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Abstract

Tensor product decompositions with optimal rank provide an interesting alternative to traditional
Gaussian-type basis functions in electronic structure calculations. We discuss various applications for a
new compression algorithm, based on the Newton method, which provides for a given tensor the optimal
tensor product or so-called best separable approximation for fixed Kronecker rank. In combination with
a stable quadrature scheme for the Coulomb interaction, tensor product formats enable an efficient
evaluation of Coulomb integrals. This is demonstrated by means of best separable approximations
for the electron density and Hartree potential of small molecules, where individual components of the
tensor product can be efficiently represented in a wavelet basis. We present a fairly detailed numerical
analysis, which provides the basis for further improvements of this novel approach. Our results suggest
a broad range of applications within density fitting schemes, which have been recently successfully
applied in quantum chemistry.

1 Introduction

1.1 Tensor products in electronic structure calculations

Tensor product approximations have a long and successful history in quantum chemistry. First of all we
have to mention the representation of many-electron wavefunctions as antisymmetric tensor products of
single-particle wavefunctions, usually termed as linear combination of Slater determinants. This ansatz
dramatically reduces the computational complexity for the evaluation of matrix elements involving many-
electron Hamiltonians and wavefunctions. The originally 3N -dimensional integrals, whereN is the number
of electrons, decompose into the familiar one- and two-electron integrals. Recent work by Yserentant [1]
suggests a special kind of regularity property of exact many-electron wavefunctions which provides a clue
from the mathematical point of view why this ansatz turns out to be highly successful. Another prominent
example for tensor products in quantum chemistry are Gaussian-type orbitals (GTO) basis sets for the
approximation of single-particle wavefunctions, so-called orbitals, and related quantities like one- and two-
electron reduced density matrices. Here the tensor product structure does not come to the fore like in the
previous example. Nevertheless it turns out to be very useful for the computation of one- and two-electron
integrals. More than ten years ago, Almlöf suggested in a visionary paper [2] a farther reaching approach,
based on tensor product decompositions, for an efficient evaluation of the Fock matrix.

Within the present work, we want to address the question whether GTO basis sets are already optimal
for tensor product approximations of orbitals and electron densities. Furthermore, we consider tensor
product representations of the Coulomb potential and its convolution with the electron density leading to
the Hartree potential. The latter represents a basic building block for the Hartree-Fock (HF) method and
density functional theory (DFT).
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1.2 Tensor product approximations with optimal rank

Customarily, tensor products appear in the approximation theory of multivariate functions via the con-
struction of a multi-dimensional basis by taking tensor products of appropriate univariate basis functions.
A typical example are plane wave basis sets frequently applied in solid state physics. Such kind of
construction, however, suffers from an exponential growth of the tensor product bases with increasing
dimension. For functions with sufficiently regular mixed derivatives and a hierarchical univariate basis, it
is a priori possible to select a subset of the tensor product basis set, whose size is “almost” independent
from dimension, without essential loss of approximation properties. This so-called sparse grid approach
[3, 4, 5] can be further improved by considering a fully adaptive best N -term approximation [6, 7] where
tensor products are selected according to the function to be approximated. For recent applications of
best N -term approximation in the framework of quantum chemistry we refer to Refs. [8, 9]. In a certain
sense, the modus operandi for GTO bases resembles to a best N -term approximation. However the GTOs
are not part of an underlying systematic basis set, instead they have been optimized by themselves in
atomic calculations. With respect to this, GTO bases have to be considered as some kind of generalized
tensor product approximation. In recent years, general tensor product decompositions without predeter-
mined univariate components attracted considerable interest in numerical mathematics. The interest in
this subject was mainly driven by their pleasing algebraic properties and the possibility to obtain efficient
algorithms for higher dimensional problems. We refer e.g. to Refs. [10, 11, 12, 13, 14, 15, 16, 17, 18]
and the references therein. Besides quantum chemistry, numerous other applications of general tensor
product decompositions in chemistry have been reported in the literature. Most of them are related to
high dimensional problems in data analysis with moderate accuracy requirements. For further details
and a comprehensive bibliography, we refer to the monograph [19]. Recently, Beylkin and Mohlenkamp
[20, 21] initiated an extensive program to investigate low rank tensor product decompositions in electronic
structure calculations. Related work has been also done by Ibraghimov [22].

Within the present work, we want to study best separable approximations with fixed Kronecker rank
κ for functions in R3 , like orbitals, electron densities and Hartree potentials, which means that we are
looking for the best possible approximation of a function f in the format

f(x) ≈
κ∑

k=1

h
(1)
k (x1)h

(2)
k (x2)h

(3)
k (x3), (1)

where the univariate functions h
(i)
k (xi) have to be chosen in an “optimal” way. In particular, there are no

orthogonality constraints imposed. The notion of a Kronecker rank has been borrowed from linear algebra
[19] where it denotes the least possible decomposition rank of a tensor. We refer to as separation rank
in the case of tensor product decompositions for which the rank is supposed to be suboptimal. Strictly
speaking, the error of best separable rank κ approximations is defined via the least-squares problem

σκ(f) := inf
h
(i)
k

∈L2(R)

∥
∥
∥
∥
∥
f(x) −

κ∑

k=1

h
(1)
k (x1)h

(2)
k (x2)h

(3)
k (x3)

∥
∥
∥
∥
∥
L2(R3)

, (2)

where the L2 norm has been chosen mainly for technical reasons. Such kind of variational problems are
typically ill-posed, cf. Ref. [23], which means that a minimizer does not necessarily exist. This is due to
the fact that the space of rank κ tensor products is not closed in L2(R3). Nevertheless it is possible to

choose a set of functions h
(i)
k (xi) for which the error is arbitrarily close to σκ. However it might happen

that this set is ill-conditioned in a sense to be discussed below. Another problem arises from a multitude
of local minima into which a numerical algorithm for the solution of the variational problem (2) might get
stuck. Despite these shortcomings, one should bear in mind that for our envisaged applications it is only
of relevance to achieve a certain accuracy with a reasonably small Kronecker rank κ and it is completely
irrelevant whether this representation actually corresponds to a global minimum. We want to mention at
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the end of this paragraph, that an approximation similar to (2) has been already discussed by Dacre and
Elder in the early seventies, cf. Ref. [24], for the computation of two-electron integrals. They required

the univariate functions h
(i)
k to be of Gaussian-type and optimized not only the coefficients but also their

centers and exponents using a quasi-Newton algorithm.
The variational problem (2) can be considerably simplified if we assume that the original function f

is already given in a tensor product format. In the mathematical literature, the representation of a given
tensor by a tensor product of minimal rank became known as canonical decomposition (CANDECOMP)
or parallel factors (PARAFAC) model, cf. Ref. [11]. A typical example are functions represented in a
GTO basis set

f(x) =

K∑

k=1

ak g
(1)
k (x1 −A

(k)
1 )g

(2)
k (x2 −A

(k)
2 )g

(3)
k (x3 −A

(k)
3 ) (3)

with
g
(i)
k (xi) = Ci,kx

li,k
i e−ζkx

2
i for i = 1, 2, 3. (4)

