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TENSOR PRODUCTS AND BIMORPHISMS 

BY 

BERNHARD BANASCHEWSKI AND EVELYN NELSON 

Introduction. The binary tensor product, for modules over a commutative 
ring, has two different aspects: its connection with universal bilinear maps and 
its adjointness to the internal hom-functor. Furthermore, in the special situa-
tion of finite-dimensional vector spaces, the tensor product can also be de-
scribed in terms of dual spaces and the internal hom-functor. The aim of this 
paper is to investigate these relationships in the setting of arbitrary concrete 
categories. 

A tensor multiplication for a functor H:K*xK-»K (K* the opposite of the 
category K) is a functor T:KxK-»K, essentially unique if it exists, for which 
there is a natural equivalence 

K(T(A,B) ,C) -^K(A,H(B ,Q) . 

On the other hand, for any concrete category K with underlying set functor | |, 
a bimorphism is a (set!) map / : | A | x | B | - > \C\ for objects A, B, C in K such 
that, for each a e | A | , 

/(a, ) = | ua| for some ua : B -» C, 

and, analogously, 

f( ,b) = \vb\ for some vb:A->C, 

for each b G |B|. Evidently, this notion gives rise to a set-valued functor BiM on 
K*xK*xK: BiM(A,B, C) is the set of all bimorphisms / : | A | x | B | - > |C|, and 
the effect on maps u:A' —» A, i;:B'-> B, and w:C—> C" is //>~ |w|/(|u|x|t>|). 

A bimorphism / : | A | x | B | - > \C\ is called universal (for A and B) iff any 
bimorphism g:|A|x|B|—» \D\ has a factorization g = \h\f with a unique 
h:C->D. If universal bimorphisms exist for each pair of objects in K, they 
determine a functor L / :KxK^K together with a natural transformation 
|8 : | | x | | -» | U( , )| such that the components of j8 are the universal bimorph-
isms, and the map U(f, g): U(A, B)-> U(C,D) is given by the factorization 
0cD(|/ |x|g|) = |l/(/,g)|PAB, for any f:A-*C and g.B^D. Moreover, the 
correspondence h*»\h\pAB is then a natural equivalence K(l/(A, B), C)-> 
BiM(A, B, C), and the universal bimorphisms are entirely determined by this, 
PAB being the map corresponding to the identity map of C= U(A, B). In the 
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following, U will be called the functor of universal bimorphisms, and fiAB will 
always be the associated universal bimorphism for A and B. 

Of course, there is no connection a priori between tensor multiplication and 
universal bimorphisms, but in certain situations they turn out to be equivalent 
notions, in the sense that the functor U is the tensor multiplication for H. 
Apart from the case referred to above, this holds for a varietal category iff the 
homomorphisms A -> B always form a subobject of B |A1 (Linton [8]). Hence 
the general question: For an arbitrary concrete category K, how should a 
functor H:K*xK-^K be related to the underlying set functor in order that 
tensor products and universal bimorphisms be equivalent? A natural require-
ment is that H should be an internal hom-functor, i.e. \H( , )| = K( , ), but this 
is not sufficient, as is shown by any concrete category with universal bimorph-
isms which has several different such H with tensor multiplication. Examples 
are the category of mono-binary relational structures (Pultr [13]), and the 
category of Hausdorff spaces with the pointwise and the compact-open func-
tion space topologies (Brown [3]). 

In this paper, we consider a concrete category K with internal hom-functor 
H. First, we discuss certain conditions for H which make the objects H (A, B) 
resemble pointwise structure on sets of functions (Section 1) and show these 
are sufficient, and in some sense necessary, for the equivalence of tensor 
products and universal bimorphisms (Proposition 3). Second, we show that an 
object D in K for which the cofunctor ( )* = H( , D) is a selfduality of K 
determines a tensor multiplication T of H, given by T(A, B) = H(A, B*)* 
(Proposition 5). In addition, we show the existence of universal bimorphisms 
under fairly general conditions (Proposition 4) and present a number of 
examples (Section 4). 

In the following, A, B,... will be objects and /, g, . . . maps of the category 
K, and we let (A, B) = K(A, B), the set of all / : A -> B in K. General categori-
cal notions will be used as in Mac Lane [9]. 

Thanks are due to the referee who alerted us to Linton [8] and otherwise 
made a number of helpful suggestions. 

Financial support of the National Research Council of Canada is gratefully 
acknowledged. 

1. Functional internal hom-functors. An internal hom-functor H of a con-
crete category K (with underlying set functor | |) will be called functional iff it 
satisfies the following conditions: 

(Fl) For any A, B e K there exist maps eAB\A -> H(H(A, B), B) such that 
II^ABI (Û)| (u) = \u\ (a) for all ae \A\ and u:A^> B. 

(F2) For any A, B, CeK, a set map f:\A\ -> \H(B, C)\ is |h| for some 
h:A->H(B,C) whenever, for each fce|B|, |/( )| (b) = \hb\ for some 
hb:A^C. 
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If K has products which are concrete in the sense that the underlying set 
functor preserves them then these conditions essentially mean that the H (A, B) 
have the usual pointwise structure on sets of functions. Indeed, call a 
monomorphism / :A—>£ an embedding iff any g:C-^B factors through / 
whenever |g| factors through |/|. Then, with the present hypothesis on K, one 
has the following characterization: 

PROPOSITION 1. An internal horn-functor H of K is functional iff, for any A 
and B in K, there is an embedding 

i A B :H(A ,B) -+B | A | 

such that \pjAB\(h) = \h\(a), for each a e | A | and h:A^>B, where pa is the 
projection for a. 

