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The recently introduced multisite tensor network path integral (MS-TNPI) allows simulation of
extended quantum systems coupled to dissipative media. We use MS-TNPI to simulate the exciton
transport and the absorption spectrum of a B850 bacteriochlorophyll (BChl) ring. The MS-TNPI
network is extended to account for the ring topology of the B850 system. Accurate molecular
dynamics-based description of the molecular vibrations and the protein scaffold is incorporated
through the framework of Feynman-Vernon influence functional. To relate the present work with
the excitonic picture, an exploration of the absorption spectrum is done by simulating it using
approximate and topologically consistent transition dipole moment vectors. Comparison of these
numerically exact MS-TNPI absorption spectra are shown with second-order cumulant approxima-
tions. The effect of temperature on both the exact and the approximate spectra is also explored.

I. INTRODUCTION

Photosynthesis in plants, bacteria and algae involves
light harvesting complexes. Solar energy creates excitons
in these so-called “antenna complexes,” which are subse-
quently transported to the reaction center. Understand-
ing this transport process involves the study of the cou-
plings of the molecular vibrations and the protein scaffold
that holds the complex together and their impact on the
dynamics. Approximate simulations of these excitation
energy transfer (EET) processes are often performed us-
ing the Redfield [1] and Förster resonance energy transfer
(FRET) [2]. While decent in certain parameter regimes,
their accuracy cannot be implicitly assumed. The com-
plexity of simulating quantum dynamics accurately grows
exponentially with the number of dimensions. For EET
systems, the Hilbert space has a large dimensionality,
which consequently makes simulating these systems com-
putationally challenging.

Typically, rigorous wave function-based methods like
the density matrix renormalization group (DMRG) [3–
7], the multiconfiguration time-dependent Hartree
(MCTDH) [8] and its multi-layer extension (ML-
MCTDH) [9] have often been used to simulate the dy-
namics of extended systems. These methods decompose
the system using various tensor networks to provide a
compressed representation. Though they have been used
to study the systems in presence of vibrational mani-
folds [10], the cost increases with the number of such vi-
brational modes and the temperature of the simulation.
This is because the wave function-based approaches pro-
ceed by truncating the basis set corresponding to the
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bath. In such a framework, incorporating a continuum
of such states at a finite temperature becomes computa-
tionally very challenging [11].

Quantum systems coupled to vibrational dissipative
manifolds are most often simulated using reduced density
matrix methods. Foremost among these are the hierar-
chical equations of motion (HEOM) [11–13] and quasi-
adiabatic propagator path integral (QuAPI) [14, 15].
Though historically, HEOM has been exceptionally pop-
ular for simulating large quantum systems [16–18], recent
work on path integrals [19–22] has made it possible to
study these systems as well. Notably, the modular path
integral (MPI) [19] has been used to study the exciton
transfer in bacteriochlorophyll aggregates [20]. The semi-
classical partially linearized density matrix path integral
approach along with accurate spectral density have also
been used by Lee et al. [23] to study the Fenna-Matthew-
Olson complex.

We have recently developed a multisite tensor network
path integral method (MS-TNPI) [22] using the frame-
work of tensor network path integral [24–27]. MS-TNPI
starts with a tensor network decomposition of the system,
similar to what is commonly used in DMRG [5, 6, 28, 29]
and extends it to incorporate the Feynman-Vernon influ-
ence functional [30]. In order to achieve this, the decom-
position along the system spatial dimension is extended
to the temporal dimension creating a 2D tensor network.
It is along this temporal dimension that the influence
functional is applied in the form of a matrix product op-
erator (MPO). MS-TNPI, being based on the Feynman-
Vernon influence functional, can handle arbitrary spec-
tral densities describing the dissipative environment. The
resultant 2D MS-TNPI network can be efficiently con-
tracted to yield the time-dependent reduced density ma-
trix corresponding to the extended quantum system rep-
resented in the form of a matrix product state (MPS).
This representation contains the full Hilbert space of the
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system. Thus, the method is not limited to problems that
can only be formulated in the first excitation Frenkel sub-
space. It allows for simulations of higher order spectra
and many-body observables while ensuring that the dis-
sipative medium is still treated in a numerically exact
manner.

To accurately simulate the excitonic dynamics in B850,
high quality parameterizations of the environment are es-
sential. Much effort has gone into such studies. Start-
ing from simulations of photosynthetic complexes using
model spectral densities [1, 31], studies have incorporated
descriptions using experiments like fluorescence line nar-
rowing spectra [32, 33] and fully theoretically simulated
spectral densities [34–36]. The benefit of using a theoret-
ically simulated spectral density is the internally consis-
tent of treatment the high frequency “quantum” region
comprising of rigid vibrations and low frequency “clas-
sical” region primarily made of ro-translational modes.
Both regions need to be accounted for to obtain accurate
dynamics. In this paper, we study the dynamics and ab-
sorption spectrum of the exciton transport in the B850
ring of LH2. Molecular dynamics-based descriptions of
the dissipative medium coupled to the chlorophyll ring
are available in the form of spectral densities [34]. This
spectral density captures the effect of the high frequency
rigid molecular vibrations as well as the ro-translational
modes primarily coming from the protein scaffold using
molecular dynamics.

This paper is organized as follows. Section II sum-
marizes the MS-TNPI method and network that is used
for the simulations. We describe how the ring conforma-
tions can be included after making minor modifications to
the propagator. We also show how the absorption spec-
trum can be calculated using MS-TNPI. This tensor net-
work formulation, utilizing the many-body reduced den-
sity matrix corresponding to the extended system, allows
a single simulation to give the entire spectrum. Then we
discuss the B850 system under study and the simulation
results in Sec. III. We analyse the symmetries present in
the dynamics and demonstrate the spectra corresponding
to different approximations. We also explore the temper-
ature effects on the absorption spectrum under the as-
sumption that the solvent spectral density invariant over
the temperature range and show how the behavior of the
approximate spectra is qualitatively different. The simu-
lations are computationally quite cheap, probably owing
to the structure of the Frenkel model. We also discuss the
differences between this model and the well-known Ising
model in presence of a dissipative medium. Finally, we
end the paper with some concluding remarks in Sec. IV.

II. METHOD

A. Multisite Tensor Network Path Integral

Consider an extended quantum system consisting of
P sites coupled with vibrational modes described by the

following Hamiltonian:

Ĥ = Ĥ0 +

P∑
i=1

V̂i (1)

where Ĥ0 is the Hamiltonian describing the quantum sys-
tem and V̂i captures the interaction of the ith site with
its local vibrational modes.

For an EET process, the individual system sites are
chromophores. The ith site can be represented by the two
states, a ground state, |φgi 〉, and an excited state, |φei 〉.
The Hamiltonian corresponding to the quantum system
consequently can be expressed as a Frenkel model:

Ĥ0 =

P∑
i=1

Ei |ei〉〈ei|+
P−1∑
i=1

Ji (|ei+1〉〈ei|+ |ei〉〈ei+1|) (2)

where

|ei〉 = |φei 〉 ⊗
⊗∏
j 6=i

∣∣φgj〉 . (3)

Here, |ei〉, as expressed by the direct product of the site-
local basis in Eq. (3), is the single-exciton state with the
excitation localized on the ith site. The electronic ex-
citation energy of the ith system is Ei. Here we have
assumed that only the nearest neighbor units are cou-
pled through the coupling Ji. This typically represents
a chain. However, B850 is a ring, so there is an extra
interaction term between the i = 1 and i = P sites,
H1,P = JP (|eP 〉〈e1|+ |e1〉〈eP |).

Under Gaussian response theory, the effect of the dis-
sipative medium can be mapped onto a bath of harmonic
oscillators:

V̂i =
∑
l

p2
i,l

2mi,l
+

1

2
mi,lω

2
i,l

(
xi,l −

ci,lŝi
mi,lω2

i,l

)2

, (4)

where ωi,l and ci,l are the frequency and coupling of the
lth mode of the ith site, respectively. The system op-
erator, ŝi associated with the ith site, couples the site
with its local vibrations. For EETs, the ŝi operators are
typically characterized by ŝi |φgi 〉 = 0 and ŝi |φei 〉 = 1.
The site-vibration interaction is described by a spectral
density [37, 38]

Ji(ω) =
π

2

∑
l

c2i,l
mi,lωi,l

δ(ω − ωi,l), (5)

which is related to the energy-gap autocorrelation func-
tion obtained using classical trajectory-based methods.