For simplicity we consider here and in the following only primitive cartesian GTO basis sets. In a prepara-
tory step, the individual GTOs are discretized in each direction on a uniform grid

g
(i)
k (xi −A

(k)
i ) ≈

∑

a

b
(i)
k,l,a ϕl,a(xi) where b

(i)
k,l,a = 2−l/2g(i)

k (2−la−Ai), (5)

with grid spacing h = 2−l bohr, using the interpolating scaling functions ϕl,a(x) := 2l/2ϕ(2lx − a) of
Deslauriers and Dubuc [25]. The discrete counterpart of the function (3) is represented by the tensor
product decomposition

fl :=

K∑

k=1

ak b
(1)
k,l ⊗ b

(2)
k,l ⊗ b

(3)
k,l , (6)

with entries

(fl)a1a2a3 :=

K∑

k=1

ak

(

b
(1)
k,l

)

a1

(

b
(2)
k,l

)

a2

(

b
(3)
k,l

)

a3
(7)

where
(

b
(i)
k,l

)

ai

:= b
(i)
k,l,ai

for i = 1, 2, 3 refers to coefficient vectors in the expansion (5). Such kind of

discretization procedure can be applied to any function f in the format (1) irrespective of whether or
not the representation is optimal. In the following we will denote by K the separation rank of arbitrary
tensor products and reserve κ for the Kronecker rank of best separable approximations. The subsequent
compression step is performed in a purely algebraic manner using the discretized representation (6) and
the corresponding least-squares functional

σκ(f) := inf
h

(i)
k

∈ℓ2

∥
∥
∥
∥
∥
f −

κ∑

k=1

h
(1)
k ⊗ h

(2)
k ⊗ h

(3)
k

∥
∥
∥
∥
∥
ℓ2

, (8)

where the L2 norm of the function space has been replaced by the ℓ2 norm defined on the sequence space

of coefficients b
(i)
k,l. We want to mention, however, that for the (bi)orthogonal wavelet and scaling function

bases discussed below, a norm equivalence exists between L2 and ℓ2. This means that minimizing the
discrete functional (8) is virtually equivalent to minimizing the continuous functional (2). We refer to
Appendix A for a further discussion of this subject. As already mentioned, it might happen that the
optimization problem is ill-posed. In such a case it becomes necessary to apply a Tichonov regularization
to the least-squares functional (8), cf. Ref. [21] for further details.

Two different compression algorithms were available to us from the outset of our project. The first
algorithm uses an alternating least squares method [26] and the second one is based on the Newton method
[27]. Both algorithms achieved comparable compression rates for small Kronecker ranks. However it turned
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out that the Newton algorithm is superior at high accuracies where comparatively large Kronecker ranks
are required. We want to emphasize, however, that both algorithms typically generate a sequence of local
minima. In an initial step at Kronecker rank κ, the Newton algorithm tries to find the best rank one
approximation with respect to the residuum of the best rank κ− 1 approximation. Although it is known
to exist [27, 28], it might be hidden among a large number of local minima. Therefore, the algorithm
computes several local minima and selects the most promising one as a starting guess for the actual Newton
optimization. Within the minimization, the Newton direction has to be calculated in each step. Already
at fairly small compression ranks > 10, the condition number of the Hessian matrix becomes rather poor
resulting in a significant increase of computational costs. This problem can be circumvented by using a
trust-region method [29] to modify the Hessian matrix in those cases where its condition number becomes
critical. In our applications, we have used both versions of the Newton algorithm with and without the
trust-region method. It turned out, that these algorithms end up in different local minima which may
slightly differ with respect to their L2 error for compression ranks κ > 10. Such small variations of the
lowest rank, required in order to achieve a certain accuracy, are not really relevant from a practical point
of view. At higher compression ranks κ > 20, the trust-region method becomes mandatory for certain
applications and exhibits a stable convergence behaviour.

Starting from the discrete Kronecker tensor product (6), the Newton algorithm tries to solve the
corresponding optimization problem (8) with κ < K. For this linear vector spaces

B(i) := span
{

b
(i)
1,l, . . . ,b

(i)
K,l

}

for i = 1, 2, 3, (9)

of dimension ri ≤ K have to be considered. It can be shown that the optimized components h
(i)
k in each

direction belong to the linear space B(i), cf. Refs. [27, 30]. Concerning the computational complexity
of the algorithm let us first assume κ ≪ K. Typically, we observed that the dimensions ri of the linear
vector spaces B(i) are considerably smaller than the initial separation rank K. Linear dependencies

among the vectors b
(i)
k,l occur e.g. because certain univariate Gaussian functions may appear repeatedly

within different GTOs in the expansion (3). The initial orthogonalization step to create orthogonal bases
for the spaces B(i) needs a QR decomposition which requires O(nlK

2) computational effort where nl

denotes the size of the vectors b
(i)
k,l. The actual Newton algorithm has O(κKrmax + κ3), with rmax :=

max{ri}, computational complexity and requires O(κrmax) memory. It should be mentioned that the time
consuming orthogonalization step can be improved by using a hierarchical wavelet basis instead of scaling
functions.

Instead of discretizing the function (3) in a scaling function basis it is possible to work directly in the
function spaces

G(i) := span
{

g
(i)
k (· −A

(k)
i )
}

for i = 1, 2, 3, (10)

spanned by the univariate Gaussians. As already mentioned in the previous paragraph this becomes

possible because the univariate components h
(i)
k belong to the function spaces G(i). For a proof of this

statement, we refer to Ref. [27]. The Newton algorithm only requires the construction of an orthogonal
basis in G(i) which can be easily achieved e.g. by Löwdin orthogonalization after removing possible

linear dependences among the g
(i)
k (· − A

(k)
i ). With such kind of ansatz, the h

(i)
k are finally expressed in

terms of Gaussians again, which might be of interest for certain applications, e.g. where best separable
approximations have to be incorporated into an already existing code that operates with GTO basis
functions. Within the present work, we do not pursue this ansatz further because it is only of limited use
for our more general approach to the evaluation of Coulomb integrals outlined in Section 2. Our approach
requires basis sets which provide a stable resolution of the identity. This is hard to achieve with GTO
basis sets.
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1.3 “Optimal” tensor products versus GTO bases

In order to judge the applicability of best separable rank κ approximations in quantum chemistry, we
have studied orbital compression rates for a few single-electron systems. First we solved the Schrödinger
equation (

−1

2
∆ −

∑

A

ZA
|x − A|

)

φ(x) = ε0 φ(x), (11)

using large uncontracted GTO basis sets. In a second step we have generated best separable rank κ
approximations of the wavefunctions using the algorithms outlined in Section 1.2. The simplest of these
systems is the H atom. It is only for the H atom where rigorous results are available concerning ap-
proximation errors of GTO basis sets for single-electron Schrödinger equations. It has been shown in
Refs. [31, 32] that GTO bases achieve almost exponential convergence rates σκ(φH) ∼ e−µ

√
κ for the H

atom. Whether this result remains valid in the case of HF calculations for general molecules seems to be
an open issue, although there exists some numerical evidence in favour of it [33]. Errors in energy for best
separable rank κ approximations obtained with the Newton algorithm are shown in Fig. 1 a). These have
been compared with best radial Gaussian approximations [34] of the same rank. The latter have been
optimized with respect to a weighted L∞(R+) norm. It can be seen that both approaches lead to similar
approximation errors, where the best separable rank κ approximation actually performs slightly better.
Our results indicate that Gaussians already provide almost optimal separable approximations for the H
atom. However this does not seem to be the case for systems with several nuclei as can be seen from Fig. 1
b) where significant compression rates can be achieved with respect to standard GTO basis sets. Here we
have chosen an uncontracted (8s4p3d) GTO basis for each atom with exponents taken from V5Z basis sets
[35]. Once the Schrödinger equation (11) has been solved in these basis sets, we compressed the wavefunc-
tions to different Kronecker ranks 1 ≤ κ ≤ 15 using the alternating least-squares algorithm. Thereafter,

the set of components {h(1)
k (x1)h

(2)
k (x2)h

(3)
k (x3)} of the tensor product expansion (1) was taken as a new

basis in which the Schrödinger equation (11) has been solved again. We have performed such calculations
for systems containing two or three nuclei. It should be mentioned that the approximation error of best
separable rank κ approximations might depend on the orientation of the molecule with respect to the
coordinate axes, e.g. a linear combination of two Gaussians with different centers and same exponents
can be written as a rank one tensor if oriented along an axis. The dimers H+