Proof. (=>) (Fl) directly implies the existence of these maps iAB, and since 
IPaÛB"! (c) = ||u| (c)\ (a) for any u:C—>H(A, JB), they clearly are monomorph-
isms. To see that iAB is an embedding, consider any g.C-* B | A | such that 
\g\ = \iAB\f, / : | C | - | H ( A , B ) | . From 

|/(c)| (a) = |paiAB| (/(c)) = |pag| (c) (c G |C|) 

it then follows that (F2) applies, hence f=\h\ for some h:C^> H(A,B), and 
therefore g = iABh. 

(<=) We first derive (F2). Given f:\C\ -» |H(A, B)\ as in the hypothesis of 
that condition, one has the map g:C—>B |A | such that pag = ha where 
|/( )|(tf) = |ha|5 and simple computation shows that \pag\ = IP^'ASI/; since | | 
preserves products it then follows that |g| = |ïAB|/ and hence f=\h\ for some 
h:C^H(A,B). To obtain (Fl), note that the map v:\A\ -> (H(A, B), B), 
v(a) = paiAB ( ae |A | ) , satisfies the hypothesis of (F2), which then provides the 
desired eAB : A -> H(H(A, B), B) since |i?(a)| (h) = \h\ (a). 

REMARK. The last part of the above proof shows that, in the presence of 
(F2), (Fl) follows from the apparently weaker condition: for any A, B eK and 
a e | A | there exists a map â:H(A,B)->B such that \a\ (h) = \h\ (a). On the 
other hand, if the category K is as above and has the additional property that 
all monomorphisms are embeddings then (Fl) evidently implies (F2). 

We note that many naturally arising internal hom-functors are functional, as 
the discussion in the last section will show; on the other hand, examples to the 
contrary also occur readily, e.g. the internal hom-functor of the category of 
topological spaces given by the compact-open topology. 

Next, we turn to another characterization of functionality of internal hom-
functors, now for an arbitrary concrete category K, which demonstrates the 
significance of the functor BiM. 
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PROPOSITION 2. An internal hom-functor H is functional iff there is a natural 
equivalence (A, H(B, C)) -* BiM(A, B, C) such that h*»h, h(a,b) = 
| |h|(a)|(ft), for all ae\A\ and fte|B|. 

Proof. ( 4 0 For any h: A —» H(B, C) the set map h is indeed a bimorphism 
since h(a, ) = | |h | (a) | and h( , b) = \\eBc\ (b)h\. Also, the correspondence 
h /vs- h is evidently one-one, and its naturality is easily checked. Hence it only 
remains to show h A~ h is onto. If g:|A|x|B|—» \C\ is any bimorphism, define 
/ : | A | - » | H ( B , C)| such that f(a) = ua where |ua| = g(a, ). Then, the second 
variable part of the bimorphism condition for g shows that (F2) is applicable to 
/, and thus f=\h\ for some h:A—> H(B,C). Simple calculation now proves 
that g = h. 

(<=) We first show that (F2) holds. If / : |A | -> |H(B, C)\ satisfies the 
hypothesis in question then / : | A | x | B | - > |C|, /(a, b) = \f(a)\ (ft), is clearly a 
bimorphism, and hence / = h for some h:A -» H(B, C) by the current assump-
tion. This implies that / = | h | . To obtain (Fl), let A = H(B, C) and h be the 
identity map; then it follows, from the fact that h is a bimorphism, that there 
exists a map vb:H(B, C)-+ C such that \vb\ (u) = \u\ (fc), for each b e \B\. By the 
remark after Proposition 1, this is sufficient to obtain (Fl). 

Basic facts about natural equivalences now imply the 

COROLLARY 1. Functional internal horn-functors, as far as they exist, are 
essentially unique. 

The obvious natural equivalence BiM(A, B, C) -> BiM(B, A, C), given by 
"interchange of variables", has the following consequence: 

COROLLARY 2. For any functional internal hom-functor H, there is a natural 
isomorphism H(A, H(B, C)) —> H(B, H(A, C)) with underlying set map / / v ^ / # , 
\\f#\(b)\(a) = \\f\(a)\(b) for all ae\A\ andbe\B\. 

Proof. The stated set map is the composite <\> of the three natural equival-
ences 

(A, H(B, O ) -» BiM(A, B, C) -* BiM(B, A, C) -> (B, H(A, C)), 

and its inverse is of the same form. Hence, we only have to exhibit a map 
H(A, H(B, C)) -» H(B, H(A, C)) with underlying set map c/>. For this, note 
that 

\ct>(f)\(b) = bf=\H(hb)\(f) 

for any / : A -> H(B, C) and ft e \B\, so that |̂ >( )| (ft) = |H(1, 6)| for any ft G |B|, 
and hence the desired map exists by (F2). 

REMARK. The existence of the above isomorphism will be called the exponent 
law for H. That this holds for functional internal hom-functors in varietal 
categories is contained in Linton [8]; moreover, in that situation, the exponent 
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law implies, conversely, the functionality of an internal hom-functor [8]. We do 
not know whether the same holds here, but note that, from the exponent law, 
one obtains the map eBC of (Fl) for A = H(B, C), considering the identity map 
of H(JB, C). Thus, by the Remark following Proposition 1, if K has concrete 
products, and all its monomorphisms are embeddings, then the exponent law 
implies H is functional. Since varietal categories satisfy these conditions, this 
covers the case of the converse of Corollary 2 given in [8]. 

2. Universal bimorphisms. We first establish the precise interdependence 
between universal bimorphisms, tensor products, and functionality for any 
concrete category K with internal hom-functor H. 

PROPOSITION 3. For an internal hom-functor H of K, and any functor S:Kx 

K-»K, any two of the following conditions imply the third: 

(T) S is a tensor multiplication for H 
(F) H is functional 
(U) S is the functor of universal bimorphisms. 

