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Tensor network decompositions offer an efficient description of certain many-body states of a lattice system

and are the basis of a wealth of numerical simulation algorithms. In a recent paper [Phys. Rev. A 82, 050301

(2010)] we discussed how to incorporate a global internal symmetry, given by a compact, completely reducible

group G, into tensor network decompositions and algorithms. Here we specialize to the case of Abelian groups

and, for concreteness, to a U(1) symmetry, associated, e.g., with particle number conservation. We consider tensor

networks made of tensors that are invariant (or covariant) under the symmetry, and explain how to decompose and

manipulate such tensors in order to exploit their symmetry. In numerical calculations, the use of U(1)-symmetric

tensors allows selection of a specific number of particles, ensures the exact preservation of particle number,

and significantly reduces computational costs. We illustrate all these points in the context of the multiscale

entanglement renormalization Ansatz.

DOI: 10.1103/PhysRevB.83.115125 PACS number(s): 03.65.Ud, 03.67.Hk

I. INTRODUCTION

Tensor networks are becoming increasingly popular as

a tool to represent wave functions of quantum many-body

systems. Their success is based on the ability to efficiently

describe the ground state of a broad class of local Hamiltonians

on the lattice. Tensor network states are used both as a

variational Ansatz to numerically approximate ground states

and as a theoretical framework to characterize and classify

quantum phases of matter.

Examples of tensor network states for one-dimensional

systems include the matrix product state1–3 (MPS), which

results naturally from both Wilson’s numerical renormal-

ization group4 and White’s density-matrix renormalization

group5–8 (DMRG) and is also used as a basis for simulation

of time evolution, e.g., with the time evolving block deci-

mation (TEBD)9–11 algorithm and variations thereof, often

collectively referred to as time-dependent DMRG;9–14 the

tree tensor network15 (TTN), which follows from coarse-

graining schemes where the spins are blocked hierarchically;

and the multiscale entanglement renormalization Ansatz16–21

(MERA), which results from a renormalization-group proce-

dure known as entanglement renormalization.16,21 For two-

dimensional (2D) lattices there are generalizations of these

three tensor network states, namely projected entangled

pair states22–31 (PEPS), 2D TTN,32,33 and 2D MERA,34–40

respectively. As variational Ansätze, PEPS and 2D MERA

are particularly interesting since they can be used to address

large two-dimensional lattices, including systems of frustrated

spins31,40 and interacting fermions,41–50 where Monte Carlo

techniques fail due to the sign problem.

A many-body Hamiltonian Ĥ may be invariant under

certain transformations that form a group of symmetries.51 The

symmetry group divides the Hilbert space of the theory into

symmetry sectors labeled by quantum numbers or conserved

charges. On a lattice one can distinguish between space
symmetries, which correspond to some permutation of the

sites of the lattice, and internal symmetries, which act on the

vector space of each site. An example of space symmetry is

invariance under translations by some unit cell, which leads to

conservation of momentum. An example of internal symmetry

is SU(2) invariance, e.g., spin isotropy in a quantum spin

model. An internal symmetry can in turn be global, if it

transforms the space of each of the lattice sites according to

the same transformation (e.g., a spin independent rotation); or

local, if each lattice site is transformed according to a different

transformation (e.g., a spin dependent rotation), as it is in the

case of gauge symmetric models. A global internal SU(2)

symmetry gives rise to conservation of total spin. By targeting

a specific symmetry sector during a calculation, computational

costs can often be significantly reduced while explicitly

preserving the symmetry. It is therefore not surprising that

symmetries play an important role in numerical approaches.

In Ref. 52 we described a formalism for incorporating

global internal symmetries into a generic tensor network

algorithm. Both Abelian and non-Abelian symmetries were

considered. The purpose of this paper is to address, at a

pedagogical level, the implementation of Abelian symmetries

into tensor networks. We will also discuss several practical

aspects of the exploitation of Abelian symmetries not covered

in Ref. 52. For concreteness we will concentrate on the U(1)

symmetry, but extending our results to any Abelian group is

straightforward. A similar analysis of non-Abelian groups will

be considered in Ref. 53.

In tensor network approaches, the exploitation of global

internal symmetries has a long history, especially in the context

of MPSs. Both Abelian and non-Abelian symmetries have

been thoroughly incorporated into DMRG code and have been

exploited to obtain computational gains.2,5,14,54–62 Symmetries

have also been used in more recent proposals to simulate time

evolution with MPSs.10–14,63–68

When considering symmetries, it is important to notice that

an MPS is a trivalent tensor network. That is, in an MPS

each tensor has at most three indices. The Clebsch-Gordan

coefficients51 (or coupling coefficients) of a symmetry group

are also trivalent, and this makes incorporating the symmetry

into an MPS by considering symmetric tensors particularly

simple. In contrast, tensor network states with a more elaborate

network of tensors, such as MERA or PEPS, consist of tensors

having a larger number of indices. In this case a more general

formalism is required in order to exploit the symmetry. As
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explained in Ref. 52, a generic symmetric tensor can be

decomposed into a degeneracy part, which contains all degrees

of freedom not determined by symmetry, and a structural
part, which is completely determined by symmetry and can be

further decomposed as a trivalent network of Clebsch-Gordan

coefficients.

The use of symmetric tensors in more complex tensor

networks has also been discussed in Refs. 69,70. In particular,

Ref. 69 has shown that under convenient conditions (injectiv-

ity), a PEPS that represents a symmetric state can be repre-

sented with symmetric tensors, generalizing similar results for

MPSs obtained in Ref. 61. Notice that these studies are not

concerned with how to decompose symmetric tensors so as to

computationally protect or exploit the symmetry. On the other

hand, exploitation of U(1) symmetry for computational gain

in the context of PEPS was reported in Ref. 70, although no

implementation details were provided. Finally, several aspects

of local internal symmetries in tensor network algorithms have

been addressed in Refs. 71–74.

The paper is organized in sections as follows. Section II

contains a review of the tensor network formalism and intro-

duces the nomenclature and diagrammatical representation of

tensors used in the rest of the paper. It also describes a set P
of primitives for manipulating tensor networks, consisting of

manipulations that involve a single tensor (permutation, fusion,

and splitting of the indices of a tensor) and matrix operations

(multiplication and factorization).

Section III reviews basic notions of representation theory

of the Abelian group U(1). The action of the group is analyzed

first on a single vector space, where U(1)-symmetric states

and U(1)-invariant operators are decomposed in a compact,

canonical manner. This canonical form allows us to identify the

degrees of freedom which are not constrained by the symmetry.

The action of the group is then also analyzed on the tensor

product of two vector spaces and, finally, on the tensor product

of a finite number of vector spaces.

Section IV explains how to incorporate the U(1) symmetry

into a generic tensor network algorithm, by considering U(1)-

invariant tensors in a canonical form, and by adapting the

set P of primitives for manipulating tensor networks. These

include the multiplication of two U(1)-invariant matrices in

their canonical form, which is at the core of the computational

savings obtained by exploiting the symmetry in tensor network

algorithms.

Section V illustrates the practical exploitation of the U(1)

symmetry in a tensor network algorithm by presenting MERA

calculations of the ground state and low-energy states of

two quantum spin chain models. Section VI contains some

conclusions.

The canonical form offers a more compact description of

U(1)-invariant tensors, and leads to faster matrix multiplica-

tions and factorizations. However, there is also an additional

cost associated with maintaining an invariant tensor in its

canonical form while reshaping (fusing and/or splitting) its

indices. In some situations, this cost may offset the benefits of

using the canonical form. In the Appendix we discuss a scheme

to lower this additional cost in tensor network algorithms that

are based on iterating a repeated sequence of transformations.

This is achieved by identifying, in the manipulation of a

tensor, operations which only depend on the symmetry. Such

operations can be precomputed once at the beginning of a

simulation. Their result, stored in memory, can be reused at

each iteration of the simulation. The Appendix describes two

such specific precomputation schemes.

II. REVIEW: TENSOR NETWORK FORMALISM

In this section we review background material concerning

the formalism of tensor networks, without reference to sym-

metry. We introduce basic definitions and concepts, as well

as the nomenclature and graphical representation for tensors,

tensor networks, and their manipulations, that will be used

throughout the paper.

A. Tensors

A tensor T̂ is a multidimensional array of complex numbers

T̂i1i2···ik ∈ C. The rank of tensor T̂ is the number k of indices.

For instance, a rank-0 tensor (k = 0) is a complex number.

Similarly, rank-1 (k = 1) and rank-2 (k = 2) tensors represent

vectors and matrices, respectively. The size of an index i,

denoted |i|, is the number of values that the index takes, i ∈
{1,2, . . . ,|i|}. The size of a tensor T̂ , denoted |T̂ |, is the number

of complex numbers it contains, namely |T̂ | = |i1| × |i2| ×
· · · × |ik|. In this paper we will use the hat, ˆ , to indicate that

an object is a tensor. We include vectors in this convention,

writing their components as, e.g., �̂i , although for simplicity

we will omit the hat when a vector is written in bra or ket form,

e.g., |�〉.
It is convenient to use a graphical representation of tensors,

as introduced in Fig. 1, where a tensor T̂ is depicted as a circle

(more generally some shape, e.g., a square) and each of its

indices is represented by a line emerging from it. In order to

specify which index corresponds to which emerging line, we

follow the prescription that the lines corresponding to indices

{i1,i2, . . . ,ik} emerge in counterclockwise order. Unless stated

otherwise, the first index will correspond to the line emerging

at nine o’clock (or the first line encountered while proceeding

counterclockwise from nine o’clock).

Two elementary ways in which a tensor T̂ can be

transformed are by permuting and reshaping its indices. A

permutation of indices corresponds to creating a new tensor

T̂ ′ from T̂ by simply changing the order in which the indices

appear, e.g.,

(T̂ ′)acb = T̂abc. (1)

(a) (b)

FIG. 1. (Color online) (a) Graphical representation of a tensor T̂

of rank k and components T̂i1i2···ik . The tensor is represented by a

shape (circle) with k emerging lines corresponding to the k indices

i1,i2, . . . ,ik . Notice that the indices emerge in counterclockwise order.

(b) Graphical representation of tensors with rank k = 0,1, and 2,

corresponding to a complex number c ∈ C, a vector |v〉 ∈ C
|i|, and a

matrix M̂ ∈ C
|i1|×|i2|, respectively.
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(a)

(b)

FIG. 2. (Color online) Transformations of a tensor: (a) Permuta-

tion of indices b and c. (b) Fusion of indices b and c into d = b × c;

splitting of index d = b × c into b and c.

On the other hand, a tensor T̂ can be reshaped into a new

tensor T̂ ′ by “fusing” and/or “splitting” some of its indices.

For instance, in

(T̂ ′)ad = T̂abc, d = b × c, (2)

tensor T̂ ′ is obtained from tensor T̂ by fusing indices b ∈
{1, . . . ,|b|} and c ∈ {1, . . . ,|c|} together into a single index d

of size |d| = |b| · |c| that runs over all pairs of values of b and

c, i.e., d ∈ {(1,1),(1,2), . . . ,(|b|,|c| − 1),(|b|,|c|)}, whereas in

T̂abc = (T̂ ′)ad , d = b × c, (3)

tensor T̂ is recovered from T̂ ′ by splitting index d of T̂ ′

back into indices b and c. The permutation and reshaping

of the indices of a tensor have a straightforward graphical

representation; see Fig. 2.

B. Multiplication of two tensors

Given two matrices R̂ and Ŝ with components R̂ab and

Ŝbc, we can multiply them together to obtain a new matrix T̂ ,

T̂ = R̂ · Ŝ, with components

T̂ac =
∑

b

R̂abŜbc, (4)

by summing over or contracting index b. The multiplication

of matrices R̂ and Ŝ is represented graphically by connecting

together the emerging lines of R̂ and Ŝ corresponding to the

contracted index, as shown in Fig. 3(a).

Matrix multiplication can be generalized to tensors. For

instance, given tensors R̂ and Ŝ with components R̂abcd and

(a)

(b)

FIG. 3. (Color online) (a) Graphical representation of the matrix

multiplication of two matrices R̂ and Ŝ into a new matrix T̂ [Eq. (4)].

(b) Graphical representation of an example of the contraction of two

tensors R̂ and Ŝ into a new tensor T̂ [Eq. (5)].