2 , HHe2+, and a linear trimer
H2+

3 were therefore oriented along the diagonal in order to avoid such kind of rank reductions due to
symmetry. Furthermore, we have considered a triangular structure for H2+

3 with each nucleus located on
an axis. The resulting errors in energy are shown in Fig. 1 b). It can be seen that the overall convergence
for these systems is rather similar and an error in energy ≤ 10−4 hartree, which roughly corresponds to
the basis set error of the GTO bases, can be achieved at Kronecker rank κ ≤ 15. For comparison, the
separation ranks of the initial GTO bases, ranging from K = 58 for H+

2 up to K = 126 for H2+
3 (triangular

structure), are considerably larger.
Another important aspect of best separable rank κ approximations is the sparse representation of

univariate components h
(i)
k for i = 1, 2, 3. For the tensor product compression step, these components have

been represented so far in a scaling function basis (5) on a uniform grid. This becomes rather inefficient
for extended systems containing heavy nuclei because the resolution level has to be adjusted to the typical
length-scales of atomic cores. Instead it seems to be more favourable to work in a wavelet representation
where adaptive refinement becomes possible. Furthermore wavelets enable a second compression step

on the univariate components h
(i)
k (see Appendix A for further details). Such kind of approach has

been discussed by Ford and Tyrtyshnikov, cf. Refs. [14, 15], for solving dense linear systems in higher
dimensions. The transition from scaling functions into a wavelet basis can be achieved by means of a fast
wavelet transformation which consists of a successive application of the two-scale decomposition of scaling
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Figure 1: Error in total energy (hartree) versus Kronecker rank κ of best separable approximations
for one-electron wavefunctions. a) Best separable L2(R3 ) (✷) and best radial Gaussian L∞(R+) (∆)
approximations for the H atom. b) Best separable rank κ approximations for various positively charged
dimers (✷) H+

2 (K = 58), (✸) HHe2+ (K = 58), and trimers (∆) H2+
3 (K = 126, triangle), (×) H2+

3

(K = 75, linear). The reference wavefunctions have been calculated in an uncontracted (8s4p3d) GTO
bases. Nuclei are located on the diagonal or on the axes to form a triangle.

functions into wavelets and scaling functions on the next coarser level, i.e.

ψ
(0)
j,a (x) =

∑

b

(

cab ψ
(0)
j−1,b(x) + dab ψ

(1)
j−1,b(x)

)

. (12)

Here and in the following we use the joint notation

ψ
(0)
j,a (x) := ϕj,a(x) and ψ

(1)
j,a (x) := ψj,a(x). (13)

for scaling functions ϕ and wavelets ψ, respectively. Herewith, we obtain the wavelet representation of
the univariate components

h
(i)
k (xi) =

∑

a

h
(i)
k,0,l,aψ

(0)
l,a (xi)

=
∑

a

h
(i)
k,0,l0,a

ψ
(0)
l0,a

(xi) +

l−1∑

j=l0

∑

a

h
(i)
k,1,j,aψ

(1)
j,a (xi). (14)

A typical result is shown in Fig. 2 for H+
2 at κ = 5 for D10 wavelets with five vanishing moments. The

univariate components h
(1)
k (x1), depicted in Fig. 2 a), appear to be rather smooth. It is shown in Fig. 2 b)

that the fraction of wavelet coefficients with |h(i)
k,1,j,a| ≥ 10−6 decreases exponentially with respect to the

level j. This observation paves the way for a fast computation of various integrals involving orbitals and
electron densities. Before we can delve into this subject it is necessary to have a separable approximation
for the Coulomb potential at our disposal, which is adapted to the specific requirements of wavelet bases.
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Figure 2: Best separable rank 5 approximation for H+
2 oriented along the diagonal. a) Univariate compo-

nents h
(1)
k (x1) of Kronecker tensor product. b) Wavelet compression of univariate components h

(1)
k for D10

wavelets with five vanishing moments. The percentage of wavelet coefficients with absolute magnitude
≥ 10−6 is shown for different levels j.

2 Separable approximation of the Coulomb potential

The standard integration schemes for the evaluation of Coulomb integrals for GTO basis sets are based
on the Gaussian transform of the Coulomb interaction

1

| x − y | =
2√
π

∫ ∞

0
e−|x−y|2t2 dt. (15)

Such kind of representation suggests a formal ansatz for a separable approximation

1

| x− y | ≈
∑

i

ωi e
−|x−y|2t2i , (16)

which allows for different concrete realizations. One possibility is to consider a pointwise approximation
in the finite radial interval [1, R]. This can be accomplished either by quadrature formulas for the integral
(15), cf. [36, 37], or in the sense of a best N -term approximation studied in Refs. [38]. Using a simple
scaling relation it can be adapted to approximate the Coulomb interaction in radial intervals [ǫ, ǫR] for
any ǫ > 0. Recently this method has been successfully applied in combination with multi wavelets by
Harrison and coworkers [39, 40] for HF and KS calculations and for interpolating scaling functions and
wavelets within the BigDFT program of Deutsch et al. [41, 42]. Another possible approach is to construct
quadrature formulas which approximate the Coulomb integrals itself with respect to a given basis. For
GTO basis sets this corresponds to the familiar Rys quadrature introduced into quantum chemistry thirty
years ago by Dupuis, Rys and King [43].

In order to evaluate general Coulomb integrals for tensor product decompositions, where the univari-
ate components (14) are represented in a wavelet basis, we essentially follow the nonstandard approach
originally suggested by Beylkin et al. [44, 45]. It uses a completeness relation similar to the resolution of

the identity (RI) methods commonly employed in quantum chemistry. We want to mention however, that
contrary to GTOs, wavelets provide not only complete but also stable basis sets, cf. Appendix A, which
enable a mathematically rigorous notion of the RI approach. An appropriate choice for this purpose are
isotropic 3d tensor product wavelets

γ
(s)
j,a(x) = ψ

(s1)
j,a1

(x1)ψ
(s2)
j,a2

(x2)ψ
(s3)
j,a3

(x3), (17)
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cf. our notation (13), which consist of different combinations of (bi)orthogonal univariate scaling functions

and wavelets. Accordingly, we denote by γ̃
(s)
j,a the corresponding dual wavelets. The special case s1 = s2 =

s3 = 0 corresponds to 3d scaling functions whereas the seven other possible combinations, with at least
a single univariate wavelet in the tensor product, represent the 3d wavelet basis. These wavelets possess
different properties depending on the total number of vanishing moments in the various directions. Given
any two functions ηα, ηβ of the form

η(x) = η(1)(x1) η
(2)(x2) η

(3)(x3), (18)

and using telescopic expansions of isotropic 3d wavelets
∑

a

|γ̃(0)
j+1,a〉〈γ

(0)
j+1,a| =

∑

p

∑

a

|γ̃(p)
j,a 〉〈γ

(p)
j,a |, (19)

the corresponding approximate Coulomb integral
∫ ∫

ηα(x)
1

| x− y | ηβ(y) dxdy (20)