Proof. This results immediately from the explicit description of these condi-
tions in terms of natural isomorphisms: 

(T) ( S ( A , £ ) , C ) ^ ( A , H ( £ , C ) ) 
(F) (A, H(B, O ) -» BiM(A, B, C) 
(U) BiM(A, B, C) -> (S, (A, B), C). 

REMARK 1. If (F) and (U) hold then (T) is explicitly given by h A» h where 
| |h| (a)\ (b) = \h\ J3AB(<Z, b), j3 the natural transformation giving the universal 
bimorphisms. Similarly, if (F) and (T) hold then the universal bimorphism on 
\A\ x |JB| is (a, b) *» | |TJAB| (G)\ (b) where TJAB : A -» H(B, S(A, B)) corresponds 
to the identity map of C = S(A, B) through (U) and (F), respectively. Inciden-
tally, the map h *~ h in (T) actually lifts to K:\h\ (a) = \hua\ for the map ua such 
that \ua\ = fiAB(a, ), and hence (F2) applies. The resulting map will be an 
isomorphism whenever K has the property that the isomorphisms are exactly 
the one-one onto maps, but in general there seems to be no way to construct 
an inverse. 

REMARK 2. Pumplun [14] proves the equivalence of (T) and (U) assuming 
somewhat different conditions on H, i.e. (1) the set maps (A, B)—» 
(H(B, C), H(A, O ) and (A, B) -» (H(Q A), H(C, B)), by /~* H(f C) and / ~* 
H(C,f) respectively, underly maps in K, and (2) for some KeK, H(K, ) is 
equivalent to the identity functor. Here, the functionality of H implies (1) (see 
Lemma 1 for the first part, the second being analogous) so that [14] implies the 
result in question, for functional H satisfying (2). 
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The following immediate consequence of Proposition 3 and previous re-
marks is an abstract version of the Theorem in Linton [8], as far as it can be 
translated into the present setting. 

COROLLARY. If the category K, with universal bimorphism functor U and 
internal hom-functor H, has concrete products and all its monomorphisms are 
embeddings then the following are equivalent: 

(1) H is functional 
(2) U is a tensor multiplication for H. 
(3) H satisfies the exponent law. 

We conclude this section with a result on the existence of universal bimorph-
isms in a concrete category K. There are various different ways of ensuring this 
existence but we consider only one of them in detail. 

First we recall the following notions, essentially due to Herrlich [6]: A 
(possibly proper) class M of maps f:A-> C with common domain is called a 
monosource iff fg = fh for all / e M implies g = h. K is said to have epi-
monosource factorization iff, for any class L of maps f\A->C with common 
domain, there exists an epimorphism h:A->B such that each / e L factors 
through h, and the class of all f:B —> C, / e L and / = fh, is a monosource. 

PROPOSITION 4. If K has coproducts and epi-monosource factorization, and its 
monosources are preserved by the underlying set functor, then K has universal 
bimorphisms. 

Proof. To begin with, we note that a bimorphism |A|x|B|—>|C| can be 
viewed as a pair of families of maps in K, ua:B—» C(ae\A\) and vb:A-> C 
(be\B\), subject to the condition that \ua\ (h) = \vb\ (a) for all a e | A | and 
be\B\. 

Now, for any A and B in K, let E be the coproduct of the family, indexed by 
the disjoint union of \A\ and |JB|, defined by E{afi) = B for all a e | A | , and 
E(b,i) = A for all b e | B | , with the coproduct maps ia:B^>E and /b :A—>R 
Then, let / = fh, h:E-> F and /:F—> C be an epi-monosource factorization of 
the class of all f:E -» C such that | / i a | (b) = |//b| (a) for all a e \A\ and b € |B|. 
Since | | preserves monosources one then also has \hia\ (ft) = \hjb\ (a) for all 
a e | A | and 6 e | B | , i.e. hia ( a e |A | ) and hjb (be\B\) constitute a bimorphism, 
and this is universal by the fact that any bimorphism \A\ x \B\ —» \C\ determines 
a map f:E —» C of the above kind. 

REMARK 1. There are various types of general conditions under which the 
above hypothesis concerning monosources holds fairly obviously; for instance, 
this is the case if K is cowellpowered, has concrete products and epi-mono 
factorization, and the underlying set tunctor preserves monomorphisms. How-
ever, usually that hypothesis is very easily checked directly. 
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REMARK 2. The above construction of universal bimorphisms genuinely 
differs from the one ordinarily used in the case of modules over a commutative 
ring, where the existence of free modules, i.e. of a left adjoint to the underlying 
set functor, is employed. In the last section we give a simple example in which 
our construction applies but where the left adjoint fails to exist. 

3. Dualizers. We now turn to a very particular situation in which a tensor 
multiplication arises. Again, we are dealing with a concrete category K with 
underlying set functor | | and functional internal hom-functor H. 

For any object D e K, one has the cofunctor H( , D) of K into itself, which is 
selfadjoint on the right by Corollary 2 of Proposition 2 and has the adjunction 
eAD:A —> H(H(A, D), D) given by (Fl). D will be called a dualizer iff this is a 
natural equivalence, i.e. iff all eAD are isomorphisms. In this case, the cofunctor 
H( , D) is a dual equivalence of K with itself. 

We consider a fixed D with this property, and let A* = H(A,D), eA = 
e A D : A - » A * * , andh* = H(fi, 1D) for h : A - > B . The selfduality ( )* = H( , D) 
of K is compatible with H, as described in 

LEMMA 1. For any A, B eK, there is an isomorphism H(A, B) -» H(JB*, A*) 
with underlying set map h A/S- fi*. 