Ŝcf bh, we can define a tensor T̂ with components T̂haf d given

by

T̂haf d =
∑

bc

R̂abcd Ŝcf bh. (5)

Again the multiplication of two tensors can be graphically

represented by connecting together the lines corresponding to

indices that are being contracted [indices b and c in Eq. (5)];

see Fig. 3(b).

The multiplication of two tensors can be broken down into

a sequence of elementary steps by transforming the tensors

into matrices, multiplying the matrices together, and then

transforming the resulting matrix back into a tensor. Next we

describe these steps for the contraction given in Eq. (5). They

are illustrated in Fig. 4.

(1) Permute the indices of tensor R̂ in such a way that the

indices to be contracted, b and c, appear in the last positions

and in a given order, e.g., bc; similarly, permute the indices of

Ŝ so that the indices to be contracted, again b and c, appear in

the first positions and in the same order bc:

(R̂′)adbc = R̂abcd ,
(6)

(Ŝ ′)bcf h = Ŝcf bh.

(2) Reshape tensor R̂′ into a matrix R̂′′ by fusing into

a single index u all the indices that are not going to be

contracted, u = a × d, and into a single index y all indices

to be contracted, y = b × c. Similarly, reshape tensor Ŝ ′ into

a matrix Ŝ ′′ with indices y = b × c and w = f × h,

(R̂′′)uy = (R̂′)adbc,
(7)

(Ŝ ′′)yw = (Ŝ ′)bcf h.

(3) Multiply matrices R̂′′ and Ŝ ′′ to obtain a matrix T̂ ′′, with

components

(T̂ ′′)uw =
∑

y

(R̂′′)uy(Ŝ ′′)yw. (8)

FIG. 4. (Color online) Graphical representations of the five ele-

mentary steps (1)–(5) into which one can decompose the contraction

of the tensors of Eq. (5).
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(4) Reshape matrix T̂ ′′ into a tensor T̂ ′ by splitting indices

u = a × d and w = f × h,

(T̂ ′)adf h = (T̂ ′′)uw. (9)

(5) Permute the indices of T̂ ′ into the order in which they

appear in T̂ ,

T̂haf d = (T̂ ′)adf h. (10)

We note that breaking down a multiplication of two tensors

into elementary steps is not necessary—one can simply

implement the contraction of Eq. (5) as a single process.

However, it is often more convenient to compose the above

elementary steps since, for instance, in this way one can

use existing linear algebra libraries for matrix multiplication.

In addition, it can be seen that the leading computational

cost in multiplying two large tensors is not changed when

decomposing the contraction in the above steps. In Sec. IV I

this subject will be discussed in more detail for U(1)-invariant

tensors.

C. Factorization of a tensor

A matrix T̂ can be factorized into the product of two (or

more) matrices in one of several canonical forms. For instance,

the singular value decomposition

T̂ab =
∑

c,d

ÛacŜcd V̂db =
∑

c

ÛacscV̂cb (11)

factorizes T̂ into the product of two unitary matrices Û and V̂ ,

and a diagonal matrix Ŝ with non-negative diagonal elements

sc = Ŝcc known as the singular values of T̂ ; see Fig. 5(a).

On the other hand, the eigenvalue or spectral decomposition
of a square matrix T̂ is of the form

T̂ab =
∑

c,d

M̂acDcd (M̂−1)db =
∑

c

M̂acλc(M̂−1)cb, (12)

where M̂ is an invertible matrix whose columns encode the

eigenvectors |λc〉 of T̂ ,

T̂ |λc〉 = λc|λc〉, (13)

M̂−1 is the inverse of M̂ , and D̂ is a diagonal matrix, with the

eigenvalues λc = D̂cc on its diagonal. Other useful factoriza-

tions include the LU decomposition, the QR decomposition,

etc. We refer to any such decomposition generically as a matrix
factorization.

A tensor T̂ with more than two indices can be converted

into a matrix in several ways, by specifying how to join its

indices into two subsets. After specifying how tensor T̂ is

to be regarded as a matrix, we can factorize T̂ according

to any of the above matrix factorizations, as illustrated in

Fig. 5(b) for a singular value decomposition. This requires first

permuting and reshaping the indices of T̂ to form a matrix, then

decomposing the latter, and finally restoring the open indices

of the resulting matrices into their original form by undoing

the reshapes and permutations.

(a)

(b)

FIG. 5. (Color online) (a) Factorization of a matrix T̂ according

to a singular value decomposition (11). (b) Factorization of a

rank-4 tensor T̂ according to one of several possible singular value

decompositions.

D. Tensor networks and their manipulation

A tensor network N is a set of tensors whose indices

are connected according to a network pattern, e.g., Fig. 6.

Given a tensor network N , a single tensor T̂ can be obtained

by contracting all the indices that connect the tensors in N
[Fig. 6(b)]. Here, the indices of tensor T̂ correspond to the

open indices of the tensor network N . We then say that the

network N is a tensor network decomposition of T̂ . One way

to obtain T̂ from N is through a sequence of contractions

involving two tensors at a time [Fig. 6(c)].

From a tensor network decomposition N for a tensor T̂ ,

another tensor network decomposition for the same tensor T̂

can be obtained in many ways. One possibility is to replace

two tensors in N with the tensor resulting from contracting

them together, as is done in each step of Fig. 6(c). Another way

is to replace a tensor in N with a decomposition of that tensor

(e.g., with a singular value decomposition). In this paper, we

will be concerned with manipulations of a tensor network that,

as in the case of multiplying two tensors or decomposing a

tensor, can be broken down into a sequence of operations from

the following list:

(1) Permutation of the indices of a tensor, Eq. (1).

(2) Reshape of the indices of a tensor, Eqs. (2) and (3).

(3) Multiplication of two matrices, Eq. (4).

(a) (b)

(c)

FIG. 6. (Color online) (a) Example of a tensor network N .

(b) Tensor T̂ of which the tensor networkN could be a representation.

(c) Tensor T̂ can be obtained from N through a sequence of

contractions of pairs of tensors. Shading indicates the two tensors

to be multiplied together at each step.
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(4) Decomposition of a matrix [e.g., singular value decom-

position (11) or spectral decomposition (12)].

These operations constitute a set P of primitive operations

for tensor network manipulations (or, at least, for the type

of manipulations we will be concerned with). In Sec. IV we

will discuss how this set P of primitive operations can be

generalized to tensors that are symmetric under the action of

the group U(1).

E. Tensor network states for quantum many-body systems

As mentioned in the Introduction of the paper, tensor

networks are used as a means to represent the wave function

of certain quantum many-body systems on a lattice. Let us

consider a lattice L made of L sites, each described by a

complex vector space V of dimension d. A generic pure state

|�〉 ∈ V
⊗L of L can always be expanded as

|�〉 =
∑

i1,i2,...,iL

�̂i1i2···iL |i1〉|i2〉 · · · |iL〉, (14)

where is = 1, . . . ,d labels a basis |is〉 of V for site s ∈ L.

Tensor �̂, with components �̂i1i2···iL , contains dL complex

coefficients. This is a number that grows exponentially with

the size L of the lattice. Thus the representation of a generic
pure state |�〉 ∈ V

⊗L is inefficient. However, it turns out that

an efficient representation of certain pure states can be obtained

by expressing tensor �̂ in terms of a tensor network.

Figure 7 shows several popular tensor network decompo-

sitions used to approximately describe the ground states of

local Hamiltonians H of lattice models in one or two spatial

dimensions. The open indices of each of these tensor networks

correspond to the indices i1,i2, . . . ,iL of tensor �̂. Notice that

all the tensor networks of Fig. 7 contain O(L) tensors. If p

is the rank of the tensors in one of these tensor networks,

and χ is the size of their indices, then the tensor network

depends on O(Lχp) complex coefficients. For a fixed value

of χ this number grows linearly in L, and not exponentially.

(a)

(b)

(c)

(d)

(e)

FIG. 7. (Color online) Examples of tensor network states for 1D

systems: (a) matrix product state (MPS), (b) tree tensor network

(TTN), (c) multiscale entanglement renormalization Ansatz (MERA).

Examples of tensor network states for 2D systems: (d) projected

entangled-pair state PEPS, (e) 2D TTN (2D MERA not depicted).

It therefore does indeed offer an efficient description of the

pure state |�〉 ∈ V
⊗L that it represents. Of course only a

subset of pure states can be decomposed in this way. Such

states, often referred to as tensor network states, are used as

variational Ansätze, with the O(Lχp) complex coefficients as

the variational parameters.

Given a tensor network state, a variety of algorithms (see,

e.g., Refs. 4–50) are used for tasks such as (i) computation

of the expectation value 〈�|ô|�〉 of a local observable

ô, (ii) optimization of the variational parameters so as to

minimize the expectation value of the energy 〈�|Ĥ |�〉, or

(iii) simulation of time evolution, e.g., e−iĤ t |�〉. These tasks

are accomplished by manipulating tensor networks.

On most occasions, all required manipulations can be

reduced to a sequence of primitive operations in the set P
introduced in Sec. II D. Thus in order to adapt the tensor

network algorithms of, e.g., Refs. 4–50 to the presence of

a symmetry, we only need to modify the set P of primitive

tensor network operations. This will be done in Sec. IV.

F. Tensors as linear maps

A tensor can be used to define a linear map between vector

spaces in the following way. First, notice that an index i can

be used to label a basis {|i〉} of a complex vector space V
[i] ∼=

C
|i| of dimension |i|. On the other hand, given a tensor T̂

of rank k, we can attach a direction “in” or “out” to each

index i1,i2, . . . ,ik . This direction divides the indices of T̂ into

the subset I of incoming indices and the subset O of outgoing
indices. We can then build input and output vector spaces given

by the tensor product of the spaces of incoming and outgoing

indices,

V
[in] =

⊗

il∈I

V
[il ], V

[out] =
⊗

il∈O

V
[il ], (15)

and use tensor T̂ to define a linear map between V
[in] and

V
[out]. For instance, if a rank-3 tensor T̂abc has one incoming

index c ∈ I and two outgoing indices a,b ∈ O, then it defines

a linear map T̂ : V
[c] → V

[a] ⊗ V
[b] given by

T̂ =
∑

a,b,c

T̂abc|a〉|b〉〈c|. (16)

Graphically, we denote the direction of an index by means of

an arrow; see Fig. 8(a).

(a) (b)

FIG. 8. (Color online) (a) Tensor T̂ with one incoming index and

two outgoing indices, denoted by incoming and outgoing arrows,

respectively [Eq. (16)]. (b) A tensor network N with directed links

can be interpreted as a linear map between incoming and outgoing

spaces (of the incoming and outgoing indices) obtained by composing

the linear maps associated with each of the tensors in N .
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By decorating the lines of a tensor network N with arrows

[Fig. 8(b)], this can be regarded as a composition of linear

maps—namely, one linear map for each tensor in N . While

arrows might be of limited relevance in the absence of a

symmetry, they will play an important role when we consider

symmetric tensors since they specify how the group acts on

each index of a given tensor.

III. REVIEW: REPRESENTATION THEORY

OF THE GROUP U(1)

In this section we review basic background material

concerning the representation theory of the group U(1). We

first consider the action of U(1) on a vector space V , which

decomposes into the direct sum of (possibly degenerate)

irreducible representations. We then consider vectors of V

that are symmetric (invariant or covariant) under the action of

U(1), as well as linear operators that are U(1) invariant. Then

we consider the action of U(1) on the tensor product of two

vector spaces, and its generalization to the tensor product of

an arbitrary number of vector spaces.

A. Decomposition into direct sum of irreducible representations

Let V be a finite-dimensional space and let ϕ ∈ [0,2π ) label

a set of linear transformations Ŵϕ ,

Ŵϕ : V → V , (17)

that are a unitary representation of the group U(1). That is,

Ŵ †
ϕŴϕ = ŴϕŴ †

ϕ = I, ∀ ϕ ∈ [0,2π ), (18)

Ŵϕ1
Ŵϕ2

= Ŵϕ2
Ŵϕ1

= Ŵϕ1+ϕ2|2π
, ∀ ϕ1,ϕ2 ∈ [0,2π ).

