senti-

ment analysis):

3DCNN (Byeon and Kwak, 2014) a network us-

ing 3D CNN is trained using the face of the speaker.

Face of the speaker is extracted in every 6 frames

and resized to 64 × 64 and used as the input to the

proposed network.

CNN-LSTM (Ebrahimi Kahou et al., 2015) is a

recurrent model that at each timestamp performs

convolutions over facial region and uses output to

an LSTM. Face processing is similar to 3DCNN.

LSTM-FA similar to both baselines above, infor-

mation extracted by FACET is used every 6 frames

as input to an LSTM with a memory dimension of

100 neurons.

SAL-CNN-V, SVM-MD-V, CMKL-V, RF-V

use only visual modality in multimodal baselines

from Section 5.1.

The results in Table 5 show that Uv is able to

outperform state-of-the-art approaches on visual

sentiment analysis.

5.3.3 Acoustic Sentiment Analysis

We compare the performance of our models using

visual information (TFNacoustic) with the following

well-known approaches in audio sentiment analysis

Acoustic
Baseline

Binary 5-class Regression

Acc(%) F1 Acc(%) MAE r

HL-RNN 63.4 64.2 25.9 1.21 0.34
Adieu-Net 59.2 60.6 25.1 1.29 0.31
SER-LSTM 55.4 56.1 24.2 1.36 0.23
CMKL-A 52.6 58.5 29.1 - -
SAL-CNN-A 62.1 - - - -
SVM-MD-A 56.3 58.0 24.6 1.29 0.28
TFNacoustic 65.1 67.3 27.5 1.23 0.36

∆SOTA
acoustic ↑ 1.7 ↑ 3.1 ↓ 1.6 ↑ 0.02 ↑ 0.02

Table 5: Acoustic Sentiment Analysis. Compari-

son with state-of-the-art approaches for audio sen-

timent analysis and emotion recognition. ∆SOTA
acoustic

shows improvement.

and emotion recognition (retrained for sentiment

analysis):

HL-RNN (Lee and Tashev, 2015) uses an

LSTM on high-level audio features. We use the

same features extracted for Ua averaged over time

slices of every 200 intervals.

Adieu-Net (Trigeorgis et al., 2016) is an end-

to-end approach for emotion recognition in audio

using directly PCM features.

SER-LSTM (Lim et al., 2016) is a model that

uses recurrent neural networks on top of convolu-

tion operations on spectrogram of audio.

SAL-CNN-A, SVM-MD-A, CMKL-A, RF-A

use only acoustic modality in multimodal baselines

from Section 5.1.

5.4 Methodology

All the models in this paper are tested us-

ing five-fold cross-validation proposed by CMU-

MOSI (Zadeh et al., 2016a). All of our experiments

are performed independent of speaker identity, as

no speaker is shared between train and test sets

for generalizability of the model to unseen speak-

ers in real-world. The best hyperparameters are

chosen using grid search based on model perfor-

mance on a validation set (using last 4 videos in

train fold). The TFN model is trained using the

Adam optimizer (Kingma and Ba, 2014) with the

learning rate 5e4. Uv and Ua, Us subnetworks are

regularized using dropout on all hidden layers with

p = 0.15 and L2 norm coefficient 0.01. The train,

test and validation folds are exactly the same for

all baselines.

6 Qualitative Analysis

We analyze the impact of our proposed TFN mul-

timodal fusion approach by comparing it with the

1110



#
Spoken words +

acoustic and visual behaviors
TFN-

Acoustic
TFN-

Visual
TFN-

Language
TFN-
Early

TFN
Ground
Truth

1
“You can’t even tell funny jokes” +

frowning expression
-0.375 -1.760 -0.558 -0.839 -1.661 -1.800

2
“I gave it a B” + smile expression +

excited voice
1.967 1.245 0.438 0.467 1.215 1.400

3

“But I must say those are some pretty

big shoes to fill so I thought maybe

it has a chance” + headshake

-0.378 -1.034 1.734 1.385 0.608 0.400

4

“The only actor who can really sell

their lines is Erin Eckart” + frown +

low-energy voice

-0.970 -0.716 0.175 -0.031 -0.825 -1.000

Table 6: Examples from the CMU-MOSI dataset. The ground truth sentiment labels are between strongly

negative (-3) and strongly positive (+3). For each example, we show the prediction output of the three

unimodal models ( TFNacoustic, TFNvisual and TFNlanguage), the early fusion model TFNearly and our

proposed TFN approach. TFNearly seems to be mostly replicating language modality while our TFN

approach successfully integrate intermodality dynamics to predict the sentiment level.

early fusion approach TFNearly and the three uni-

modal models. Table 6 shows examples taken

from the CMU-MOSI dataset. Each example is

described with the spoken words as well as the

acoustic and visual behaviors. The sentiment pre-

dictions and the ground truth labels range between

strongly negative (-3) and strongly positive (+3).

As a first general observation, we observe that

the early fusion model TFNearly shows a strong

preference for the language modality and seems to

be neglecting the intermodality dynamics. We can

see this trend by comparing it with the language

unimodal model TFNlanguage. In comparison, our

TFN approach seems to capture more complex in-

teraction through bimodal and trimodal dynamics

and thus performs better. Specifically, in the first

example, the utterance is weakly negative where

the speaker is referring to lack of funny jokes in

the movie. This example contains a bimodal inter-

action where the visual modality shows a negative

expression (frowning) which is correctly captured

by our TFN approach.

In the second example, the spoken words are

ambiguous since the model has no clue what a B is

except a token, but the acoustic and visual modal-

ities are bringing complementary evidences. Our

TFN approach correctly identify this trimodal inter-

action and predicts a positive sentiment. The third

example is interesting since it shows an interac-

tion where language predicts a positive sentiment

but the strong negative visual behaviors bring the

final prediction of our TFN approach almost to a

neutral sentiment. The fourth example shows how

the acoustic modality is also influencing our TFN

predictions.

7 Conclusion

We introduced a new end-to-end fusion method

for sentiment analysis which explicitly represents

unimodal, bimodal, and trimodal interactions be-

tween behaviors. Our experiments on the publicly-

available CMU-MOSI dataset produced state-of-

the-art performance when compared against both

multimodal approaches. Furthermore, our ap-

proach brings state-of-the-art results for language-

only, visual-only and acoustic-only multimodal sen-

timent analysis on CMU-MOSI.

Acknowledgments

This project was partially supported by Oculus re-

search grant. We would like to thank the reviewers

for their valuable feedback.

References

Basant Agarwal, Soujanya Poria, Namita Mittal,
Alexander Gelbukh, and Amir Hussain. 2015.
Concept-level sentiment analysis with dependency-
based semantic parsing: a novel approach. Cogni-
tive Computation 7(4):487–499.

1111



Paavo Alku. 1992. Glottal wave analysis with
pitch synchronous iterative adaptive inverse filtering.
Speech communication 11(2-3):109–118.
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