Proof. For the given map $ one has \<j>(h)\(u) = uh = \H(A,u)\(h) and 
hence (F2) applies. The resulting map has the composite of the analogous map 
H(B*, A*)-> H(A**, B**) with the isomorphism H(eA, e^1) as inverse and 
hence is an isomorphism. 

REMARK. The natural isomorphisms H(D*, A) = H(A*9 D**) = H(A*, D) = 
A** = A show that D* represents the identity functor via H, and that (D*, ) 
is naturally equivalent to the underlying set functor; the latter makes D* 
essentially unique. The map (D*, A)—>|A|, incidentally, is h A~|h| (1D), as 
simple calculation shows. Conversely, if one has a self-duality S of K, compati- * 
ble with the given internal hom-functor H in the sense of Lemma 1, and a 
representation H(I, ) of the identity functor, then D = SI is a dualizer of K and 
S = H( ,D) . 

A further result concerning the cofunctor ( )* is 

LEMMA 2. For any A e K , the map eAeA*\A*-+ A* is the identity. 

Proof. For any $ e | A * | and any a e | A | , one has 

\\eleA.\(4>)\(a) = \\eA.\(<f>)eA\(a) 

= | |cA*|W|(kA|(a)) 

= \\eA\(a)\(4>) = \<l>\(a)9 

and therefore |e*^A*| (̂ >) = ^ which proves the assertion. 
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Our main interest here is in 

PROPOSITION 5. There is a natural isomorphism H(H(A, B*)*, C)—» 
H(A, H(B, C)) with underlying set map / A ~ H ( 1 B , f)r]AB where r)AB:A-+ 
H(B, H(A, B*)*) has the underlying set map a »» â, \â\ (b) = \eB\ (b) \eAB*\ (a). 

Proof. The existence of the natural isomorphism in question results from the 
following sequence of such isomorphisms based on Corollary 2 of Proposition 
2, Lemma 1, and the natural isomorphism e E : E - * £ * * : 

(*) H(H(A, B*), C) = H(C*, H(A, B*)) = H(A, H(C*, B*) = H(A, H(B, C)) 

Concerning the specific form of the resulting isomorphism note that, for fixed 
B, the condition implies the left adjointness of the functor H( ,B*)* to the 
functor H(B, ). The underlying set map is then of the type stated, with TJAB 

the associated front adjunction. In order to determine the latter, it remains to 
trace the identity map of H* = H(A, B*)* through the steps in (*), for the case 
C = H*. This produces the sequence 

lH*/v*> eH lh* = eH ~* {eH) A^jBH*(eH) =r)A B 

where # is as in Corollary 2 of Proposition 2 and jBH* is the isomorphism 
H ( H * * , B * ) ^ H ( B , H * ) resulting from Lemma 1, i.e. | /BH*|(K) = K* for ue 
(B, H*). The latter implies, by the proof of Lemma 1, that \jBH*\ (s) = e:

tl*s*eB. 
Now for any a e | A | and U G H * * , 

| \(enY\ (a)\ (v) = | \e~u\ (v)\ (a) = | |eAB*| (a)\ (ejj1 \ (v)) = | |eAB*| {a)e^\ (v), 

so that |(eM1)#| (a) = \eAB*\ (a)e^. It follows that, for any b e | B | , 

\\JBH*(eHy |(Û)| (6) = ||iBH* | ( | (e^) # | (a))\ (b) = \eHl(\eAB*\ ( a W ) * e B | (6) 

= kïf*(«H)*| eAB* \(a)*eB\ (b) = \eB\ (b) |eAB*| (a), 

the last step as a consequence of Lemma 2. This shows that | |T/A B | (a)\ (b) = 
\eB\(b)\eAB*\(a). 

By Proposition 3, we now have the following immediate consequence: 

COROLLARY. The cofunctor ( )* provides universal bimorphisms /3AB: |A|x 
|B|-> |H(A,B*)* | where /3AB(a, 6) = \eB\ (b) |eAB*| (a). 

4. Examples and Remarks. In this section, we discuss a number of situations 
which illustrate our results. 

(1) If H is a (possibly proper) class and T = (nA)Aen any fl-indexed family of 
cardinal numbers then the category Alg(r) of algebras of type T has as its 
objects the algebras A = (X, (éOxen) with underlying set |A| = X and Ath 
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operation AA = %\'.Xnx -> X, for each Àel î , its maps being the homomorph-
isms h:A->B, which are, up to labelling to indicate domain and codomain, 
the set maps |h|:|A|—> |B| such that all diagrams 

| A | n * i ^ | B | " * 

(A G Î Î ) 

commute. In the present context, a category of algebras is always meant to be a 
full, isomorphism-closed subcategory K of a category Alg(r) which is produc-
tive and hereditary, i.e. closed with respect to arbitrary (cartesian) products and 
subalgebras. If K has the property that for each cardinal number fc there exists 
a cardinal number m(fc) such that any A e K generated by a set of at most k 
elements has itself at most m(k) elements then the underlying set functor | | of 
K has a left adjoint, and conversely, as is clear from the Adjoint Functor 
Theorem. Such K will be called bounded; evidently, if Ù is only a set then all 
K ç Alg(T) are bounded. If K is bounded and, in addition, closed in Alg(r) with 
respect to homomorphic images then K is a varietal category, the case consi-
dered in Linton [8]. 

A category K of algebras evidently has the property that all monomorphisms 
are embeddings. Hence, by Proposition 1, K has a functional internal hom-
functor H iff for any family (hi)i&nK of homomorphisms ht : A -» B(A, BeK and 
À e Ù) the composite map 

|A |_5_>|B |»xJ%|B | 

(h the map whose composite with the ith projection is ht) is again a 
homomorphism, since this is precisely the condition which makes the image of 
(A, B) in B | A | a subalgebra H (A, B) of the latter. By considering what this 
means for the projections |B|n"- —> |B| (^eù) one obtains the following criter-
ion, due to Linton [8] for the varietal case: K has a functional internal 
hom-functor iff the identity 

holds for all xiyG|B| and all À, fie [I. This shows there is a largest category of 
algebras, for each type T, with a functional internal hom-functor, namely the 
subcategory of Alg(r) (equationally!) defined by the above "interchange laws". 

