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Abstract

We prove new interaction Morawetz-type (correlation) estimates in one and two

dimensions. In dimension 2 the estimate corresponds to the nonlinear diag-

onal analogue of Bourgain’s bilinear refinement of Strichartz. For the two-

dimensional case we provide a proof in two different ways. First, we follow the

original approach of Lin and Strauss but applied to tensor products of solutions.

We then demonstrate the proof using commutator vector operators acting on the

conservation laws of the equation. This method can be generalized to obtain

correlation estimates in all dimensions. In one dimension we use the Gauss-

Weierstrass summability method acting on the conservation laws. We then apply

the two-dimensional estimate to nonlinear Schrödinger equations and derive a

direct proof of Nakanishi’s H 1 scattering result for every L2-supercritical non-

linearity. We also prove scattering below the energy space for a certain class of

L2-supercritical equations. © 2009 Wiley Periodicals, Inc.

1 Introduction

In this paper we obtain new a priori estimates for solutions of the nonlinear

Schrödinger equation in one and two dimensions.1 We also provide a systematic

way to obtain the known interaction a priori estimates for dimensions higher than 3.

These estimates are monotonicity formulae that take advantage of the conservation

of the momentum of the equation. Due to the pioneering work [19], estimates of

this type are referred to as Morawetz estimates in the literature. We then apply these

estimates to study the global behavior of solutions to the nonlinear Schrödinger

equation. To be more precise, we want to study the global-in-time behavior of

1 The same estimates have been independently and simultaneously (see [9, 22]) obtained by

F. Planchon and L. Vega [21] with different proofs.

Communications on Pure and Applied Mathematics, Vol. LXII, 0920–0968 (2009)

© 2009 Wiley Periodicals, Inc.



CORRELATION ESTIMATES AND APPLICATIONS 921

solutions to the following initial value problem

(1.1)

(
iut C �u � jujp�1u D 0; x 2 R

n; t 2 R;

u.x; 0/ D u0.x/ 2 H s.Rn/;

with p > 1. Here we investigate the L2-supercritical equation in two dimensions

under the natural scaling of the equation, and thus we restrict p to p > 3. Scaling

refers to the fact that if u.x; t/ is a solution to (1.1), then

u�.x; t/ D �� 2
p�1 u

�
x

�
;

t

�2

�
is also a solution. The problem is then called H s-critical if the scaling leaves the

homogeneous PH s norm invariant. This happens exactly when s D n
2

� 2
p�1

. We

denote the critical index by sc and thus

(1.2) sc D n

2
� 2

p � 1
:

The problem of the existence of local-in-time solutions for (1.1) is well studied

by many authors, and a summary of the results can been found in [3, 4, 24]. Thus

depending on the strength of the nonlinearity and the dimension, the local solutions

are well understood. In this paper we will consider problems that are locally well

posed and refer the reader to [4, 24] for the proofs.

The local well-posedness definition that we use here reads as follows: for any

choice of initial data u0 2 H s , there exists a positive time T D T .ku0kH s /

depending only on the norm of the initial data such that a solution to the initial value

problem exists on the time interval Œ0; T �, it is unique in a certain Banach space of

functions X � C.Œ0; T �; H s
x/, and the solution map from H s

x to C.Œ0; T �; H s
x/

depends continuously on the initial data on the time interval Œ0; T �. If the time T

can be proved to be arbitrarily large, we say that the Cauchy problem is globally

well-posed.

To extend a local solution to a global one, we need some a priori information

about the norms of the solution. This usually comes from conservation laws. For

example, solutions of equation (1.1) satisfy mass conservation

(1.3) ku.t/kL2 D ku0kL2

and smooth solutions also satisfy energy conservation

(1.4) E.u/.t/ D 1

2

Z
jru.t/j2 dx C 1

p C 1

Z
ju.t/jpC1 dx D E.u0/:

These two conservation laws identify H 1 and L2 as important spaces concerning

the initial value problem (1.1). We can use them to extend the local solutions for

all times. For example, based on energy conservation we immediately get that for

initial data u.t0/ D u0 2 H 1 we have that ku.t/kH 1 � C.u0; t0/ for all times.

In order to use this information to iterate the local solutions, the time of local

resolution T has to be estimated from below in terms of the norms of the initial data
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in H 1, T � M.ku0kH 1/, for some strictly positive and nonincreasing function M .

This is not the case for the L2 norm of the L2-critical problem that corresponds to

the case of p D 1 C 4
n

, since the local time depends not only on the norm of the

initial data but also on the profile. On the other hand, since the equation (1.1) is

energy subcritical in dimensions 1 and 2 for any p, we have that T � M.ku0kH 1/.

Thus one can iterate the local resolution and solve the Cauchy problem at time tk�1

(1 � k < 1) with initial data u.tk�1/ up to time tk D tk�1 C Tk with local time

Tk � M.ku.tk�1/kH 1/. Now if the series
P

Tk converges, then on one hand Tk

tends to 0, but on the other hand Tk � M.C.u0; t0; I // where I D Œt0; t0 CP
Tk�,

which is a contradiction. Thus the series
P

Tk diverges and u can be continued for

all times in H 1.

In situations where the Cauchy problem is globally well-posed, we can ad-

dress the question of describing and classifying the asymptotic behavior in time

for global solutions. A possible method to attack the question is to compare the

given dynamics with suitably chosen simpler asymptotic dynamics. The method

applies to a wide variety of dynamical systems and in particular to some systems

defined by nonlinear PDEs and give rise to scattering theory. For the semilinear

problem (1.1), the first obvious candidate is the free dynamics generated by the

group S.t/ D eit�. The comparison between the two dynamics gives rise to the

following two questions:

(1) Let vC.t/ D S.t/uC be the solution of the free equation. Does there exist

a solution u of equation (1.1) that behaves asymptotically as vC as t ! 1,

typically in the sense that for a Banach space X

(1.5) ku.t/ � vCkX ! 0 when t ! 1.

If this is true, then one can define the map �C W uC ! u.0/. The map is

called the wave operator and the problem of existence of u for given uC
is referred to as the problem of the existence of the wave operator. The

analogous problem arises as t ! �1.

(2) Conversely, given a solution u of (1.1), does there exist an asymptotic state

uC such that vC.t/ D S.t/uC behaves asymptotically as u.t/, typically

in the sense of (1.5)? If that is the case for any u with initial data in X for

some uC 2 X , one says that asymptotic completeness holds in X .

Asymptotic completeness is a much harder problem than the existence of the

wave operators except in the case of small-data theory, which follows pretty much

from the iteration method proof of the local well-posedness. Asymptotic complete-

ness requires a repulsive nonlinearity and usually proceeds through the derivation

of a priori estimates for general solutions. As we have already mentioned, these

estimates take advantage of the momentum conservation law

(1.6) Ep.t/ D =
Z

Rn

Nuru dx D Ep.0/:
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We can establish, for example, the generalized virial inequality [18],2

(1.7)

Z T

0

Z
Rn

.���a.x//ju.x; t/j2 dx dt

C 2.p � 1/

p C 1

Z T

0

Z
Rn

2�aju.x; t/jpC1dx dt . sup
Œ0;T �

jMa.t/j

where a.x/ is a convex function, u is a solution to (1.1), and Ma.t/ is the Morawetz

action defined by

(1.8) Ma.t/ D 2

Z
Rn

ra � =. Nu.x/ru.x//dx

One can use this identity as a starting point and derive a priori interaction Mora-

wetz inequalities. These estimates can be achieved by translating the origin in

the integrands of (1.7) to an arbitrary point y and then averaging [11] against the

L1 mass density ju.y/j2 dy, or by considering the tensor product of two solutions

of (1.1) and use the fact that the operation of tensoring the two solutions results

again in a defocusing nonlinearity.3

Both of these methods depend on the fact that for dimension n � 3 the distribu-

tion ���jxj is positive. The estimate one can obtain for n � 3 is

(1.9) kD� n�3
2 .juj2/kL2

t L2
x

. kuk
L1

t
PH

1=2
x

kukL1
t L2

x
:

For n D 3 this estimate reduces to

(1.10) kuk2
L4

t L4
x

. kuk
L1

t
PH

1=2
x

kukL1
t L2

x
:

This estimate is historically the first interaction Morawetz estimate and was ob-

tained in [11]. For n � 4 it was derived in [25, 26]. The estimate in three dimen-

sions has important consequences. It can be used to prove scattering in the energy

space for the three-dimensional problem for any p � 1 > 4
3

. This result was ob-

tained in [16], but the estimate (1.10) gives a very short and elegant proof. One can

also combine this estimate with the “I -method” to show global well-posedness and

scattering to the three-dimensional cubic nonlinear Schrödinger equation below the

energy space [11].

For solutions below the energy threshold, the first result of global well-posedness

was established in [2] by decomposing the initial data into low frequencies and

high frequencies and estimating separately the evolution of low and high frequen-

cies. The key observation was that the high frequencies behave “essentially uni-

tarily.” The method was applied to the cubic equation in two dimensions and

established that the solution is globally well-posed with initial data in H s.R2/

2 In fact, one can write an identity.
3 This idea emerged in a conversation between Andrew Hassell and Terry Tao.
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for any s > 3
5

. Moreover, if we denote with St the nonlinear flow and with

S.t/ D eit�u0 the linear group, the high/low frequency method shows in addi-

tion that .St � S.t// u0 2 H 1.R2/ for all times provided u0 2 H s; s > 3
5

.

Inspired by [2], the I -method (see [11] and references therein) is based on the

almost conservation of a certain modified energy functional. The idea is to replace

the conserved quantity E.u/ that is no longer available for s < 1, with an “almost

conserved” variant E.Iu/, where I is a smoothing operator of order 1 � s that

behaves like the identity for low frequencies and like a fractional integral operator

for high frequencies. Thus, the operator I maps H s
x to H 1

x . Notice that Iu is not

a solution to (1.1), and hence we expect an energy increment. This increment is in

fact quantifying E.Iu/ as an “almost conserved” energy. The key is to prove that

on intervals of fixed length, where local well-posedness is satisfied, the increment

of the modified energy E.Iu/ decays with respect to a large parameter N . (For

the precise definition of I and N , we refer the reader to Section 2.) This requires

delicate estimates on the commutator between I and the nonlinearity.