(19)

Then V decomposes as the direct sum of (possibly degenerate)

one-dimensional irreducible representations (or irreps) of

U(1),

V ∼=
⊕

n

Vn, (20)

where Vn is a subspace of dimension dn, made of dn copies

of an irrep of U(1) with charge n ∈ Z. We say that irrep n

is dn-fold degenerate and that Vn is the degeneracy space.

For concreteness, in this paper we identify the integer charge

n as labeling the number of particles (another frequent

identification is with the z component of the spin, in which case

semi-integer numbers may be considered). The representation

of group U(1) is generated by the particle number operator n̂,

n̂ ≡
∑

n

nP̂n, P̂n ≡

dn
∑

tn=1

|ntn〉〈ntn|, (21)

where P̂n is a projector onto the subspace Vn of particle number

n, and the vectors |ntn〉,

n̂|ntn〉 = n|ntn〉, tn = 1, . . . ,dn, (22)

are an orthonormal basis of Vn. In terms of n̂, the transforma-

tions Ŵϕ read

Ŵϕ = e−in̂ϕ . (23)

It then follows from Eq. (22) that

Ŵϕ|ntn〉 = e−inϕ |ntn〉, ∀ ϕ ∈ [0,2π ). (24)

The dual basis {〈ntn|} is transformed by the dual representation
of U(1), with elements Ŵ †

ϕ , as

〈ntn|Ŵ
†
ϕ = einϕ〈ntn|, ∀ ϕ ∈ [0,2π ). (25)

Example 1. Consider a two-dimensional space V that

decomposes as V ∼= V0 ⊕ V1, where the irreps n = 0 and n =
1 are nondegenerate (i.e., d0 = d1 = 1). Then the orthogonal

vectors {|n = 0,t0 = 1〉,|n = 1,t1 = 1〉} form a basis of V . In

column vector notation,
(

1

0

)

≡ |n = 0,t0 = 1〉,

(

0

1

)

≡ |n = 1,t1 = 1〉, (26)

the particle number operator n̂ and transformation Ŵϕ read

n̂ ≡

(

0 0

0 1

)

, Ŵϕ ≡

(

1 0

0 e−iϕ

)

. (27)

Example 2. Consider a four-dimensional space V that

decomposes as V ∼= V0 ⊕ V1 ⊕ V2, where d0 = d2 = 1 and

d1 = 2, so that now irrep n = 1 is twofold degenerate. Let

{|n = 1,t1 = 1〉,|n = 1,t1 = 2〉} form a basis of V1. In column

vector notation,
⎛

⎜

⎜

⎜

⎝

1

0

0

0

⎞

⎟

⎟

⎟

⎠

≡ |n = 0,t0 = 1〉,

⎛

⎜

⎜

⎜

⎝

0

1

0

0

⎞

⎟

⎟

⎟

⎠

≡ |n = 1,t1 = 1〉, (28)

⎛

⎜

⎜

⎜

⎝

0

0

1

0

⎞

⎟

⎟

⎟

⎠

≡ |n = 1,t1 = 2〉,

⎛

⎜

⎜

⎜

⎝

0

0

0

1

⎞

⎟

⎟

⎟

⎠

≡ |n = 2,t2 = 1〉, (29)

the particle number operator n̂ and transformation Ŵϕ read

n̂ ≡

⎛

⎜

⎜

⎜

⎝

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 2

⎞

⎟

⎟

⎟

⎠

, Ŵ ≡

⎛

⎜

⎜

⎜

⎝

1 0 0 0

0 e−iϕ 0 0

0 0 e−iϕ 0

0 0 0 e−i2ϕ

⎞

⎟

⎟

⎟

⎠

.

(30)

B. Symmetric states and operators

In this work we are interested in states and operators that

have a simple transformation rule under the action of U(1). A

pure state |�〉 ∈ V is symmetric if it transforms as

Ŵϕ|�〉 = e−inϕ |�〉, ∀ ϕ ∈ [0,2π ). (31)

The case n = 0 corresponds to an invariant state, Ŵϕ|�〉 =
|�〉, which transforms trivially under U(1), whereas for n �= 0

the state is covariant, with |�〉 being multiplied by a nontrivial

phase e−inϕ . Notice that a symmetric state |�〉 is an eigenstate

of n̂: that is, it has a well-defined particle number n. |�〉 can
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thus be expanded in terms of a basis of the relevant subspace

Vn,

n̂|�〉 = n|�〉, |�〉 =

dn
∑

tn=1

(�̂n)tn |ntn〉, (32)

where we have introduced a charge label n on the state

coefficients of |�〉 so that we can explicitly associate each

coefficient (�̂n)tn with its corresponding basis vector |ntn〉.

A linear operator T̂ : V → V is invariant if it commutes

with the generator n̂,

[T̂ ,n̂] = 0, (33)

or equivalently if it commutes with the action of the group,

Ŵϕ T̂ Ŵ †
ϕ = T̂ , ∀ ϕ ∈ [0,2π ). (34)

It follows that T̂ decomposes as (Schur’s lemma)

T̂ =
⊕

n

T̂n, (35)

where T̂n is a dn × dn matrix that acts on the subspace Vn in

Eq. (20).

Notice that the operator T̂ in Eq. (35) transforms vectors

with a well-defined particle number n into vectors with

the same particle number. That is, U(1)-invariant operators

conserve particle number.

Example 1 revisited. In example 1 above, symmetric vectors

must be proportional to either |n = 0,t0 = 1〉 or |n = 1,t1 =
1〉. An invariant operator T̂ = T̂0 ⊕ T̂1 is of the form

T̂ =

(

α0 0

0 α1

)

, α0,α1 ∈ C. (36)

Example 2 revisited. In example 2 above, a symmetric

vector |�〉 must be of the form

|�〉 =

⎛

⎜

⎜

⎜

⎝

α0

0

0

0

⎞

⎟

⎟

⎟

⎠

, |�〉 =

⎛

⎜

⎜

⎜

⎝

0

α1

β1

0

⎞

⎟

⎟

⎟

⎠

, or |�〉 =

⎛

⎜

⎜

⎜

⎝

0

0

0

α2

⎞

⎟

⎟

⎟

⎠

,

(37)

where α0,α1,β1,α2 ∈ C. An invariant operator T̂ = T̂0 ⊕ T̂1 ⊕
T̂2 is of the form

T̂ =

⎛

⎜

⎜

⎜

⎝

α0 0 0 0

0 α1 β1 0

0 γ1 δ1 0

0 0 0 α2

⎞

⎟

⎟

⎟

⎠

, (38)

where T̂1 corresponds to the 2 × 2 central block and

α0,α1,β1,γ1,δ1,α2 ∈ C.

The above examples illustrate that the symmetry imposes

constraints on vectors and operators. By using an eigenbasis

{|ntn〉} of the particle number operator n̂, these constraints

imply the presence of the zeros in Eqs. (36)–(38). Thus

a reduced number of complex coefficients is required in

order to describe U(1)-symmetric vectors and operators. As

we will discuss in Sec. IV, performing manipulations on

symmetric tensors can also result in a significant reduction

in computational costs.

C. Tensor product of two representations

Let V
(A) and V

(B) be two spaces that carry representations

of U(1), as generated by particle number operators n̂(A) and

n̂(B), and let

V
(A) ∼=

⊕

nA

V
(A)
nA

, V
(B) ∼=

⊕

nB

V
(B)
nB

(39)

be their decompositions as a direct sum of (possibly degen-

erate) irreps. Let us also consider the action of U(1) on the

tensor product V
(AB) ∼= V

(A) ⊗ V
(B) as generated by the total

particle number operator

n̂(AB) ≡ n̂(A) ⊗ I + I ⊗ n̂(B), (40)

that is, implemented by unitary transformations

Ŵ (AB)
ϕ ≡ e−in̂(AB)ϕ . (41)

The space V
(AB) also decomposes as the direct sum of

(possibly degenerate) irreps,

V
(AB) ∼=

⊕

nAB

V
(AB)
nAB

. (42)

Here the subspace V
(AB)
nAB

, with total particle number nAB ,

corresponds to the direct sum of all products of subspaces

V
(A)
nA

and V
(B)
nB

such that nA + nB = nAB ,

V
(AB)
nAB

∼=
⊕

nA,nB |nA+nB =nAB

V
(A)
nA

⊗ V
(B)
nB

. (43)

For each subspace V
(AB)
nAB

in Eq. (42) we introduce a coupled
basis {|nAB tnAB

〉},

n̂(AB)
∣

∣nAB tnAB

〉

= nAB

∣

∣nAB tnAB

〉

, (44)

where each vector |nAB tnAB
〉 corresponds to the tensor product

|nAtnA
; nB tnB

〉 ≡ |nAtnA
〉 ⊗ |nB tnB

〉 of a unique pair of vectors

|nAtnA
〉 and |nB tnB

〉, with nA + nB = nAB . Let table ϒ fuse, with

components

ϒ fuse
nAtnA

,nB tnB
→nAB tnAB

≡
〈

nAB tnAB

∣

∣nAtnA
; nB tnB

〉

, (45)

encode this one-to-one correspondence. Notice that each

component of ϒ fuse is either a 0 or a 1. Then

|nAB tnAB
〉 =

∑

nAtnA
nB tnB

ϒ fuse
nAtnA

,nB tnB
→nAB tnAB

×
∣

∣nAtnA
; nB tnB

〉

. (46)

For later reference (see the Appendix), we notice that ϒ fuse

can be decomposed into two pieces. The first piece expresses a

basis {|nAtnA
; nB tnB

〉} of V
(AB) in terms of the basis {|nAtnA

〉} of

V
(A) and the basis {|nB tnB

〉} of V
(B). This assignment occurs as

in the absence of the symmetry, where one creates a composed

index d = b × c by running, for example, fast over index c and

slowly over index b as in Eq. (2). Note that this procedure does

not always lead to the set {|nAtnA
; nB tnB

〉} being ordered such

that states corresponding to the same total particle number

nAB = nA + nB are adjacent to each other within the set. This

ordering is achieved by the second piece: a permutation of
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basis elements that reorganizes them according to their total

particle number nAB , so that they are identified in a one-to-one

correspondence with the coupled states {|nAB tnAB
〉}.

Finally, the product basis can be expressed in terms of the

coupled basis

∣

∣nAtnA
; nB tnB

〉

=
∑

nAB tnAB

ϒ
split
nAB tnAB

→nAtnA
,nB tnB

×
∣

∣nAB tnAB

〉

, (47)

with

ϒ
split
nAB tnAB

→nAtnA
,nB tnB

= ϒ fuse
nAtnA

,nB tnB
→nAB tnAB

. (48)

Example 3. Consider the case where both V
(A) and V

(B)

correspond to the space of example 1, that is, V
(A) ∼= V

(A)
0 ⊕

V
(A)
1 and V

(B) ∼= V
(B)
0 ⊕ V

(B)
1 , where V

(A)
0 , V

(A)
1 , V

(B)
0 , and

V
(B)
1 all have dimension 1. Then V

(AB) corresponds to the

space in example 2, namely

V
(AB) ∼= V

(A) ⊗ V
(B)

∼=
(

V
(A)
0 ⊕ V

(A)
1

)

⊗
(

V
(B)
0 ⊕ V

(B)
1

)

∼= V
(AB)
0 ⊕ V

(AB)
1 ⊕ V

(AB)
2 , (49)

where

V
(AB)
0

∼= V
(A)
0 ⊗ V

(B)
0 , (50)

V
(AB)
1

∼=
(

V
(A)
0 ⊗ V

(B)
1

)

⊕
(

V
(A)
1 ⊗ V

(B)
0

)

, (51)

V
(AB)
2

∼= V
(A)
1 ⊗ V

(B)
1 . (52)

The coupled basis {|nAB tnAB
〉} reads

|nAB = 0,t0 = 1〉 = |nA = 0,t0 = 1〉 ⊗ |nB = 0,t0 = 1〉,

|nAB = 1,t1 = 1〉 = |nA = 0,t0 = 1〉 ⊗ |nB = 1,t1 = 1〉,

|nAB = 1,t1 = 2〉 = |nA = 1,t1 = 1〉 ⊗ |nB = 0,t0 = 1〉,

|nAB = 2,t2 = 1〉 = |nA = 1,t1 = 1〉 ⊗ |nB = 1,t1 = 1〉,

(53)

where we emphasize that the degeneracy index tnAB
takes two

possible values for nAB = 1, i.e., t1 ∈ {1,2}, since there are two

states |nAtnA
〉 ⊗ |nB tnB

〉 with nA + nB = 1. The components

ϒ fuse
nAtA,nB tB→nAB tAB

of the tensor ϒ fuse that encodes this change

of basis are all zero except for

ϒ fuse
01,01→01 = ϒ fuse

01,11→11 = ϒ fuse
11,01→12 = ϒ fuse

11,11→21 = 1.