For the case of the B850 ring, Olbrich and
Kleinekathöfer [34] have simulated the correlation func-
tion using classical molecular dynamics for the trajecto-
ries and ZINDO/S-CIS for the excitation energy. This
correlation function on the ith site was subsequently fit
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as a sum of exponentials and damped oscillations:

Ci(t) =

Nexp∑
j=1

ηje
−γjt +

Nosc∑
j=1

η̃j cos(ωjt)e
−γ̃jt (6)

where Nexp is the number of exponentials and Nosc is the
number of damped oscillations needed to fit the correla-
tion function. Here, ηj is the strength of the jth expo-
nential with a decay rate γj . The tildes correspond to
the damped oscillations. The spectral density is given as
a cosine transform of this correlation function and has
the following form [34, 35]:

Ji(ω) =
2

~
tanh

(
~ωβ

2

)∫ ∞
0

Ci(t) cos(ωt) dt (7)

=
2

~
tanh

(
~ωβ

2

)Nexp∑
j=1

ηjγj
γ2
j + ω2

+

Nosc∑
j=1

η̃j γ̃j

2
(
γ̃2
j + (ω − ωj)2

)
 (8)

The correlation functions and thus the spectral densities
can, in general, be different for the various sites. How-
ever, for B850, due to cylindrical symmetry of the com-
plex, all the spectral densities (and correlation functions)
are identical according to Olbrich and Kleinekathöfer
[34]. Experimentally, these baths are often reported by
their Huang-Rhys factors. Many simulations have been
previously done with HEOM using a Drude-Lorentz spec-
tral density [16, 17], which is a specialization of the above
form with Nexp = 1 and Nosc = 0. Of course, such a form
is far less flexible in accounting for the full physics of the
problem. In particular, it misses out on the contributions
from the rigid molecular vibrations.

It should be noted that there are a variety of ways
of evaluating quantum correlation functions from purely
classical data as summarized in Refs. [39, 40]. It has
been recently shown that the so-called harmonic approx-
imation, where the hyperbolic tangent is replace by its
high temperature limit, yields better agreement with the
quantum correlation function. It has also been shown
to better maintain the temperature independence of the
spectral density [41]. Additionally, the approach em-
ployed by Olbrich and Kleinekathöfer [34] suffers from the
”geometry mismatch” problem, i.e., the potential surface
used for the classical molecular mechanics (MM) part of
the simulation does no have the same normal modes and
frequencies as the corresponding quantum potential. In
particular, it has been shown that for a gas phase BChl
molecule the frequencies predicted by the MM surface
are at substantially higher then those corresponding to
the quantum surface [42]. Newer methods of calculat-
ing spectral densities designed to remedy these issues are
available [36, 42]. It is not entirely clear to what ex-
tent these deficiencies in the spectral density effect ob-
servables like the population dynamics and spectra. As

MS-TNPI is derived completely independently from the
spectral density used, it offers an excellent means to in-
vestigate the effects of these improved spectral densities
on observables of interest. While not done here, this will
be the topic of future research.

The reduced density matrix of the extended quantum
system can be represented as a path integral expression:

ρ̃(S±N , N∆t) = Trbath

〈
S+
N

∣∣ρ(N∆t)
∣∣S−N〉 (9)

=
∑
S±0

∑
S±1

· · ·
∑
S±N−1

ρ̃(S±0 , 0)PS±0 ···S
±
N

(10)

=
∑
S±0

∑
S±1

· · ·
∑
S±N−1

ρ̃(S±0 , 0)P
(0)

S±0 ···S
±
N

F
[{
S±n
}]

(11)

where ρ̃ is the reduced density matrix at an arbitrary

time, PS±0 ···S
±
N

is the path amplitude tensor, P
(0)

S±0 ···S
±
N

is

the bare path amplitude tensor and F is the Feynman-
Vernon influence functional [30]. The system states at the
nth time point are collectively denoted by S±n . (The su-
perscript of “±” denotes the combined forward-backward
state, with the “+” and “−” coordinates defining the bra
and ket sides of the reduced density matrix respectively.
The state of the ith site at the nth time point will be de-
noted by s±i,n. In these notations, the first index will be
the spatial index and the second index will be the tem-
poral one. The forward-backward state of the ith site,
s±i,n, can take values corresponding to |φgi 〉〈φ

g
i |, |φ

g
i 〉〈φei |,

|φei 〉〈φ
g
i |, or |φei 〉〈φei |.) The key terms appearing here are

the bare path amplitude tensor, the influence functional
and the path amplitude tensor. The bare path amplitude

tensor, P
(0)

S±0 ···S
±
N

, contains the full information of the sys-

tem independent of the solvent. It is given by:

P
(0)

S±0 ···S
±
N

= K(S±0 , S
±
1 ,∆t)K(S±1 , S

±
2 ,∆t)

× · · ·K(S±N−1, S
±
N ,∆t), (12)

where K is the so-called “forward-backward propagator”
obtained from a direct product of the forward, U , and
backward, U†, system propagators,

K(S±n , S
±
n+1,∆t) = U(S+

n , S
+
n+1,∆t)U

†(S−n , S
−
n+1,∆t).

(13)

The influence functional, F , encodes the interaction of
the system with the solvent. Since the vibrational modes
are site local, it can be expressed as a product of site-
specific influence functionals:

F
[{
S±n
}]

=

P∏
i=1

Fi
[{
s±i,n
}]
, (14)

where

Fi
[{
s±i,n
}]

= exp

−1

~
∑
k

∆si,k
∑
k′≤k

(
Re
(
ηik,k′

)
∆si,k′



4

+2i Im
(
ηik,k′

)
s̄i,k′

) . (15)

The bath response function, Ci(t) in Eq. (6), discretized
along the QuAPI system path [14, 15] for the ith site
is given by ηikk′ . Additionally, ∆si,k = s+

i,k − s−i,k and

s̄i,k = 1
2

(
s+
i,k + s−i,k

)
. (The method is, of course, not tied

down to any specific form of the spectral density like the
Drude or the Ohmic forms. The η-coefficients can be ex-
pressed in terms of integrals over the spectral density.)
Because the B850 ring necessitates identical spectral den-
sities, the η-coefficients are the same for every site. The
path amplitude tensor, PS±0 ···S

±
N

is effectively the prod-

uct of the bare path amplitude tensor and the influence
functional. It contains the full information of the system
embedded in the solvent.

To simplify the discussion, let us briefly neglect the
effects of the solvent. Under this condition, the summa-
tions in Eq. (11) can be performed independently, since
the influence functional, which couples the system at dif-
ferent time points, is omitted when there is no system-
solvent interactions. In this case, the density matrix can
be evaluated iteratively,

ρ̃(S±n , n∆t) =
∑
S±n−1

ρ̃(S±n−1, (n− 1)∆t)K(S±n−1, S
±
n ,∆t).

(16)

This has the same form as matrix-vector multiplications.
The storage and computational complexity of these ex-
pressions grow exponentially with the number of system
sites making direct simulations of extended systems prac-
tically impossible. However, for many extended systems,
the correlations between system sites decrease rapidly
with the distance between them. Thus, the large tensors
(e.g., ρ̃ and K) representing every particle in the sys-
tem can be efficiently factored into a network of smaller
tensors corresponding to a single particle each. This
fact is widely utilized by methods like time-dependent
DMRG [43] and time-dependent variational principal
(TDVP) [44, 45]. In this representation, the reduced den-
sity matrix becomes an MPS,

ρ̃
(
S±n , n∆t

)
=

∑
{α(i,n)}

A
s±1,n
α(1,n)

A
s±2,n
α(1,n),α(2,n)

· · ·As
±
P,n
α(P−1,n)

,

(17)

the forward-backward propagator an MPO,

K
(
S±n , S

±
n+1,∆t

)
=

∑
{α(i,n)}

W
s±1,n,s

±
1,n+1

α(1,n)
W

s±2,n,s
±
2,n+1

α(1,n),α(2,n)

· · ·W s±P−1,n,s
±
P−1,n+1

α(P−2,n),α(P−1,n)
W

s±P,n,s
±
P,n+1

α(P−1,n)
,

(18)

(a) MPS representation of the den-
sity matrix

(b) MPO representation of the propa-
gator

FIG. 1. Matrix product representations of the density matrix
and the propagator.

and the matrix-vector multiplication becomes an MPO-
MPS application. Here, αi,n is the “bond” index that
connects the ith site at time-step n to the (i + 1)th site
at the same time step. It is called a “spatial” bond index
because it connects points that are spatially separated.
The structures of the MPS and MPO are shown in Fig. 1.
The maximum and average bond dimension associated
with the nth time step is m(n) = maxi

(
dim(α(i,n))

)
and m̄(n) = 1

P

∑
i dim(α(i,n)), respectively. The effi-

ciency of these factorizations can often be characterized
by the maximum bond dimension. Roughly speaking, the
smaller the resulting bond dimension the more efficient
the MPO/MPS factorization.