In addition to the H 1 scattering problem, a frequency-localized version of (1.10)

is a main ingredient in the proof that the PH 1-critical NLS is globally well-posed

and scatters in three dimensions [12]. Note that if (1.9) were true for n D 2, we

would have

(1.11) kD
1
2 .juj2/kL2

t L2
x

. kuk
L1

t
PH

1=2
x

kukL1
t L2

x
:

This estimate can be considered as the diagonal, nonlinear analogue of the bilinear

refinement of Strichartz in [2] and has many interesting applications. A weaker

local-in-time estimate was recently obtained [14]:

(1.12) kuk2
L4

T L4
x

. T
1
4 ku0kL2

x
kuk

L1
T

PH 1=2 :

This estimate is very useful since the L4
t L4

x norm is a Strichartz norm and can

help one to get a global solution assuming control on the local norms. Note the

restriction that u has to be at least as regular as an H 1=2 solution. This estimate

was recently improved [8] to

(1.13) kuk2
L4

T L4
x

. T
1
6 ku0k4=3

L2
x

kuk2=3

L1
T

PH 1=2
:

This a priori estimate along with the I -method was used to establish global

well-posedness for the cubic nonlinear Schrödinger equation in two dimensions

for any s > 2
5

. Note that these refinements suggest the global Strichartz estimate

that would immediately imply for � D 0, global well-posedness and scattering for

the L2-critical problem

(1.14) kuk2
L4

T L4
x

. T
�
2 ku0k2.1��/

L2
x

kuk2�

L1
T

PH 1=2
:

Unfortunately, an argument in [14] shows that by using the above methods, esti-

mate (1.13) is the best possible.
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A byproduct of our analysis in [8] provides a new estimate in one dimension,

which reads

(1.15) kukL6
T L6

x
. T

1
6 ku0kL2

x
kuk1=3

L1
T

PH 1=2
:

This estimate was used to prove global well-posedness for the one-dimensional

L2-critical problem for any s > 1
3

[13]. Note that for all the above problems, the

solution is below the H 1=2 threshold and the a priori estimates are not applicable.

One has to introduce a smooth cutoff of the initial data and control certain error

terms using multilinear harmonic analysis techniques.

In this paper we prove that (1.11) is indeed true. It is proved by refining the

tensor product approach that we mentioned above. Using Sobolev embedding, an

immediate consequence of (1.11) is the following:

(1.16) kuk2
L4

t L8
x

. ku0kL2
x

kuk
L1

T
PH 1=2 :

One can use this estimate to obtain a simplified proof of the H 1 scattering result in

[20] in two dimensions for any p > 3. Such a proof avoids the induction on energy

argument and produces a better bound on the space-time size of the solution. For

completeness we present the proof in Section 4.

We now state the main theorems of this paper. The estimates contained in The-

orems 1.1 and 1.2 below were simultaneously and independently obtained [21, 22]

by Planchon and Vega.

THEOREM 1.1 (Correlation Estimate in Two Dimensions) Let u be an H 1=2 solu-
tion to (1.1) on the space-time slab I � R

2. Then

(1.17) kD
1
2 .juj2/kL2

t L2
x

. kuk
L1

t
PH

1=2
x

kukL1
t L2

x
:

THEOREM 1.2 (Correlation Estimates in One Dimension) Let u be an H 1 solution
to (1.1) on the space-time slab I � R. Then

(1.18) k@x.juj2/kL2
t L2

x
. kuk1=2

L1
t

PH 1
x

kuk3=2

L1
t L2

x

and

(1.19) kukpC3

L
pC3
t L

pC3
x

. kuk3
L1

t L2
x

kuk
L1

t
PH 1

x
:

THEOREM 1.3 (Asymptotic Completeness in H 1.R2/) Let u0 2 H 1.R2/. Then
there exists a unique global solution u to the initial value problem

(1.20)

(
iut C �u D jujp�1u; p > 1;

u.0; x/ D u0.x/:

Moreover, if p > 3 there exist u˙ 2 H 1.R2/ such that

ku.t/ � eit�u˙kH 1.R2/ ! 0 as t ! ˙1:
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THEOREM 1.4 (Asymptotic Completeness below H 1.R2/) Let u0 2 H s.R2/.
Then for each positive integer k � 2, there exists a regularity threshold sk D
1 � 1

4k�3
such that the initial value problem

(1.21)

(
iut C �u D juj2ku; k � 2;

u.0; x/ D u0.x/

is globally well-posed and scatters provided s > sk . In particular, there exists
u˙ 2 H s.R2/ such that

ku.t/ � eit�u˙kH s.R2/ ! 0 as t ! ˙1:

We note that estimates (1.18) and (1.17) come from the linear part of the solu-

tion and thus are true for any nonlinearity, while estimate (1.19) comes from the

nonlinear part. Actually, the proof of Theorem 1.1 shows that the following esti-

mate is true for any n � 2 (with the appropriate interpretations of course when the

power of the derivative operator is positive or negative):

kD� n�3
2 .juj2/kL2

t L2
x

. kuk
L1

t
PH

1=2
x

kukL1
t L2

x
:

The basic idea behind these new estimates is to view the evolution equations

as describing the evolution of a compressible dispersive fluid whose pressure is a

function of the density. In this case the mass and momentum conservation laws

describe the conservation laws of an irrotational compressible and dispersive fluid.

There is a difference, though, between one and two dimensions. In two and higher

dimensions we use commutator vector operators that act on the conservation laws.

In dimension 1 we use the heat kernel.

More precisely, we introduce into the Morawetz action the error function

erf.x/ D
Z x

0

e�t2

dt

scaled by � whose derivative is the heat kernel in one dimension. We define the

operator that is given as a convolution with the error function and apply it to the

conservation laws of the equation. Integration by parts produces the solution of

the one-dimensional heat equation. Sending � to 0 we recover the estimates. This

way the mass density plays the role of the initial data of the linear heat equation,

and the method is nothing other than the Gauss-Weierstrass summability method

in classical Fourier analysis. Again, for details the reader can consult Section 4.

The rest of the paper is organized as follows: In Section 2 we introduce some

notation and state important propositions that we will use throughout the paper.

In Section 3 we present the proofs of the correlation estimates in all dimensions

and provide a general framework for obtaining similar estimates. In Section 4

we prove the H 1 scattering result for the L2-supercritical nonlinear Schrödinger

in two dimensions (Theorem 1.3). Finally, in Section 5 we prove global well-

posedness and scattering below the energy space of the initial value problem (1.21)

(Theorem 1.4.)
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2 Notation

In this section, we introduce notation and some basic estimates we will invoke

throughout this paper. We use A . B to denote an estimate of the form A � CB

for some constant C . If A . B and B . A we say that A � B . We write A � B

to denote an estimate of the form A � cB for some small constant c > 0. In

addition, hai WD 1 C jaj and a˙ WD a ˙ � with 0 < � � 1.

We use Lr
x.Rn/ to denote the Banach space of functions f W R

n ! C whose

norm

kf kr WD
�Z

Rn

jf .x/jr dx

� 1
r

is finite, with the usual modifications when r D 1.

We use L
q
t Lr

x to denote the space-time norm

kukq;r WD kukL
q
t Lr

x.R�Rn/ WD
�Z

R

�Z
Rn

ju.t; x/jr dx

� q
r

dt

� 1
q

;

with the usual modifications when either q or r are infinity, or when the domain

R�R
n is replaced by some smaller space-time region. When q D r , we abbreviate

L
q
t Lr

x by L
q
t;x . We define the Fourier transform of f .x/ 2 L1

x.Rn/ by

yf .�/ D
Z

Rn

e�2�i�xf .x/dx:

For an appropriate class of functions the following Fourier inversion formula holds:

f .x/ D
Z

Rn

e2�i�x yf .�/.d�/:

Moreover, we know that the following identities are true:

(1) kf kL2 D k yf kL2 (Plancherel).

(2)
R

Rn f .x/ Ng.x/dx D R
Rn

yf .�/ Nyg.�/.d�/ (Parseval).

(3) cfg.�/ D yf ? yg.�/ D R
Rn

yf .� � �1/yg.�1/d�1 (convolution).

We will also make use of the fractional differentiation operators jrjs defined by

1jrjsf .�/ WD j�js yf .�/:

These define the homogeneous Sobolev norms

kf k PH s
x

WD kjrjsf kL2
x

and more general Sobolev norms

kf kH
s;p
x

WD khrisf kp;
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where hri D .1 C jrj2/1=2. Let eit� be the free Schrödinger propagator. In

physical space this is given by the formula

eit�f .x/ D 1

.4�it/n=2

Z
Rn

e
ijx�yj2

4t f .y/dy

for t ¤ 0 (using a suitable branch cut to define .4�it/d=2), while in frequency

space one can write this as

(2.1)
1
eit�f .�/ D e�4�2it j�j2 yf .�/:

In particular, the propagator obeys the dispersive inequality

(2.2) keit�f kL1
x

. jt j� n
2 kf kL1

x

for all times t ¤ 0. We also recall Duhamel’s formula

u.t/ D ei.t�t0/�u.t0/ � i

Z t

t0

ei.t�s/�.iut C �u/.s/ds:(2.3)

DEFINITION 2.1 A pair of exponents .q; r/ is called Schrödinger-admissible if

.q; r; n/ ¤ .2; 1; 2/,
2

q
C n

r
D n

2
; 2 � r � 1:

For a space-time slab I � R
n, we define the Strichartz norm

kf kS0.I / WD sup
.q;r/ admissible

kf kL
q
t Lr

x.I�Rn/:

Then we have the following Strichartz estimates (for a proof, see [17] and the

references therein):

LEMMA 2.2 Let I be a compact time interval, t0 2 I , s � 0, and let u be a
solution to the forced Schrödinger equation

iut C �u D
mX

iD1

Fi

for some functions F1; : : : ; Fm. Then,

(2.4) kjrjsukS0.I / . ku.t0/k PH s
x

C
mX

iD1

kjrjsFik
L

q0
i

t L
r0
i

x .I�Rn/

for any admissible pairs .qi ; ri /, 1 � i � m. Here p0 denotes the conjugate
exponent to p, that is, 1

p
C 1

p0 D 1.

The reader must have in mind that wherever in this paper we restrict the func-

tions in frequency, we do it in a smooth way using the Littlewood-Paley projec-

tions. To address the frequency localization in a more precise way, we need some

Littlewood-Paley theory. Specifically, let '.�/ be a smooth bump supported in
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j�j � 2 and equaling 1 on j�j � 1. For each dyadic number N 2 2Z, we define the

Littlewood-Paley operators

2P�N f .�/ WD '

�
�

N

�
yf .�/;

2P>N f .�/ WD
�
1 � '

�
�

N

��
yf .�/;

1PN f .�/ WD
�
'

�
�

N

�
� '

�
2

�

N

��
yf .�/:

Similarly, we can define P<N , P�N , and PM<����N WD P�N �P�M , whenever

M and N are dyadic numbers. We will frequently write f�N for P�N f and

similarly for the other operators. Using the Littlewood-Paley decomposition we

write, at least formally, u D P
N PN u. We can write u D P

uN and obtain

bounds on each piece separately or by examining the interactions of the several

pieces. We can recover information for the original function u by applying the

Cauchy-Schwarz inequality and using the Littlewood-Paley theorem [23] or the

cheap Littlewood-Paley inequality

kPN ukLp . kukLp

for any 1 � p � 1. Since this process is fairly standard, we will often omit the

details of the argument throughout the paper. We also recall the following standard

Bernstein and Sobolev type inequalities. The proofs can be found in [24].