D. Lattice models with U(1) symmetry

The action of U(1) on the threefold tensor product,

V
(ABC) ∼= V

(A) ⊗ V
(B) ⊗ V

(C), (54)

as generated by the total particle number operator,

n̂(ABC) = n̂(A) ⊗ I ⊗ I + I ⊗ n̂(B) ⊗ I + I ⊗ I ⊗ n̂(C),

(55)

induces a decomposition

V
(ABC) ∼=

⊕

nABC

V
(ABC)
nABC

(56)

in terms of irreps V
(ABC)
nABC

which we can now relate to V
(A)
nA

,

V
(B)
nB

, and V
(C)
nC

. For example, we can consider first the product

V
(AB)
nAB

∼= V
(A)
nA

⊗ V
(B)
nB

and then the product V
(ABC)
nABC

∼= V
(AB)
nAB

⊗

V
(C)
nC

, using a different table ϒ fuse at each step to relate the

coupled basis to the product basis as discussed in the previous

section. Similarly we could consider the action of U(1) on four

tensor products, and so on.

In particular we will be interested in a lattice L made of

L sites with vector space V
⊗L, where for simplicity we will

assume that each site s ∈ L is described by the same finite-

dimensional vector space V (see Sec. II E). Given a particle

number operator n̂ defined on each site, we can consider the

action of U(1) generated by the total particle number operator

N̂ ≡

L
∑

s=1

n̂(s), (57)

which corresponds to unitary transformations

W [L]
ϕ ≡ e−iN̂ϕ = (e−in̂ϕ)⊗L = (Ŵϕ)⊗L. (58)

The tensor product space V
⊗L decomposes as

V
⊗L ∼=

⊕

N

VN (59)

and we denote by {|NtN 〉} the particle number basis in V
⊗L.

We say that a lattice model is U(1) symmetric if its

Hamiltonian Ĥ : V → V commutes with the action of the

group. That is,

[Ĥ ,N̂ ] = 0, (60)

or equivalently

(Ŵϕ)⊗LĤ (Ŵ †
ϕ)⊗L = Ĥ, ∀ ϕ ∈ [0,2π ). (61)

One example of a U(1)-symmetric model is the hard-core

Bose-Hubbard model, with Hamiltonian

ĤHCBH ≡

L
∑

s=1

(â†
s âs+1 + âs â

†
s+1 + γ n̂s n̂s+1) − μ

L
∑

s=1

n̂s,

(62)

where we consider periodic boundary conditions (by identify-

ing sites L + 1 and 1), and â
†
s and âs are hard-core bosonic

creation and annihilation operators, respectively. In terms of

the basis introduced in example 1 these operators are defined

as

â ≡

(

0 1

0 0

)

, n̂ ≡ â†â =

(

0 0

0 1

)

.

To see that ĤHCBH commutes with the action of the group, we

first observe that for two sites

[â
†
1â2 + â

†
2â1,n̂1 + n̂2] = 0, (63)

from which it readily follows that [ĤHCBH,N̂ ] = 0.
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Notice that the chemical potential term −μ
∑

s n̂s = −μN̂

also commutes with the rest of the Hamiltonian. The ground

state |�GS
N 〉 of ĤHCBH in a particular subspace VN or particle

number sector can be turned into the absolute ground state by

tuning the chemical potential μ. This fact can be used to find

the ground state |�GS
N 〉 of any particle number sector through

an algorithm which can only minimize the expectation value

of ĤHCBH. However, we will later see that the use of symmetric

tensors in the context of tensor network states will allow us to

directly minimize the expectation value of ĤHCBH in a given

particle number sector by restricting the search to states

|�N 〉 =

dN
∑

tN =1

(�̂N )tN |NtN 〉 (64)

with the desired particle number N .

Finally, by making the identifications

n̂ =
I − σ̂z

2
, â =

σ̂x + iσ̂y

2
,

where σ̂x,σ̂y,σ̂z are the Pauli matrices

σ̂x ≡

(

0 1

1 0

)

, σ̂y ≡

(

0 −i

i 0

)

, σ̂z ≡

(

1 0

0 −1

)

,

(65)

one can map ĤHCBH to the spin- 1
2

XXZ quantum spin chain

ĤXXZ ≡

L
∑

s=1

(

σ̂ (s)
x σ̂ (s+1)

x + σ̂ (s)
y σ̂ (s+1)

y + σ̂ (s)
z σ̂ (s+1)

z

)

, (66)

where we have ignored terms proportional to N̂ and set  ≡
γ /4. In particular, for  = 0 we obtain the quantum XX spin

chain

ĤXX ≡

L
∑

s=1

(

σ̂ (s)
x σ̂ (s+1)

x + σ̂ (s)
y σ̂ (s+1)

y

)

, (67)

and for γ = 1, the quantum Heisenberg spin chain

ĤXXX ≡

L
∑

s=1

(

σ̂ (s)
x σ̂ (s+1)

x + σ̂ (s)
y σ̂ (s+1)

y + σ̂ (s)
z σ̂ (s+1)

z

)

. (68)

In Sec. V, the quantum spin models (67) and (68) will be used

to benchmark the performance increase resulting from the use

of symmetries in tensor networks algorithms.

IV. TENSOR NETWORKS WITH U(1) SYMMETRY

In this section we consider U(1)-symmetric tensors and ten-

sor networks. We explain how to decompose U(1)-symmetric

tensors in a compact, canonical form that exploits their

symmetry. We then discuss how to adapt the setP of primitives

for tensor network manipulations in order to work in this form.

We also analyze how working in the canonical form affects

computational costs.

A. U(1)-symmetric tensors

Let T̂ be a rank-k tensor with components T̂i1i2···ik . As in

Sec. II F, we regard tensor T̂ as a linear map between the

vector spaces V
[in] and V

[out] [Eq. (15)]. This implies that

each index is either an incoming or outgoing index. On each

space V
[il ], associated with index il , we introduce a particle

number operator n̂(l) that generates a unitary representation

of U(1) given by matrices Ŵ (l)
ϕ ≡ e−in̂(l)ϕ , ϕ ∈ [0,2π ). In the

following, we use Ŵ (l)∗
ϕ to denote the complex conjugate of

Ŵ (l)
ϕ .

Let us consider the action of U(1) on the space

V
[i1] ⊗ V

[i2] ⊗ · · · ⊗ V
[ik] (69)

given by

X̂(1)
ϕ ⊗ X̂(2)

ϕ ⊗ · · · ⊗ X̂(k)
ϕ , (70)

where

X̂(l)
ϕ =

{

Ŵ (l)∗
ϕ if il ∈ I,

Ŵ (l)
ϕ if il ∈ O.

}

(71)

That is, X̂(l)
ϕ acts differently depending on whether index il of

tensor T̂ is an incoming or outgoing index. We then say that

tensor T̂ , with components Ti1i2···ik , is U(1) invariant if it is

invariant under the transformation of Eq. (70),

∑

i1,i2,...,ik

(

X̂(1)
ϕ

)

i ′1i1

(

X̂(2)
ϕ

)

i ′2i2
· · ·

(

X̂(k)
ϕ

)

i ′k ik
T̂i1i2···ik = T̂i ′1i

′
2···i

′
k
, (72)

for all ϕ ∈ [0,2π ). This is depicted in Fig. 9.

Example 4. A U(1)-invariant vector |�〉—that is, a vector

with n̂|�〉 = 0 and components (�̂n=0)t0 in the subspace

Vn=0 which corresponds to vanishing particle number n = 0

[cf. Eq. (32)]—fulfills

(�̂n=0)t0 ′ =
∑

t0

(Ŵϕ)t0 ′t0 (�̂n=0)t0 , ∀ ϕ ∈ [0,2π ), (73)

in accordance with Eq. (31), as shown in Fig. 9(a).

Example 5. A U(1)-invariant matrix T̂ (35) fulfills

T̂a′b′ =
∑

a,b

(Ŵϕ)a′a(Ŵ ∗
ϕ )b′bT̂ab (74)

=
∑

a,b

(Ŵϕ)a′aT̂ab(Ŵ †
ϕ)bb′ , ∀ ϕ ∈ [0,2π ), (75)

in accordance with Eq. (34) [see Fig. 9(b)].

(a) (b) (c)

FIG. 9. (Color online) (a) Constraint fulfilled by a U(1)-invariant

vector. The only allowed particle number on the single index is n = 0.

(b) Constraint fulfilled by a U(1)-invariant matrix. It follows from

Schur’s lemma that the matrix is block diagonal in particle number.

(c) Constraint fulfilled by a rank-3 tensor with one incoming index

and two outgoing indices.
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Example 6. Tensor T̂ in Eq. (16), with components T̂abc,

where a and b are outgoing indices and c is an incoming index,

is U(1) invariant if

T̂a′b′c′ =
∑

a,b,c

(

Ŵ (1)
ϕ

)

a′a

(

Ŵ (2)
ϕ

)

b′b

(

Ŵ (3)∗
ϕ

)

c′c
T̂abc (76)

=
∑

a,b,c

(

Ŵ (1)
ϕ

)

a′a

(

Ŵ (2)
ϕ

)

b′b
T̂abc

(

Ŵ (3)†
ϕ

)

cc′ (77)

for all ϕ ∈ [0,2π ) [see Fig. 9(c)].

Further, we say that a tensor Q̂ with components Q̂i1i2···ik

is U(1) covariant if under the transformation of Eq. (70) it

acquires a non trivial phase e−inϕ ,

∑

i1,i2,...,ik

(

X̂(1)
ϕ

)

i ′1i1

(

X̂(2)
ϕ

)

i2i
′
2

· · ·
(

X̂(k)
ϕ

)

i ′k ik
Q̂i1i2···ik = e−inϕQ̂i ′1i

′
2···i

′
k
,

(78)

for all ϕ ∈ [0,2π ).

Example 7. A U(1)-covariant vector |�〉—that is, one

which satisfies n̂|�〉 = n|�〉 for some n �= 0, and has

nonzero components (�̂n)tn only in the relevant subspace Vn

[cf. Eq. (32)]—fulfills

∑

tn

(Ŵϕ)t ′ntn(�̂n)tn = e−inϕ(�̂n)t ′n , ∀ ϕ ∈ [0,2π ), (79)

in accordance with Eq. (31). (See also Fig. 10.)

Notice that we can describe the rank-k covariant ten-

sor Q̂ above by a rank-(k + 1) invariant tensor T̂ with

components

T̂i1i2···ik i ≡ Q̂i1i2···ik , |i| = 1. (80)

This is built from Q̂ by adding an extra incoming index i, where

the index i has a fixed particle number n and no degeneracy

(i.e., i is associated to a trivial space V
[i] ∼= C). We refer to

both invariant and covariant tensors as symmetric tensors. By

using the above construction, in this work we will represent all

U(1)-symmetric tensors by means of U(1)-invariant tensors.

In particular, we represent the nontrivial components (�̂n)tn of

the covariant vector |�n〉 in Eqs. (31) and (32) as an invariant

matrix T̂ of size |tn| × 1 with components T̂tn1 = (�̂n)tn .

Consequently, from now on we will mostly consider only

invariant tensors.

(a) (b)

FIG. 10. (Color online) (a) U(1)-covariant vector |�〉, with some

nonvanishing particle number n �= 0. Under the action of U(1) on its

index, the covariant vector |�〉 acquires a phase e−inϕ [Eq. (79)].

(b) The U(1)-covariant vector |�〉, with components (�n)tn , can

be represented by a U(1)-invariant matrix T̂ with components

T̂i1i = (�n)i1 , where i is a trivial index (|i| = 1) with charge n and is

decorated by the opposite arrow to i1.