For most problems, there are many ways to construct
the propagator MPO that often involve a trade off be-
tween the maximum time-step and bond dimension. The
development of optimal propagator MPOs has been an
object of intense research over the years [29, 44–46].
In this work, we use a modified second-order Suzuki-
Trotter split propagator MPO that is commonly used
with the (second-order) time-evolved block decimation
method (TEBD) [4, 43, 47]. These MPOs are gener-
ally used to simulate systems with nearest neighbor cou-
plings. For many photosynthetic systems, the ring topol-
ogy is biologically relevant. As discussed earlier, the ring
Hamiltonian has an extra coupling, H1P between the 1st

and the P th sites. Now, the propagator element between
two points S+

n and S+
n+1 for the ring can be written as

Uring(S+
n , S

+
n+1,∆t) ≈〈

S+
n+1

∣∣e−iH1P ∆t/2~Uchain(∆t)e−iH1P ∆t/2~∣∣S+
n

〉
,

(19)

where Uchain is the standard second-order TEBD prop-
agator for the chain. The resulting propagator MPO
for the ring is obtained by multiplying the MPOs cor-
responding to the “long bond,” e−iH1P ∆t/2~, together
with that of the chain. It is feasible to construct the
propagator in a cylindrical form, reflecting the true ring
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FIG. 2. 2D MS-TNPI tensor network.

symmetry of the system. However, there may be other
performance concerns. This would be evaluated in a fu-
ture work.

The approach discussed till now is a density matrix ver-
sion of methods like TEBD or time-dependent DMRG.
The next step is to incorporate the effects of the solvent
by accounting for the time non-locality of the influence
functional. Since the different time points can no longer
be uncoupled, traditional time step iteration is impos-
sible. In principle, this would cause the computational
complexity to increase exponentially with the number of
time steps; however, this cost can be avoided by perform-
ing an additional DMRG-like tensor decomposition along
the time axis [22, 24]. The resulting 2D tensor network,
factored in both space and time, forms the foundation of
MS-TNPI.

To construct the MS-TNPI network, one starts with
the MPO representations of the forward-backward prop-
agator between each of the time-points and uses them to
construct a fully factorized tensor network description of
the bare path amplitude tensor P (0):

P
(0)

S±0 ···S
±
N

=
∑
{βn}

TS
±
0

β0
· · ·TS

±
n

βn−1,βn
· · ·TS

±
N

βN−1
. (20)

Here, each T is in a matrix product representation decom-
posed along the site axis, and βn is the bond dimension
connecting the tensors at time-point n to the one at n+1.
These indices are called “temporal” bonds because they
connect points on the same site but different times. The
2D structure of the MS-TNPI network is demonstrated in
Fig. 18. (For convenience, a more detailed derivation of
the tensors that make up T is provided in Appendix A.)
Though Eq. (A8) has been written for the bare path am-
plitude tensor, the full tensor also would have a practi-
cally identical form. The main difference being whether
the influence functional has been incorporated.

Since the influence functional has not yet been ap-
plied, contracting the 2D MS-TNPI network, as it stands
right now, yields the time-evolved density matrix for the
isolated extended system expressed in the form of an
MPS. Using the tensor network path integral [24], one
can define the influence functional MPO for each site
or monomer unit and apply it to the corresponding site
as illustrated in Fig. 3. The relevant equations for the

FIG. 3. Schematic depiction of the application of the influence
functional MPOs to selected sites of the extended system.

influence functional MPO have been summarized in Ap-
pendix B. Now, upon contraction, the network gives the
resulting time-evolved reduced density matrix. (Though,
we have presumed a lack of correlation between the baths
on different sites, it is possible to extend the structure to
take correlation effects into account as well by applying
operators that connect the “rows” corresponding to the
different sites. In absence of those correlation effects, the
influence functional MPOs directly affect only the tempo-
ral bond dimension and not the spatial bond dimension.)

Let us examine the 2D MS-TNPI network correspond-
ing to the path amplitude tensor in more depth. Along
the time axis, it consists of the local path amplitude ten-
sor for each of the sites, effectively generalizing the TNPI
structure to multiple sites. On the other hand, along the
space axis, each of the “columns” represents the full state
of the system at that time point and is effectively a gen-
eralization of the reduced density matrix as propagated
by time-dependent DMRG methods. The network allows
the possibility of many different algorithms for contract-
ing it. While the present work uses a contraction scheme
that preserves the columns, and consequently obtains the
entire time propagated density matrix as an MPS, future
explorations could yield other interesting and performant
schemes.

Näıvely speaking, the network should have one column
for each time point of propagation. This is due to the
non-Markovian memory induced by the bath. This repre-
sents the growth of computational cost with the propaga-
tion time. Much of this exponential complexity is already
controlled through the tensor network decomposition and
the accompanying truncated singular value decomposi-
tion filtration schemes. However, this is not enough by
itself. It is well-known that in condensed phase environ-
ments, the memory dies away with the temporal distance
between two points. It is, therefore possible to truncate
the memory length to say L time-steps and use L as a
convergence parameter. This is achieved through a pro-
cedure for iterative propagation of the density matrix for
the extended system.

When iteration starts, there are L time-steps and, con-
sequently, L+1 columns in the MS-TNPI network. These
are labeled as Cn for 1 ≤ n ≤ L + 1. For the initial
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FIG. 4. Schematic illustrating the iteration scheme in the
MS-TNPI framework.

step of iteration, let C0 = ρ̃(0) written as an MPS. (If,
as in Sec. II B, we are simulating a correlation function
C(t) = Tr

[
U(t) ρ(0)AU†(t)B

]
, C0 = ρ̃(0)A.) The iter-

ation method can be summarized in the following series
of steps. (An MPO-MPS multiplication is written as ⊗
in the following steps.)

1. Update C0 by multiplying it by the MPO C1. C0 ←
C1⊗C0. (Note that the first column, C1, is an MPO
and the resulting C0 an MPS.)

2. Slide all the columns back by one step. Cj ← Cj+1

for j < L. (Now, the new first column is no longer
an MPO and has two temporal bond indices.)

3. Update CL and insert the CL+1 to account for the
propagator between the penultimate and the last
time steps. (The working equations are in Ap-
pendix A.)

4. Apply the influence functional MPO to each row.

5. Trace over the site indices of C1 to turn it into an
MPO again.

Steps (1) – (5) are repeated as many times as required
to get the full dynamics. This procedure is schematically
represented in Fig. 4.

These calculations involve manipulation of high-
dimensioned tensors factorized in different forms. The
cost of applying the IF MPO is O

(
m3
tw

2
pw

2
Id

2
)
, and the

cost of the contraction is O
(
m3w2

pmt

)
. Here, mt is the

maximum temporal bond dimension, m is the maximum
bond dimension of the contracting MPS, wI is the max-
imum bond dimension of the IF MPO. The maximum
bond dimension of the forward-backward propagator of
the bare system is denoted by wp and d = 2 is the di-
mensionality of a typical system site. The computational
cost is linear in the number of sites or system size, which
appears as a prefactor in the formal scaling expressions.
Though the magnitude of mt might be dependent on the
memory length, L, the exponential growth of complexity
within memory is effectively curtailed. The cost propa-
gation beyond the memory span of τ = L∆t is strictly
linearly proportional to the number of steps of dynam-
ics beyond the memory length simulated. The dominant

cost is determined by the particular parameters under
consideration. For more details about the contractions
involved, please consult Ref. [22].