LEMMA 2.3 For any 1 � p � q � 1 and s > 0, we have

kP�N f kL
p
x

. N �skjrjsP�N f kL
p
x

;

kjrjsP�N f kL
p
x

. N skP�N f kL
p
x

;

kjrj˙sPN f kL
p
x

� N ˙skPN f kL
p
x

;

kP�N f kL
q
x

. N
1
p

� 1
q kP�N f kL

p
x

;

kPN f kL
q
x

. N
1
p

� 1
q kPN f kL

p
x

:

For N > 1, we define the Fourier multiplier I WD IN

bIN u.�/ WD mN .�/yu.�/;

where mN is a smooth, radially decreasing function such that

mN .�/ D
(

1 if j�j � N;� j�j
N

�s�1
if j�j � 2N:

Thus, I is the identity operator on frequencies j�j � N and behaves like a frac-

tional integral operator of order 1 � s on higher frequencies. In particular, I maps

H s
x to H 1

x . We collect the basic properties of the I operator as follows:
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LEMMA 2.4 Let 1 < p < 1 and 0 � 	 � s < 1. Then

kIf kp . kf kp;(2.5)

kjrj�P>N f kp . N ��1krIf kp;(2.6)

kf kH s
x

. kIf kH 1
x

. N 1�skf kH s
x
:(2.7)

PROOF: The estimate (2.5) is a direct consequence of Hörmander’s multiplier

theorem.

To prove (2.6), we write

kjrj�P>N f kp D kP>N jrj� .rI /�1rIf kp:

The claim follows again from Hörmander’s multiplier theorem. Now we turn to

(2.7). By the definition of the operator I and (2.6),

kf kH s
x

. kP�N f kH s
x

C kP>N f k2 C kjrjsP>N f k2

. kP�N If kH 1
x

C N �1krIf k2 C N s�1 krIf k2 . kIf kH 1
x
:

On the other hand, since the operator I commutes with hris ,

kIf kH 1
x

D khri1�sI hrisf k2 . N 1�skhrisf k2 . N 1�skf kH s
x
;

which proves the last inequality in (2.7). Note that a similar argument also yields

kIf k PH 1
x

. N 1�skf k PH s
x
:(2.8)

�

3 Correlation Estimates in All Dimensions

We consider solutions of the equation

(3.1) iut C �u D jujp�1u; .x; t/ 2 R
n � Œ0; T �:

We want to obtain a monotonicity formula that takes advantage of the momentum

conservation law of the equation

Ep.t/ D
Z

Rn

=.u.x; t/ru.x; t//dx D Ep.0/:

We define the Morawetz action

Ma.t/ D 2

Z
Rn

ra.x/ � =.u.x/ru.x//dx

where a W R
n ! R, a convex and locally integrable function of polynomial growth.

By differentiating Ma.t/ with respect to time and using the conservation laws of

the equation, we will obtain a priori estimates for solutions of (3.1). To accomplish

that, we make a clever choice of the weight function a.x/. We note that in all of the

cases that we will consider we pick a.x/ D f .jxj/ where f W R ! R is a convex
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function with the property that f 0.x/ � 0 for x � 0. Then a simple calculation

shows that the second-derivative matrix of a.x/ is given by

@j @ka.x/ D f
00

.jxj/xj xk

jxj2 C f
0

.jxj/
jxj

�
ıkj � xj xk

jxj2
�

:

But then the quadratic form hyj yk j @j @ka.x/i is positive definite since

hyj yk j @j @ka.x/i D f
00

.jxj/.x � y/2

jxj2 C f
0

.jxj/
jxj

�
jyj2 � .x � y/2

jxj2
�

� 0

by the Cauchy-Schwarz inequality

jx � yj � jxjjyj:
As a final comment for the careful reader, we note that in all our arguments

we will assume smooth solutions. This will simplify the calculations and enable

us to justify the steps in the subsequent proofs. The local well-posedness theory

and the perturbation theory [4] that has been established for this problem can then

be applied to approximate the H s solutions by smooth solutions and conclude the

proofs. For most of the calculations in this section the reader can consult [12, 24].

The equation satisfies the following local conservation laws:

	 local mass conservation

@t
 C @j pj D 0

	 local momentum conservation

@tpk C @j

�
	

j

k
C ı

j

k

�
��
 C 2

pC1
2

p � 1

p C 1



pC1
2

��
D 0

where


 D 1

2
juj2

is the mass density,

pj D =. Nu@j u/

is the momentum density, and

	jk D 1



.pj pk C @j 
@k
/

is a stress tensor.

Using the identity

<.´1 Ń2/ D =´1=´2 C <´1<´2;

we can write

	jk D 1



.pj pk C @j 
@k
/ D 2<.@ku@j Nu/:

In what follows we will use both definitions of 	jk according to what we find more

appropriate with the situation at hand. Note that integration of the first equation

leads to mass conservation while integration of the second leads to momentum

conservation. We are ready to prove the generalized virial identity [18].
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PROPOSITION 3.1 If a is convex and u is a smooth solution to equation (3.1) on
Œ0; T � � R

n, then the following inequality holds:

(3.2)

Z T

0

Z
Rn

.���a/ju.x; t/j2 dx dt . sup
Œ0;T �

jMa.t/j;

where Ma.t/ is the Morawetz action, which is given by

(3.3) Ma.t/ D 2

Z
Rn

ra.x/ � =.u.x/ru.x//dx:

PROOF: We can write the Morawetz action as

Ma.t/ D 2

Z
Rn

.@j a/pj dx:

Then

@tMa.t/ D 2

Z
Rn

.@j a/@tpj dx

D 2

Z
Rn

@j a

�
�@k

�
	jk C ıkj

�
��
 C 2

pC1
2

p � 1

p C 1



pC1
2

���
dx

D 2

Z
Rn

.@j @ka/	jk dx � 2

Z
Rn

@j a@j

�
��
 C 2

pC1
2

p � 1

p C 1



pC1
2

�
dx

D 4

Z
Rn

.@j @ka/<.@ku@j Nu/dx

C 2

Z
Rn

�a

�
��
 C 2

pC1
2

p � 1

p C 1



pC1
2

�
dx

D 4

Z
Rn

.@j @ka/<.@ku@j Nu/dx C 2

Z
Rn

.���a/
 dx

C 2
pC3

2
p � 1

p C 1

Z
Rn

.�a/

pC1

2 dx

D 4

Z
Rn

.@j @ka/<.@ku@j Nu/dx C
Z

Rn

.���a/juj2 dx

C 2.p � 1/

p C 1

Z
Rn

.�a/jujpC1 dx:

To prove this identity we used the local conservation of momentum law, inte-

gration by parts, and the definitions of 
 and 	jk . But since a is convex, we have
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that

4.@j @ka/<.@j Nu@ku/ � 0:

In addition, the trace of the Hessian of @j @ka, which is �a, is positive. Thus,Z
Rn

.���a/juj2 dx � @tMa.t/;

and by the fundamental theorem of calculus we have that

(3.4)

Z T

0

Z
Rn

.���a/ju.x; t/j2 dx dt . sup
Œ0;T �

jMa.t/j:

�

3.1 Interaction Morawetz Inequality in Dimension n � 3

Using the approach above we can derive correlation estimates that are very use-

ful in studying the global well-posedness and the scattering properties of nonlinear

dispersive partial differential equations. For clarity in this subsection we reproduce

some calculations that have appeared in [8]. Let ui ; Fi be solutions to

(3.5) iut C �u D F.u/

in ni spatial dimensions. Define the tensor product u WD .u1 ˝ u2/.t; x/ for x in

R
n1Cn2 D f.x1; x2/ W x1 2 R

n1 ; x2 2 R
n2g

by the formula

.u1 ˝ u2/.t; x/ D u1.x1; t /u2.x2; t /:

We abbreviate u.xi / by ui and note that if u1 solves (3.5) with forcing term F1

and u2 solves (3.5) with forcing term F2, then u1 ˝ u2 solves (3.5) with forcing

term F D F1 ˝ u2 C F2 ˝ u1. We have that


 D 1
2
ju.x/j2 D 2
1
2;

pk D =.u1u2@k.u1u2//;

	jk D 2<.@j .u1u2/@k.u1u2//;

where 
i D 1
2
jui j2, i D 1; 2; and similarly for pk.ui / and 	jk.ui /. Then the local

conservation laws can be written in the following way:

@t
 C @j pj D 0;

@tpk C @j

�
	

j

k
C ı

j

k
.��
 C G/

� D 0;

where

G D 2
pC1

2
p � 1

p C 1
.G1 ˝ ju2j2 C G2 ˝ ju1j2/ � 0
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and Gi D G.ui / D 

.pC1/=2
i . Of course, in this setting r D .rx1

; rx2
/ and

� D �x1
C �x2

. If we now apply Proposition 3.1 for the tensor product of the

two solutions, we obtain for a convex function a that

(3.6)

Z T

0

Z
Rn1 ˝Rn2

.���a/ju1 ˝ u2j2.x; t/dx dt . sup
Œ0;T �

jM ˝2
a .t/j

where again � D �x1
C �x2

, the Laplacian in R
n1Cn2 , and M

˝2
a .t/ is the

Morawetz action that corresponds to u1 ˝ u2 and thus

M ˝2
a .t/ D 2

Z
Rn1 ˝Rn2

ra.x/ � = �
u1 ˝ u2.x/r.u1 ˝ u2.x//

�
dx

D Ma.u1.t//ku2k2
L2 C Ma.u2.t//ku1k2

L2 :

Now we pick a.x/ D a.x1; x2/ D jx1 � x2j where .x1; x2/ 2 R
n � R

n. Then

an easy calculation shows that

���a.x1; x2/ D
(

C1ı.x1 � x2/ if n D 3;
C2

jx1�x2j3 if n � 4;

where C1; C2 are constants. Applying equation (3.6) with this choice of a and

choosing u1 D u2, we get that in the case that n D 3Z T

0

Z
R3

ju.x; t/j4 dx . sup
Œ0;T �

jM ˝2
a .t/j;

and in the case that n � 4,Z T

0

Z
Rn˝Rn

ju.x2; t /j2 ju.x1; t /j2
jx1 � x2j3 dx1 dx2 dt . sup

Œ0;T �

jM ˝2
a .t/j:

ButZ T

0

Z
Rn˝Rn

ju.x2; t /j2 ju.x1; t /j2
jx1 � x2j3 dx1 dx2 dt D

Z T

0

Z
Rn

�
juj2 ?

1

j � j3
�

.x/ju.x/j2 dx dt:

Now we define for n � 4 the integral operator

D�.n�3/f .x/ WD
Z

Rn

u.y/

jx � yj3 dy
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where D stands for the derivative. This is indeed defined since for n � 4 the

distributional Fourier transform of jxj�3 is given by

1j � j�3.�/ D j�j�.n�3/:

By applying Plancherel’s theorem and distributing the derivatives, we obtain thatZ T

0

Z
Rn˝Rn

ju.x2; t /j2 ju.x1; t /j2
jx1 � x2j3 dx1 dx2 dt D

Z T

0

Z
Rn

jD� n�3
2 .ju.x/j2/j2 dx dt:

Thus we obtain thatZ T

0

Z
Rn

ˇ̌
D� n�3

2 .ju.x/j2/
ˇ̌2

dx dt . sup
Œ0;T �

jM ˝2
a .t/j:

For simplicity, we combine the two estimates for n � 3, pretending that D0 D 1,

into ��D� n�3
2 .ju.x/j2/

��2

L2
t L2

x
. sup

Œ0;T �

jM ˝2
a .t/j:

It can be shown using Hardy’s inequality (for details, see [11]) that for n � 3

sup
Œ0;T �

jMa.t/j . sup
Œ0;T �

ku.t/k2
PH 1=2

:

Since we have that

M ˝2
a .t/ D Ma.u1.t//ku2k2

L2 C Ma.u2.t//ku1k2
L2 ;

we obtain

(3.7)
��D� n�3

2 .ju.x/j2/
��2

L2
t L2

x
. sup

Œ0;T �

ku.t/k2
PH 1=2

ku.t/k2
L2 ;

which is the interaction Morawetz estimates that appears in [11] and in [26].