B. Canonical form for U(1)-invariant tensors

Let us now write a tensor T̂ in a particle number basis on

each factor space in Eq. (69). That is, each index i1, i2, . . ., ik is

decomposed into a particle number index n and a degeneracy

index tn, i1 = (n1,tn1
), i2 = (n2,tn2

), . . ., ik = (nk,tnk
), and

T̂i1i2···ik ≡
(

T̂n1n2···nk

)

tn1
tn2

···tnk

. (81)

Here, for each set of particle numbers n1,n2, . . . ,nk, we regard

T̂n1n2···nk
as a tensor with components (T̂n1n2···nk

)tn1
tn2

···tnk
. Let

Nin and Nout denote the sum of particle numbers corresponding

to incoming and outgoing indices,

Nin ≡
∑

nl∈I

nl, Nout ≡
∑

nl∈O

nl . (82)

The condition for a nonvanishing tensor of the form T̂n1n2···nk

to be invariant under U(1), Eq. (70), is simply that the sum of

incoming particle numbers equals the sum of outgoing particle

numbers. Therefore a U(1)-invariant tensor T̂ satisfies

T̂ =
⊕

n1,n2,...,nk

T̂n1n2···nk
δNin,Nout

. (83)

[We use the direct sum symbol
⊕

to denote that the different

tensors T̂n1n2···nk
are supported on orthonormal subspaces of the

tensor product space of Eq. (69).] In components, the above

expression reads

T̂i1i2···ik ≡
(

T̂n1n2···nk

)

tn1
tn2

···tnk

δNin,Nout
. (84)

Here, δNin,Nout
implements particle number conservation: if

Nin �= Nout, then all components of T̂n1n2···nk
must vanish. This

generalizes the block structure of U(1)-invariant matrices in

Eq. (35) (where T̂nn is denoted T̂n) to tensors of arbitrary rank

k. The canonical decomposition in Eq. (83) is important, in

that it allows us to identify the degrees of freedom of tensor T̂

that are not determined by the symmetry. Expressing tensor T̂

in terms of the tensors T̂n1n2···nk
with Nin = Nout ensures that

we store T̂ in the most compact way possible.

Notice that the canonical form of Eq. (83) is a particular

case of the canonical form presented in Eq. (15) of Ref. 52 for

more general (possibly non-Abelian) symmetry groups. There,

a symmetric tensor was decomposed into degeneracy tensors

[analogous to tensors T̂n1n2···nk
in Eq. (83)] and structural

tensors [generalizing the term δNin,Nout
in Eq. (83)] which can in

general be expanded as a trivalent network of Clebsch-Gordan

(or coupling) coefficients of the symmetry group. In the case of

non-Abelian groups, where some irreps have dimension larger

than 1, the structural tensors are highly nontrivial. However, for

the group U(1) discussed in this paper (as for any other Abelian

group) all irreps are one dimensional and the structural tensors

are always reduced to a simple expression such as δNin,Nout

in Eq. (83). (Nevertheless, in the Appendix we will resort

to a more elaborate decomposition of the structural tensors

in order to better exploit the presence of symmetry in those

tensor network algorithms based on iterating a fixed sequence

of manipulations.)

C. U(1)-symmetric tensor networks

In Sec. II F we saw that a tensor network N where each line

has a direction (represented with an arrow) can be interpreted
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FIG. 11. (Color online) A tensor network N made of U(1)-

invariant tensors represents a U(1)-invariant tensor T̂ . This is seen

by means of two equalities. The first equality is obtained by inserting

resolutions of the identity I = ŴϕŴ
†
ϕ on each index connecting two

tensors in N . The second equality follows from the fact that each

tensor in N is U(1) invariant.

as a collection of linear maps composed into a single linear

map T̂ of which N is a tensor network decomposition.

By introducing a particle number operator on the vector

space associated to each line of N , we can define a unitary

representation of U(1) on each index of each tensor in N .

Then we say that N is a U(1)-invariant tensor network if all

its tensors are U(1) invariant. Notice that, by construction, if

N is a U(1)-invariant tensor network, then the resulting linear

map T̂ is also U(1) invariant. This is illustrated in Fig. 11.

More generally, we can consider a U(1)-symmetric tensor

network, made of tensors that are U(1) symmetric (that

is, either invariant or covariant). Recall, however, that any

covariant tensor can be represented as an invariant tensor by

adding an extra index (80). Therefore without loss of generality

we can restrict our attention to invariant tensor networks.

D. Tensor network states and algorithms with U(1) symmetry

As discussed in Sec. II E, a tensor network N can be used

to describe certain pure states |�〉 ∈ V
⊗L of a lattice L. If N

is a U(1)-symmetric tensor network then it will describe a pure

state |�〉 that has a well-defined total particle number N . That

is, a U(1)-symmetric pure state

N̂ |�〉 = N |�〉, e−iN̂ϕ|�〉 = e−iNϕ |�〉. (85)

In this way we can obtain a more refined version of popular

tensor network states such as MPS, TTN, MERA, PEPS,

etc. As a variational Ansatz, a symmetric tensor network

state is more constrained than a regular tensor network state,

and consequently it can represent fewer states |�〉 ∈ V
⊗L.

However, it also depends on fewer parameters. This implies

a more economical description, as well as the possibility of

reducing computational costs during its manipulation.

The rest of this section is devoted to explaining how one

can achieve a reduction in computational costs. This is based

on storing and manipulating U(1)-invariant tensors expressed

in the canonical form of Eqs. (83) and (84). We next explain

how to adapt the set P of four primitive operations for the

tensor network manipulations discussed in Sec. II D, namely,

permutation and reshaping of indices, matrix multiplication,

and factorization.

E. Permutation of indices

Given a U(1)-invariant tensor T̂ expressed in the canonical

form of Eqs. (83) and (84), permuting two of its indices is

straightforward. It is achieved by swapping the position of

the two particle numbers of T̂n1n2···nk
involved, and also the

corresponding degeneracy indices. For instance, if the rank-3

tensor T̂ of Eq. (16) is U(1) invariant and has components

T̂abc =
(

T̂nAnBnC

)

tnA
tnB

tnC

δnA+nB ,nC
(86)

when expressed in the particles number basis a = (nA,tnA
),

b = (nB ,tnB
), c = (nC,tnC

), then tensor T̂ ′ of Eq. (1), obtained

from T̂ by permuting the last two indices, has components

(T̂ ′)acb =
(

T̂ ′
nAnCnB

)

tnA
tnC

tnB

δnA+nB ,nC
, (87)

where

(

T̂ ′
nAnCnB

)

tnA
tnC

tnB

=
(

T̂nAnBnC

)

tnA
tnB

tnC

. (88)

Notice that since we only need to permute the components

of those T̂nAnBnC
such that nA + nB = nC , implementing the

permutation of indices requires less computation time than

a regular index permutation. This is shown in Fig. 12,

corresponding to a permutation of indices using MATLAB.

F. Reshaping of indices

The indices of a U(1)-invariant tensor can be reshaped

(fused or split) in a similar manner to those of a regular

tensor. However, maintaining the convenient canonical form

of Eqs. (83) and (84) requires additional steps. Two adjacent

indices can be fused together using the table ϒ fuse of Eq. (45),

which is a sparse tensor made of 1’s and 0’s. Similarly an index

can be split into two adjacent indices by using its inverse, the

sparse tensor ϒ split of Eq. (48).

Example 8. Let us consider again the rank-3 tensor T̂ of

Eq. (16) with components given by Eq. (86), where a and b

are outgoing indices and c is an incoming index. We can fuse

outgoing index b and incoming index c into an (e.g., incoming)

index d, obtaining a new tensor T̂ ′ with components

(T̂ ′)ad =
(

T̂ ′
nAnD

)

tnA
ttnD

δnA,nD
, (89)

where nD = −nB + nC . (The sign in front of nB comes from

the fact that d is an incoming index and b is an outgoing index.)

The components of T̂ ′ are in one-to-one correspondence with

those of T̂ and follow from the transformation

(

T̂ ′
nAnD

)

tnA
tnD

=
∑

nB ,tnB
,nC ,tnC

(

T̂nAnBnC

)

tnA
tnB

tnC

×ϒ fuse
nB tnB

,nC tnC
→nD tnD

, (90)

where only the case nA = nD needs to be considered. To

complete the example, let us assume that the index a is

described by the vector space V
(A) ∼= V0 ⊕ V1 ⊕ V2 with

degeneracies d0 = 1, d1 = 2, and d2 = 1; index b is described

by a vector space V
(B) ∼= V−1 ⊕ V0 without degeneracies, i.e.,

d−1 = d0 = 1; and index c is described by a vector space

V
(C) ∼= V0 ⊕ V1 also without degeneracies, d−1 = d0 = 1.
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FIG. 12. (Color online) Computation times (in seconds) required

to permute and fuse two indices of a rank-4 tensor T̂ , as a function

of the size of the indices. All four indices of T̂ have the same size,

5d , and therefore the tensor contains |T̂ | = 54d4 coefficients. The

figures compare the time required to perform these operations using

a regular tensor and a U(1)-invariant tensor, where in the second

case each index contains five different values of the particle number

n (each with degeneracy d) and the canonical form of Eqs. (83)

and (84) is used. The upper figure shows the time required to

permute two indices: For large d , exploiting the symmetry of a

U(1)-invariant tensor by using the canonical form results in shorter

computation times. The lower figure shows the time required to

fuse two adjacent indices. In this case, maintaining the canonical

form requires more computation time. Notice that in both figures

the asymptotic cost scales as O(d4), or the size of T̂ , since this is the

number of coefficients which need to be rearranged. We note that the

fixed-cost overheads associated with symmetric manipulations could

potentially vary substantially with choice of programming language,

compiler, and machine architecture. The results given here show

the performance of the authors’ MATLAB implementation of U(1)

symmetry.

Then V
(D) ∼= V

(B) ⊗ V
(C) (and in this example, also V

(D) ∼=
V

(A)) and Eq. (90) amounts to

(

T̂ ′
00

)

11
=

(

T̂000

)

111
,
(

T̂ ′
11

)

11
=

(

T̂101

)

111
,

(

T̂ ′
11

)

12
=

(

T̂101

)

211
,
(

T̂ ′
11

)

21
=

(

T̂1(−1)0

)

111
,

(

T̂ ′
11

)

22
=

(

T̂1(−1)0

)

211
,
(

T̂ ′
22

)

11
=

(

T̂2(−1)1

)

111
,

where we notice that tensor T̂ ′ is a matrix as in Eq. (38).

Similarly, we can split incoming index d of tensor T̂ ′ back into

outgoing index b and incoming index c of tensor T̂ according

to
(

T̂nAnBnC

)

tnA
tnB

tnC

=
∑

nD ,tnD

(

T̂ ′
nAnD

)

tnA
tnD

×ϒ
split
nD tnD

→nB tnB
,nC tnC

, (91)

which, again, is nontrivial only for −nB + nC = nD and nA +
nB = nC .

This example illustrates that fusing and splitting indices

while maintaining the canonical form of Eqs. (83) and (84)

requires more work than reshaping regular indices. Indeed,

after taking indices b and c into d = b × c by listing all pairs

of values b × c, we still need to reorganize the resulting basis

elements according to their particle number nD . Although this

can be done by following the simple table given by ϒ fuse, it may

add significantly to the overall computational cost associated

with reshaping a tensor. For instance, Fig. 12 shows that fusing

indices of invariant tensors can be more expensive than fusing

indices of regular tensors.

G. Multiplication of two matrices

By permuting and reshaping the indices of a U(1)-invariant

tensor, we can convert it into a U(1)-invariant matrix T̂ =
⊕

nn′ T̂nn′δn,n′ , or simply

T̂ =
⊕

n

T̂n, (92)

where T̂n ≡ T̂nn. In components, matrix T̂ reads

(T̂ )ab = (T̂n)tnt ′n , (93)

where a = (n,tn) and b = (n,t ′n). In particular, similar to the

discussion in Sec. II B for regular tensors, the multiplication of

two tensors invariant under the action of U(1) can be reduced

to the multiplication of two U(1)-invariant matrices.

Let R̂ and Ŝ be two U(1)-invariant matrices, with canonical

forms

R̂ =
⊕

n

R̂n, Ŝ =
⊕

n

Ŝn. (94)

Their product T̂ = R̂ · Ŝ, Eq. (4), is then another matrix T̂

which is also block diagonal,

T̂ =
⊕

n

T̂n, (95)

such that each block T̂n is obtained by multiplying the

corresponding blocks R̂n and Ŝn,

T̂n = R̂n · Ŝn. (96)

Equations (92) and (96) make evident the potential re-

duction of computational costs that can be achieved by

manipulating U(1)-invariant matrices in their canonical form.