≈
jmax∑

j=j0

∑

p,q

′∑

a,b

〈ηα|γ̃(p)
j,a 〉〈γ̃

(q)
j,b |ηβ〉

∫ ∫

γ
(p)
j,a (x)

1

| x− y | γ
(q)
j,b (y) dxdy,

can be expressed through elementary Coulomb integrals

∫ ∫

γ
(p)
j,a (x)

1

| x− y | γ
(q)
j,b (y) dxdy =

2−2j+1

√
π

∫ ∞

0
I(p,q)(t,a − b)dt, (21)

with
I(p,q)(t,a) := G(p1,q1)(a1, t)G

(p2,q2)(a2, t)G
(p3,q3)(a3, t), (22)

and

G(pi,qi)(ai, t) :=

∫ ∫

ψ(pi)(x− ai) e
−(x−y)2t2 ψ(qi)(y) dxdy, (23)

where we have used the Gaussian transform of the Coulomb potential (15) and a simple scaling relation.
The prime at the sum over the wavelet types p,q indicates that the pure scaling function combination
p = q = 0 appears only on the coarsest level j0. A more detailed outline of the nonstandard approach,
applied to Coulomb integrals (20), and a general algorithm for the computation of the integrals (23) have
been given in Ref. [46]. Elementary Coulomb integrals (21) for wavelets with nonoverlapping supports,

i.e. dist(supp γ
(p)
j,a , suppγ

(q)
j,b ) > 0, can be estimated according to, cf. Refs. [47, 48],

∣
∣
∣
∣

∫ ∫

γ
(p)
j,a (x)

1

|x − y|γ
(q)
j,b (y) dxdy

∣
∣
∣
∣
≤ Cp,q

2−j(3+m(|p|+|q|))

dist(supp γ
(p)
j,a , supp γ

(q)
j,b )1+m(|p|+|q|)

, (24)

with |p| := p1 + p2 + p3 and m denotes the number of vanishing moments of the underlying univariate
wavelet. The estimate (24) applied to the right hand side of Eq. (20) enables an efficient evaluation of
these integrals.

To take advantage of the tensor product structure of the functions ηα, ηβ, we require an efficient
quadrature formula for the integral on the right hand side of Eq. (21), which is robust with respect to
the lattice distance |a − b| of the wavelets. Such kind of quadrature formulas based on sinc function
approximation, cf. Stenger’s monograph [49], have been discussed by two of us in Ref. [37]. Recently it
has been proven by Schwinger [50] that the so-called exponential quadrature formula

∫ ∞

0
I(p,q)(t,a)dt ≈ h

M∑

m=−M
emhI(p,q)(emh,a), (25)
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Figure 3: Relative error of elementary Coulomb integrals (25) for different number of quadrature points.
The upper part shows the corresponding absolute values of the integrals. a) p = (0, 0, 0), q = (1, 0, 0). b)
p = (1, 1, 1), q = (1, 1, 1). Isotropic 3d-wavelets were generated from the univariate SDD6 wavelet basis.

for h =
√

πδ
M (p or q 6= 0) or h =

√
2πδ
M (p = q = 0), with δ < π

4 , provides a uniform error bound

concerning the translation parameter a. With this the integration error decreases almost exponentially
with respect to the number of quadrature points

∣
∣
∣
∣
∣

∫ ∞

0
I(p,q)(t,a)dt − h

M∑

m=−M
emhI(p,q)(emh,a)

∣
∣
∣
∣
∣
≤ Cp,qe

−α
√
M , (26)

where the constant α is given by 2
√
πδ and

√
2πδ for p or q 6= 0 and p = q = 0, respectively. The different

behaviour is due to the vanishing moment property of wavelets which forces the function I(p,q)(t,a) to
vanish in the lim t → 0, whereas for pure scaling functions it converges to a finite nonzero value. Actually
it turned out that the estimate (26) is valid for a large class of univariate wavelet basis ψ(0), ψ(1) for which
the convolution product decays exponentially, i.e.

∣
∣
∣
∣

∫

ψ(p)(x− y)ψ(q)(y) dy

∣
∣
∣
∣
≤ Cp,qe

−c|x| for c > 0. (27)

This is trivially the case for any wavelet with compact support and is also satisfied e.g. for the Mexican
hat wavelet which corresponds to the second derivative of a Gaussian function. In Fig. 3 we have shown
relative errors of the integrals (25) for two different 3d-wavelet combinations p = (0, 0, 0), q = (1, 0, 0) and
p = (1, 1, 1), q = (1, 1, 1) which correspond to two extreme cases with a univariate wavelet in one direction
only in the first case and univariate wavelets in all directions in the second case. The underlying SDD6
wavelet (see Appendix A for further details) has six vanishing moments. In accordance with estimate (24),
the absolute values of the second kind of integrals decay much faster with respect to their distance on the
lattice because of the larger number of vanishing moments acting in all directions. Even so the constant
in the estimate (26) might depend on p, q, it can be seen from Fig. 3 that the relative errors are rather
similar for both cases.

With the uniformly stable quadrature formula (25) at our disposal, we can rearrange Eq. (20) according
to

∫ ∫

ηα(x)
1

| x− y | ηβ(y) dxdy

9



≈ 2h√
π

M∑

m=−M
emh

jmax∑

j=j0

2−2j
∑

p,q

′ L(1)
j,p1,q1

(emh)L
(2)
j,p2,q2

(emh)L
(3)
j,p3,q3

(emh), (28)

where the order of integration has been reversed to obtain a separable expression through the quantities

L
(i)
j,pi,qi

(t) =
∑

a∈Λ
(i,α)
j,pi

∑

b∈Λ
(i,pi,qi)
j,a

〈η(i)
α |ψ̃(pi)

j,a 〉〈ψ̃(qi)
j,b |η(i)

β 〉G(pi,qi)(a− b, t). (29)

The index sets Λ
(i,α)
j,pi

, Λ
(i,β)
j,qi

result from thresholds Cj on the absolute values of the wavelet (scaling
function) coefficients, e.g.

Λ
(i,α)
j,pi

:=
{

a : |〈η(i)
α |ψ̃(pi)

j,a 〉| ≥ Cj

}

. (30)

In order to perform the second sum with respect to b in a more efficient way we have had to recourse to

the estimate (24) from which further bounds C
(pi,qi)
j for the index sets

Λ
(i,pi,qi)
j,a :=

{

b : |a− b| ≤ C
(pi,qi)
j

}

∩ Λ
(i,β)
j,pi

(31)

can be derived. These bounds do not depend on the parameter t and represent asymptotic properties of
the Coulomb potential which are not necessarily reflected by individual components of the decomposition
(28). Alternatively, it is possible to use individual bounds for the functions (23) at each quadrature point.
Our decomposition of the integral (28) resembles to a recently proposed method of Sundholm, cf. Ref.[51],
who used interpolating Lagrange functions instead of wavelets.

In our envisaged applications, the integrals (20) have to be calculated for a large set of functions {ην}.
In such a case it makes sense to introduce further compression steps. For this we consider the convolution

∫
1

| x− y | ηβ(y)dy ≈ 2h√
π

jmax∑

j=j0

2−2j
M∑

m=−M
emh

∑

p,q

′
3∏

i=1

(
∑

a

M
(i,pi,qi)
j,a (emh) ψ̃

(pi)
j,a (xi)

)

, (32)

with
M

(i,pi,qi)
j,a (t) =

∑

b∈Λ
(i,pi,qi)
j,a

〈ψ̃(qi)
j,b |η(i)

β 〉G(pi,qi)(a− b, t), (33)

which represents an intermediary step in the calculation of the integrals (20). Using the fast wavelet
transform (14), Eq. (32) can be rewritten in such a way that each component, originally expressed in
terms of scaling functions, is represented in the wavelet basis, i.e.