Remark 3.2. The above method breaks down for n < 3 since the distribution

���.jxj/ is not positive anymore.

3.2 Interaction Morawetz Inequality in Two Dimensions

In two dimensions, we follow an alternative approach [8]. In that case .x1; x2/ 2
R

2 � R
2. The idea is again to consider the tensor product of two solutions but with

a different weight function. We couldn’t prove that ���a.x/ is positive. Instead

we obtained a difference of two positive functions and balanced the two terms by

picking the constants in an appropriate way. The details are as follows:
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Let f W Œ0; 1/ ! Œ0; 1/ be such that

f .x/ WD

8̂<̂
:

1
2M

x2.1 � log x
M

/ if jxj < Mp
e
;

100x if jxj > M;

smooth and convex for all x;

and M is a large parameter that we will choose later. It is obvious that the functions
1

2M
x2.1 � log x

M
/ and 100x are convex in their domain, and the graph of either

function lies strictly above the tangent lines of the other. Thus one can construct a

function with the above properties. Note also that for x � 0 we have that f 0.x/ �
0. If we apply Proposition 3.1 with the weight a.x1; x2/ D f .jx1 � x2j/ and

tensoring again two functions, we conclude thatZ T

0

Z
R2�R2

.���a.x1; x2//ju.x1; t /j2 ju.x2; t /j2 dx1 dx2 dt .

2 sup
Œ0;T �

jM ˝2
a .t/j:

But for jx1 � x2j < M=
p

e, we have that �a.x1; x2/ D 2
M

log. M
jx1�x2j/ and thus

���a.x1; x2/ D 4�

M
ıfx1Dx2g:

On the other hand, for jx1 � x2j > M we have that

���a.x1; x2/ D O

�
1

jx1 � x2j3
�

D O

�
1

M 3

�
:

We have a similar bound in the region in between just because a.x1; x2/ is smooth,

so all in all, we have

���a.x1; x2/ D 4�

M
ıfx1Dx2g C O

�
1

M 3

�
:

Thus Z T

0

Z
R2�R2

.���a.x1; x2//ju.x1; t /j2ju.x2; t /j2 dx1 dx2 dt

D O

�
1

M

� Z T

0

Z
R2

ju.x; t/j4 dx dt

C O

�
1

M 3

� Z T

0

Z
R2�R2

ju.x1; t /j2 ju.x2; t /j2 dx1 dx2 dt:

By Fubini’s theorem

(3.8)
C

M 3

Z T

0

Z
R2�R2

ju.x1; t /j2 ju.x2; t /j2 dx1 dx2 dt .
C T

M 3
kuk4

L1
t L2

x
:
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On the other hand, we have

sup
Œ0;T �

jM ˝2
a .t/j . sup

Œ0;T �

kuk2
L1

t L2
x

kuk2

L1
t

PH
1=2
x

:

Thus by applying Proposition 3.1,

1

M

Z T

0

Z
R2

ju.x; t/j4 dx dt . sup
Œ0;T �

kuk2
L1

t L2
x

kuk2

L1
t

PH
1=2
x

C T

M 3
kuk4

L1
t L2

x
:

Multiplying the above equation by M and balancing the two terms on the right-

hand side by picking

M � T
1
3

� kukL1
t L2

x

kuk
L1

t
PH

1=2
x

� 2
3

;

we get a better estimate,

kuk4
L4

t2Œ0;T �
L4

x
. T

1
3 kuk8=3

L1
t L2

x

kuk4=3

L1
t

PH
1=2
x

than the one obtained in [14].

3.3 A New Correlation Estimate in Two Dimensions: Proof of Theorem 1.1

We can refine the tensor product approach of the previous subsection and prove a

new estimate. Notice that so far we have used a.r D jxj/ such that a.r/ � r2 log 1
r

for r � 0 and a.r/ � r for large values of r . In between we didn’t provide

an explicit formula but used only the quantitative properties of the function. We

would like to follow this path one more time and implicitly define a radial function

a W R
2 ! R such that

�a.r/ D
Z 1

r

s log

�
s

r

�
wr0

.s/ds

where

wr0
.s/ WD

(
1
s3 if s � r0

0 otherwise

and r0 > 0 and small.

In addition, by the definition of w.x/ and a.x/, we have that

�a � 0

and Z
R2

wr0
.jExj/dx D 2�

r0
or

Z 1

0

swr0
.s/ds D 1

r0
:

�a can be rewritten as

�a D
Z 1

0

swr0
.s/ log

� s

r

	
ds �

Z r

0

swr0
.s/ log

� s

r

	
ds

D � 1

r0
log.r/ C

Z 1

0

swr0
.s/ log.s/ds C

Z r

0

swr0
.s/ log

�r

s

	
ds:
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By setting log C D r0

R 1
0 swr0

.s/ log.s/ds, we can write

�a D 1

r0
log

�
C

r

�
C p.r/

where

p.r/ D
Z r

0

wr0
.s/s log

�
r

s

�
ds:

It is immediately clear that the Laplacian of the radial function p is wr0
.r/, since

an explicit calculation shows this if we use the fact that

�p D prr C 1

r
pr :

Thus �p D wr0
and

���a.jxj/ D 2�

r0
ı.jxj/ � wr0

.jxj/:

We want to apply Proposition 3.1 with a. Ex1; Ex2/ D a.j Ex1 � Ex2j/ to a tensor

product of two functions. We need to prove that a.r/ is convex, and as we have

already mentioned, this will be immediate if we establish that arr � 0 and ar � 0.

Assuming this is true, we obtainZ T

0

2�

r0

Z
R2

ju.Ex/j4 d Ex dt

�
Z T

0

Z
R2�R2

wr0
.j Ex1 � Ex2j/ju. Ex1/j2ju. Ex2/j2 d Ex1 d Ex2 dt

. sup
Œ0;T �

jM ˝2
a .t/j:

(3.9)

The left-hand side can be rewritten asZ T

0

2�

r0

Z
R2

ju.x/j4 dx dt

�
Z T

0

Z
R2�R2

wr0
.jx1 � x2j/ju.x1/j2ju.x2/j2 dx1 dx2 dt

D 1

2

Z T

0

2�

r0

Z
R2

ju.x1/j4 dx1 dt C 1

2

Z T

0

2�

r0

Z
R2

ju.x2/j4 dx2 dt

�
Z T

0

Z
R2�R2

wr0
.jx1 � x2j/ju.x1/j2ju.x2/j2 dx1 dx2 dt:
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Taking into account thatZ
R2

wr0
.jx1 � x2j/dx1 D 2�

r0
;

we can rewrite (3.9) asZ T

0

Z
R2�R2

fju.t; x1/j2 � ju.t; x2/j2g2wr0
.jx1 � x2j/dx1 dx2 dt .

sup
Œ0;T �

jM ˝2
a .t/j:

Since this last estimate is true for every r0 > 0, by taking the limit as r0 ! 0 we

obtainZ T

0

Z
R2�R2

fju.t; x1/j2 � ju.t; x2/j2g2

jx1 � x2j3 dx1 dx2 dt . sup
Œ0;T �

jM ˝2
a .t/j:

But Z
R2�R2

fju.t; x1/j2 � ju.t; x2/j2g2

jx1 � x2j3 dx1 dx2 � kjuj2k2
PH 1=2

I

see, for example, [1, exercise 7, p. 162]. Thus we get

kD1=2juj2k2
L2

t L2
x

. sup
Œ0;T �

jM ˝2
a .t/j:

If Era D .Ex=jExj/=ar is bounded, we can estimate M
˝2
a .t/ as before and obtain

the new a priori correlation estimate for solutions of (3.1)

kD1=2juj2k2
L2

t L2
x

. kuk2
L1

t L2
x

kuk2

L1
t

PH
1=2
x

:

Thus it remains to establish that a.r/ is convex and that ar.r/ is bounded. For

r near 0, we have that a.r/ � r2 log.1
r
/ and thus ar is bounded for small values

of r . In particular, ar.0/ D 0. Using this as an initial condition, we can solve in

terms of ar the equation arr C 1
r
ar D �a and obtain

ar.r/ D 1

r

Z r

0

s.�a/.s/ds � 0:

Thus ar � 0. We will shortly show that arr � 0 for any r � r0 and thus ar.r/ is

a positive increasing function. Because of this, it is enough to consider the values

of ar for large values of r . Recall that

�a.r/ D
Z 1

r

s log
� s

r

	
wr0

.s/ds

and that for s � r0, wr0
.s/ D 1

s3 . Thus

�a.r/ D
Z 1

r

1

s2
log

� s

r

	
ds D 1

r
:
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Since for s � r0 we have �a.s/ D 1
s

, for s � r � r0 we obtain

ar.r/ D 1

r

Z r

0

ds D 1

and ar is bounded.

It remains to show that arr � 0 for r � r0. This will be enough since in effect

we consider the limit as r0 tends to 0. To this end notice that

arr.r/ D �a.r/ � 1

r
ar.r/ D �a.r/ � 1

r2

Z r

0

s.�a/.s/ds D q.r/

r2

where

q.r/ D
Z r

0

Œ2�a.r/ � �a.s/�s ds:

Now we must show that q.r/ � 0. Since q.0/ D 0, it is enough to show that

qr.r/ � 0. An elementary calculation shows that

qr.r/ D rŒ�a.r/ C r.�a/0.r/�:

Thus we must show that

�a.r/ C r.�a/0.r/ � 0:

Again, recall that

�a.r/ D
Z 1

r

s log
� s

r

	
ws.s/ds:

If we differentiate with respect to r , we obtain

.�a/0.r/ D �1

r

Z 1

r

swr0
.s/ds:

Thus

�a.r/ C r.�a/0.r/ D
Z 1

r

swr0
.s/ log

s

re
ds:

A calculation shows that

�a.r/ C r.�a/0.r/ D 0

for any r � r0 and thus we are done.

