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ABSTRACT: 
 

Feature selection and description is a key factor in classification of Earth observation data. In this paper a classification method 

based on tensor decomposition is proposed. First, multiple features are extracted from raw LiDAR point cloud, and raster LiDAR 

images are derived by accumulating features or the “raw” data attributes. Then, the feature rasters of LiDAR data are stored as a 

tensor, and tensor decomposition is used to select component features. This tensor representation could keep the initial spatial 

structure and insure the consideration of the neighborhood. Based on a small number of component features a k nearest 

neighborhood classification is applied. 

 

 

1. INTRODUCTION 

Land Cover Classification in urban scenes is an important 

application in Airborne LiDAR point cloud processing. Urban 

scene classification based on aerial LiDAR points can guide 

surface reconstruction techniques in urban modeling, piecewise 

planar surfaces are used for precise building modeling, while 

vegetation is best represented based on height information 

provided by LiDAR (Carlberg et al, 2008). An urban scene is 

usually composed of a complex combination of artificial 

ground, natural ground, roads, railway, buildings, high 

vegetation, low vegetation or other objects such as fences and 

vehicles. Depending on the aim of classification, various classes 

are defined by researchers. To distinguish objects efficiently, an 

amount of features derived from LiDAR data are explored, 

meanwhile automatic classification methods are proposed for 

efficient classification in urban scene. 

For automatic classification of objects, machine learning 

classifiers were widely used recently. Common machine 

learning machine learning method includes support vector 

machine (SVM) algorithm, adaboost, decision trees, random 

forest and other classifiers. SVM seeks out the optimal 

hyperplane that efficiently separates the classes, Secord (Secord 

and Zakhor, 2007) uses a Gaussion kernel function to map non-

linear decision boundaries to higher dimensions where they are 

linear. Adaboost is a binary algorithm, but several extensions 

are explored for multiclass categrorization, a hypothesis 

generation routines are used to classify terrain and non-terrain 

area (Lodha et al., 2007). A C4.5 decision tree is used to carry 

out the classification ( Garcia-Gutierreza et al, 2009), by 

training data and make a hierarchical binary tree model, new 

objects can be classified based on previous knowledge. Random 

Forest is an ensemble learning method that used a group of 

decision trees, provide measures of feature importance for each 

class (Guo et al., 2011), and runs efficiently on large datasets. 

All the machine learning need data set for training, so ideal 

features and thresholds are needed to obtain a good 

classification result. 

The commonly used features can be summarized into spatial 

information features, amplitude features and multiple-return 

feature and texture features. The capability of acquiring 3D data 

increases awareness of  LiDAR for land cover classification and 

object recognition (Yan et al., 2015). An advanced type of 

LiDAR spatial information features, i.e. normalized height are 

used for ground and non-ground segmentation (Scoonl, 2006), 

point distribution frequency criteria of different type of land 

cover is considered (Antonarakis et al., 2008), 3D geometry 

factor are calculated to identify vegetation (Brodu and Lague, 

2012). Using airborne LiDAR amplitude data features for urban 

landcover classification have been discussed in many 

researches. The amplitude of LiDAR response varies among 

different object materials, thus amplitude is often used as an 

input feature for road, buildings and trees classification ( 

Charaniya et al, 2004), and Xu (2013) calibrate the  amplitude 

to improve the land cover classification accuracy. Multiple-

return features such as first return LiDAR points are used to 

detect building edges distorted by multi-path errors in the last 

return LiDAR data, then threshold of first and last return 

LiDAR height values are employed to classify roof and edge 

surfaces (Weed et al, 2001). To achieve texture feature 

information, multi-spectral bands and low-sampled airborne 

laser scanning data are combined to distinguish buildings from 

vegetation (Sohn and Dowman, 2007). An overview on features 

is given in (Otepka et al., 2013). 

Present method are focussed on the processing or feature 

extraction, but relevance of features is less often studied. Tensor 

decomposition was used in hyperspectral remote sensing to 

select relevant features from the spectral bands (Renard and 

Bourennane, 2009). We transfer this method to LiDAR data. To 

consider relevance between spatial, amplitude and echo 

features, a feature tensor is generated and decomposed to get 

principal features. Then a KNN classification method is applied 

for urban scene classification. An airborne LiDAR point could 

of Vienna city is used and classified into 4 classes: ground, 

buildings, vegetation, other point 

 

2. TENSOR BASED CLASSIFICATIO METHOD 

The principal approach to classify the LiDAR data is to first 

compute a (large) number of features, some of which may be 

redundant w.r.t. each other. In the second step, based on the 

tensor representation and decomposition, the relevant features 

are extracted. In the final step the “k Nearest Neighbors” 
method is used to classify the data.  
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2.1 Feature description 

Multiple features are extracted from raw LiDAR points to 

generate a high-dimensional vector at each point. The input 

LiDAR features are summarized into 5 groups: height-based 

features, amplitude-based features, echo-based featuress, 

roughness features, and geometry features. The feature vector is 

composed of 18 components, which will be described below.   