Arcy category K of algebras satisfies the hypothesis of Proposition 4 concern-
ing monosources. The required factorization of a class L of homomorphisms 
f:A-+ C with common domain is obtained by first taking the quotient algebra 
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of A modulo the congruence consisting of the (x, y) such that f(x) = f(y) for all 
/ G L , and then reflecting into K. The preservation of monosources by the 
underlying set functor results from the fact that the triviality of the above 
congruence characterizes monosources: if f(x) = /(y) for all / but x^y then the 
subalgebra B of A x A generated by (x, y) has two different homomorphisms 
into A which are equalized by all /. Thus, by Proposition 4, K has universal 
bimorphisms whenever it has coproducts, and this is certainly the case for any 
bounded K. An unbounded example is as follows. Let £ be the (large!) 
commutative polynomial ring Z[X] in a proper class of indeterminates X, i.e. 
the union of the updirected system of polynomial rings Z[Y] where Y ranges 
over the subsers of X Then the category R Mod of (small) R -modules is a 
category of algebras with functional internal hom-functor. JR Mod has cop-
roduis , given by direct sums as for ordinary module categories, but it is 
unbounded—there are arbitrarily large singly generated JR-modules. 

We conclude this part with the following negative fact concerning dualizers 
in categories of algebras: If all operations are finitary, and epimorphisms of K 
are onto maps, then K does not have a dualizer. This is a consequence of a 
result of Fajtlowicz [4], but we present an independent proof for it. Take any 
non-trivial A e K , and let F be the free algebra functor to the productive, 
hereditary subcategory of K generated by A. For any infinite set X, consider 
the projective limit P = lim^ F(X/R) in K, with limit maps pR:P —> F(X/R), 
where X/R ranges over the finite quotient sets of X, with the natural maps 
X/Q-+X/R for Q ç R . Then the embeddings X/R -* \F(X/R)\ lift to an 
embedding ]3X —» P, since projective limits are constructed on the underlying 
sets and j3X = lim^X/R, for the set j3X of ultrafilters on X It follows that 
card P > card/3X> card X On the other hand, from the homomorphisms 
hR:FX-> F(X/R), determined by the quotient maps X-+X/R, one has the 
homomorphism h :FX —> P such that hR = pRh, for all R, Now, if K is self-dual 
then h is an epimorphism, by duality, the properties of direct limits in K 
resulting from the finitariness of the operations, and the fact that all pRh = hR 

are onto. However, since the operations on A are already determined by a 
subset of ft, X can be chosen such that card FX = card X, and then h cannot be 
onto. 

(2) The category TOP of topological spaces and continuous maps has a 
functional internal hom-functor H relative to the usual underlying set functor, 
the topology on the function space H(X, Y) being the topology of simple 
(=pointwise) convergence, i.e. the restriction of the topology of the product 
space Y | x | to the set of the continuous maps, functionality resulting from 
Proposition 1. 

TOP also has universal bimorphisms, by Proposition 4, and hence a tensor 
multiplication T=U relative to H, by Proposition 3. This gives us the familiar 
closed structure of TOP. Explicitly, the construction in the proof of Proposition 
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4 leads to the description of T(X, Y) as a certain quotient space; however, it 
can also be seen directly that |T(X, Y)| = |X| x |Y| and the topology is the initial 
topology for the maps x A~ (JC, y) and y *» (x, y) (x e |X|, y G | Y\). 

It might be added that TOP does not have a dualizer D. By the remark after 
Lemma 3, D* would have to be a one-point space, but then so would D itself, 
which is clearly impossible. 

(3) Let CJSL be the category of complete join-semilattices whose objects 
are the complete partially ordered sets and whose maps are those / : A - > £ 
which preserve arbitrary joins, i.e. /( V * « ) = V /(*<*) fc>r any family (xa) in A. 
Evidently, the complete partially ordered sets can be viewed as algebras in the 
sense of (1); for each cardinal k there is one operation of arity fc, namely 
(xdiek ~^ V xt. Moreover, the maps of CJSL are then exactly the homomorph-
isms. Considered in this way, CJSL is in fact a category of algebras as defined 
in (1). Since joins in products of partially ordered sets are taken component-
wise, n Aa as partially ordered set is also the product algebra of the Aa e CJSL 
viewed as algebras; likewise, any subalgebra of an A G CJSL is complete as 
partially ordered set and thus belongs to CJSL. Incidentally, it can be seen that 
this category is also closed relative to homomorphic images; this can be 
checked directly, but is also a consequence of the fact that the interchange 
laws, together with the idempotency laws \/ xt = x whenever all xt = x form a 
class of defining equations. Thus we have a characterization: CJSL is the largest 
category of algebras with functional internal hom-functor which has one idem-
potent operation of arity k for each cardinal number k. 