3.4 Commutator Vector Operators and Correlation Estimates:

An Alternative Proof of Theorem 1.1

In this subsection we derive correlation estimates by using commutator vector

operators acting on the conservation laws of the equation. It turns out that this

method is more flexible and can also be generalized. Recall that

M ˝2
a .t/ D 2

Z
Rn1 ˝Rn2

ra.x/ � = �
u1 ˝ u2.x/r.u1 ˝ u2.x//

�
dx
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is the Morawetz action for the tensor product of two solutions u WD .u1 ˝u2/.t; x/

where x D .x1; x2/ 2 R
n ˝ R

n. If we specialize to the case that u1 D u2,

a.x/ D jxj, n � 2, and observe that

@x1
a.x1; x2/ D x1 � x2

jx1 � x2j D � x2 � x1

jx1 � x2j D �@x2
a.x1; x2/;

we can view M
˝2
a .t/ WD M.t/ as

(3.10) M.t/ D
Z

Rn˝Rn

x1 � x2

jx1 � x2j � f Ep.x1; t /
.x2; t / � Ep.x2; t /
.x1; t /gdx1 dx2

where 
 D 1
2
juj2 is the mass density and pj D =. Nu@j u/ is the momentum density.

Now let’s define the integral operator

D�.n�1/f .x/ D
Z

Rn

1

jx � yjf .y/dy

where D stands for the derivative. This is indeed justified because for n � 2 the

distributional transform of 1=jxj is 1=j�jn�1. The main observation is that we can

write the action term M.t/ using a commutator in the following manner:

M.t/ D hŒx; D�.n�1/�
.t/ j Ep.t/i:
This equation follows from an elementary rearrangement of the terms of (3.10).

This suggests that the estimate is derived using the vector operator, which we will

denote by EX , defined by

EX D Œx; D�.n�1/�:

We change notation and write x1 WD x and x2 WD y. The crucial property is that

the derivatives of this operator @j Xk form a positive definite operator. Note that in

physical space

EXf .x/ D
Z

Rn

x � y

jx � yjf .y/dy;

and a calculation shows that

@j Xk D D�.n�1/ık
j C Œxk; Rj �

where Rj is the singular integral operator corresponding to the symbol �j =j�jn�1.

Thus we have that

Rj D @j D�.n�1/

and acts on a function in the following manner:

Rj f .x/ D �
Z

Rn

xj � yj

jx � yj3 f .y/dy:
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To see how @j Xk acts on functions, we associate a kernel with the commutator

Œxk; Rj �; let’s call it rjk.x; y/ and thus

Œxk; Rj �f .x/ D
Z

Rn

rjk.x; y/f .y/dy

where

rkj .x; y/ D �.xk � yk/.xj � yj /

jx � yj3 :

Thus

.@j Xk/f .x/ D
Z

Rn

�kj .x; y/f .y/dy

where

�kj .x; y/ D ıkj jx � yj2 � .xj � yj /.xk � yk/

jx � yj3 ;

and thus the derivatives of the vector operator EX form a positive definite operator.

Note also that the divergence of the vector field EX is given by

r � EX D @j Xj D nD�.n�1/ C Œxj ; Rj � D .n � 1/D�.n�1/:

Now if we differentiate

M.t/ D hŒx; D�.n�1/�
.t/ j Ep.t/i D h EX
.t/ j Ep.t/i;
we obtain that

(3.11) @tM.t/ D h EX@t
.t/ j Ep.t/i � h EX � @t Ep.t/ j 
.t/i
where we have used the fact that EX is an antisymmetric operator.

Now recall the local conservation laws

@t
 C @j pj D 0;(3.12)

@tpk C @j

�
	

j

k
C ı

j

k

�
��
 C 2

pC1
2

p � 1

p C 1



pC1
2

��
D 0:(3.13)

To simplify the calculations, we will treat the cubic nonlinearity (p D 3), but the

method is general and gives the same results for the general nonlinearity jujp�1u.

Thus we have

(3.14) @tpk C @j

�
	

j

k
C ı

j

k
.��
 C 2
2/

� D 0:

Applying the operator to the equation (3.12) and contracting with pk and similarly

applying the operator to equation (3.14) and contracting with 
, we obtain that

@tM.t/ D h	j

k
.t/ j .@j Xk/
.t/i � hpj .t/ j .@j Xk/pk.t/i

C h.��
.t/ C 2
2.t// j .@j Xj /
.t/i:
Now, recalling that

	jk D 1



.pj pk C @j 
@k
/
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we have that

@tM.t/ D P1 C P2 C P3 C P4

where

P1 WD h
�1@k
@j 
 j .@j Xk/
.t/i;(3.15)

P2 WD h
�1pkpj j .@j Xk/
.t/i � hpj j .@j Xk/pki;(3.16)

P3 WD h.��
/ j .@j Xj /
i D h.��
/ j .r � EX/
i(3.17)

P4 WD 2h
2 j .@j Xj /
i D 2h
2 j .r � EX/
i:(3.18)

The term P1 is clearly positive since @j Xk is a positive definite operator.

Let’s analyze P3. Recalling that �� D D2 we have that

P3 D h.��
/ j .r � EX/
i D .n � 1/h.D2
/ j D�.n�1/
i
D .n � 1/

˝
D� n�3

2 
 j D� n�3
2 


˛
D n � 1

2

��D� n�3
2 .juj2/

��2

L2 :

P4 is also positive since

P4 D 2

Z
Rn�Rn


2.x/
.y/

jx � yj dx dy D 1

4

Z
Rn�Rn

ju.x/j4ju.y/j2
jx � yj dx dy � 0:

The only term whose positivity is not immediate is term P2. Recall that

.@j Xk/f .x/ D
Z

Rn

�kj .x; y/f .y/dy

where the kernel �kj .x; y/ is symmetric. Then

P2 D
Z

Rn�Rn




.y/


.x/
pk.x/pj .y/ � pk.y/pj .x/

�
�kj .x; y/dx dy:

By changing variables we get

P2 D
Z

Rn�Rn




.x/


.y/
pk.y/pj .x/ � pk.x/pj .y/

�
�kj .x; y/dx dy;
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and thus

P2 D 1

2

Z
Rn�Rn




.y/


.x/
pk.x/pj .y/ C 
.x/


.y/
pk.y/pj .x/

� pj .x/pk.y/ � pj .y/pk.x/

�
�kj .x; y/dx dy

D 1

2

Z
Rn�Rn


s

.y/


.x/
pk.x/ �

s

.x/


.y/
pj .y/

�

�

s


.y/


.x/
pj .x/ �

s

.x/


.y/
pk.y/

�
�kj .x; y/dx dy:

Thus if we define the two-point momentum vector

EJ .x; y/ D
s


.y/


.x/
Ep.x/ �

s

.x/


.y/
Ep.y/;

we can write

P2 D 1

2
hJ j Jk j .@j Xk/i � 0

since @j Xk is positive definite. We keep only P3, and after integrating in time we

have the main estimate of this paper, which reads��D� n�3
2 .juj2/

��2

L2
t L2

x
. sup

t
M.t/:

It remains to show that M.t/ is bounded by the appropriate norms. But

M.t/ D hŒx; D�.n�1/�j 
.t/ j pj .t/i
. kpj kL1 kŒx; D�.n�1/�j 
.t/kL1

. kpj kL1 k
kL1 kŒx; D�.n�1/�j kL1!L1 :

Now by Hardy’s inequality we have

kpj kL1 . kuk2
PH 1=2

while k
kL1 D 1

2
kuk2

L2 :

Finally, the operator norm kŒxI D�.n�1/�j kL1!L1 is bounded by 1 since

EXf .x/ D
Z

Rn

x � y

jx � yjf .y/dy for f 2 L1:

Thus all in all we have that��D� n�3
2 .juj2/

��2

L2
t L2

x
. kuk2

L1
t

PH 1=2
kuk2

L1
t L2

x
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is valid for all n � 2. In particular, for n D 2 the estimate reads��D
1
2 .juj2/

��2

L2
t L2

x
. kuk2

L1
t

PH 1=2
kuk2

L1
t L2

x
;

which corresponds to the nonlinear diagonal case analogue of Bourgain’s bilinear

refinement of the Strichartz estimate [2]. In this paper, we will use the following

estimate in dimension 2:

(3.19) kuk4
L4

t L8
x

. kuk2

L1
t

PH 1=2
kuk2

L1
t L2

x

which can be obtained by the previous estimate and the Sobolev embedding in two

dimensions, since

kuk4
L4

t L8
x

D kjuj2k2
L2

t L4
x

. kD
1
2 .juj2/k2

L2
t L2

x
. kuk2

L1
t

PH 1=2
kuk2

L1
t L2

x
:

Note that the method we used is quite general. Thus we can consider operators of

the form
EX WD Œx; H�

where H is a self-adjoint operator. The two crucial properties that we need is that

@j Xk is positive and that we can bound the action M.t/ for a weight function a.x/.

We will exploit these in a subsequent paper.

3.5 Correlation Estimates in One Dimension: Proof of Theorem 1.2

In this subsection we would like to prove the analogue of (3.7) in one dimension.

Thus we show that

(3.20) k@x.juj2/k2
L1

t L2
x

. kuk3
L1

t L2
x

kuk
L1

t
PH 1

x

for solutions of the one-dimensional NLS iut C uxx D jujp�1u for any p. Since

this is a linear estimate as the proof will show, the estimate is true for any power

nonlinearity. We will do the calculations for p D 3, but the same calculations

establish (3.20) for any power nonlinearity. We will follow the Gauss-Weierstrass

summability method. The local conservation laws in one dimension can be written

in the following form:

@t
 C @xp D 0 mass conservation;(3.21)

@tp C @x



2
2 � 
xx C 1



.p2 C 
2

x/

�
D 0 momentum conservation(3.22)

where 
 D 1
2
juj2 and p D =. Nuux/.

Define the action

M.t/ D
Z Z

R�R

a.x � y/
.y/p.x/dx dy

where

a.x � y/ D erf

�
x � y

�

�
D

Z x�y
�

0

e�t2

dt
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is the scaled error function. This function is bounded. Its derivative is

@x erf

�
x � y

�

�
D 1

�
e

� .x�y/2

�2 � 0;

which is the heat kernel in one dimension. It is immediate that

sup
t

jM.t/j . kuk3
L1

t L2
x

kuk
L1

t
PH 1

x
:

Notice that the action M.t/ can be written as

M.t/ D hX
 j pi;
where X is the antisymmetric operator acting on functions as

Xf .x/ D
�

erf
� �

�

	
? f

	
.x/ D

Z
R

erf
�x � y

�

	
f .y/dy:

The derivative of this operator is the solution of the heat equation in one dimen-

sion

X
0

f .x/ D 1

�

Z
R

e
� .x�y/2

�2 f .y/dy

with initial data the function f .x/. Since X is antisymmetric and thus hXf j gi D
�hf j Xgi by differentiating the action with respect to time, we obtain

PM .t/ D hX@t
 j pi C hX
 j @tpi D �h@t
 j Xpi C hX
 j @tpi:
If we use the conservation laws (3.21) and (3.22) and integrate by parts, we have

that

PM .t/ D P1 C P2 C P3 C P4

where

P1 D
�
X

0



ˇ̌̌ 1




2

x


; P4 D hX 0


 j 2
2i;

P2 D
�
X

0



ˇ̌̌ 1



p2


� hX 0

p j pi:

But

P1 D
“

1

�
e

� .x�y/2

�2

.y/


.x/

2

x.x/dx dy � 0;

P4 D
“

2

�
e

� .x�y/2

�2 
.y/
.x/2 dx dy � 0;

P2 D
“

1

�
e

� .x�y/2

�2

�

.y/


.x/
p2.x/ � p.x/p.y/

�
dx dy;



CORRELATION ESTIMATES AND APPLICATIONS 947

and thus

2P2 D
“

1

�
e

� .x�y/2

�2

�

.y/


.x/
p2.x/ C 
.x/


.y/
p2.y/ � 2p.x/p.y/

�
dx dy

D
“

1

�
e

� .x�y/2

�2

�s

.y/


.x/
p.x/ �

s

.x/


.y/
p.y/

�2

dx dy � 0:

Thus we have that

P3 � PM .t/:

But

P3 D
“

1

�
e

� .x�y/2

�2 
.y/.�
xx.x//dx dy DZ �
1

�
e�. �

�
/2

? 