First, a reduction in memory space follows from only having

to store the diagonal blocks in Eq. (92). Second, a reduction

in computational time is implied by only having to multiply

these blocks in Eq. (96). This is illustrated in the following

example.

Example 9. Consider a U(1)-invariant matrix T̂ which is a

linear map in a space V that decomposes into q irreps Vn, each
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of which has the same degeneracy dn = d. That is, T̂ is a square

matrix of dimensions dq × dq, with the block-diagonal form

of Eq. (92). Since there are q blocks T̂n and each block has size

d × d, the U(1)-invariant matrix T̂ contains qd2 coefficients.

For comparison, a regular matrix of the same size contains

q2d2 coefficients, a number greater by a factor of q.

Let us now consider multiplying two such matrices. We

use an algorithm that requires O(l3) computational time to

multiply two matrices of size l × l. The cost of performing q

multiplications of d × d blocks in Eq. (96) scales as O(qd3).

In contrast, the cost of multiplying two regular matrices

of the same size scales as O(q3d3), requiring q2 times

more computation time. Figure 13 shows a comparison of

computation times when multiplying two matrices for both

U(1)-symmetric and regular matrices.

H. Factorization of a matrix

The factorization of a U(1)-invariant matrix T̂ [Eq. (92)]

can also benefit from the block-diagonal structure. Consider,

for instance, the singular value decomposition T̂ = Û ŜV̂ of

Eq. (11). In this case we can obtain the matrices

Û =
⊕

n

Ûn, Ŝ =
⊕

n

Ŝn, V̂ =
⊕

n

V̂n (97)

by performing the singular value decomposition of each block

T̂n independently,

T̂n = ÛnŜnV̂n. (98)

The computational savings are analogous to those described

in example 9 above for the multiplication of matrices. Figure 13

also shows a comparison of computation times required to

perform a singular value decomposition on U(1)-invariant and

regular matrices using MATLAB.

I. Discussion

In this section we have seen that U(1)-invariant tensors

can be written in the canonical form of Eqs. (83) and (84),

and that this canonical form is of interest because it offers a

compact description in terms of only those coefficients which

are not constrained by the symmetry. We have also seen that

maintaining the canonical form during tensor manipulations

adds some computational overhead when reshaping (fusing

or splitting) indices, but reduces computation time when

permuting indices (for sufficiently large tensors) and when

multiplying or factorizing matrices (for sufficiently large

matrix sizes).

The cost of reshaping and permuting indices is proportional

to the size |T̂ | of the tensors, whereas the cost of multiplying

and factorizing matrices is a larger power of the matrix

size, for example, |T̂ |3/2. The use of the canonical form

when manipulating large tensors therefore frequently results

in an overall reduction in computation time, making it a very

attractive option in the context of tensor network algorithms.

This is exemplified in the next section, where we apply the

MERA to study the ground state of quantum spin models with

a U(1) symmetry.

On the other hand, however, the cost of maintaining

invariant tensors in the canonical form becomes more relevant
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FIG. 13. (Color online) Computation times (in seconds) required

to multiply two matrices (upper panel) and to perform a singular value

decomposition (lower panel) as a function of the size of the indices.

Matrices of size 5d × 5d are considered. The figures compare the

time required to perform these operations using regular matrices and

U(1)-invariant matrices, where for the U(1)-invariant matrices each

index contains five different values of the particle number n, each with

degeneracy d , and the canonical form of Eqs. (92) and (93) is used.

That is, each matrix decomposes into five blocks of size d × d . For

large d , exploiting the block-diagonal form of U(1)-invariant matrices

results in shorter computation time both for multiplication and for

singular value decomposition. The asymptotic cost scales with d as

O(d3), while the size of the matrices grows as O(d2). We note that the

fixed-cost overheads associated with symmetric manipulations could

potentially vary substantially with choice of programming language,

compiler, and machine architecture. The results given here show

the performance of the authors’ MATLAB implementation of U(1)

symmetry.

when dealing with smaller tensors. In the next section we

will also see that in some situations, this additional cost

may significantly reduce, or even offset, the benefits of

using the canonical form. In this event, and in the specific

context of algorithms where the same tensor manipulations

are iterated many times, it is possible to significantly de-

crease the additional cost by precomputing the parts of the

tensor manipulations that are repeated on each iteration.

Precomputation schemes are described in more detail in

the Appendix. Their performance is illustrated in the next

section.
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V. TENSOR NETWORK ALGORITHMS WITH U(1)

SYMMETRY: A PRACTICAL EXAMPLE

In previous sections we have described a strategy to

incorporate a U(1) symmetry into tensors, tensor networks,

and their manipulations. To further illustrate how the strategy

works in practice, in this section we demonstrate its use in

the context of the multiscale entanglement renormalization

Ansatz, or MERA, and present numerical results from our

reference implementation of the U(1) symmetry in MATLAB.

A. Multiscale entanglement renormalization Ansatz

Figure 14 shows a MERA that represent states |�〉 ∈ V
⊗L

of a lattice L made of L = 18 sites (see Sec. II E). Recall that

the MERA is made of layers of isometric tensors, known as

disentanglers û and isometries ŵ, that implement a coarse-

graining transformation. In this particular scheme, isometries

map three sites into one and the coarse-graining transformation

reduces the L = 18 sites of L into two sites using two layers of

tensors. A collection of states on these two sites is then encoded

in a top tensor t̂ , whose upper index a = 1,2, . . . ,χtop is used

to label χtop states |�a〉 ∈ V
⊗L. This particular arrangement

of tensors corresponds to the 3:1 MERA described in Ref. 18.

In this section we will consider a MERA analogous to that

of Fig. 14 but with Q layers of disentanglers and isometries,

which we will use to describe states on a lattice L made of

2 × 3Q sites. We will use this variational Ansatz to obtain

an approximation to the ground state and first excited states

of two quantum spin chains that have a global internal U(1)

symmetry, namely the spin-1/2 quantum XX chain of Eq. (67)

and the spin-1/2 antiferromagnetic quantum Heisenberg chain

of Eq. (68). Each spin-1/2 degree of freedom of the chain is

described by a vector space spanned by two orthonormal states

{| ↓〉,| ↑〉}. Here we will represent them by the states {|0〉,|1〉}
corresponding to zero and one particles, as in example 1 of

Sec. III A. For computational convenience, we will consider a

lattice L where each site contains two spins, or states, {| ↓↓〉,
| ↓↑〉,| ↑↓〉,| ↑↑〉}. Therefore each site of L is described by a

space V ∼= V0 ⊕ V1 ⊕ V2, where d0 = d2 = 1 and d1 = 2, as

in example 2 of Sec. III A. Thus a lattice L made of L sites

corresponds to a chain of 2L spins. In such a system, the total

particle number N ranges from 0 to 2L. (Equivalently, the

z component of the total spin Sz ranges from −L to L, with

Sz = N − L.)

FIG. 14. (Color online) MERA for a system of L = 2 × 32 = 18

sites, made of two layers of disentanglers û and isometries ŵ, and a

top tensor t̂ .

B. MERA with U(1) symmetry

A U(1)-invariant version of the MERA, or U(1) MERA

for short, is obtained by simply considering U(1)-invariant

versions of all of the isometric tensors, namely the disen-

tanglers û, isometries ŵ, and the top tensor t̂ . This requires

assigning a particle number operator to each index of the

MERA. Each open index of the first layer of disentanglers

corresponds to one site of L. The particle number operator

on any such index is therefore given by the quantum spin

model under consideration. We can characterize the particle

number operator by two vectors, �n and �d: a list of the different

values the particle number takes and the degeneracy associated

with each such particle number, respectively. In the case of the

vector space V for each site of L described above, �n = {0,1,2}
and �d = {1,2,1}. For the open index of the tensor t̂ at the

very top of the MERA, the assignment of charges is also

straightforward. For instance, to find an approximation to the

ground state and first seven excited states of the quantum

spin model with particle number N , we choose �n = {N} and
�d = {8}. (In particular, a vanishing Sz corresponds to N = L.)

For each of the remaining indices of the MERA, the

assignment of the pair (�n, �d) needs careful consideration and a

final choice may only be possible after numerically testing

several options and selecting the one which produces the

lowest expectation value of the energy. Table I shows the

assignment of particle numbers and degeneracies made to

represent the ground state and several excited states in a system

of L = 2 × 33 = 54 sites (that is, 108 spins) with total particle

number N = L = 54 (or Sz = 0). Notice that at level q of

the MERA (q = 1,2,3), each index effectively corresponds to

a block of nq ≡ 3q sites of L. Therefore having exactly nq

particles in a block of nq sites corresponds to a density of one

particle per site of L. The assigned particle numbers of Table I,

namely, [nq − 2,nq − 1,nq ,nq + 1,nq + 2] for level q, then

correspond to allowing for fluctuations of up to two particles

with respect to the average density. The sum of correspond-

ing degeneracies �d = {dnq−2,dnq−1,dnq
,dnq+1,dnq+2} gives the

bond dimension χ , which in the example is χ = 13.

In order to find an approximation to the ground state of

either ĤXX or ĤXXX in Eqs. (67) and (68), we set χtop = 1

and optimize the tensors in the MERA so as to minimize the

expectation value

〈�|Ĥ |�〉, (99)

where |�〉 ∈ V
⊗L is the pure state represented by the MERA

and Ĥ is the relevant Hamiltonian. In order to find an

TABLE I. Example of particle number assignment in a U(1)

MERA for L = 54 sites (or 108 spins). The total bond dimension

is χ = 1 + 3 + 5 + 3 + 1 = 13. The value of χtop is set as described

in the text.

Level q Particle numbers �n Degeneracies �d

top {N = 54} {χtop}
3 {25,26,27,28,29} {1,3,5,3,1}
2 {7,8,9,10,11} {1,3,5,3,1}
1 {1,2,3,4,5} {1,3,5,3,1}
0 {0,1,2} {1,2,1}
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FIG. 15. (Color online) Error in ground-state energy E as a

function of χ for the XX and Heisenberg models with 2L = 108

spins and periodic boundary conditions, in the particle number sector

N = L (or Sz = 0). The error is calculated with respect to the exact

solutions, and is seen to decay exponentially with χ .

approximation to the χtop > 1 eigenstates of Ĥ with lowest

energies, we optimize the tensors in the MERA so as to

minimize the expectation value

χtop
∑

a=1

〈�a|Ĥ |�a〉, 〈�a|�a′〉 = δaa′ . (100)

The optimization is carried out using the MERA algorithm

described in Ref. 18, which requires contracting tensor

networks (by sequentially multiplying pairs of tensors) and

performing singular value decompositions. In the present

example, all of these operations will be performed exploiting

the U(1) symmetry.

Figure 15 shows the error in the ground-state energy as

a function of the bond dimension χ , for assignments of

degeneracies similar to those in Table II. The error is seen to

decay exponentially with increasing χ , indicating increasingly

accurate approximations to the ground state.

TABLE II. Number of coefficients required to specify the

tensors of a MERA for L = 54 as a function of the bond di-

mension χ , decomposed according to a degeneracy vector �d . A

comparison is made between regular tensors and U(1)-invariant

tensors.

No. of No. of

Degeneracy coefficients coefficients

χ �d (regular) (symmetric) Ratio

4 [0,1,2,1,0] 1552 426 3.6 : 1

8 [0,2,4,2,0] 17216 4714 3.7 : 1

13 [1,3,5,3,1] 115501 21969 5.3 : 1

17 [1,4,7,4,1] 335717 68469 5.0 : 1

21 [1,5,9,5,1] 779965 166901 4.7 : 1

30 [2,7,12,7,2] 3243076 639794 5.1 : 1

C. Exploiting the symmetry

We now discuss some of the advantages of using the U(1)

MERA.

1. Selection of particle number sector

An important advantage of the U(1) MERA is that it

exactly preserves the U(1) symmetry. In other words, the states

resulting from a numerical optimization are exact eigenvectors

of the total particle number operator N̂ [Eq. (57)]. In addition,

the total particle number N can be preselected at the onset

of optimization by specifying it in the open index of the top

tensor t̂ .