∑

a

M
(i,0,qi)
j,a (t) ψ̃

(0)
j,a (xi) =

j
∑

l=j0

∑

s

′∑

a

N
(i,0,qi)
j,s,l,a (t)ψ̃

(s)
l,a (xi). (34)

Again, a prime indicates that scaling functions appear only on the coarsest level j0 of the expansion. Actu-
ally the sum over l runs up to j− 1, however, for the sake of a consistent notation we have augmented the

sum up to j with N
(i,0,qi)
j,s,j,a (t) := 0. The wavelet components remain unchanged in the new representation,

i.e.

N
(i,1,qi)
j,s,l,a (t) :=

{

M
(i,1,qi)
j,a (t) for l = j and s = 1

0 otherwise
. (35)

With this representation it is possible to compress the tensor product on each level j separately

2h√
π

M∑

m=−M
emh

∑

p,q

′
3∏

i=1





j
∑

l=j0

∑

s

′∑

a

N
(i,pi,qi)
j,s,l,a (emh)ψ̃

(s)
l,a (xi)



 ≈̆
κj∑

k=1

3∏

i=1





j
∑

l=j0

∑

s

′∑

a

P
(i,s)
k,j,l,a ψ̃

(s)
l,a (xi)



 .

(36)
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Here and in the following ≈̆ denotes a best separable approximation of a tensor product. Following this
intermediate compression step, the different levels can be compressed together into an even more compact
expression

∫
1

| x− y | ηβ(y)dy ≈
jmax∑

j=j0

2−2j

κj∑

k=1

3∏

i=1





j
∑

l=j0

∑

s

′∑

a

P
(i,s)
k,j,l,a ψ̃

(s)
l,a (xi)



 (37)

≈̆
κ∑

k=1

3∏

i=1





jmax∑

l=j0

∑

s

′∑

a

Q
(i,s)
k,l,a ψ̃

(s)
l,a (xi)



 . (38)

Whether it is worthwhile to perform the additional compression step (38) depends on the specific appli-
cation. If the finest resolution level of the functions ηα vary considerably, as it is typically the case for
all-electron calculations, it might be favourable to use the multiscale representation (37) where the resolu-
tion levels can be chosen adaptively. Whereas in the case of pseudopotential calculations the total number
of resolution levels jmax − j0 + 1 remains small and representation (38) becomes more efficient. With the

compressed coefficients P
(i,s)
k,j,l,a or Q

(i,s)
k,l,a at hand we can now efficiently evaluate Coulomb integrals (20) in

the tensor product format, e.g.

∫ ∫

ηα(x)
1

| x − y | ηβ(y)dxdy ≈
κ∑

k=1

3∏

i=1





jmax∑

l=j0

∑

s

′∑

a

Q
(i,s)
k,l,a 〈η(i)

α |ψ̃(s)
l,a 〉



 , (39)

where further usage can be made of sparsity features of the wavelet coefficients 〈η(i)
α |ψ̃(si)

l,ai
〉.

3 Density fitting scheme with best separable approximations

A major bottleneck for the numerical solution of Kohn-Sham equations is the evaluation of the Hartree
potential for a given electron density ρ. Originally introduced by Baerends, Ellis and Ros, cf. Ref. [52], it
became a widespread approach within DFT to approximate the electron density in an auxiliary basis set
in order to facilitate this part of the computation. Following Sambe and Felton, cf. Ref. [53], the most
popular choice are GTO auxiliary basis sets [54, 55, 56, 57, 58, 59, 60, 61, 62] for which the Hartree potential
can be evaluated analytically. Such kind of approach can be considered as a separable approximation of
the electron density in the sense of Eq. (3), where the separation rank K corresponds to the total number
of primitive GTOs in the auxiliary basis set. These basis sets have been carefully optimized for individual
elements [56, 58, 61], and therefore it is interesting to compare their separation ranks with those obtained
from best separable approximations of comparable accuracy. Most of the data reported in the literature is
related to errors in energy resulting from this approximation. Therefore such a comparison is postponed
to Section 4, where we discuss our results for the Hartree potential. Within this section, we focus instead
on local errors of best separable approximations for the electron density

ρ(x)≈̆
κ∑

k=1

̺
(1)
k (x1) ̺

(2)
k (x2) ̺

(3)
k (x3). (40)

According to Eq. (2), the approximation error has been minimized with respect to the L2 norm. The
same measure has been chosen in the ADF program of Baerends and coworkers [52, 65]. However most
of the existing DFT codes follow Dunlap et al., cf. Ref. [54], by minimizing the Coulomb repulsion of the
residual. It has been argued in Refs. [54, 66] that this results in a quadratic error for the energy. Different
types of interaction potentials have been discussed in Refs. [67, 68, 69]. From a computational point
of view, the Coulomb repulsion does not provide a convenient measure for tensor product expansions.
Nevertheless there exist several possible alternatives, e.g. weighted L2 norms, which bound the Coulomb
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repulsion from above, or different types of Sobolev norms. Among the Sobolev spaces, H−1 seems to be
the most promising because it can be considered as a modification of the Coulomb repulsion where the
Coulomb potential has been replaced by a Yukawa potential. This resembles closely to the attenuated
Coulomb potential considered in Ref. [68]. However in order to be compatible with the tensor product
format, the H−1 norm has to be taken in momentum space which requires the Fourier transform ρ̃ of the
electron density. Because of the tensor product structure this can be accomplished with moderate effort
by performing fast Fourier transformations for the univariate components. In momentum space p, the
transition from the Coulomb repulsion to a H−1 norm simply corresponds to replacing the weakly singular
|p|−2 by a finite weight factor with positive parameter α, i.e.

σH
−1

κ (ρ) := inf
̺
(i)
k

∈H−1(R)

∫

d3p

∣
∣
∣ρ̃(p) −∑κ

k=1 ˜̺
(1)
k (p1) ˜̺

(2)
k (p2) ˜̺

(3)
k (p3)

∣
∣
∣

2

α+ |p|2 . (41)

Given a short tensor product approximation of the additional weight factor (α + |p|2)−1, e.g. in terms
of Gaussians, it can be easily incorporated into the compression algorithm. For simplicity, we restricted
ourselves within the present work to the L2 norm. It will be the subject of our future work to perform
comparative studies for different norms.

In our numerical studies we focused on the simple molecules CH4, C2H2, and C2H6. The original
densities have been obtained from all-electron HF calculations with standard VDZ basis sets. Using the
closedness of GTO basis functions under multiplication, we obtained a representation for the electron
density in the form of Eq. (3), which has been handled according to the procedure outlined in Section 1.2.
In order to achieve a sufficient resolution of the electron-nuclear cusp at the C atoms, we have chosen in
the preparatory step (5), scaling functions at level j = 7 which corresponds to a grid with h = 2−7 ≈ 0.008
bohr. This has to be compared with the standard deviation of 0.0087 bohr for the GTO with the largest
exponent in the VDZ basis set. It is obvious that the electron density obtained from a VDZ basis set is
smooth everywhere. Nevertheless we use the notion of a cusp to discuss the behaviour of electron densities
near nuclei. This can be justified in view of the fact that we consider a discretized space which is too
coarse to resolve the difference between the exact and approximate VDZ electron density.