�
.x/.�
xx.x//dx D

Z
�2 y
2.�/e���2

d� � 0

by Plancherel’s theorem. Sending � # 0 and integrating in time, we obtain (3.20).

Actually more is true. Notice that since

lim
�!0

�
1

�
e�. �

�
/2

? 


�
.x/ D 
.x/;

we have that

lim
�!0

P1 D
Z


2
x.x/dx D 1

4
k@x.juj2/k2

L2
x
;

lim
�!0

P2 D 0; lim
�!0

P4 D 1

4
kuk6

L6
x
:

Notice that P1 and P3 are linear estimates while P4 is a nonlinear estimate. Thus

if we consider a nonlinearity of the form jujp�1u, we have that

lim
�!0

P4 D 1

2
pC1

2

kukpC3

L
pC3
x

:

This implies that for the solutions of iut Cuxx D jujp�1u, we obtain the following

a priori one-dimensional estimate:

kukpC3

L
pC3
t L

pC3
x

. kuk3
L1

t L2
x

kuk
L1

t
PH 1

x
:

Recalling that the scaling is

u�.x; t/ D �� 2
p�1 u

�
x

�
;

t

�2

�
;

we can easily verify that the above estimate is scale invariant.
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4 H
1 Scattering: Proof of Theorem 1.3

In this section we prove Theorem 1.3. As we have said, the first proof of this

result was obtained in [20] with a more complicated argument using induction on

energy. An analogous simplified proof of scattering for the L2-supercritical NLS

problems in one space dimension appeared in [10]. What we have shown so far is

that for solutions of (1.1) in two dimensions, the following global a priori estimate

is true:

(4.1) kD
1
2 .juj2/kL2

t L2
x

. kuk
L1

t
PH

1=2
x

kukL1
t L2

x
:

As we have already mentioned, by Sobolev embedding and using (4.1), we obtain

that

(4.2) kuk4
L4

t L8
x

. kuk2

L1
t

PH
1=2
x

kuk2
L1

t L2
x
:

By conservation of energy and mass, the estimate implies that

(4.3) kukL4
t L8

x
. CE.u0/:

To prove scattering, we have to upgrade this control to Strichartz control. Define

the norms

kukS1 WD sup
1
q

C 1
r

D 1
2

khriukS0 :

Assume that we have

kukL4
t L8

x
. CE.u0/:

Divide the real line into finitely many subintervals Ij such that on each Ij we have

that

kukL4
t2Ij

L8
x

� ı:

We will show that on each Ij we have the bound

(4.4) kukS1.Ij / . ku0kH 1 :

Since there are only finitely many Ij ’s, we have

kukS1 . CE ;

and thus scattering follows by standard arguments. Thus it remains to prove (4.4).

We will suppress the Ij notation for what follows. By Duhamel’s formula we

have

u.x; t/ D eit�u0 � i

Z T

0

ei.t�s/�.jujp�1u/.s/ds:

By Lemma 2.2 and Hölder’s inequality we have that

kukS1 . ku0kH 1 C khri.jujp�1u/k
L

4=3
t L

4=3
x

. ku0kH 1 C kjujp�1.hriu/k
L

4=3
t L

4=3
x

. ku0kH 1 C khriukL1
t L2

x
kup�1k

L
4=3
t L4

x
.
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. ku0kH 1 C kukS1 kup�1k
L

4=3
t L4

x

. ku0kH 1 C kukS1 kuk�
L4

t L8
x

kukp�1��

L
4.p�1��/

3��
t L

8.p�1��/
2��

x

:

This last inequality follows by the interpolation of the Lp spaces. Thus

kukS1 . ku0kH 1 C ı� kukS1 kukp�1��

L
4.p�1��/

3��
t L

8.p�1��/
2��

x

:

Now we apply Sobolev embedding

kuk
L

4.p�1��/
3��

t L
8.p�1��/

2��
x

. kjrj˛uk
L

4.p�1��/
3��

t L

4.p�1��/
2p�5��

x

where

˛ D p � 3 � �
4

p � 1 � �
:

Note to apply the Sobolev embedding we must have

8.p � 1 � �/

2 � �
>

4.p � 1 � �/

2p � 5 � �
;

a restriction that gives p > 3C �
4

, which is acceptable. For the same reason ˛ > 0.

Finally, note that the pair�
4.p � 1 � �/

3 � �
;
4.p � 1 � �/

2p � 5 � �

�
is Strichartz admissible, and thus since ˛ < 1 we have that

kjrj˛uk
L

4.p�1��/
3��

t L

4.p�1��/
2p�5��

x

. kukS1 :

All in all we have

kukS1 . ku0kH 1 C ı� kukp��

S1 ;

and by a continuity argument for � small we obtain

(4.5) kukS1 . CE :

We now use this estimate to prove asymptotic completeness, that is, there exist

unique u˙ such that

(4.6) ku.t/ � eit�u˙kH 1.R2/ ! 0 as t ! ˙1:

By time reversal symmetry, it suffices to prove the claim for positive times only.

For t > 0, we define v.t/ WD e�it�u.t/. We will show that v.t/ converges in H 1
x

as t ! C1, and define uC to be the limit. Indeed, by Duhamel’s formula,

(4.7) v.t/ D u0 � i

Z t

0

e�is�.jujp�1u/.s/ds:

Therefore, for 0 < � < t ,

v.t/ � v.�/ D �i

Z t

	

e�is�.jujp�1u/.s/ds:
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Arguing as above, by Lemma 2.2 and Sobolev embedding,

kv.t/ � v.�/kH 1.R2/ . khri.jujp�1u/k
L

4=3
t L

4=3
x .Œt;	��R2/

. kuk�
L

t2Œt;��4
L8

x
khriukp��

S0.Œt;	�/
:

Thus, by (4.3) and (4.5),

kv.t/ � v.�/kH 1.R/ ! 0 as �; t ! 1:

In particular, this implies uC is well-defined. Inspecting (4.7), we find

uC D u0 � i

Z 1

0

e�is�.jujp�1u/.s/ds:

Using the same estimates as above, it is now an easy matter to derive (4.6). This

completes the proof of Theorem 1.3.

5 Proof of Theorem 1.4 and Comments on Further Refinements

There is a problem when one tries to employ the strategy of Section 4 to prove

Theorem 1.4. To prove that the problem is globally well-posed and that it scatters,

we have to obtain a priori control on the Strichartz norms. The idea is to upgrade

(4.2) to obtain control on all the relevant Strichartz norms. The problem is that

for solutions below the energy space, the right-hand side of (4.2) is not bounded

anymore. Recall that to prove Theorem 1.3 we used the fact that the H 1 norm of

the solutions was bounded. Then we used this bound along with estimate (4.2) to

bound the S1 norm of the solutions. Thus to prove Theorem 1.4 we have to bound

the H s norm of the solution uniformly in time for s < 1 and then use this bound

along with (4.2). The H 1 bound came from conservation of energy, and we do not

have at the moment a conserved quantity at the H s level. But we can define a new

functional

(5.1) E.Iu/.t/ D 1

2

Z
jrIu.t/j2 dx C 1

p C 1

Z
jIu.t/jpC1 dx D E.Iu0/;

where Iu is a solution to the initial value problem

(5.2)

(
iIut C �Iu � I.juj2ku/ D 0; x 2 R

2; t 2 R;

Iu.x; 0/ D Iu0.x/ 2 H s.R2/:

Note that Iu solves the original equation (1.1) up to an error

I.juj2ku/ � jIuj2kIu:

Because of this we expect the functional E.Iu/ to be “almost conserved” in the

sense that its derivative will decay with respect to a large parameter. This will allow

us to control E.Iu/ in time intervals where the local solutions are well-posed, and

we can iterate this control to obtain control globally in time. Then immediately we

obtain a bound for the H 1 norm of Iu, which by Lemma 2.4 will give us an H s

bound for the solutions u. In this process we will use (4.2). On the other hand, to
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be able to use (4.2) we need to have H s control on the norm of u. This feedback

argument can be successfully implemented with the help of a standard continuity

argument, and this will be the content of this section. We will closely follow the

argument in [10].

We start by showing that the functional E.Iu/ is almost conserved. We need to

define new norms. We fix t 2 Œt0; T � and define

kukZ.t/ WD sup
.q;r/ admissible

� X
N �1

krPN uk2
L

q
t Lr

x.Œt0;t��R/

	 1
2

with the convention that P1u D P�1u. We observe the inequality

(5.3)

���� X
N 22Z

jfN j2
	 1

2
���

L
q
t Lr

x

�
� X

N 22Z

kfN k2
L

q
t Lr

x

	 1
2

for all 2 � q; r � 1 and arbitrary functions fN , which one proves by interpolating

between the trivial cases .2; 2/, .2; 1/, .1; 2/, and .1; 1/. In particular, (5.3)

holds for all admissible exponents .q; r/. Combining this with the Littlewood-

Paley inequality, we find

kukL
q
t Lr

x
.

���� X
N 22Z

jPN uj2
	 1

2
���

L
q
t Lr

x

.

� X
N 22Z

kPN uk2
L

q
t Lr

x

	 1
2
:

In particular,

krukS0.Œt0;t�/ . kukZ.t/:

The appearance of the homogeneous derivative in our definition of the space

Z.t/ instead of the nonhomogeneous derivative operator hri that we used in [8]

is imposed by the level of the criticality. That means that as the problem is L2-

supercritical, the L2 norm of Iu� grows as � grows. Thus using scaling we cannot

control the full H 1 norm of the rescaled solution. This is the reason that we define

the Z norm as the homogeneous part of the H 1 norm. The reader can notice that

we control all subsequent quantities by the homogeneous part of the H 1 norm

where scaling works in our favor.