Concerning the use of Proposition 4, the discussion in (1) applies: CJSL is 
bounded—indeed, it is monadic (Mac Lane [9, p. 138], Manes [10])—and hence 
it has universal bimorphisms. It follows then, by Proposition 3, that the latter 
provide a tensor multiplication for its internal hom-functor. However, CJSL 
also has a dualizer, namely the two-element chain 2, which then establishes the 
same facts, in reverse order, by Section 3. That 2 does have the asserted 
property is seen as follows. Any aG|A|, for A e CJSL, determines a map 
a*: A —> 2, defined such that 

[0 for x < a 
a*(x) = 

11 for x^a 
and a* < b* in H (A, 2) iff fc < a. In fact, any h:A->2 is of this type, namely 
h = a* where a = V x(h(x) = 0), and hence the map a~+ a* is a dual 
isomorphism of partially ordered sets. Of course, this is not an isomorphism in 
CJSL, but its iterate a/v^(a*)* is, and the desired result then follows by 
proving that this map is the same as the map eA\A —> A** given by a ^ â . 
One has, for any a and x in |A|, 

x * < a * iff a < x (aT(x*)4° lf 

l l if s ^ a * iff a^x 
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on the one hand, and 5(x*) = x*(a) on the other, which establishes the point. 
The fact that CJSL has universal bimorphisms, and their relation to 

H(A, B*)*, was established by Mowatt [12]; the existence of the tensor 
multiplication in CJSL, derived from the dualizer 2, is originally due to 
Waterman [18]. Without the consideration of the dualizer, these results also 
follow from Linton [8]. 

The category CJSL has a natural extension, namely the category POLA of 
bounded ordered sets and left adjoint (=residuated) maps, i.e. order preserving 
maps f:A-^B such that f(x)<y iff x < / # ( y ) for a (necessarily unique) order 
preserving map f^:B -> A. The internal hom-functor of CJSL does not extend 
to POLA, although one can obviously talk about the partially ordered set 
H(A, B) of all left adjoint A —» B, extending the object part of H on CJSL. 
For B = 2 this is still functorial in A, and 2 remains a dualizer in this extended 
setting, so that any partially ordered sets A and B determine the partially 
ordered set H{A, B*)*; moreover, there is a natural map |A|x|B|—> 
|H(A, B*)*|, given by (a, b) *» rab, rab(h) = h(a)(b), which is a bimorphism for 
all A, Be POLA. The rôle of this is obscure, but we do know that it need not 
be a universal bimorphism, even if A and B are complete. In fact there is no 
universal bimorphism on 3 x 3 (3 the three-element chain). Some of these 
matters are discussed in Shmuely [17], albeit presented in rather different 
language. 

(4) Let Ban be the category of all Banach spaces (over K = R o r C ) and 
bounded linear maps. For any Banach spaces A and B, one then has the 
Banach space H(A,B) of all f:A->B in Ban, with the usual vector space 
structure and operator norm 

||/|| = inf{A|||/(x)||<A|W| for all xe A} 

= sup{||/(x)|||||x|| = l}. 

Moreover, Ban is concrete, with the obvious underlying set functor, and 
(A, B) A~ H(A, B) is the object part of an internal hom-functor H whose effect 
on maps is given by H(/, g)(u) = guf for u:A^> B, f:C-> A and g : B -» D, so 
that \\H(f, g)||< 11/11 ||g||. Furthermore, H is functional.To obtain (F2), consider 
any / : \A\ -> |H(B, C)\ such that |/( ) (b) | - |h b | , hb:A-^Q for each b e | B | . 
||/(a)(b)||<||hb||||a|| for any ae\A\ and 6 e | B | , and hence sup{||/(a)(b)|| | ||a||= 1} 
is finite for each b e |B|, which implies that sup{/(a)|| | ||a|| = 1} is finite, by the 
Uniform Boundedness Principle (Dunford-Schwartz [3, Ch. II]). Thus, / is 
bounded, and since it is obviously linear this proves (F2). For (Fl), we now 
only have to note that, for any Banach spaces A and B, evaluation at each 
aeA is a map a:H(A,B)->B, and a ^ â i s a map, since |a(h)|| = ||fi(a)||< 

IWIIWI-
Concerning the existence of universal bimorphisms, Proposition 3 cannot be 
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applied here since Ban, although it has finite coproducts, fails to have cop-
roducts for any infinite family. However, the proof of Proposition 3 can 
nonetheless be adapted to the present setting. We define a Banach space E and 
maps jb : A —> E and ia:B —» E as follows: if U and V are the underlying vector 
spaces of A and B respectively, let W be the vector space constructed from U 
and V as in the proof of Proposition 3, i.e. W = ® W(a?0)® W (M) where 
W(a,0)= V and W ( M ) = U for all a e | l / | and fte|V|, with the coproduct maps 
ka: V —> W and £b:U-> W. Then define a norm on W by additively extending 
the definition ||ka(fc)|| = ||û||||6|| = ||^b(a)||, and let E be the corresponding com-
pletion of W; since the ka and lb are obviously bounded they now determine 
maps ia : B -» E and /b : A —» E in Ban. 

From here we can proceed exactly as in the proof of Proposition 3 to obtain 
the map h:E-+ F since Ban clearly satisfies the required conditions regarding 
monosources. That the resulting bimorphism, given by the hia and hjb, is in fact 
universal requires some further consideration since E is not a coproduct. Let 
f:\A\ x \B\ -» \C\ be any bimorphism such that /(a, b) = \ua\ (b) = \vb\ (a); again, 
by the Uniform Boundedness Principle, sup{||ua|| | ||a||= 1} is finite, i.e. 

||/||= sup sup llfla, 6)11 
\\a\\=l\\b\\=l 

is finite. It follows that the linear map g determined on W by /, i.e. 

x = kai(b1) + - • -+£[Jak)~*/(ai , &i) + - ' ' + f(a>k,bk), 

is bounded since 

||g(x)||<||/(a1,MI + --- + ll/(afc,MI 
=£||/II(NINI+---+INIIIM) 
=11/1111*11. 

and therefore extends to a map E -» C in Ban. This is enough to show that the 
bimorphism determined above is universal. 