B. Absorption Spectrum

Absorption spectra are calculated as the Fourier trans-
form of dipole-dipole time correlation function,

σ(ω) ∝ Re

∫ t

0

eiωtC(t) dt (21)

C(t) = Tr (µ̂(t)µ̂(0)ρ(0)) . (22)

Here, µ̂(t) =
∑P
i=1 Û

†(t)µ̂Û(t) is the time-evolved to-

tal dipole operator, µ̂ =
∑P
i=1 µ̂i. Generally speak-

ing, the local dipole operators do not point in the same
direction. Therefore, using the site-local basis, µ̂i =
~di(|φgi 〉〈φei | + |φei 〉〈φ

g
i |), where ~di is the dipole moment

vector corresponding to the ith unit. For calculating the
absorption spectrum,

ρ(0) = ρ̃(0)⊗
∏
i

exp(−βVi)
Zi

(23)

ρ̃(0) =

⊗∏
i

|φgi 〉〈φ
g
i | , (24)

where the vibrational manifold associated with the ith

unit is distributed thermally at an inverse temperature,
β = 1

kBT
, on the ground Born-Oppenheimer surface. The

partition function for this distribution is given by Zi.
In the path integral notation of Sec. II A, the correla-

tion function, Eq. (22), can be written as

C(N∆t) =
∑

S±0 ...S
±
N

∑
S
′±
0

∑
S
′±
N

δ
S
′+
N ,S

′−
N

ρ̃
(
S±0 , 0

)
µ̂
(
S±0 , S

′±
0

)
P
S
′±
0 ···S

±
N

µ̂
(
S±N , S

′±
N

)
,

(25)

where µ̂
(
S±n , S

′±
n

)
=

〈
S
′+
n

∣∣∣µ̂∣∣∣S+
n

〉 〈
S−n

∣∣∣In∣∣∣S′−n 〉 and

In represents the identity operator of the full forward-
backward space at nth time point. It is worth noting that
in this case, the total dipole operator only acts on the
forward space; furthermore, it is possible to analytically
represent it as an MPO, which is given in Appendix C.
Interestingly, in this form, the MPO is extremely com-
pact, having a bond dimension of just two. Since we
have an MPO expression for the total dipole operator,
the correlation function can be efficiently computed by
applying this MPO to the initial density MPS as well as
the final time-propagated MPS before taking the trace,
as per Eq. (25). By applying the total dipole moment
MPO at multiple intermediate points, it should also be
possible to calculate higher order response functions at
minimal extra computational cost.
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From here, we could proceed directly to computing
the correlation function. However, the high frequency
nature of the electronic absorption necessitates the use
of very short time steps, thereby increasing the memory
length. Additionally, these correlation functions decay
slowly which means the total number of simulation steps
would be fairly large. Together, these two factors serve
to increase the computational complexity of these simu-
lations. Such a direct approach is, therefore, rather inef-
ficient. Fortunately, though, in this case, it is possible to
transform the entire problem into a numerically simpler
problem.

This transformation begins by shifting each site by
a constant energy term, Ē, that has the same order
of magnitude as the electronic excitation energy (Ē ≈
12 000 cm−1 for B850). The system Hamiltonian, Eq. (2),

can then be rewritten as Ĥ0 = ˆ̄H0 + Ĥ0, where

ˆ̄H0 = Ē

P∑
i=1

|ei〉〈ei| and (26)

Ĥ0 =

P∑
i=1

εi |ei〉〈ei|+
P−1∑
i=1

Ji (|ei+1〉〈ei|+ |ei〉〈ei+1|) ,

(27)

with εi = Ei−Ē. ˆ̄H0 commutes with Ĥ0, so we can factor
ˆ̄U = exp

(
− i

~
ˆ̄H0t
)

out of the propagator without incur-

ring any Trotter error. Next, we identify the “bra” side
of µ̂(0)ρ̃(0) (corresponding to the backward path) with
the electronic ground state. On the “ket” side, which
corresponds to the forward path, it is in a state with a
single excitation. Due to the block-diagonal structure of
the Frenkel Hamiltonian, the bra of the time-evolving op-
erator remains in the ground state and the ket remains in
the manifold of singly excited states. In other words, the
backward path remains in the ground state, and forward
path only populates the first excited subspace. In this

subspace, ˆ̄H0 = Ē and ˆ̄U = e−iĒt/~ Thus, we have:

C(t) = e−iĒt/~C(t), (28)

where C(t) is the dipole moment autocorrelation function

obtained using the propagator Û corresponding to Ĥ0.
Because the extremely high frequency oscillations have
been factorized out, the time-steps can now be larger.
The multiplication by the fast rotating phase is done as
a post-processing step and is equivalent to a shift of the
absorption lineshape to account for the redefining of the
zero of energy. It is worth noting that since the back-
ward path remains in the ground state, we could have
derived a more compressed representation of the influ-
ence functional MPO. While this optimization was not
needed here, it may be required in the future.

Before concluding this subsection, it is instructive to
explore the form of the “initial state”. We note that
though ρ̃(0) is a separable state, the initial state, defined
as the product with the direct sum of the site local µ̂j

operators, is surely not separable.

µ̂(0)ρ̃(0) =
∑
j

µ̂j ρ̃(0) (29)

=
∑
j

~dj
∏
k 6=j

Ik ⊗
(∣∣φgj〉〈φej∣∣+

∣∣φej〉〈φgj ∣∣)∏
i

|φgi 〉〈φ
g
i |

(30)

=
∑
j

~dj
∏
k 6=j

|φgk〉〈φ
g
k| ⊗

∣∣φej〉〈φgj ∣∣ (31)

where Ik is the identity operator on the kth site. Each of
the operators in the summand of Eq. (31) is in a direct
product form. This sum over multiple such operators
causes the sites to be entangled and the effective initial
state to be non-separable. While we have written out
the equation explicitly for the absorption spectrum, this
issue of non-separability and entanglement of the initial
condition is a consequence of the operators involved in
the correlation function. This feature is common to most
spectra of interest. In fact, for the emission spectrum, the
initial condition has even greater entanglement. To our
knowledge, MPI is the only other method that is able to
use influence functionals for general extended quantum
systems; however, since it treats the system sites sequen-
tially, it is not designed to handle non-separable initial
states. This means that the simulation would require
separate runs, each corresponding to a different term in
the sum. The fact that the final result comes from a trace
over a non-direct product operator further increases the
number of runs that would be be required. Thus, an MPI
calculation of the correlation function, given by Eq. (22),
is likely many times more costly than a simple calculation
of the population dynamics. On the other hand, since
MS-TNPI is compatible with the MPS/MPO framework,
and the total dipole operator can be expressed as an ex-
tremely compact MPO; it can calculate the correlation
function at practically the same cost as the population
dynamics.

C. A Note About Convergence

As with any numerical approach, the simulations in-
cluded in this work involve a variety of different conver-
gence parameters. Here, we give a brief description of
the key parameters as well as a quick outline of the pro-
cedure used. Loosely speaking, these parameters can be
grouped into two categories: those arising from the path
integral (i.e., time-step and memory length) and those
coming from the SVD compression of the network. Un-
der our compression scheme, the singular values, λn, are
discarded such that∑

n∈discarded λ
2
n∑

n λ
2
n

< χ. (32)

The particular value of truncation threshold, χ, used de-
pends on the part of the network being compressed. We
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FIG. 5. Side and top views of the B850 ring of LH2. The
molecular vibrations and the protein scaffolding affect the dy-
namics.

used two different truncation thresholds, here, χt (used
for compressing the bonds along the temporal axis) and
χs (for the spatial axis). Conceptually, the value of χt
changes with the memory length, L, while the value of
χs changes with the number of sites and the strength of
the couplings between them. Of course, while doing the
calculation, these clean conceptual divisions do not hold
and the two dimensions start affecting each other.

Typically, one starts by choosing a particular value of
time-step and L, and iterating through different cutoffs to
achieve convergence with respect to them. Subsequently,
the time-step and L are changed, repeating the process
of converging the cutoffs at each step, to find the largest
converged time-step and the smallest L. Unlike typi-
cal system-solvent decomposed methods, here, the Trot-
ter error caused by the time-step stems from both the
system-solvent split as well as the system-system split.
The memory length, L, however is only caused by the
local baths.