The dual estimate of (5.3) is

(5.4)
� X

N 22Z

kfN k2

L
q0

t Lr0
x

	 1
2 �

���� X
N 22Z

jfN j2
	 1

2
���

L
q0

t Lr
x

0
:

Since the Littlewood-Paley operators commute with i@t C � by Lemma 2.2, we

have that

(5.5) kjrjPN ukS0.I / . ku.t0/k PH s
x

C kjrjPN F k
L

q0
i

t L
r0
i

x .I�Rn/
:
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Thus

kukZ.t/ WD sup
.q;r/ admissible

� X
N �1

krPN uk2
L

q
t Lr

x.Œt0;t��R/

	 1
2

. ku.t0/k PH s
x

C
� X

N 22Z

kjrjPN .i@t C �/k2

L
q0

t Lr0
x

	 1
2

. ku.t0/k PH s
x

C
���� X

N 22Z

jPN jrj.i@t C �/j2
	 1

2
���

L
q0

t Lr
x

0

where in the last inequality we applied (5.4). Thus if we apply the Littlewood-Paley

theorem to this last inequality, we obtain

(5.6) kukZ.t/ . ku.t0/k PH s
x

C kjrj.i@t C �/k
L

q0

t Lr
x

0
:

Now we define ZI .t/ D kIukZ.t/.

PROPOSITION 5.1 Let s > 1 � 1
2k�1

, k � 2, k 2 N, and let u be an H s
x solution

to (1.1) on the space-time slab Œt0; T � � R
2 with E.Iu.t0// � 1. Suppose, in

addition, that

kukL4
t2Œt0;T �

L8
x

� �(5.7)

for a sufficiently small � > 0 (depending on k and on E.Iu.t0//). Then we have

ZI .t/ . krIu.t0/k2 C N �2ZI .t/2kC1 C �2ZI .t/2k�1

C �2 sup
s2Œt0;t�

E.IN u.s//
k�1
kC1 ZI .t/:

(5.8)

PROOF: Throughout this proof, all space-time norms are on Œt0; t � � R
2. By

(5.6) and Hölder’s inequality, combined with the fact that rI acts as a derivative

(because the multiplier of rI is increasing in j�j), we estimate

ZI .t/ . krIu.t0/k2 C krI.juj2ku/k
L

4=3
t L

4=3
x

. krIu.t0/k2 C kuk2k
4k;4k krIuk4;4

. krIu.t0/k2 C kuk2k
4k;4kZI .t/:

(5.9)

To estimate kuk4k;4k , we decompose u WD u�1 C u1<����N C u>N . To estimate

the low frequencies, we use interpolation and obtain

ku�1k2k
4k;4k . kuk2

L4
t L8

x
ku�1k2.k�1/

L1
t L

8.k�1/
x

:

Since for k � 2 we have that 8.k � 1/ > 2k C 2 by Bernstein’s inequality, we have

that

ku�1k
L1

t L
8.k�1/
x

. ku�1k
L1

t L
2kC2
x

. E.Iu/
1

2kC2
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where we use the energy bound. Thus

(5.10) ku�1k2k
4k;4k . �2 sup

s2Œt0;t�

E.Iu/
k�1
kC1 :

For the medium frequencies, again by interpolation we have

ku1<����N k2k
4k;4k . kuk2

L4
t L8

x
ku1<����N k2.k�1/

L1
t L

8.k�1/
x

:

But by Sobolev embedding

ku1<����N k2.k�1/

L1
t L

8.k�1/
x

. kjrj 4k�5
4k�4 u1<����N k2.k�1/

L1
t L2

x

. krIuk2.k�1/

L1
t L2

x

;

and thus

(5.11) ku1<����N k2k
4k;4k . �2ZI .t/2.k�1/:

Finally, to estimate the high frequencies we apply Lemma 2.4 and Sobolev em-

bedding to obtain

ku>N k2k
4k;4k . kjrj1� 1

k u>N k2k

L4k
t L

4k
2k�1
x

. N �2krIuk2k

L4k
t L

4k
2k�1
x

:

Since the pair .4k; 4k
2k�1

/ is admissible, we obtain

(5.12) ku>N k2k
4k;4k . N �2ZI .t/2k :

Using (5.9), (5.10), (5.11), and (5.12) we obtain the proposition. �

PROPOSITION 5.2 Let s > 1 � 1
2k�1

, k � 2, k 2 N, and let u be an H s
x solution

to (1.1) on the space-time slab Œt0; T � � R
2 with E.Iu.t0// � 1. Suppose, in

addition, that

kukL4
t2Œt0;T �

L8
x

� �(5.13)

for a sufficiently small � > 0 (depending on k and on E.Iu.t0///. Then we haveˇ̌
sup

s2Œt0;t�

E.Iu.s// � E.Iu.t0//
ˇ̌

(5.14)

. N �1C
�

ZI .t/2kC2 C �2ZI .t/2 sup
s2Œt0;t�

E.Iu.s//
k�1
kC1

C
2kC2X
J D3

�
2kC2�J

2k�1 ZI .t/J sup
s2Œt0;t�

E.Iu.s//
.k�1/.2kC2�J /

.2k�1/.kC1/

�
C N �1C

�
ZI .t/2kC1 C �2ZI .t/ sup

s2Œt0;t�

E.Iu.s//
k�1
kC1

	
�

�
ZI .t/2kC1 C � sup

s2Œt0;t�

E.Iu.s//
k

kC1

	
C
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C N �1C
2kC2X
J D3

�
2kC2�J

2k�1 ZI .t/J �1 sup
s2Œt0;t�

E.Iu.s//
.k�1/.2kC2�J /

.2k�1/.kC1/

�
�
ZI .t/2kC1 C � sup

s2Œt0;t�

E.Iu.s//
k

kC1

	
:

PROOF: From

d

dt
E.u.t// D <

Z
Nut .juj2ku � �u/dx D <

Z
Nut .juj2ku � �u � iut /dx;

we obtain

d

dt
E.Iu.t// D <

Z
I Nut .jIuj2kIu � �Iu � iIut /dx

D <
Z

I Nut .jIuj2kIu � I.juj2ku//dx:

Using the fundamental theorem of calculus and Plancherel, we write

E.Iu.t// � E.Iu.t0//

D <
Z t

t0

Z
P2kC2

iD1
�i D0

�
1 � m.�2 C �3 C � � � C �2kC2/

m.�2/m.�3/ � � � m.�2kC2/

�

� 1I@tu.�1/cIu.�2/ � � � cIu.�2kC1/cIu.�2kC2/d	.�/ds:

Since iut D ��u C juj2ku, we need to controlˇ̌̌̌Z t

t0

Z
P2kC2

iD1
�i D0

�
1 � m.�2 C �3 C � � � C �2kC2/

m.�2/m.�3/ � � � m.�2kC2/

�

�cIu.�1/cIu.�2/ � � � cIu.�2kC1/cIu.�2kC2/d	.�/ds

ˇ̌̌̌(5.15)

and ˇ̌̌̌Z t

t0

Z
P2kC2

iD1
�i D0

�
1 � m.�2 C �3 C � � � C �2kC2/

m.�2/m.�3/ � � � m.�2kC2/

�

3
I.juj2ku/.�1/cIu.�2/ � � � cIu.�2kC1/cIu.�2kC2/d	.�/ds

ˇ̌̌
:

(5.16)

We first estimate (5.15). To this end, we decompose

u WD
X
N �1

PN u
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with the convention that P1u WD P�1u. Using this notation and symmetry, we

estimate

(5.17) (5.15) .
X

N1;:::;N2kC2�1
N2�N3�����N2kC2

B.N1; : : : ; N2kC2/;

where

B.N1; : : : ; N2kC2/

WD
ˇ̌̌̌Z t

t0

Z
P2kC2

iD1
�i D0

�
1 � m.�2 C �3 C � � � C �2kC2/

m.�2/m.�3/ � � � m.�2kC2/

�

�1IuN1
.�1/1IuN2

.�2/ � � � 3IuN2kC1
.�2kC2/3IuN2kC2

.�2kC2/d	.�/ds

ˇ̌̌̌
:

Case I: N1 > 1, N2 � � � � � N2kC2 > 1.

Case Ia: N 
 N2. In this case,

m.�2 C �3 C � � � C �2kC2/ D m.�2/ D � � � D m.�2kC2/ D 1:

Thus,

B.N1; : : : ; N2kC2/ D 0;

and the contribution to the right-hand side of (5.17) is 0.

Case Ib: N2 & N 
 N3. Since
P2kC2

iD1 �i D 0, we must have N1 � N2. Thus,

by the fundamental theorem of calculus,ˇ̌̌̌
1 � m.�2 C �3 C � � � C �2kC2/

m.�2/m.�3/ � � � m.�2kC2/

ˇ̌̌̌
D

ˇ̌̌̌
1 � m.�2 C � � � C �2kC2/

m.�2/

ˇ̌̌̌
.

ˇ̌̌̌rm.�2/.�3 C � � � C �2kC2/

m.�2/

ˇ̌̌̌
.

N3

N2
:

Applying the multilinear multiplier theorem of Coifman and Meyer (cf. [6, 7]),

Sobolev embedding, and Bernstein, and recalling that Nj > 1, we estimate

B.N1; : : : ; N2kC2/

.
N3

N2
k�IuN1

k4;4 kIuN2
k4;4 kIuN3

k4;4

2kC2Y
j D4

kIuNj
k4.2k�1/;4.2k�1/

.
N1

N 2
2

3Y
j D1

krIuNj
k4;4

2kC2Y
j D4

kjrj k�2
2k�1 IuNj

k
4.2k�1/; 4.2k�1/

4k�3

.
1

N2
ZI .t/2kC2 . N �1CN 0�

2 ZI .t/2kC2:
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The factor N 0�
2 allows us to sum in N1; N2; : : : ; N2kC2; this case contributes at

most N �1CZI .t/2kC2 to the right-hand side of (5.17).

Case Ic : N2 
 N3 & N . Because
P2kC2

iD1 �i D 0, we must have N1 � N2.

Thus, since m is decreasing,ˇ̌̌̌
1 � m.�2 C �3 C � � � C �2kC2/

m.�2/m.�3/ � � � m.�2kC2/

ˇ̌̌̌
.

m.�1/

m.�2/m.�3/ � � � m.�2kC2/
:

Using again the multilinear multiplier theorem, Sobolev embedding, Bernstein, and

the fact that m.�/j�j1=.2k�1/ is increasing for s > 1 � 1
2k�1

, we estimate

B.N1; : : : ; N2kC2/

.
m.N1/

m.N2/ � � � m.N2kC2/

N1

N2N3

�
3Y

j D1

krIuNj
k4;4

2kC2Y
j D4

kjrj 2.k�1/
2k�1 IuNj

k
4.2k�1/; 4.2k�1/

4k�3

.
1

N3m.N3/
Q2kC2

j D4 m.Nj /N
1

2k�1

j

�
3Y

j D1

krIuNj
k4;4

2kC2Y
j D4

krIuNj
k

4.2k�1/; 4.2k�1/
4k�3

.

.
1

N3m.N3/
krIuN1

k4;4krIuN2
k4;4ZI .t/2k

. N �1CN 0�
3 krIuN1

k4;4krIuN2
k4;4ZI .t/2k ::

The factor N 0�
3 allows us to sum over N3; N4; : : : ; N2kC2. To sum over N1 and

N2, we use the fact that N1 � N2 and Cauchy-Schwarz to estimate the contribution

to the right-hand side of (5.17) by

N �1C
� X

N1>1

krIuN1
k2

4;4

	 1
2
� X

N2>1

krIuN2
k2

4;4

	 1
2
ZI .t/2k .