The features are first computed, either at each individual point 

and then aggregated into raster cells, or directly computed from 

the echo and its inherent features (e.g. the coordinates) for a 

cell. In the first case the high resolution and 3D content of the 

LiDAR point cloud is maintained on echo basis, which is then, 

however, aggregated by taking the mean as representative value 

in the raster cell. The results are 18 raster feature images.  

Some of the features, especially those that are close to the raw 

measurement, need no further computation. Others, such as 

“Heightrange”, “HeightRMS” are calculated by points falling 

into the cell, and “slope” are calculated in a defined 

neighborhood, which would be larger than cell size. 

 

2.1.1 Height-based Features: Height is defined as z 

coordinate that is directly recorded by the sensor, which could 

easily reflect various objects, such as ground, building and high 

vegetation. Height-based features include:   

Heightdiffground: The height from ground is the height 

difference between individual points and the ground, which 

indicates ground and non-ground points. If a precise terrain 

model is already available, this certainly simplifies the 

classification task considerably. However, in the suggested 

approach a very simple ground extraction method, using a block 

minimum filter (Pfeifer and Mandlburger, 2008) is used in a 

preprocessing step to obtain a rough approximation of the 

terrain model. This terrain model is used for computing the 

height above ground for each point of a cell, which is then 

averaged to obtain the raster cell value.  

Heightrange: Height range is the difference between the highest 

and lowest echo for the area of each cell. This feature could 

help discriminating plane targets and trees. 

Heightdiffecho: height difference between the average of the 

first and of the last echos per cell. In this work the definition is 

used that in the case of single echoes they are simultaneously 

first and last echo. The vegetation or building edges could be 

extracted from this feature 

 

2.1.2 Amplitude Features: The amplitude is related to the 

object reflectance, and same targets should have similar 

amplitude values. It is, however, output of the detector and not a 

calibrated geophysical quantity, but depends on the sensor as 

well as mission parameters. However, given small height 

variations in elevation and flight path, the analysis of the 

LiDAR equation (Wagner et al., 2010) shows that the variations 

should be limited. Intensity normalization (Lin, 2015) would be 

another option next to calibration in order to reduce the 

variability. All features are aggregated by taking the mean value 

per cell. 

FirstAmplitude, LastAmplitude, and AmplitudeDiff are the 

average of the first echo amplitudes, the last echo amplitudes, 

and their difference, respectively.  

Ground and building have a single return, so their value should 

be (close to) zero. Vegetation, on the other hand, should also be 

detected based on this feature. 

 

2.1.3 Echo-based Features: NrofEcho: this feature depends 

on the number of echoes per emitted pulse. It is the average 

number of echoes per cell.  This feature is high for vegetation 

and building facades and relatively low for ground and building 

roofs 

 

2.1.4 Roughness Features: The surface roughness is a 

significant feature for vegetation and building façade 

identification. Multiple roughness features are used in this 

paper.  

HeightRMS: the root mean square of all height value in the 

raster cell. 

NormalPlaneOffset: mean offset from the current points to the 

estimated local plane in the neighborhood. 

NormalZRMS: The root mean square of the normal vector (see 

below) z-component.  

Slope: The steepest slope (maximum value) in the cell, given in 

percent. 

ER (Echo ratio): the echo ratio is a measure for local 

transparency and roughness. It is defined as follows (Höfle et 

al., 2012): ER = 𝑛3𝐷/𝑛2𝐷 × 100 

With 𝑛3𝐷 ≤ 𝑛2𝐷, 𝑛3𝐷is the number of neighbors found in a 

certain search distance measured in 3D and n2D is the number 

of neighbors found in same distance measured in 2D. The ER is 

nearly 100% for flat surface, whereas the ER decreases for 

penetrable surface parts since there are more points in a vertical 

search cylinder than there are points in a sphere with the same 

radius. 

 

2.1.5 Geomatry Features: The spatial distribution of points 

in a fixed neighborhood can be reflected according to the 

geometry features. It could help discriminating buildings from 

vegetation. NormalX, NormalY, NormalZ are the normal 

vectors of local planes, which are estimated by points in a small 

neighborhood. The covariance matrix for the normal vectors is 

computed to find the eigenvaluesλ1, λ2, λ3.  

NormalEigenvalue3: stands for λ3 and used as features. λ3has 

low values for planar object and higher values for voluminous 

point clouds. Two structure features derived from that are 

anisotropy and sphericity and introduced to describe the spatial 

local points’ distribution (West, 2004). 
Anisotropy= (λ1-λ3)/λ1   

Sphericity= λ3/λ1 

 

2.2 Tensor representation for LiDAR data 

In each raster cell the feature vector with 18 components is 

computed as described above (Heightdiffground, 

Heightdiffecho, Heightrange, FirstAmplitude, LastAmplitude, 

Amplitudediff, NrofEcho, HeightRMS, Slope, 

NormalPlaneOffset, ER, NormalZRMS, NormalX, NormalY, 

NormalZ, NormalEigenvalue3, Anisotropy, Sphericity). 