Best separable approximations have been obtained using the Newton algorithm with and without
application of the trust-region method. Convergence of L2 errors (2) with the Kronecker rank κ for the
molecules mentioned above are shown in Fig. 4. It can be seen that for moderate compression ranks
≤ 40, the trust-region method leads to local minima with slightly larger L2 errors. However there appears
a rather sharp bend around κ ≈ 20 without the trust-region method. Beyond that bend, at certain
ranks, the Newton algorithm without trust-region method fails to converge to a minima at all. The global
character of the L2 error does not reveal local differences in the quality of separable approximations. For
this we have plotted in Fig. 5 the local error of best separable approximations at various ranks of the
electron density for C2H6. It can be seen that the error converges fast except at the nuclear cusp of C
atoms. We want to point out that the scale of our plots changes by an order of magnitude between κ = 15
and κ = 20. An apparent asymmetry of the peaks at the C nuclei is due to the rather coarse resolution
of the lattice (h = 2−4 bohr) used for our plots. The C atom in the foreground is precisely located on
a lattice site whereas the C atom in the background is somewhere in between. To get a better idea of
the behaviour of best separable approximations near nuclear cusps, we have shown in Fig. 6 the actual
electron density at the lattice sites near a C nucleus of C2H6, where h = 2−7 bohr corresponds to the
actual lattice distance used for the compression. It can be seen that there is obviously fast convergence at
low ranks. However it turned out that this convergence got stuck around κ ≈ 20 where the relative error
at the nucleus became 4.2 · 10−4. In the following we want to examine how errors in the electron density
propagate into the Hartree potential and finally into the HF energy.

Various modifications of our approach seem to be possible in order to improve the approximation
quality in the immediate neighbourhood of nuclei. The application of pseudopotentials is an obvious way
to improve the efficiency. This possibility has been already studied for simple molecules but will not be
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Figure 4: Relative L2 error of best separable approximations of the electron density (a) and Hartree
potential (b) for CH4, C2H2, and C2H6. Results are shown for the Newton algorithm with (×) and
without (◦) application of the trust-region method. The errors in (b) refer to initial Hartree potentials
obtained from compressed electron densities at ranks κ = 20, 40, and 40 respectively. These densities
were generated without application of the trust-region method.

pursued further in this paper, c.f. Ref. [63]. In the all-electron case, the most promising approach seems
to be a combination of few precontracted GTO basis functions and best separable approximations, where
GTOs can be used to approximate the electron density in the immediate neighbourhood of a nucleus.
The contracted GTOs can be optimized for atomic densities either with respect to the total energy or any
other norm which seems to be appropriate.

4 Approximation and compression of Hartree potential

4.1 Density fitting of Hartree potential

The Hartree potential for best separable approximations of the electron density

VH(x) =

κ∑

k=1

∫
1

| x − y | ̺
(1)
k (y1) ̺

(2)
k (y2) ̺

(3)
k (y3)dy, (42)

has been calculated according to Eq. (32), where M = 81 has been chosen for the quadrature formula.
Concerning the accuracy of this quadrature rule, we refer to our remarks below. From the preceding
discussion it is clear that the leading errors of the electron density are located within the immediate
neighbourhood of nuclei. Such kind of errors give rise to a corresponding error of the Hartree potential
which is O(1/r) with respect to the distance from the nuclei. Because of an exponential decay of the
electron density, the Coulomb energy probes the Hartree potential mainly within short distances with
respect to the nuclei. On this length scale, fluctuations of the error of the Hartree potential are small, as
can be seen from Figs. 7 a) and c), where the error in a neighbourhood of a C atom is shown for C2H6.
More interesting from a practical point of view is the error distribution with respect to the Coulomb
matrix elements

Jab =

∫

ga(x)gb(x)VH (x)dx, (43)

calculated according to Eq. (28), in a GTO basis set. We have chosen for C and H uncontracted 9s4p1d
and 4s1p GTO basis sets, respectively, with exponents taken from standard VDZ bases. The error of the
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Figure 5: Absolute error of best separable approximations of the electron density for C2H6. The pictures
show part of a plane containing both C atoms and a H atom. Different Kronecker ranks κ have been
chosen for comparison. a) κ = 10, b) κ = 15, c) κ = 20, d) κ = 40.

Coulomb matrix elements is shown in Figs. 8 a) and c), where we observe a rather uniformly distributed
error with slightly larger peaks along the diagonal.

We complete our discussion of the density fitting scheme by considering the accuracy of the corre-
sponding total HF energies. To begin with, we have chosen a slightly simplified approach in order to avoid
multiple compressions of the electron density within the iterative solution of the HF equation. Instead we
have taken best separable approximations from already self-consistent electron densities and calculated
the corresponding Coulomb matrix elements for the GTO basis set. In the following HF calculation,
the Coulomb part of the Fock matrix was kept fixed and only the exchange part has been treated in a
self-consistent manner. The HF calculations have been carried out with the MOLPRO program package
[64] using the MATROP program for matrix operations. Before we enter into a discussion of the errors
in HF energy, it remains to verify the accuracy of the exponential quadrature formula (25). For this we
have calculated HF energies for CH4 with different numbers of quadrature points 2M + 1. The results
are listed in Table 1. According to our accuracy requirements, an error of ≈ 0.1 mhartree is acceptable.
This accuracy can be already achieved for M = 64, however in order to be on the safe side we have taken
M = 81 in all of our calculations.

Errors in HF energy for best separable approximations of the electron density have been studied for
the molecules CH4, C2H2, and C2H6. Typically accuracies of ≈ 0.1 − 0.2 mhartree per atom have been
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Figure 6: Electron density and Hartree potential VH of C2H6 along the C-C lattice axis near a C nucleus
located at the origin. Best separable approximations of a) electron density at compression ranks (△)
κ = 10, (✸) κ = 15, (×) κ = 20, and b) density-fitted Hartree potential (κ = 20) at compression ranks,
(△) κ′ = 10, (✸) κ′ = 20, (×) κ′ = 40. For comparison the reference electron density and Hartree
potential obtained from a VDZ basis set (◦) is shown, respectively.

Table 1: Accuracy of exponential quadrature formula (25) for the Coulomb potential. Total HF energies
(hartree) of CH4 are given for different numbers 2M + 1 of quadrature points and compression ranks of
the electron density. Original HF energy for VDZ basis set −40.20266 hartree.

M κ = 20 κ = 35 κ = 45

49 -40.20429 -40.20386 -40.20390
64 -40.20333 -40.20286 -40.20282
81 -40.20322 -40.20275 -40.20271

demanded in the literature, cf. Refs. [58, 61]. In the case of these simple molecules, Eichkorn et al., cf.
Ref. [58], report total errors between 0.1 and 0.5 mhartree. We have to admit, however, that subsequent
publications [62, 70, 71] discuss admissible errors which are at least one order of magnitude smaller.
This has been achieved at the expense of doubling the size of the basis set compared with the initial
Ref. [58]. The reason for these increased accuracy demands is the following post HF treatment where HF
eigenvalues enter into the calculation. In view of the obvious shortcomming of our approach at nuclear
cusps, which requires further improvements along the lines mentioned at the end of Section 3, we restrict
ourselves within the present work to the modest requirements of Refs. [58, 61] adequate for pure HF or
KS calculations. It can be seen from Table 2 that in order to achieve accuracies of ≈ 0.1 − 0.2 mhartree
per atom, the best separable approximations of the electron density require Kronecker ranks κ ≈ 20, 45,
and 40 for CH4, C2H2, and C2H6, respectively. This has to be compared with the auxiliary basis sets
of Ref. [58] which comprise 109, 122, and 186 primitive cartesian GTOs, respectively. Roughly speaking,
our approach reduces the separation rank by a factor of three to five for these simple molecules. In the
case of C2H6, the application of the trust-region method for the compression of the electron density, cf.
Table 2, leads to considerable improvements at higher ranks. This indicates that the trust-region method
becomes mandatory also for electron densities if high accuracies are required. Summing up, we may say
that our results look encouraging. Despite various shortcommings of the L2 error minimization (2), it is
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possible to improve GTO based density fitting schemes. Problem specific modifications of the algorithm
offer various possibilities for further significant improvements.