Further information concerning the universal bimorphisms is easily obtained 
by standard arguments using the Hahn-Banach Theorem: the image of W in F 
with respect to h is actually U ® V, and for any a e | A | and be\B\ one has 
||Wa(b)|| = ||a||||6|| = ||h/b(û)||. This identifies the restriction of the norm of F to 
U® V as the greatest cross norm; the Banach space F is usually denoted 
A® B and Proposition 3 now provides the natural equivalence (A ® B, C) —> 
(A, H(B, C)), given by h ~* h where fc(a)(6) = h(a ®b). 

An analogous, and in fact simpler, discussion applies to the subcategory Banx 

of Ban given by the linear contractions, i.e. the / :A—»E in Ban such that 
| / | |< 1, as F. E. J. Linton has kindly pointed out to us. Here, the underlying set 
functor is the unit ball functor, and H is taken as before. The relation 
||H(/, g)||< 11/11 ||g||, noted above for Ban, then shows H is also an internal 
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hom-functor for Bani. The functionality of H for Bani is an immediate 
consequence of Proposition 1: Bani has concrete products, and restricting the 
feH(A, B) to the unit ball \A\ of A provides an embedding H(A, B ) ^ B | A | 

of the required kind. Finally, the existence of universal bimorphisms follows 
now from Proposition 4 since Bani has coproducts (Semadeni [15]) and, like 
Ban, satisfies the remaining hypotheses of that proposition. It should be noted 
that the resulting tensor multiplication in Banx is the same as in Ban. 

(5) If R is a commutative ring, then the (full subcategory R Mod/gp of the 
category R Mod of all R-modules given by the finitely generated projective 
AeR Mod is closed with respect to the usual internal hom-functor H of 
R Mod and has R, as module over itself, as dualizer. To see this, we recall that 
the AeR Mod/gp are exactly the modules isomorphic to direct summands of 
finite powers Rn of R (Lambek [7]). One readily obtains that H(A,B) is 
isomorphic to a direct summand H(Rn, Rm) = Rnm if A and B are isomorphic 
to direct summands of Rn and Rm respectively, which shows the asserted 
closure property. As to the dualizer condition, the natural homomorphism 
A _> A** = H(H(A, R), R) is easily seen to be an isomorphism for A = Rn, 
and a simple argument shows that the direct summands of any A with this 
property inherit this property. Since H is clearly functional, it now follows that 
the functor T, given by T(A, B) = H(A, B*)*, is a tensor multiplication relative 
to H on R Mod/gp. Moreover, one also has that this subcategory of R Mod is 
closed with respect to the usual tensor product ® resulting from the universal 
bilinear maps of R Mod, and this establishes natural isomorphisms A ® B = 
Hom(A, B*)* for all finitely generated projective modules A, B e R M o d . For 
the case of vector spaces, i.e. where £ is a field, this is a well-known fact, often 
utilized in text books to introduce the tensor product of finite dimensional 
vector spaces. 

There is a topological variant of the above. If R is now a topological 
commutative ring with unit, let R Mod be the category of topological R-
modules, in the sense that the action R x A —> A of R on the topological group 
A is continuous, with continuous module homomorphisms as maps. Then, 
again, one has an internal hom-functor H, where the module structure on the 
set of all h : A —> B in R Mod is the usual one and the topology is the topology 
of pointwise convergence. One readily sees that the usual action R x 
H(A, B ) - ^ H(A, B) is indeed continuous so that H(A, B)eR Mod; also, for 
any f:C^>A and g:B^>D the usual linear map H(f, g) is continuous. 
Moreover, H is functional, by Proposition 1. 

Now, for any A, BeR Mod, one can take T(A, B) as the usual tensor 
product A ® B of the underlying modules, with the weak topology relative to 
all linear maps 

A®B^Q a®b~+h(a)(b) 
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for h : A -> H(B, C). Then x A~ X ® b and z Â> a ® z are continuous linear 
maps A -> T(A, B) and B -> T(A, B) for any ftefî and aeA. Moreover, the 
usual action R x T(A, B) —» T(A, B) is continuous, as one sees by following it 
by any linear map A ® B -» C of the above form, and in the same way one 
checks that T associates continuous linear maps with such maps. These facts 
then readily imply that T is a tensor multiplication relative to H. 

Further properties of T and H are, as in the non-topological case, that 
H(A 0 B, O = H(A, C) 0 H(B, C), H(A, B@C) = H(A, B) 0 H (A, C), and 
the analogous conditions for T, the isomorphisms being provided by the 
obvious maps and natural in A, B, and C. In addition, one has H(Rn, Rm) = 
Rnm = T(Rn,Rm). 

Now let K be the full subcategory of R Mod given by the AeR Mod 
isomorphic to direct summands of some jRn, i.e. the A e R Mod which are 
finitely generated and projective with respect to onto maps (note that all linear 
maps Rn ^> Rm are continuous). Then, by the properties of T and H men-
tioned above, K is closed under the action of T and H, and this provides K 
with an internal hom-functor and a tensor multiplication relative to it. Also, R 
is again a dualizer, and hence one has natural isomorphisms T(A,B) = 
H(A, B*)*, with the same effect as in the non-topological case. This can then 
be viewed as an alternative description of the topology of T(A, B). 

A further module category with a dualizer, also a generalization of finite-
dimensional vector spaces, is the category R mod of finitely generated modules 
over a commutative artinian ring R with unit. R mod is closed, in R Mod, 
with respect to the usual internal hom-functor, the tensor product, and the 
formation of injective hulls. In particular, the injective hull I oî R modulo its 
radical is a dualizer (Morita [11]), a consequence of the fact that dualizing 
relative to I preserves the length of composition series. Again, as before, one 
then has a natural isomorphism A® B —» Hom(A, B*)*. Incidentally, for suita-
ble R one has I* ^ I, unlike the case of finitely generated projective modules, 
or CJSL. A ring of this type is the polynomial ring K[x, y] over a field modulo 
the ideal (x2, xy, y2); here the socle of R has length 2 but that of I has length 1 
so that I^R = I*. 