The high-dimensional feature vectors of LiDAR data are 

considered as a third-order tensor, the entries of which are 

accessed via three indexes. It is denoted by R ∈ RI×J×KR ∈RI×J×K, with element arranged as rijkrijk, where i i = 1, … , I; j =1, … , J; k = 1, … , K; and R Ris the real manifold. Each index is 

called mode: two spatial modes and one feature mode 

characterize the LiDAR feature tensor (see also Figure 1). The 

tensor representation is explored to process the whole data from 

spatial and feature perspectives. The Tucker decomposition 

applied here is a form of higher-order principal component 

analysis (Renard and Bourennane, 2009). It decomposes a 

tensor into a core tensor multiplied by a matrix along each mode 

as shown in Figure 2. Tucker decomposition is expressed as: 𝑅 ≈ 𝐶 ×1 𝑈(1) ×2 𝑈(2) ×3 𝑈(3) 
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Here,  U(1) ∈ I×P U(2) ∈ J×R ,  U(3) ∈ K×Q  are the factor 

matrices and could be considered as the principal components in 

each mode. 𝐶 ∈ 𝑃×𝐽×𝑄  ×n is the n-mode product, C ∈P×J×Q is the core tensor, and its entries show the level of 

interaction between the different components (Tamara G Kolda 

and Brett W Bader, 2007). If 𝑃, 𝑅, 𝑄 < 𝐼, 𝐽, 𝐾  P, R, Q < I, J, K, 

the core tensor 𝐶 can be considered as a compressed version of 

the raw tensor. Thus, the principal features are achieved by 

projecting raw features into lower dimensional subspace, the 

projection is based on following equation:  𝑅𝑝𝑐 = 𝑅 ×3 𝑈(3) Rpc  is a reduced three-order tensor I×J×p , holding the  𝑝 

components, generalizing the product between a tensor and a 

matrix along an n-mode. And 𝑈(3)U(3)  is the eigenvectors of 

raw tensor along 3-mode. Finally,  𝑅𝑝𝑐 Rpc holds the principal 

features after projection.  

 

 
Figure 1. Feature Tensor generation 

 

 
Figure 2. Tucker decomposition 

 

2.3 LiDAR Classification based on KNN 

KNN (k nearest neighbours) is an algorithm that stores all 

available cases and classifies new cases based on a similarity 

measurement, such as distance function. The case is classified 

by a majority vote of its neighbours, with the case being 

assigned to the class most common amongst its k nearest 

neighbours measured by a distance function. This paper defined 

Classification in this paper is based on single raster pixel, 

principal features after Tucker decomposition are considered as 

input data, and distance function is defined as Euclidean 

distance between each features vector. 

 

3. CLASSIFICTION RESULT AND EVALUATION 

A section of airborne LiDAR points of Vienna city is used and 

classified into 4 classes: ground, buildings, vegetation and other 

points. The area is 100m ×100m, and cell size of the raster 

image is defined as 0.5m. 18 features images are extracted from 

raw data based on spatial, amplitude and echo attributes, then a 

3-order 201 × 201 × 18 feature tensor is generated. By Tucker 

decomposition 5 principal features are selected, and normalized 

principal features are taken as input data for classification based 

on KNN. Figure3 is the points cloud displayed by 2 principal 

feature(due to the limitation of pages, only 2 principal feature 

displayed), object differences are enhanced by the principal  

features.   

This paper takes 30% data as training data, and 70% as test data 

to evaluate the classification result. Figure4(a) is the reference 

classification result and Figure4(b) is the classification result 

achieved by this paper.  

 

 
(a) Points displayed by principal feature1 

 
(b) Points displayed by principal feature2 

 
(c) Points displayed by principal feature3 

 
(d) Points displayed by principal feature4 
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(e) Points displayed by principal feature5 

 

Figure 3. Point cloud displayed by 5 principal features 

 

This paper takes 30% data as training data, and 70% as test data 

to evaluate the classification result. Figure4(a) is the reference 

classification result and Figure4(b) is the classification result 

achieved by this paper.  

 

Table1 indicates overall accuracy and misclassified rate in each 

class. The ground is well classified, the overall accuracy reaches 

97%. Building classification overall accuracy is 88.3%, a few 

building points are misclassified into ground. However the 

algorithm has difficulty in classifying vegetation and ground, 

and a amount of vegetation are classified into buildings. Other 

points such as construction and cars can hardly be detected. 

 

 
(a). Reference classification image 

 
(b) Classification in this paper 

Figure 4. Classification reference and result for comparison 

 

 

 Classes provided by this paper 

Class Ground Vegetation Building Others 

Ground 97.0% 2.1% 0.6% 0.3% 

Vegetation 26.3% 61.0% 11.6% 1.1% 

Building 7.0% 4.6% 88.3% 0.1% 

Others 50.0% 30.3% 13.6% 6.3% 

Table 1. Classification accuracy 

4. CONCLUSION 

In this paper the Tucker decomposition of tensors was 

demonstrated for LiDAR data classification. In this first work a 

set of features was selected and rasterized features were input 

for the tensor decomposition. The five most important 

components (principla features), in comparison to 18 features, 

were selected for a KNN classification. The results show that 

ground and buildings could be well detected. Other classifiers 

(neural network, SVM) can be considered as alternatives for the 

classification task. 
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