III. RESULTS

The B850 ring of LH2, shown in Fig. 5, is an im-
portant component of photosynthetic complexes. It has
been previously studied with approximate spectral densi-
ties. Here, we use the accurate spectral densities derived
by Olbrich and Kleinekathöfer [34] to model the inter-
action of the system with the rigid molecular vibrations
and the impact of the protein scaffolding. The resul-
tant spectral density obtained along MD trajectories with
ZINDO/S-CIS calculations for the energy gap is shown
in Fig. 6. It is well-known that the B850 ring can be de-
composed into constituent dimers with high intra-dimer
electronic couplings. The couplings between the differ-
ent dimers is considerably smaller. The electronic cou-
plings between the nearest neighbors, calculated using
the method of transition charges from electrostatic po-
tentials (TrEsp), [48, 49] alternate between 173 cm−1 and
140 cm−1 [34]. Notably, these values are significantly less
than ones derived from experiments because they take
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FIG. 6. Spectral density corresponding to the B850 ring as
calculated in Ref. [34].

environmental screening effects into account. As a point
of comparison and to understand the system better, we
also consider the experimentally derived electronic cou-
plings of 315 cm−1 and 245 cm−1 as reported by Freiberg
et al. [50] in their experimentally fit models. These pa-
rameters have been used by Strümpfer and Schulten [17]
in their study of the dynamics of B850 ring coupled with
a Drude-Lorentz spectral density. Other experimentally
derived numbers [51] are also of similar magnitude.

The dynamics of exciton transport in the B850 ring
corresponding to the initial excitation of the 8th BChl
unit (ρ̃(0) = |e8〉〈e8|) with the TrEsp couplings is shown
in Fig. 7. For the calculations shown in here, typically
∆t = 4.84 fs yields converged results with a memory span
of L∆t = 24.19 fs. The cutoffs for this problem are very
different along the temporal and spatial axes. Along the
time-axis, χt converged around 10−10 whereas the spatial
cutoff, χs was converged around 10−5 – 10−7. A repre-
sentative converged simulation of the full dynamics takes
around 6 hours on an Intel® Xeon® Gold CPU. The
runtime is, of course, extremely dependent on the ex-
act parameters of the system under study and the levels
of singular value decomposition truncation that is being
done. Because of the low couplings, the first peak of the
initially excited site happens at ≈ 75 fs, which is signif-
icantly later than what is expected from experimentally
derived couplings. As a comparison, we demonstrate the
corresponding dynamics of B850 ring parameterized by
experimentally derived electronic couplings in Fig. 8. No-
tice that in this case, the prominent hump in the excited
state population of the initially excited monomer hap-
pens around 37 fs.

The dynamics of the dimerized ring of identical chloro-
phyll molecules displays an interesting symmetry. Con-
sider all pairs of BChl units equidistant from the initially
excited one, which in this case is the 8th unit. If the elec-
tronic couplings between all nearest neighbor pairs were
equal, the dynamics of the monomers of any pair would
have been identical. However, because of the alternat-
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(a) Excited state populations of each of the BChl sites.
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(b) 2D plot of the transfer of excitations from one BChl
site to another.

FIG. 7. Excited states of the bacteriochlorophyll correspond-
ing to the B850 ring with the TrEsp couplings.

ing nature of these couplings, such a symmetry would be
absent. Interestingly, this situation leads to a different
symmetry. Now it is every alternate pair that has iden-
tical dynamics and the other pairs have different dynam-
ics. Of course, because the number of units in this case
is even, the unit diametrically opposite to the initially
excited unit, the 8th BChl unit in this case, is unique.

Now, let us compare the dynamics of the dimer-
ized BChl ring with the TrEsp couplings with a BChl
ring with all the couplings set at the average value
of the TrEsp couplings. Figure 9 shows the dynamics
corresponding to the non-dimerized (with average cou-
plings, Fig. 9 (a)) and dimerized (alternating couplings,
Fig. 9 (b)) ring. Note that in Fig. 9 (a), all the lines
but the ones corresponding to 8 and 16 are paired. For
example, the dynamics corresponding to the 7th and the
9th sites are identical (they have the same colors in the
figure, but different line styles, so it seems like there is
only one single line). The same applies to the dynamics
of the 6th and the 10th sites. However, as discussed, this
is not the case in Fig. 9 (b). For this case, the dynamics
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(a) Excited state populations of each of the BChl sites.
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(b) 2D plot of the transfer of excitations from one site to
another.

FIG. 8. Excited states of the bacteriochlorophyll correspond-
ing to the B850 ring with the experimentally derived cou-
plings.

of site 7 and site 9 are different, as is the dynamics of
site 5 and 11. However the dynamics of site 6 is same as
that of site 10, as is the dynamics of sites 4 and 12.

To further our understanding, consider the dynam-
ics corresponding to a more involved initial state. Till
now, we have discussed the dynamics following an ex-
citation of only a single site, the 8th site in our case.
Let us assume that the initial density is defined by
ρ̃(0) = 0.5 |e8〉〈e8| + 0.25 |e7〉〈e7| + 0.25 |e9〉〈e9|. The sys-
tem is, therefore, initially in a statistical ensemble with
the 7th, 8th and 9th sites getting excited with different
probabilities. The dynamics is shown in Fig. 10. The
coupling between the 7th and 8th BChl units is higher
than that between the 8th and 9th. This leads to a tran-
sient build-up of excitonic population in the 7th site at
around 30 fs, while the population of the 9th site shows
a more or less monotonic decay. Not only does the 9th

BChl unit receive population from the 8th unit slowly,
it also quickly leaks population into the 10th unit which
is completely in the ground state because of a high elec-
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(b) Dimerized BChl ring with electronic couplings obtained
using TrEsp. Data is the same as Fig. 7 but shown for a

shorter time duration.

FIG. 9. Dynamics for BChl rings with identical and alternat-
ing electronic couplings.

tronic coupling.
A major consideration in multisite systems is the en-

tanglement between the individual sites. Here, we use
the average bond dimension of the reduced density MPS
as a measure of the entanglement. It is intuitively quite
clear that the presence of the bath should change the
growth of this bond dimension and consequently the en-
tanglement between the sites. We have shown [22] that
in the case of the Ising model, the coupling to the local
baths severely restricts the growth of the average bond
dimension. In Fig. 11, we show the growth of the aver-
age bond dimension for the B850 system both with and
without the presence of the vibrational baths. It is sur-
prising that in this case, the average bond dimension,
and consequently the intersite entanglement, of the bare
B850 system does not really grow and is very small. Ad-
ditionally, it is the incorporation of the vibrational bath
that leads to an increase in the bond dimension. Though
it must be noted that the bond dimension despite being
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FIG. 10. Dynamics starting from ρ̃(0) = 0.5 |e8〉〈e8| +
0.25 |e7〉〈e7|+ 0.25 |e9〉〈e9| using the TrEsp parameters.
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FIG. 11. Average bond dimensions of the reduced density
MPS for the B850 ring as a measure of average intersite en-
tanglement in presence and absence of the vibrational bath.

greater in presence of the bath, is still quite small. This
reversal of patterns vis-à-vis the Ising model is probably
unique to the Frenkel model and might be because of the
block diagonal structure of the Hamiltonian. It might
also arise as a consequence of the nature of the quantum
transport process.

Populations do not give a full account of the dynamics
as explored through experiments. We consider the ab-
sorption spectra corresponding to the two different cou-
plings. As a zeroth order approximation, we first con-
sider the dipole moment vectors to point in the oppo-
site directions for neighboring monomers. The conver-
gence parameters for these simulations are mostly the
same as those used for the populations. The most no-
table difference being the memory span which is L∆t =
33.86 fs here. The correct dipole moment vectors are
tangential to the B850 ring but are oriented in oppo-
site manners [16, 52]. The mean optical excitation en-
ergy is taken to be 12 098 cm−1 [34]. First, we con-
sider the spectrum corresponding to the TrEsp couplings.



11

-10

-5

0

5

10

15

20

0 100 200 300 400 500 600 700 800

C(
t)

t(fs)

Real
Imag

FIG. 12. Correlation function after factorizing out the average
excitation energy according to Eq. (28).

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

11000 11500 12000 12500

σ
(ω

)
(a

rb
.

un
it

s)

ω(cm−1)

Approx
Anti

Correct

FIG. 13. Absorption spectrum corresponding to the TrEsp
couplings and constant excitation energies. Black dashed line:
antiparallel dipole moments. Black solid line: correct dipole
moments. Red solid line: second-order cumulant approxima-
tion.

The dipole moment autocorrelation function without the
high-frequency oscillations is demonstrated in Fig. 12.
The spectra with the antiparallel dipole moments and
the correct dipole moments are shown in Fig. 13. (A rep-
resentative converged spectrum calculation takes roughly
2 hours on an Intel® Xeon® Gold CPU.) Along with
the numerically exact MS-TNPI results, we report an ap-
proximate spectrum calculated within the second-order
cumulant approximation [53].