4.2 Best separable approximations of the Hartree potential

Reducing the computational complexity of the Hartree potential via density-fitting schemes is routinely
applied for a long time in the case of HF and KS equations. Within the present work, we want to go
one step further and consider best separable approximations of the Hartree potential itself. This can be
considered as a special case of Eq. (38), where η corresponds to the electron density ρ. The initial Hartree
potential is given by a convolution of the compressed density at rank κ with a separable approximation
of the Coulomb potential (16) at rank 2M + 1. This yields an initial rank of (2M + 1)κ, which has been
compressed to final ranks κ′ using the trust-region version of the Newton algorithm. It can be seen from
Fig. 7 that compressed Hartree potentials and electron densities suffer from similar errors in the immediate
neighbourhoods of nuclei. A more detailed picture presented in Fig. 6 b) shows that the error at the apex
of the Hartree potential is smeared out compared to the cusp of the electron density in Fig. 6 a). The
effect of compression on the corresponding Coulomb matrix (43) can be seen in Fig. 8 b) and d), where the
error is sharply peaked at matrix elements of s-type GTOs with large exponents. Although these peaks
seem to be rather large, it turns out that their effect on the error of HF energies is fairly small. This is
due to small entries in the density matrix for such basis functions. In Table 2, we have listed errors in the
HF energy with compressed Hartree potentials for the molecules CH4, C2H2, and C2H6. It can be seen
that the desired accuracy of ≈ 0.1 − 0.2 mhartree per atom has been achieved for these molecules with
ranks κ′ ≈ 20, 40, and 40, respectively, similar to the corresponding ranks for the electron density.

In order to perform the computation of the Hartree potential and a subsequent evaluation of Coulomb
matrix elements in an efficient manner it is necessary to use sparse wavelet representations for univariate
components of the tensor product. Such representations can be obtained through compression of the
wavelet expansions (14) which can be simply achieved by neglecting coefficients smaller than a certain
threshold. This is possible due to a norm equivalence between L2 and ℓ2 spaces discussed in Section 1.2.
In Fig. 9 we have shown for the electron density and Hartree potential of C2H6 the percentage of wavelet
coefficients on different levels of refinement with absolute value ≥ 10−8. To simplify the presentation, we
have chosen best separable representations at rank κ = κ′ = 5 which is comparatively small compared
with the ranks discussed in the preceding paragraphs. Nevertheless this is sufficient, since we are mainly
concerned in a qualitative discussion of the subject. It can be seen that in both cases, the fraction of
significant wavelet coefficients decreases exponentially with the level of refinement, where the Hartree
potential seems to allow for a higher compression rate.

5 Conclusions

Auxiliary basis sets for the approximation of the electron density and other quantities like products of
orbitals turned out to be highly efficient to improve the performance of HF, KS and post HF methods.
Typically GTO basis sets have been chosen for that purpose. We have proposed a new look on this
subject from the point of view of “optimal” tensor product approximations. The basic idea behind the
representation of certain quantities in terms of tensor products is to factorize expensive parts of the
calculation in order to reduce the dimensionality and thereby the computational complexity. This has
been demonstrated for the evaluation of Coulomb integrals. Starting from a given tensor product, e.g. a
linear combination of GTOs, best separable approximations have been obtained using a Newton algorithm
to minimize the L2 error for a target Kronecker rank κ. In particular we have studied best separable
approximations for electron densities and Hartree potentials of small molecules. It turned out that the
Kronecker ranks of these tensor products compare favourably with conventional auxiliary GTO basis sets.
Furthermore this approach can be merged with methods from multiresolution analysis. Especially wavelet
bases seem to be an appropriate choice for the approximation of univariate components of tensor products
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Figure 7: Local error of density fitted Hartree potentials VH for C2H6. Absolute errors (hartree), before and
after compression of the Hartree potential, are shown for best separable approximations of the electron
density at different Kronecker rank κ. Figs. a) κ = 20, VH before compression, b) κ = 20, VH after
compression to rank κ′ = 20. c) κ = 40, VH before compression. d) κ = 40, VH after compression to rank
κ′ = 40. The pictures show a part of a plane containing both C atoms and a H atom.
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Figure 8: Error of Coulomb matrix elements Jab with density fitted Hartree potential VH for C2H6. The
section of the Coulomb matrix shown here contains elements with respect to GTOs on both C and a H
atom. GTOs are ordered with decreasing exponents for given l value. Absolute errors (hartree), before and
after compression of the Hartree potential, are shown for best separable approximations of the electron
density at different Kronecker rank κ. Figs. a) κ = 20, VH before compression, b) κ = 20, VH after
compression to rank κ′ = 20. c) κ = 40, VH before compression. d) κ = 40, VH after compression to rank
κ′ = 40.
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Table 2: HF energies (mhartree) for best separable rank κ approximations of the electron density (Eκ)
and with subsequent compression of the Hartree potential to rank κ′ (Eκ′). Errors are given with respect
to the HF energy for a VDZ GTO basis set (EGTO). For comparison relative L2 errors of the electron
density (L2

ρ) and Hartree potential (L2
VH

) are given at each rank. Values given in parentheses correspond
to best separable approximations of the electron density which have been obtained using the trust-region
method.

κ Eκ − EGTO L2
ρ κ′ Eκ′ −EGTO L2

VH

CH4 20 -0.57 8.1 · 10−5 10 -39.50 6.2 · 10−4

15 -1.40 1.3 · 10−4

20 -0.63 5.3 · 10−5

35 -0.09 1.9 · 10−5 10 -39.07 6.2 · 10−4

15 -0.93 1.3 · 10−4

20 -0.16 3.9 · 10−5

45 -0.06 9.0 · 10−6 10 -63.16 7.0 · 10−4

15 -4.86 1.3 · 10−4

20 -0.12 6.0 · 10−5

C2H2 25 -3.56 5.5 · 10−4

30 -2.68 2.7 · 10−4

35 -2.41 2.1 · 10−4 30 -10.00 1.8 · 10−4

40 -0.84 6.4 · 10−5

40 -0.95 1.8 · 10−4 30 -4.35 1.7 · 10−4

40 0.97 5.3 · 10−5

50 -0.45 2.3 · 10−5

45 -0.60 1.5 · 10−4

50 -0.50 1.3 · 10−4

C2H6 30 -6.35 2.6 · 10−4 30 -7.14 5.3 · 10−5

(-11.14) (3.0 · 10−4) (-9.57) (4.5 · 10−5)
40 -6.50 1.8 · 10−5

(-11.25) (2.0 · 10−5)
50 -6.45 6.1 · 10−6

(-11.42) (6.9 · 10−6)
40 -3.64 1.6 · 10−4 40 -3.87 1.7 · 10−5

(-0.68) (1.2 · 10−4) (-0.98) (1.6 · 10−5)
50 -3.64 6.8 · 10−6

(-0.95) (7.5 · 10−6)
60 -3.73 3.3 · 10−6

(-0.58) (3.3 · 10−6)
45 (-0.17) (7.3 · 10−5)
50 -2.50 1.1 · 10−4

55 -0.40 8.8 · 10−5
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Figure 9: Wavelet compression of univariate tensor product components of the electron density and Hartree
potential of C2H6 using Daubechies wavelets with five vanishing moments. a) Electron density at rank
κ = 5. b) Hartree potential at rank κ′ = 5.