Figure 16 shows the energy gap between the ground state

and two excited states of an XX chain with 2L spins (or L

sites), for N = L particles (Sz = 0). One is the first excited

state which also has N = L particles. The other is the ground

state in the sector with N = L + 1 particles. The two energy

gaps are seen to decay with the system size as L−1. The ability

to preselect a given particle number N means that only two

optimizations were required: one MERA optimization for N =
L with χtop = 2 in order to obtain an approximation to the

ground state and first excited state of ĤXX in that particle

number sector; and one MERA optimization for N = L + 1

with χtop = 1 in order to obtain an approximation to the ground

state of ĤXX in the particle number sector N = L + 1.

Similar results can be obtained with the regular MERA.

For instance, one can obtain an approximation to the ground

state of a given particle number sector by adding a chemical

potential term −μ
∑

s n̂(s) to the Hamiltonian and carefully

tuning the chemical potential term μ until the expectation

value of the particle number N̂ is the desired one. However,

the regular MERA cannot guarantee that the states obtained

in this way are exact eigenvectors of N̂ . Instead the resulting

states are likely to have particle number fluctuations.

Figure 17 shows the low-energy spectrum of the Heisenberg

model ĤXXX for a periodic system of L = 54 sites (or

10
1
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3

10
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10
−1

10
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10
1

No. of spins

∆
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L

∆

L+1

exact value of ∆
L

exact value of ∆
L+1

FIG. 16. (Color online) Decay of energy gaps  with system size

L in the XX model. The upper line corresponds to the energy gap

L between the ground state and the first excited state in the N = L

particle number (or Sz = 0) sector. The lower line corresponds to

the energy gap L+1 between the ground states of the N = L and

N = L + 1 particle number sectors.
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FIG. 17. (Color online) Low-energy spectrum of ĤXXX with L =
54 sites (= 108 spins). Depicted states have spins of zero (×, blue

loops), one (+, red loops), or two (◦, green loop), and total number

of particles (N ) between 52 and 56. Note that the second and third

spin-1 triplets are twofold degenerate.

108 spins), including the ground state and several excited

states both in the particle sector N = 54 (or Sz = 0), and

in neighboring particle sectors. Recall that ĤXXX is actually

invariant under a global internal SU(2) symmetry, of which

particle number is a U(1) subgroup. Correspondingly the

spectrum is organized according to irreps of SU(2), namely

singlets (total spin 0), triplets (total spin 1), quintuplets (total

spin 2), etc. Again, using the U(1) MERA, the five particle

number sectors N = 52,53,54,55, and 56 can be addressed

with independent computations. This implies, for instance, that

in order to find the gap between the first and fourth singlets, we

can simply set N = 54 and χtop = 9 on the open index of the

top tensor t̂ , to accommodate the first four spin-0 states and five

spin-1 states in the N = 54 sector, as seen in Fig. 17. In order to

capture the fourth singlet using the regular MERA, we would

need to consider at least χtop = 19 (at a larger computational

cost and possibly lower accuracy), since this state has only the

19th lowest energy overall.

2. Reduction of computational costs

The use of U(1)-invariant tensors in the MERA also results

in a reduction of computational costs. First, U(1)-invariant

tensors, when written in the canonical form of Eqs. (83) and

(84), are block diagonal and therefore require less storage

space. Table II compares the number of MERA coefficients

that need to be stored in the regular and symmetric case, for

different choices of particle number assignments relevant to

the present examples.

Second, the computation time required to manipulate

tensors is also reduced when using U(1)-invariant tensors

in the canonical form. Figure 18 shows the computation

time required for one iteration of the energy minimization

algorithm of Ref. 18 (during which all tensors in the MERA

are updated once), as a function of the total bond dimension

χ . The plot compares the time required using regular tensors

and U(1)-invariant tensors. For U(1)-invariant tensors, we

display the time per iteration for three different levels of
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no precomputation

partial precomputation
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χ=20
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FIG. 18. (Color online) Computation time (in seconds) for one

iteration of the MERA energy minimization algorithm, as a function

of the bond dimension χ . For sufficiently large χ , exploiting the U(1)

symmetry leads to reductions in computation time. The horizontal line

on this graph shows that this reduction in computation time equates

to the ability to evaluate MERAs with a higher bond dimension

χ : For the same cost per iteration incurred when optimizing a

standard MERA in MATLAB with bond dimension χ = 20, one may

choose instead to optimize a U(1)-symmetric MERA with partial

precomputation and χ = 24, or with full precomputation and χ = 28.

precomputation, as described in the Appendix. The figure

shows that for sufficiently large χ , using U(1)-invariant tensors

leads to a shorter time per iteration of the optimization

algorithm.

In the authors’ reference implementation (written in MAT-

LAB), using the symmetry without precomputation is seen to

only reduce the computation time by about a factor of 2 for

the largest χ under consideration. This is because maintaining

the canonical form for U(1)-invariant tensors still imposes a

significant overhead for the values of χ considered. In contrast,

when using precomputation we obtained times shorter by a

factor of 10 or more.

The magnitude of the overhead imposed by maintaining the

canonical form will depend on factors such as programming

language and machine architecture, but in general more

significant gains can be obtained by making full use of

precomputation. This option, however, requires a significant

amount of additional memory (see the Appendix), and a more

convenient middle ground can be obtained by using a partial

precomputation scheme.

VI. CONCLUSIONS

In this paper we have provided a detailed explanation of

how a global internal Abelian symmetry may be incorporated

into any tensor network algorithm. Following Ref. 52 we

considered tensor networks constructed from tensors which

were invariant under the action of the internal symmetry, and

showed how each tensor may be decomposed according to a

canonical form into degeneracy tensors (which contain all the

degrees of freedom that are not affected by the symmetry) and

structural tensors (which are completely determined by the

symmetry). We then introduced a set of primitive operations
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TABLE III. Fusion rules for the group

Z3: Outcomes of evaluating a × a′.

a

0 1 2

0 0 1 2

a′ 1 1 2 0

2 2 0 1

P which may be used to carry out tensor network algorithms

using Ansätze such as MPS, PEPS, and MERA, and showed

how each of these operations can be implemented in such a

way that the canonical form is both preserved and exploited

for computational gain.

We then demonstrated the implementation of this decom-

position for tensors with an internal U(1) symmetry, and

computed multiple benchmarks demonstrating the compu-

tational costs and speedups inherent in this approach. We

found that although maintaining the canonical form imposed

additional costs when combining or splitting tensor indices,

for simulations of a sufficiently large scale these costs can

be offset by the gains made when performing permutations,

matrix multiplications, and matrix decompositions.

Finally, we implemented the MERA on a quantum spin

chain with U(1) symmetry. We showed that exploitation of

this symmetry can lead to a decrease in the computational

cost by a factor of between 10 and 20. These gains may

be used either to reduce overall computation time or to

permit substantial increases in the MERA bond dimen-

sion χ , and consequently in the accuracy of the results

obtained.

Although in this paper we have focused on an example

which is a continuous Abelian group, the formalism presented

here may equally well be applied to a finite Abelian group.

In particular let us consider a cyclic group Zq , q ∈ Z
+.75

As in the case of U(1), the Hilbert space decomposes under

the action of the group into a direct sum of one-dimensional

irreps which are each characterized by an integer charge

a, and consequently most of the analysis presented in this

paper remains unchanged. In particular, matrices which are

invariant under the action of the group will be block diagonal

in the basis labeled by charge according to Eq. (35), and

symmetric tensors enjoy the canonical decomposition stated in

Eqs. (83) and (84). The only objects which need modification

are the fusion and splitting maps, which need to be altered

so that they encode the fusion rules for Zq instead for U(1).

For a cyclic group Zq , the fusion of two charges a and a′

gives rise to a charge a′′ according to a′′ = (a + a′)|q where

|q indicates that the addition is performed modulo q. For

example, Z3 has charges a = 0,1,2, and the fusion rules for

Z3 take the form a × a′ → a′′ where the value of a′′ is given in

Table III.

More generally, a generic Abelian group will be character-

ized by a set of charges (a1,a2,a3, . . .). When fusing two such

sets of charges (a1,a2,a3, . . .) and (a′
1,a

′
2,a

′
3, . . .), each charge

ai is combined with its counterpart a′
i according to the fusion

rule of the relevant subgroup. Once again, this behavior may

be encoded in a single fusion map ϒ fuse and its inverse ϒ split.

The formalism presented in this paper is therefore directly

applicable to any Abelian group.
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APPENDIX: USE OF PRECOMPUTATION IN ITERATIVE

ALGORITHMS

We have seen that the use of the canonical form given

in Eqs. (83) and (84) to represent U(1)-invariant tensors

can potentially lead to substantial reductions in memory

requirements and in calculation time. We also pointed out,

however, that there is an additional cost in maintaining an

invariant tensor in its canonical form, and that this is associated

with the reshaping (fusing and/or splitting) of its indices. In

some situations this additional cost may significantly reduce,

or even offset, the benefits of using the canonical form.

In this Appendix we investigate techniques for reducing

this additional cost in the context of iterative tensor network

algorithms. Many of the algorithms discussed in Sec. II E are

iterative algorithms, repeating the same sequence of tensor

network manipulations many times over. Examples include

algorithms which compute tensor network approximations to

the ground state by minimizing the expectation value of the

energy or by simulating evolution in imaginary time, with each

iteration yielding an increasingly accurate approximation to

the ground state of the system.

The goal of this Appendix is to identify calculations which

depend only on the symmetry group, and are independent of

the variational coefficients of such algorithms. Where these

calculations are repeated in each iteration of the algorithm, we

can effectively eliminate the associated computational cost by

performing them only once, either during or prior to the first

iteration of the algorithm, and then storing and reusing these

precomputed results in subsequent iterations. We will illustrate

this procedure by considering the precomputation of a series

of operations applied to a single tensor T̂ .

To do this, we begin by revisiting the fusion and splitting ta-

bles of Sec. III C and introducing a graphical representation of

these objects. We then introduce a convenient decomposition

of a symmetric tensor into a matrix accompanied by multiple

fusion and/or splitting tensors, and linear maps Ŵ that map

one such decomposition into another. These linear maps are

independent of the coefficients of the tensor being reorganized,

and consequently they are precisely the objects which can

be precomputed in order to quicken an iterative algorithm at

the expense of additional memory cost. Finally we describe

two specific precomputation schemes, differing in what is

precomputed and in how the precomputed data are utilized

during the execution of the algorithm, in order to illustrate

the tradeoff between the amount of memory needed to store

the precomputation data and the associated computational

speedup which may be obtained. In practice, the nature of the

specific implementation employed will depend on available

computational resources.
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1. Diagrammatic notation of fusing and splitting tensors

In describing how we can precompute repeated manipula-

tions of this tensor T̂ , we will find it useful to employ diagram-

matic representations of the fusion and splitting tables ϒ fuse

and ϒ split introduced in Sec. III C. These tables implement a

linear map between a pair of indices and their fusion product,

and thus can be understood as trivalent tensors having two

input legs and one output leg (or vice versa) in accordance

with Sec. II F. We choose to represent them graphically as

shown in Fig. 19(a), where the arrow within the circle always

points toward the coupled index. The linear maps ϒ fuse and

ϒ split are unitary, and consequently we impose that the tensors

of Fig. 19(a) must satisfy the identities given in Fig. 19(b),

corresponding to unitarity under the action of the conjugation

operation employed in diagrammatic tensor network notation

(vertical reflection of a tensor and the complex conjugation

of its components, typically denoted †). Our notation also

reflects the property, first noted in Sec. III C, that ϒ fuse and

ϒ split may be decomposed into two pieces [Fig. 19(c)]. For

the fusion tensor, we identify the first piece (represented by a

circle containing an arrow) with the creation of a composed

index using the manner we would employ in the absence of

symmetry (2). The second piece, represented by the small

square, permutes the basis elements of the composed index,

reorganizing them according to total particle number. The

two components of the splitting tensor are then uniquely

defined by consistency with the process of conjugation for the

diagrammatic representation of tensors, and with the unitarity

condition of Fig. 19(b).

(a)

(b)

(c)

FIG. 19. (a) Graphical representation of the fusion tensor ϒ fuse

and the splitting tensor ϒ split. (b) The tensors ϒ fuse and ϒ split are

unitary, and thus yield the identity when contracted pairwise as shown.