The analysis of the absorption spectrum in terms of the
Frenkel excitons is well-understood. In presence of a sys-
tem with cylindrical symmetry, there are two bands of ex-
citons as schematically demonstrated in Fig. 14 [52]. The
exact energies of the excitonic eigenstates correspond-
ing to the different system parameters is given in Ap-
pendix D. The degenerate states are labeled as |±k〉. The
gap between the two bands is approximately 2|V1 − V2|,
where V1 and V2 are the two electronic couplings. There-

FIG. 14. Structure and spacings of the energies of the excitons
for a ring with alternating couplings.

fore, if there is a constant coupling, the states |4〉 and
|5〉 would be degenerate as well [16]. For the case where
the dipole moments are antiparallel, the lowest energy
exciton, |0〉, gets excited. However, it is well-known that
the correct dipole moment actually excites into the de-
generate states of |±1〉 [16, 52]. Therefore, as shown in
Fig. 13, we expect to see a small blue-shift of the cen-
tral frequency of the peak corresponding to the correct
dipole moments vis-à-vis the antiparallel ones. The exci-
tons are coupled to each other through interactions with
the site-local baths. Thus, the peak is slightly shifted
and significantly broadened in the presence of the dis-
sipative medium. The second-order cumulant approxi-
mation spectrum is quite red-shifted with respect to the
correct dipole moment MS-TNPI spectrum.

Now, it is well-known that the electrostatics of the
photosynthetic complex often induces a change in the
excitation energies of the monomers. Typically, the ex-
citation energy alternates with a difference of around
197 cm−1 [16]. We have also simulated and plotted the
absorption spectra corresponding to this case in Fig. 15.
The incorporation of this asymmetry in the excitation
energy gives rise to a smaller peak close to 12 300 cm−1

when using the antiparallel dipole moments. This sec-
ondary peak is caused by excitations into the highest
energy exciton, |9〉, which is now permitted by the sym-
metry. For both the correct and antiparallel dipole mo-
ments, the main peak in the spectrum is red-shifted in
comparison to the case where the monomers have the
same excitation energy, due to a change in the eigenvalue
spectrum. Also, it is interesting that the agreement with
the approximate spectrum is much better when the vary-
ing excitation energies are incorporated.

As we had mentioned earlier, the electronic couplings
obtained via TrEsp are significantly smaller than the ones
derived from experiments. The same holds for the mean
optical excitation energy. We calculate the absorption
spectrum for the B850 ring with a mean optical exci-
tation energy of 12 390 cm−1 and couplings of 315 cm−1

and 245 cm−1 as reported by Freiberg et al. [50]. The
difference between the excitation energies of consecutive
chlorophyll units is once again taken to be 197 cm−1. The
comparison of the spectrum corresponding to these ex-
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FIG. 15. Absorption spectrum corresponding to the TrEsp
couplings and varying excitation energies. Black dashed line:
antiparallel dipole moments. Black solid line: correct dipole
moments. Red solid line: second-order cumulant approxima-
tion.
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FIG. 16. Absorption spectra for TrEsp (red) and experimen-
tally derived parameters (black) with correct dipole moments
and asymmetry present. Dashed line: second-order cumulant
approximation. Solid line: MS-TNPI spectra.

perimental parameters with the one corresponding to the
TrEsp parameters is presented in Fig. 16. Clearly, the
spectrum corresponding to the experimentally derived
parameters is significantly blue-shifted with respect to
the TrEsp parameters. The peak at 11 763 cm−1 corre-
sponds to 850.12 nm. This is in comparison to the TrEsp
parameter peak at 11 666 cm−1 or 857.19 nm. Because of
the higher electronic couplings, the damping effect of the
bath is less pronounced leading to a significantly sharper
peak. It is interesting that in contrast to the MS-TNPI
spectra, the peak widths of the two approximate spectra
are quite similar to each other. The central frequencies
of the approximate peaks have a difference of roughly
78 cm−1 between them, which is smaller than the dif-
ference between the MS-TNPI peaks. The peak of the
true experimental spectrum [34] corresponding B850 re-
gion is red-shifted with respect to the TrEsp peak. This
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FIG. 17. Comparison of spectra at 300 K, 150 K and 77 K
for the TrEsp parameters with varying excitation energies.
Effects of temperature on “solvent” spectral density has been
ignored for simplicity. Solid lines: MS-TNPI spectra. Dashed
lines: second-order cumulant approximation.

means that the agreement of the peak corresponding to
the higher excitation energy and couplings with the ex-
periment is worse than the agreement of the TrEsp peaks.
Thus the effect of shielding, that leads to the smaller cou-
pling values, are quite important.

Finally, we explore how the approximate and exact ab-
sorption spectra change with temperature. It needs to be
noted that this exploration has a caveat. The spectral
density coming from the protein and the rigid molecular
vibrations is not necessarily independent of the temper-
ature. The validity of the spectral density across var-
ious temperature regimes would need to be verified on
a case-by-case basis. However, for simplicity, we would
keep using the same spectral density across the tempera-
tures. The spectra are calculated for the TrEsp parame-
ters with alternating excitation energies at 300 K, 150 K
and 77 K. The comparison is shown in Fig. 17. We see
that as the temperature decreases, the peak of the ex-
act spectrum gets sharper and shows a blue shift. This
is consistent with observations reported by Chen et al.
[54], though, the magnitude of the blue shift, which is
dependent on the exact parameters and spectral density,
is much smaller their case. The approximate spectrum
peaks, on the other hand, shows a red shift while getting
sharper as temperature decreases. This suggests that
further investigation into various approximations for the
spectra can give interesting insights into both the systems
under study and the nature of the approximations.

IV. CONCLUSIONS

Understanding electronic energy transfer processes is
important. However, studying the dynamics of extended
systems with dissipative media is an extraordinarily chal-
lenging problem. System-solvent decomposition is a com-
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monly used technique to accurately simulate open quan-
tum systems. It handles the exponential scaling of quan-
tum mechanics by limiting it to a small dimensional sub-
space. However, with such extended systems, the expo-
nential scaling of quantum mechanics is not sufficiently
curbed to allow for efficient numerical simulations. We
have recently introduced MS-TNPI to address this prob-
lem using a density matrix renormalization group-like de-
composition along with Feynman-Vernon influence func-
tional. Here, we use it to study EET in a B850 ring of
LH2 with vibrational spectral densities obtained using
molecular dynamics. Previous numerically exact studies
of the dynamics of such systems have typically been done
with the Drude-Lorentz model spectral density.

In this paper, we have shown how MS-TNPI can be
simply extended to account for the ring structure that is
almost ubiquitous in photosynthetic complexes in purple
bacteria. MS-TNPI can efficiently simulate these sys-
tems as well. While we use a “flat” 2D structure for
simulating the ring system, it is conceivable that having
the 2D structure turned into cylindrical form, reflecting
the actual topology of the system, might bring additional
computational benefits. Such ideas would be explored in
the future. We have also analyzed and massaged the ex-
pressions for the absorption spectrum to make it fit for
MS-TNPI. Taking advantage of the availability of the full
many-body reduced density matrix for the extended sys-
tem, MS-TNPI can efficiently simulate the required cor-
relation functions and higher order response functions.

We have shown the impact of the different parameters
on the direct EET dynamics in the B850 ring. The TrEsp
couplings with the ZINDO/S-CIS excitation energies are
generally much smaller than typical experimentally de-
rived values. The dynamics corresponding to both cases
have been simulated. The bath has similar effects on both
the parameters. However, owing to the faster oscillations
corresponding to the experimentally derived values, the
oscillatory nature propagates even to the most distant
BChl units before getting washed away. Additionally,
subtle effects stemming from the unequal electronic cou-
plings get amplified when using a more complex initial
condition where multiple BChl units are statistically ex-
cited. Future work would focus on studying the impact
of light on B850, taking into consideration effects stem-
ming from the varying alignments of the site-local dipole
vectors and spatial inhomogeneity of the light-BChl in-
teraction.