which combines beneficial with a multiscale representation of the Coulomb interaction. Nevertheless, there
seems to be still considerable room for further improvements. A detailed numerical analysis revealed that
the largest approximation errors are typically located near the nuclei due to cusps in the electron density.
These regions require special attention either by means of weighted L2 norms or by predetermined terms
in the tensor product which have been optimizied e.g. for individual atoms.
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Appendix

A Basic notions of multiresolution analysis

The purpose of this appendix is to provide some basic definitions and properties of wavelets which are
required for this paper. For a complete exposition of this subject, we refer to the excellent monographs
of Daubechies [72] and Mallat [73]. In one dimension, multiresolution analysis provides a partition of the
Hilbert space L2(R) into an infinite sequence of ascending subspaces · · · ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ · · ·, where
the index j runs over all integers. The union of these subspaces

⋃

j Vj is dense in L2(R). On each subspace
Vj, the scaling function ϕ(x) provides a basis

ϕj,a(x) := 2j/2ϕ(2jx− a) with a ∈ Z, (44)

via the operations of dilation and translation. The dilation factor 2j scales the size of the basis functions,
which means that with increasing j, the ϕj,a provide a finer resolution in L2. An explicit embedding of
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Vj into the larger space Vj+1 is given by the refinement relation

ϕ(x) = 2
∑

a

ha ϕ(2x− a), (45)

where the number of nonzero filter coefficients ha is finite for the scaling functions used in our applications.
Wavelet spaces Wj are defined as complements of Vj in Vj+1. The corresponding wavelet basis is generated
from a mother wavelet ψ(x) analogous to Eq. (44)

ψj,a(x) := 2j/2ψ(2jx− a) with a ∈ Z. (46)

This construction leads to a hierarchical decomposition of L2 =
⊕

j∈ZWj into wavelet subspaces Wj [72].
Wavelets can be represented by scaling functions on the next finer level and vice versa a scaling function
can be expressed in terms of wavelets and scaling functions on the next coarser level. In a biorthogonal
wavelet basis there exists a sequence of dual spaces Ṽj, W̃j , which satisfy the orthogonality relations
W̃j ⊥ Vj and Ṽj ⊥ Wj . The corresponding dual wavelets ψ̃j,a := 2j/2ψ̃(2jx − a) and scaling functions
ϕ̃j,a := 2j/2ϕ̃(2jx− a) provide a biorthogonal basis in L2 i.e.

〈ϕj,a|ϕ̃j,b〉 = δa,b, 〈ψj,a|ψ̃l,b〉 = δj,l δa,b. (47)

In the case of orthogonal wavelet basis, like Daubechies wavelets, the spaces Vj , Wj and their duals Ṽj,
W̃j can be identified, i.e. ϕ = ϕ̃ and ψ = ψ̃.

An arbitrary function f ∈ L2(R) can be expanded in a biorthogonal wavelet basis

f(x) =
∑

a

〈ϕ̃j0,a|f〉ϕj0,a(x)
︸ ︷︷ ︸

Vj0

+

∞∑

j=j0

∑

a

〈ψ̃j,a|f〉ψj,a(x)
︸ ︷︷ ︸L

j0≤j Wj

, (48)

where the scaling function and wavelet coefficients are given by scalar products with respect to the dual
basis. Depending on the specific choice of the wavelet basis, a certain number of moments for ψ, ψ̃ vanish,
i.e. ∫

dxxk ψ̃(x) = 0, for k = 0, . . . , n− 1. (49)

This property has a significant effect on the magnitude of wavelet coefficients of sufficiently regular func-
tions, i.e. f ∈ Cn(R), as can be seen from their local Taylor series expansion

f(x) = c0 + · · · + cn−1(x− 2−ja)n−1 +Rn−1(x)(x − 2−ja)n, (50)

around the center of a wavelet ψ̃j,a(x). Inserting the Taylor series expansion (50) into the scalar product
yields the following estimate for the wavelet coefficient

|vj,a| =

∣
∣
∣
∣

∫

dx f(x) ψ̃j,a(x)

∣
∣
∣
∣
≤ supsupp{ψ̃j,a} |Rn−1(x)| 2−j(n+1/2)

∫

dx
∣
∣
∣xnψ̃(x)

∣
∣
∣ , (51)

where the supremum of the remainder |Rn−1(x)| has to be taken with respect to the support of a wavelet
ψ̃j,a(x). For functions with rapidly converging local Taylor series, the corresponding wavelet expansion
(48), therefore, converges very fast with respect to the level j. This enables an efficient compression of
the wavelet expansion by introducing an appropriate threshold for the wavelet coefficients, which leads to
sparse wavelet representations for such functions. Because of the following norm equivalence, cf. Ref. [72],
between L2(R) and ℓ2 (sequence space of wavelet coefficients)

C1‖f‖2
L2(R) ≤

∑

j,a

∣
∣
∣〈ψ̃j,a|f〉

∣
∣
∣

2
≤ C2‖f‖2

L2(R), (52)
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the compression step can be performed in a controlled manner.
For our numerical studies, we have used the lifted biorthogonal wavelets with six vanishing moments

of Sweldens [74] and the corresponding scaling function of Deslauriers and Dubuc [25]. In the text, we
refer to it as the SDD6 wavelet basis. Furthermore we have used orthogonal Daubechies wavelets with
five vanishing moments [72], denoted as D10 wavelet basis according to the number of filter coefficients.

Any uniformly continuous function f can be approximated in a Deslauriers and Dubuc [25] interpo-
lating scaling function basis ϕDDj,a through

f(x) ≈ 2−j/2
∑

a

f(2−ja)ϕDDj,a (x), (53)

which requires only pointwise evaluations of the function on a grid. These scaling functions have been
constructed in such a way that the approximation (53) becomes exact for polynomials with degree < n.
Provided that the n’th derivate of f is uniformly continuous, the following error estimate

∥
∥
∥
∥
∥
f − 2−j/2

∑

a

f(2−ja)ϕDDj,a

∥
∥
∥
∥
∥
L∞(R)

≤ C 2−jn, (54)

can be obtained.
Sometimes it is convenient to switch between different wavelet basis. For example it is appropriate

to approximate smooth functions in an interpolating scaling function basis, whereas the corresponding
biorthogonal wavelet basis turns out be less convenient for certain computations within the tensor product
format than orthogonal Daubechies wavelets. A transformation from Deslauriers and Dubuc ϕDD to
Daubechies ϕDaub scaling functions can be easily accomplished through

ϕDDj,a ≈
∑

b

〈ϕDDj,a |ϕDaubl,b 〉ϕDaubl,b , (55)

where the level l has to be chosen large enough in order to make the approximation error sufficiently small.
The coefficients 〈ϕDDj,a |ϕDaubl,b 〉 can be easily evaluated via Beylkin’s iterative approach [45].
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