An analogous situation, generalizing the case of finite-dimensional vector 
spaces in a different direction, is given by the finitely generated semi-simple 
(= completely reducible) modules over a commutative semi-local ring R with 
unit, the dualizer being R modulo its radical. Incidentally, for commutative R 
with infinitely many maximal ideals, one still has a self-duality for the module 
category in question, given by dualizing with respect to the direct sum of all 
R/M (M maximal ideal of R), even though this is not finitely generated. This 
self-duality is of the type discussed in the Remark following Lemma 1, but it is 
obviously not representable by a dualizer (within the category). 

(6) Let K be the category of locally compact abelian groups isomorphic to a 
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product of the form F x Z n x ï k , where F is finite, Z the additive group of 
integers, and T the circle group, the exponents being arbitrary natural num-
bers. If H(A, B) is the group of continuous homomorphisms A —» B with the 
compact-open topology then H(A,B)eK for any A, B e K , as one sees by 
checking this for the special cases A, B= finite, Zn, or II k, for which the 
resulting H(A, B) are again of that kind—a reduction which is justified since 
H{A @B,C) = H(A, C) 0 H(JB, C) and H(A, £ 0 C) - H(A, B) 0 

H(A,C). Now, the maps H(A, £ ) - > H(C, D) induced by any f:C->A and 
g:B -> D are known to be continuous (Bourbaki [1], Ch. X, §3.4), and thus H 
is an internal hom-functor for K. Furthermore, H is functional: any H(A, B) is 
locally compact, and hence has an open cover on which the compact-open 
topology and the topology of pointwise convergence coincide, which means 
that these topologies in fact coincide on all of H (A, B). 

It now follows from Pontryagin Duality that T is a dualizer for K, and thus 
provides K with universal bimorphisms. In this case, ¥ * = Z so that here one 
has another dualizer which is not isomorphic to itself. 

(7) The non-additive counterpart to modules over commutative rings are 
M-sets where M is a commutative monoid. Clearly, by the discussion in (1), 
every such category has a functional internal hom-functor and universal 
bimorphisms. If M is actually a group, the M-set U(A, B) can be described 
explicitly as follows: on the M-set | A | x B , \A\ here the underlying set of A 
with trivial action, the relation =, defined such that (a, b) = (x, y) iff x = sa, 
y = s~xb for some s e M, is a congruence and U(A, B) = \A\x B/=, the univer-
sal bimorphism being the quotient map modulo = . 

Certain counterparts to the facts concerning modules also hold in the present 
setting, at least under suitable assumptions. For instance, M, taken as M-set, is 
a dualizer for the finitely generated projective M-sets if M is a group; however, 
this does not hold in general, the multiplicative monoid {0, 1} being a coun-
terexample. 

(8) An example analogous to (1) is obtained by considering, for a (possibly 
proper) class T and cr = (nv)ver any T-indexed family of cardinal numbers > 1 , 
the category Rel(o-) of (purely) relational structures of type cr, whose objects 
are the relational structures A = (X,(Rv)ver) with underlying set |A| = X and 
yth relation vA = Rv ç X\ its maps being the set maps which preserve all the 
relations, i.e. the set maps fi:|A|-> \B\ with hnv(vA)<^ vB are exactly the maps 
underlying homomorphisms in Rel(cr). 

Any full subcategory K of Rel(or) which is productive and hereditary (in the 
natural substructure sense) has a functional internal hom-functor H: H (A, B) is 
the subobject of J5lA| given by the K-maps A -> B, i.e. the ẑ th relation of 
H(A,B) is the set of all (fi)i<nv such that (fi(x))i<nv e vB for all xeA. 
Moreover, K has coproducts by the construction due to Golema [5], and 
Proposition 4 is applicable; thus K has universal bimorphisms which provide a 
tensor multiplication T for H. 
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A more direct description of T(A, B) is as follows: for each veT, take the 
nv-ary relation 

Rv = {((s(ï), b))i<nv | se vA, be\B\}U{((a, t(i)))i<nv \ae\A\, te vB) 

on |A|x|B|; then T(A,B) is the K-reflection of the resulting cr-relational 
structure. 

If K is the category of partially ordered sets, one readily sees that T(A, B) = 
A x B, which provides a proof for the familiar fact that the category is cartesian 
closed. 

Finally, we note that none of these categories can have a dualizer since | | is 
represented by a one-point structure. 

(9) We conclude with a somewhat curious example. For a monoid M with 
unit e, the natural underlying set functor is the functor represented by e, i.e. 
\e\ = X, the underlying set of M, and for each s e M, \s\ is the action of 5 on X 
by left translation. Since | | associates with each pair of elements s,teM the 
map (5, r): X/vs- txs, an internal hom-functor H of M must have the property 
that, for u = H(s, t), ux = txs for all xeM. This implies that u = ts, and then 
tsx = txs for all xeM, which makes M commutative and H the multiplication 
map; conversely, if M is commutative then the multiplication map is indeed an 
internal hom-functor. 

Let M now be commutative. One then readily checks that (Fl) holds, the 
single map whose existence is required being the unit e. Similarly, (F2) is 
satisfied, for if / :X-» X is any map such that, for each beM, there exists a 
wbeM for which |/( )| (6) = |wb| it follows that f(a) = f(a)e = \f(a)\(e) = 
\we\ (a) = wea, and hence / = |we|. Hence the internal hom-functor is functional. 
Moreover, since H( , e) is the identity automorphism, e is a dualizer for M. 
Finally, the associated tensor multiplication T is just the multiplication map of 
M, i.e. T = H. 
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