Additionally, we have simulated the absorption spec-
trum, incorporating the full spectral density, for the ring
using various approximations culminating in a simulation
with the most appropriate parameters. The B850 ring is
characterized by non-parallel transition dipole moments
and unequal monomer excitation energies. To better un-
derstand the impact of these transition dipole moments,
we started with a very simple zeroth-order approximation
where the transition dipole moments are anti-parallel.
We show that consistent with excitonic wave function-
based analysis, if the electronic excitation energies are

identical, there is only a single peak. However, the in-
homogeneities induced by the local electrostatic environ-
ment lead to a secondary peak that comes from excita-
tion into the highest energy excitonic level. Subsequently,
we analyse the effect of using the transition dipole mo-
ment with the correct form. Incorporation of the cor-
rect dipole moment operator along with the varying ex-
citation energies still produces a spectrum that is blue-
shifted with respect to experimental spectra [34]. This
is probably due to inaccurate excitation energies, elec-
tronic couplings, and limitations of the model. These
calculations are compared with second order cumulant
approximation [53]. The approximate spectra are consis-
tently broader than the MS-TNPI calculations, and gen-
erally slightly red-shifted. It is interesting to note that
the effect of the temperature on the approximate spectra
is qualitatively different from that on the exact spectra.
While on decreasing the temperature, the exact spectrum
shifts to higher frequencies, the approximate spectrum
shifts to lower frequencies. Both the types of simula-
tions show the sharpening of the absorption spectrum at
lower temperatures. Consequences of adding static dis-
order to the Hamiltonian can be trivially incorporated
in the MS-TNPI procedure through an external Monte
Carlo averaging of separate MS-TNPI runs. A detailed
exploration of such effects would be the topic of a future
exploration.

MS-TNPI does not restrict the simulation to the first
excitation subspace as many other methods do. These
“full space” simulations, however, still remain quite sim-
ple. The singular value decompositions involved seem
to be able to filter out the unnecessary information and
lead to very compact representations. We simulate the
dynamics corresponding to a local excitation, and show
that the entanglement between the sites as calculated by
the average bond dimension does not grow exponentially
with time, even in the absence of the bath. This is unlike
what happens in say the Ising model [22], and is proba-
bly due to the sparsity and the block-diagonal structure
of the Frenkel Hamiltonian. It is also interesting that
unlike the case of the Ising model where the presence
of the bath controls the entanglement between different
sites [22], in the case of the Frenkel-Holstein model, the
presence of the bath actually serves to slightly increase
the entanglement. This deserves further study.

While here we have explored the dynamics and the ab-
sorption spectra, other experimentally realizable observ-
ables can be also be simulated with similar conceptual
simplicity. Further investigation of other observables,
especially multi-time correlation functions and longer
ranged interactions will be the focus of future work. In-
corporation of long ranged interactions, through more ad-
vanced propagators (e.g., W I,II or TDVP based propaga-
tors), would be important in capturing dipole-dipole in-
teractions between distant monomers in the Hamiltonian.
MS-TNPI provides a flexible scheme for incorporation of
increasingly complex Hamiltonians and effects of baths
in a unified framework, making it a lucrative method for
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studying quantum transport in extended quantum sys-
tems.
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Appendix A: MS-TNPI Tensor Network

Here, we give a short outline of the exact expressions
for deriving the 2D MS-TNPI tensor network [22]. The
reduced density matrix of a quantum system coupled to
a dissipative bath is given by the following path integral
expression,

ρ̃(S±N , N∆t) =
∑
{S±j }

P
(0)

S±0 ,S
±
1 ,...,S

±
N

ρ̃(S±0 , 0)F
[
{S±j }

]
(A1)

P
(0)

S±0 ,...,S
±
N

= K(S±N , S
±
N−1,∆t) . . .K(S±1 , S

±
0 ,∆t)

(A2)

where F is the Feynman-Vernon influence functional [30],
P (0) is the bare path amplitude tensor and K is the
forward-backward propagator. The system states at the
nth time point are collectively denoted by S±n . When
referring to a specific site and time point, the first in-
dex represents the spatial index and the second one the
temporal index (i.e., s±i,n corresponds to the state of the

ith site at the nth time point). The forward-backward
propagator is the superoperator that evolves the density
matrix of the isolated system in time. It can be written
as direct product of the forward, U , and backward, U†,
system propagators,

K(S±n , S
±
n+1,∆t) = U(S+

n , S
+
n+1,∆t)U

†(S−n , S
−
n+1,∆t).

(A3)

There are two parts to the simulation. First, we have
to need a proper representation for the forward-backward
propagator. This is challenging due to the exponential
growth of space requirements with the number of parti-
cles in the system. Various formalisms have been used to
obtain the propagators in the compressed matrix product
operator form [6, 29]. MS-TNPI can work with any of
these propagators, though we have used the second-order
Suzuki-Trotter split propagator.

Once the propagator has been defined, we need to in-
clude the influence functional. For that, one needs to be
able to account for the non-Markovian memory induced
by the bath. Usual propagations with MPO propagators
simulate the Markovian dynamics in absence of solvent

FIG. 18. 2D MS-TNPI tensor network.

FIG. 19. Schematic depiction of the SVD factorization of the
forward-backward propagator MPO.

modes [4, 45]. To take the memory effects into account,
we need a compact tensor network representation of the
bare path amplitude tensor P (0). This intuitively in-
volves the construction of a grid of multiple points on the
time axis. Combined with the MPO representation for
the forward-backward propagator that involves a split-
ting along the spatial or system axis, one can visualize
the formation of a 2D tensor network as shown in Fig. 18.
Once this network is created, it is possible to apply the
site-dependent influence functional, written as an MPO
on every row of the network. In this section, we derive
the formalism required for specifying and constructing
the network. In Appendix B, we deal with representing
the influence functional in the form of an MPO to be
applied to each row.

To obtain the tensor network schematically shown in
Fig. 18, we proceed by using SVD to factor the forward-
backward propagator MPO as shown in Fig. 19:

K
(
S±n , S

±
n+1,∆t

)
=

∑
{α(i,n)}

W
s±1,n,s

±
1,n+1

α(1,n)
W

s±2,n,s
±
2,n+1

α(1,n),α(2,n)

· · ·W s±P−1,n,s
±
P−1,n+1

α(P−2,n),α(P−1,n)
W

s±P,n,s
±
P,n+1

α(P−1,n)
,

(A4)

W
s±1,n,s

±
1,n+1

α(1,n)
=
∑
β(1,n)

L
s±1,n
α(1,n),β(1,n)

R
s±1,n+1

β(1,n)
(A5)

W
s±i,n,s

±
i,n+1

α(i−1,n),α(i,n)
=
∑
β(i,n)

L
s±i,n
α(i−1,n),α(i,n),β(i,n)

R
s±i,n+1

β(i,n)
, 1 < i < P

(A6)
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W
s±P,n,s

±
P,n+1

α(P−1,n)
=
∑
β(P,n)

L
s±P,n

α(P−1,n),β(P,n)
R
s±P,n+1

β(P,n)
. (A7)

where W are the tensors constituting the MPO repre-
sentation. L and R are the factors obtained through
the SVD procedure with the square root of the singu-
lar value matrix being absorbed into the factors. As per
convention, the bonds along the spatial and temporal
dimensions are denoted by α and β. Notice that the ten-
sors L and R act on single system sites. By substituting
the factorization for the forward-backward propagator in
Eq. (A2) and regrouping terms, one can obtain the fol-
lowing form:

P
(0)

S±0 ···S
±
N

=
∑
{βn}

TS
±
0

β0
· · ·TS

±
n

βn−1,βn
· · ·TS

±
N

βN−1
. (A8)

It is now quite simple to list the tensors constitut-
ing the MPs, T, in Eq. (A8), in terms of L and R. In
the most general case, each of these constituent tensors,
represented here by M , possesses five indices: one site,
s±i,n, and four bonds (α(i,n), β(i,n), α(i−1,n) and β(i,n−1)),
where the values of i and n correspond to the location of
the tensor in the 2D grid structure. The tensors consti-
tuting the edges of the network (Fig. 18) obviously have
a different topology. The tensors corresponding to the
initial time point, or equivalently the first column, are
given as:

M
s±1,0
α(1,0),β(1,0)

= L
s±1,0
α(1,0),β(1,0)

(A9)

M
s±i,0
α(i,0),β(i,0),α(i−1,0)

= L
s±i,0
α(i−1,0),α(i,0),β(i,0)

(A10)

M
s±P,0

α(P−1,0),β(P,0)
= L

s±P,0

α(P−1,0),β(P,0)
. (A11)

Next, we list the expressions for the final point, last col-
umn:

M
s±1,N
β(1,N−1)

= R
s±1,N
β(1,N−1)

(A12)

M
s±i,N
β(i,N−1)

= R
s±i,N
β(i,N−1)

(A13)

M
s±P,N

β(P,N−1)
= R

s±P,N

β(P,N−1)
. (A14)

Lastly, for an intermediate time point, n:

M
s±1,n
α(1,n),β(1,n),β(1,n−1)

= R
s±1,n
β(1,n−1)

L
s±1,n
α(1,n),β(1,n)

(A15)

M
s±i,n
α(i,n),β(i,n),α(i−1,n),β(i,n−1)

= R
s±i,n
β(i,n−1)

L
s±i,n
α(i−1,n),α(i,n),β(i,n)

(A16)

M
s±P,n

β(P,n),α(P−1,n),β(P,n−1)
= R

s±P,n

β(P,n−1)
L
s±P,n

α(P−1,n),β(P,n)
.