(c) A fusion tensor decomposed into two parts. The first part (indicated

by a circle with an arrow) performs the tensor product of input irreps,

nAtA × nB tB . The result is an index that labels pairs (nAtA,nB tB ). The

second part (indicated by a rectangle) is a permutation that associates

each pair (nAtA,nB tB ) with a unique (nAB tnAB
), corresponding to a

vector in the coupled basis of V
(AB).

FIG. 20. (Color online) Binary tree decomposition of a symmetric

tensor T̂ having components T̂i1i2i3i4i5i6 . The tree T is comprised of

a matrix M̂ as the root node, four splitting tensors as internal nodes,

and i1,i2,...,i6 as its leaf indices. No incoming or outgoing arrows are

indicated on the indices in the figure, as the decomposition is valid

for any such assignment of directional arrows.

These requirements have an important consequence. Sup-

pose the first part of ϒ fuse implements b × c → d by iterating

rapidly over the values of b and more slowly over the values of

c, and b lies clockwise of c on the graphical representation of

ϒ fuse. This then means that on the graphical representation

of ϒ split which implements d → b × c, index b must lie

counterclockwise of c. It is therefore vitally important to

distinguish between the splitting tensor and a rotated depiction

of the fusing tensor. To this end we require that when using

this diagrammatic notation, all tensors (with the exception

of the fusion and splitting tensors) must be drawn with only

downward-going legs, as seen, for example, in Fig. 20, though

the legs are still free to carry either incoming or outgoing

arrows as before.

2. Tree decomposition

We find it convenient to decompose a rank-k, U(1)-invariant

tensor T̂ , having components T̂i1i2···ik , as a binary tree tensor

network T consisting of a matrix M̂ which we will call the root
node, and of k − 2 splitting tensors ϒ split as branching internal
nodes, with the leaf indices of tree T corresponding to the

indices {i1,i2, . . . ,ik} of tensor T̂ . We refer to decomposition

T as a tree decomposition of T̂ . Figure 20 shows an example

of tree decomposition for a rank-6 tensor. It is of the form

T̂i1i2i3i4i5i6
=

∑

j1,j2,j3,j4

M̂j1j2
ϒ

split

j1→i1,j3
ϒ

split

j2→j4,i6

×ϒ
split

j3→i2,i3
ϒ

split

j4→i4,i5
, (A1)

where {j1,j2,j3,j4} are the internal indices of the tree.

The same tensor T̂ may be decomposed as a tree in

many different ways, corresponding to different choices of

the fusion tree. As an example we show two different but

equivalent decompositions of a rank-4 tensor in Fig. 21.

Different choices T1,T2, . . . of tree decomposition for tensor

T̂ will lead to different matrix representations M̂1,M̂2, . . . of

the same tensor. Finally, Fig. 22 shows how to obtain the tree

decompositions from T̂i1i2i3i4
by introducing an appropriate

resolution of the identity, constructed from pairs of fusion

operators ϒ fuse and splitting operators ϒ split in accordance

with Fig. 19(b).
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FIG. 21. (Color online) Two possible tree decompositions of a

rank-4 tensor T̂ . Different choices T1,T2, . . . of tree decomposition

for tensor T̂ lead to different matrices M̂1,M̂2, . . . for the same tensor.

The representation of a tensor T̂ by means of a tree

decomposition is particularly useful because many tensor

network algorithms may be understood as a sequence of

operations carried out on tensors reduced to matrix form.

For example, consider tensor network algorithms such as

MPS, MERA, and PEPS. When tensors are updated in these

algorithms, the new tensor is typically created as a matrix, to

which operations from the primitive set P of Sec. II D are then

applied. When they are decomposed or contracted with other

tensors, this may once again take place with the tensor in matrix

form. Any such matrix form may always be understood as the

matrix component of an appropriate tree decomposition T of

tensor T̂ , where the sequence of operations reshaping tensor

T̂ to matrix M̂ corresponds to the contents of the shaded area

in Fig. 22.

FIG. 22. (Color online) Tree decompositions of tensor T̂ are

obtained by contracting the tensor with an appropriate resolution

of the identity on its indices, selected according to the desired choice

of the fusion tree T . In each instance, evaluation of the contents of

the shaded region yields the appropriate matrix M̂ .

FIG. 23. (Color online) A matrix M̂1 can be reorganized into

another matrix M̂2 by means of fusion tensors, splitting tensors, and

the permutation of indices. These operations define a one-to-one

linear map Ŵ that acts to reorganize the coefficients of M̂1. Ŵ does

not depend on the coefficients of M̂1, but solely on the sequence of

operations performed.

3. Mapping between tree decompositions

Suppose now that we have a tensor T̂ in matrix form

M̂1, which is associated with a particular choice of tree

decomposition T1, and we wish to transform it into another

matrix form M̂2, corresponding to another tree decomposition

T2. As indicated, this process may frequently arise during the

application of many common tensor network algorithms. The

new matrix M̂2 can be obtained from M̂1 by means of a series

of reshaping (splitting/fusing) and permuting operations, as

indicated in Fig. 23, and this series of operations may be

understood as defining a map Ŵ:

M̂2 = Ŵ(M̂1). (A2)

The map Ŵ is a linear map which depends only on the

tree structure of T1 and T2, and is independent of the

coefficients of M̂1. Moreover, Ŵ is unitary, and it follows

from the construction of fusing and splitting tensors and

the behavior of permutation of indices (which serves to

relocate the coefficients of a tensor) that Ŵ simply reorganizes

the coefficients of M̂1 into the coefficients of M̂2 in a one-to-

one fashion.

Therefore one way to compute the matrix M̂2 from

matrix M̂1 is by first computing the linear map Ŵ, which is

independent of the specific coefficients in tensor T̂ , and by

then applying it to M̂1.

4. Precomputation schemes for iterative tensor

network algorithms

The observation that the map Ŵ is independent of the

specific coefficients in M̂1 is particularly useful in the context

of iterative tensor network algorithms. It implies that, although

the coefficients in M̂1 will change from iteration to iteration,

the linear map Ŵ in Eq. (A2) remains unchanged. It is therefore

possible to calculate the map Ŵ once, during the first iteration

of the simulation, and then to store it in memory and reuse

it during subsequent iterations. We refer to such a strategy

as a precomputation scheme. Figure 24 contrasts the program

flow of a generic iterative tensor network algorithm with and

without precomputation of the transformations Ŵ.
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(b)(a)

FIG. 24. (Color online) Flow diagram for the execution of a

predetermined number of iterations of a generic iterative tensor

network algorithm, (a) without any precomputation and (b) with

precomputation of the operations Ŵ.

Using such a precomputation scheme, a significant speedup

of simulations can be obtained, at the price of storing

potentially large amounts of precomputed data (as a single

iteration of the algorithm may require the application of many

different transformations Ŵ). Therefore a tradeoff necessarily

exists between the amount of speedup that can be obtained and

the memory requirement that this entails. In this section we

describe two different precomputation schemes. The first one

fully precomputes and stores all maps Ŵ, and is relatively

straightforward to implement. This results in the maximal

increase in simulation speed, but implementation requires a

large amount of memory. The second scheme only partially

precomputes the maps Ŵ, resulting in a moderate speedup of

simulations, but with memory requirements which are also

similarly more modest.

a. Maximal precomputation scheme

As noted in Sec. III of this Appendix, applying the map Ŵ

to a matrix M̂1 simply reorganizes its coefficients to produce

the matrix M̂2. Moreover, if the indices of matrices M̂1 and

M̂2 are fused to yield vectors V̂1 and V̂2 then the map Ŵ may

be understood as a permutation matrix, and this in turn may be

concisely represented as a string of integers Ŵ = γ1, . . . ,γ|M̂1|

such that entry i of V̂2 = ŴV̂1 is given by entry γi of vector

V̂1. Because all of the elements from which Ŵ is composed

are sparse, unitary, and composed entirely of 0’s and 1’s,

the permutation to which Ŵ corresponds may be calculated

at a total cost of only O(|M̂1|), where |M̂1| counts only

the elements of M̂1 which are not fixed to be zero by the

symmetry constraints of Eq. (83). In essence, for each element

of the vector V̂1 one identifies the corresponding number and

degeneracy indices (n
M̂1

i ,t
M̂1

i ) on each leg i ∈ {1,2} of matrix

M̂1. One can then read down the figure, applying each table

ϒ fuse or ϒ split in turn to identify the corresponding labels (n′,t ′)

on the intermediate legs, until finally the corresponding labels

on the indices of M̂2 are obtained. There is then a further 1:1

mapping from each set of labels (n
M̂2

1 ,t
M̂2

1 ), (n
M̂2

2 ,t
M̂2

2 ) on M̂2

to the corresponding entry in V̂2, completing the definition of

Ŵ as a map from V̂1 to V̂2.

Storing the map Ŵ for a transformation such as the one

shown in Fig. 23 imposes a memory cost of O(|M̂1|). The

application of this map also incurs a computational cost of

O(|M̂1|), but computational overhead is saved in not having to

reconstruct the map Ŵ on every iteration of the algorithm.

b. Partial precomputation scheme

The O(|M̂1|) memory cost incurred in the previous scheme

can be significant for large matrices. However, we may reduce

this cost by replacing the single permutation Ŵ employed in

that scheme with multiple smaller operations which may also

be precomputed. In this approach M̂1 is retained in matrix form

rather than being reshaped into a vector, and we precompute

permutations to be performed on its rows and columns.

First, we decompose all the fusion and splitting tensors into

two pieces in accordance with Fig. 19(c). Next, we recognize

that any permutations applied to one or more legs of a fusion or

splitting tensor may always be written as a single permutation

applied to the coupled index [Fig. 25(a)]. We use this to replace

all permutations on the intermediate indices of the diagram

with equivalent permutations acting only on the indices of

M̂1 and the open indices, as shown for a simple example

in Fig. 25(b). The residual fusion and splitting operations,

depicted by just a circle enclosing an arrow, then simply carry

out fusion and splitting of indices as would be performed in the

absence of symmetry (2), (3). These operations are typically

far faster than their symmetric counterparts as they do not need

to sort the entries of their output indices according to particle

number.

(a)

(b)

FIG. 25. (Color online) (a) Permutations applied to one or more

legs of a fusion or splitting tensor can be replaced by an appropriate

permutation on the coupled index. This process can be used to

replace all permutations applied on internal indices of a diagram

such as Fig. 23 with net permutations on the indices of M̂1 and on

the open indices of the network, as in shown in (b). The residual

fusion and splitting operations, depicted as an arrow in a circle,

simply perform the basic tensor product operation and its inverse,

Eqs. (2) and (3), as described in Fig. 19(c) and Sec. I of this

Appendix.
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In subsequent iterations, the matrix M̂2 is obtained from

M̂1 by consecutively

(1) permuting the rows and columns of M̂1 using the

precomputed net permutations which act on the legs of M̂1;

(2) performing any elementary (nonsymmetric) splitting,

permuting of indices, and fusing operations, as described by

the gray-shaded region in Fig. 25(b);

(3) permuting the rows and columns of the resulting matrix,

using the precomputed net permutations which act on the open

legs of Fig. 25(b).

When matrix M̂1 is defined compactly, as in Eq. (83),

so that elements which are identically zero by symmetry

are not explicitly stored, a tensor T̂ is constructed from

multiple blocks identified by U(1) charge labels on their

indices [T̂n1n2...nk
in Eq. (83)]. Under these conditions the

elementary splitting, fusing, and permutation operations of

step (2) above are applied to each individual block, but some

additional computational overhead is incurred in determining

the necessary rearrangements of these blocks arising out of the

actions performed. This rearrangement may be computed on

the fly, or may also be precomputed as a mapping between the

arrangement of blocks in M̂1 and that in M̂2.

The memory required to store the precomputation data in

this scheme is dominated by the size of the net permutations

collected on the matrix indices, and is therefore of O(
√

|M̂1|).
The overall cost of obtaining M̂2 from M̂1 is once again of

O(|M̂1|), but is in general higher than the previous scheme as

this cost now involves two complete permutations of the matrix

coefficients, as well as a reorganization of the block structure of

M̂1 which may possibly be computed at runtime. Nevertheless,

in situations where memory constraints are significant, partial

precomputation schemes of this sort may be preferred.
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