(A17)

These expressions give a complete description of the
MS-TNPI tensor network. The final step is the inclusion
of the influence functional. The tensor network is ready

for application of an MPO encoding the influence func-
tional on each of the rows. The form of the influence
functional MPO is given in Appendix B.

Appendix B: Influence Functional MPO

After the construction of the network, we need to be
able to define the influence functional MPOs that enable
the systematic incorporation of the impact of the envi-
ronment on the dynamics of the system. Summarizing
the results discussed in depth in Ref. [24], the full site-
local influence functional, Fi

[{
s±i,n
}]

, can be factored
and rewritten as a product of terms corresponding to
interactions with different end-times, Fi,k

[{
s±i,n
}]

:

Fi
[{
s±i,n
}]

=
∏

0≤k≤N

Fi,k
[{
s±i,n
}]

(B1)

with

Fi,k
[{
s±i,n
}]

= exp

−1

~
∆si,k

∑
0≤k′≤k

(Re(ηikk′)∆si,k′

+ 2i Im(ηikk′)s̄i,k′)

 . (B2)

Grouping the forward-backward states of the extended
system by unique values of ∆si,k allows us to represent
the the influence functional associated with a particular
site and end time point, Fi,k

[{
s±i,n
}]

, as an MPO. To
see this, let us consider the case where there are b unique
values of ∆si,k indexed by β. We note that for the subset
of forward-backward paths where ∆si,k = fi(β), we can
express the influence functional, Eq. (B2), as

Fi,k (β) = F 0
i,k (β)⊗ F 1

i,k (β) · · ·F k−1
i,k (β)⊗ F ki,k (β)P

s±i,k
fi(β),

(B3)

where F k
′

i,k (β) = e−
1
~ fi(β)(Re(ηikk′)Di,k′+2i Im(ηikk′)Si,k′) is

an operator that only acts on the ith site and the k′th

time point. In this notation P
s±i,k
fi(β) is the projection op-

erator on to the space where ∆si,k = fi(β); addition-
ally, Di,n and Si,n are diagonal matrices that represent
the difference and average position of the system in the
forward-backward basis, respectively. For each of the b
unique value of ∆si,k, the expression for the influence
functional reduces to a direct product of local operators;
therefore, Fi,k

[{
s±i,n
}]

corresponds to a sum of direct

products. Hence we can express Fi,k
[{
s±i,n
}]

as a MPO,
Fi,k, with a bond dimension of b:

Fi,k =
∑
{β(i,n)}

W
s±i,0,s

′±
i,0

β(i,0)
(ηik0) · · ·W

s±
i,k′ ,s

′±
i,k′

β(i,k′−1),β(i,k′)
(ηikk′)

×W
s±
i,k′+1

,s
′±
i,k′+1

β(i,k′),β(i,k′+1)
(ηik(k′+1)) · · ·W

s±i,k,s
′±
i,k

β(i,k−1)
(ηikk) (B4)

Here, W are the various tensors constituting our influence
functional MPO, and are defined as:
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W
s±i,0,s

′±
i,0

β(i,0)
(ηik0) = δ

s±i,0,s
′±
i,0

exp
(
− 1

~fi(β(i,0))(Re(ηik0)∆si,0 + 2i Im(ηik0)s̄i,0)
)

(B5)

W
s±
i,k′ ,s

′±
i,k′

β(i,k′−1),β(i,k′)
(ηikk′) = δ

s±
i,k′ ,s

′±
i,k′
δβ(i,k′−1),β(i,k′) exp

(
− 1

~fi(β(i,k′−1))(Re(ηikk′)∆si,k′ + 2i Im(ηikk′)s̄i,k′)
)

(B6)

W
s±i,k,s

′±
i,k

β(i,k−1)
(ηikk) = δ

s±i,k,s
′±
i,k

P
s±i,k
fi(β(i,k−1))

exp
(
− 1

~∆si,k(Re(ηikk)∆si,k + 2i Im(ηikk)s̄i,k)
)

(B7)

It’s worth noting that the primed forward-backward in-
dices that appear in Eqs. (B4) – (B7) are necessary for
bookkeeping purposes only. Computationally, for any
particular time-step, we only apply the Fi,n operators
corresponding to the final time point. This procedure
leads to a sequential or iterative build-up of the full in-
fluence functional including the effects arising from all
the intermediate points.

Appendix C: Total Dipole Moment MPO

In the paper, we have outlined a general idea about
how to calculate the MPO representation for the total
dipole operator as a sum of individual MPOs. However, it
is possible to represent it as an MPO in an exact manner
without resorting to MPO summations. In this appendix,
we outline the basic formulae involved in deriving a low
bond-dimensioned MPO representation for the operator.

Consider the initial “state” involved in the absorption
spectrum:

C(t) = Tr(µ̂(t)µ̂(0)ρ(0)). (C1)

The µ̂ operator acts on the forward space or on the ket
side. We can formulate an MPO which is a delta function
on the bra side and the total dipole operator on the ket
side. This MPO is denoted by ¯̄µ+. The superscript “+”
denotes that the total dipole acts on the forward space.

¯̄µ+ =
∑
{αi}

W
s±1 ,s

′±
1

α1 W
s±2 ,s

′±
2

α1,α2 · · ·W
s±P−1,s

′±
P−1

αP−2,αP−1W
s±P ,s

′±
P

αP−1

(C2)

where W are the constituent tensors of the MPO. The
site indices are s±i and s±

′

i . The intuition is that s±i are

the “input” indices and s
′±
i are the output indices. The

primes have no other semantic meaning. The bond index
connecting the ith and (i+ 1)th are denoted by αi.

Below we list the explicit formulae for the W tensors.

W
s±1 ,s

′±
1

α1 =


〈
s
′+
1

∣∣∣µ̂1

∣∣∣s+
1

〉
δ
s−1 ,s

′−
1
, α1 = 0

δ
s±1 ,s

′±
1
, α1 = 1

(C3)

W
s±i ,s

′±
i

αi−1,αi =


δ
s±i ,s

′±
i

, αi−1 = αi〈
s
′+
i

∣∣∣µ̂i∣∣∣s+
i

〉
δ
s−i ,s

′−
i

, αi−1 = 1 and αi = 0

0, otherwise

(C4)

W
s±P ,s

′±
P

αP−1 =

δs±P ,s′±P , αP−1 = 1〈
s
′+
P

∣∣∣µ̂P ∣∣∣s+
P

〉
δ
s−P ,s

′−
P

, αP−1 = 0
(C5)

Note that since the bond indices only take two values
(0 or 1), the bond dimension of this analytical dipole
moment MPO is exactly 2.

Appendix D: Excitonic Eigenstates

In the main text, we discussed three different system
parameter sets in the context of the absorption spectrum.
We dealt with the TrEsp parameters, with and without
the 197 cm−1 variation in the excitation energies of neigh-
boring BChl units, and the experimentally derived pa-
rameters with the variation. Here we list the energies of
the excitonic eigenstates for all three parameters. These
eigen-energies do not account for the solvent interaction
at all.

State TrEsp TrEsp Experimental
No. w/o Variation w/ Variation w/ Variation
0 11679.5 11664.4 11715.4
±1 11703.1 11686.8 11756.6
±2 11770.0 11749.1 11872.9
±3 11868.9 11834.5 12039.4
4 11959.5 11888.6 12163.1
5 12025.5 12096.4 12404.8
±6 12116.1 12150.6 12528.5
±7 12215.1 12235.9 12695.0
±8 12282.0 12298.3 12811.3
9 12305.5 12320.7 12852.6

TABLE I. Energies for the excitonic eigenstates in absence of
coupling to the thermal environment.
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