N �1CZI .t/2kC2:

Case Id : N2 � N3 & N . As
P2kC2

iD1 �i D 0, we obtain N1 . N2, and hence

m.N1/ & m.N2/ and m.N1/N1 . m.N2/N2. Thus,ˇ̌̌̌
1 � m.�2 C �3 C � � � C �2kC2/

m.�2/m.�3/ � � � m.�2kC2/

ˇ̌̌̌
.

m.N1/

m.N2/m.N3/ � � � m.N2kC2/
:
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Arguing as for Case Ic , we estimate

B.N1; : : : ; N2kC2/ .
m.N1/N1

m.N2/N2m.N3/N3

Q2kC2
j D4 m.Nj /N

1
2k�1

j

ZI .t/2kC2

.
1

m.N3/N3
ZI .t/2kC2

. N �1CN 0�
3 ZI .t/2kC2:

The factor N 0�
3 allows us to sum over N1; : : : ; N2kC2. This case contributes at

most N �1CZI .t/2kC2 to the right-hand side of (5.17).

Case II: There exists 1 � j0 � 2k C 2 such that Nj0
D 1. Recall that by our

convention, P1 WD P�1.

Case IIa: N1 D 1. Let J be such that N2 � � � � � NJ > 1 D NJ C1 D � � � D
N2kC2. Note that we may assume J � 3 since otherwise

B.N1; : : : ; N2kC2/ D 0:

Also, arguing as for Case Ia, if N 
 N2 then

B.N1; : : : ; N2kC2/ D 0:

Thus, we may assume N2 & N . In this case we cannot have N2 
 N3 since it

would contradict
P2kC2

iD1 �i D 0 and N1 D 1. Hence, we must have

N2 � N3 & N:

Becauseˇ̌̌̌
1 � m.�2 C �3 C � � � C �2kC2/

m.�2/m.�3/ � � � m.�2kC2/

ˇ̌̌̌
.

1

m.N2/m.N3/ � � � m.N2kC2/
;

we use the multilinear multiplier theorem and Sobolev embedding to estimate

B.N1; : : : ; N2kC2/

.
N1

m.N2/N2m.N3/N3m.N4/ � � � m.N2kC2/

3Y
j D1

krIuNj
k4;4

�
JY

j D4

kjrj 2.k�1/
2k�1 IuNj

k
4.2k�1/; 4.2k�1/

4k�3

2kC2Y
j DJ C1

kIuNj
k4.2k�1/;4.2k�1/ .
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.
1

m.N2/N2m.N3/N3

QJ
j D4 m.Nj /N

1
2k�1

j

ZI .t/J

�
2kC2Y

j DJ C1

kIuNj
k4.2k�1/;4.2k�1/

. N �2CN 0�
2 ZI .t/J

2kC2Y
j DJ C1

kIuNj
k4.2k�1/;4.2k�1/:

Applying interpolation, the bound for the L4
t L8

x norm of u that we assumed in

(5.13), and Bernstein, we bound

kIu�1k4.2k�1/;4.2k�1/ . kIu�1k
1

2k�1

L4
t L8

x

kIu�1k
2.k�1/
2k�1

L1
t L

16.k�1/
x

. kIu�1k
1

2k�1

L4
t L8

x

kIu�1k
2.k�1/
2k�1

L1
t L

2kC2
x

. �
1

2k�1 sup
s2Œt0;t�

E.Iu.s//
k�1

.2k�1/.kC1/ :

Thus,

B.N1; : : : ; N2kC2/ .

N �2CN 0�
2 �

2kC2�J
2k�1 ZI .t/J sup

s2Œt0;t�

E.Iu.s//
.k�1/.2kC2�J /

.2k�1/.kC1/ :

The factor N 0�
2 allows us to sum in N2; : : : ; NJ . This case contributes at most

N �2C
2kC2X
J D3

�
2kC2�J

2k�1 ZI .t/J sup
s2Œt0;t�

E.Iu.s//
.k�1/.2kC2�J /

.2k�1/.kC1/

to the right-hand side of (5.17).

Case IIb: N1 > 1 and N2 D � � � D N2kC2 D 1. As
P2kC2

iD1 �i D 0, we obtain

N1 . 1 and thus, taking N sufficiently large depending on k, we get

1 � m.�2 C �3 C � � � C �2kC2/

m.�2/m.�3/ � � � m.�2kC2/
D 0:

This case contributes 0 to the right-hand side of (5.17).

Case IIc : N1 > 1 and N2 > 1 D N3 D � � � D N2kC2. Because
P2kC2

iD1 �i D 0,

we must have N1 � N2. If N1 � N2 � N , then

1 � m.�2 C �3 C � � � C �2kC2/

m.�2/m.�3/ � � � m.�2kC2/
D 0
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and the contribution is 0. Thus we may assume N1 � N2 & N . Applying the

fundamental theorem of calculus,ˇ̌̌̌
1 � m.�2 C �3 C � � � C �2kC2/

m.�2/m.�3/ � � � m.�2kC2/

ˇ̌̌̌
D

ˇ̌̌̌
1 � m.�2 C � � � C �2kC2/

m.�2/

ˇ̌̌̌
.

ˇ̌̌̌rm.�2/

m.�2/

ˇ̌̌̌
.

1

N2
:

By the multilinear multiplier theorem,

B.N1; : : : ; N2kC2/ .
1

N2
k�IuN1

k4;4 kIuN2
k4;4

2kC2Y
j D3

kIuNj
k4k;4k

.
N1

N 2
2

krIuN1
k4;4 krIuN2

k4;4 kIu�1k2k
4k;4k

. N �1CN 0�
2 ZI .t/2kIu�1k2k

4k;4k :

The factor N 0�
2 allows us to sum in N1 and N2. Using interpolation, (2.5),

(5.13), and Bernstein, we estimate

kIu�1k4k;4k . kIu�1k1=k

L4
t L8

x

kIu�1k1�1=k

L1
t L

8.k�1/
x

. �
1
k kIu�1k1�1=k

L1
t L

2kC2
x

. �
1
k sup

s2Œt0;t�

E.Iu.s//
k�1

2k.kC1/ :

Thus, this case contributes at most

N �1C�2ZI .t/2 sup
s2Œt0;t�

E.Iu.s//
k�1
kC1

to the right-hand side of (5.17).

Case IId : N1 > 1 and there exists J � 3 such that N2 � � � � � NJ > 1 D
NJ C1 D � � � D N2kC2. To estimate the contribution of this case, we argue as for

Case I; the only new ingredient is that the low frequencies are estimated via (5.18).

This case contributes at most

N �1C
2kC2X
J D3

�
2kC2�J

2k�1 ZI .t/J sup
s2Œt0;t�

E.Iu.s//
.k�1/.2kC2�J /

.2k�1/.kC1/

to the right-hand side of (5.17). Putting everything together, we get

(5.18)

(5.15) . N �1CZI .t/2kC2 C N �1C�2ZI .t/2 sup
s2Œt0;t�

E.Iu.s//
k�1
kC1

C N �1C
2kC2X
J D3

�
2kC2�J

2k�1 ZI .t/J sup
s2Œt0;t�

E.Iu.s//
.k�1/.2kC2�J /

.2k�1/.kC1/ :
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We turn now to estimating (5.16). Again we decompose

u WD
X
N �1

PN u

with the convention that P1u WD P�1u. Using this notation and symmetry, we

estimate

(5.16) .
X

N1;:::;N2kC2�1
N2�����N2kC2

C.N1; : : : ; N2kC2/;

where

C.N1; : : : ; N2kC2/

WD
ˇ̌̌̌Z t

t0

Z
P2kC2

iD1
�i D0

�
1 � m.�2 C �3 C � � � C �2kC2/

m.�2/m.�3/ � � � m.�2kC2/

�

5
PN1

I.juj2ku/.�1/ bIuN2
.�2/ � � � 2IuN2kC1

.�2kC1/ 2IuN2kC2
.�2kC2/d	.�/ds

ˇ̌̌
:

In order to estimate C.N1; : : : ; N2kC2/, we make the observation that in esti-

mating B.N1; : : : ; N2kC2/, for the term involving the N1 frequency we only use

the bound

(5.19) kPN1
I�uk4;4 . N1krIuN1

k4;4 . N1ZI .t/:

Thus, to estimate (5.16) it suffices to prove

(5.20) kPN1
I.juj2ku/k4;4 . ZI .t/2kC1 C � sup

s2Œt0;t�

E.Iu.s//
k

kC1 ;

for then, arguing as for (5.15) and substituting (5.20) for (5.19), we obtain

(5.16) . N �1C
�
ZI .t/2kC1 C �2ZI .t/ sup

s2Œt0;t�

E.Iu.s//
k�1
kC1

	
�

�
ZI .t/2kC1 C � sup

s2Œt0;t�

E.Iu.s//
k

kC1

	
C N �1C

2kC2X
J D3

�
2kC2�J

2k�1 ZI .t/J �1 sup
s2Œt0;t�

E.Iu.s//
.k�1/.2kC2�J /

.2k�1/.kC1

�
�
ZI .t/2kC1 C � sup

s2Œt0;t�

E.Iu.s//
k

kC1

	
:

Thus, we are left to proving (5.20). Using (2.5) and the boundedness of the

Littlewood-Paley operators, and decomposing u WD u�1 C u>1, we estimate

kPN1
I.juj2ku/k4;4 . kuk2kC1

4.2kC1/;4.2kC1/

. ku�1k2kC1
4.2kC1/;4.2kC1/

C ku>1k2kC1
4.2kC1/;4.2kC1/

:
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Applying interpolation, (5.13), and Bernstein, we estimate

ku�1k2kC1
4.2kC1/;4.2kC1/

. ku�1kL4
t L8

x
ku�1k2k

L1
t L16k

x

. �ku�1k2k

L1
t L

2kC2
x

. � sup
s2Œt0;t�

E.Iu.s//
k

kC1 :

Finally, by Sobolev embedding and (2.6),

ku>1k2kC1
4.2kC1/;4.2kC1/

. kjrj 2k
2kD1 u>1k2kC1

4.2kC1/; 4.2kC1/
4kC1

. ZI .t/2kC1:

Putting things together, we derive (5.20). This completes the proof of Proposi-

tion 5.2. �

Now we will combine Propositions 5.1 and 5.2 and prove that the quantity

E.Iu/.t/ is “almost conserved.”

PROPOSITION 5.3 Let s > 1
2k�1

and let u be an H s
x solution to (1.1) on the

space-time slab Œt0; T � � R
2 with E.IN u.t0// � 1. Suppose in addition that

kukL4
t2Œt0;T �

L8
x

� �(5.21)

for a sufficiently small � > 0 (depending on k and on E.IN u.t0//). Then, for N

sufficiently large (depending on k and on E.IN u.t0//),

(5.22) sup
t2Œt0;T �

E.IN u.t// D E.IN u.t0// C N �1C:

PROOF: Indeed, Proposition 5.3 follows immediately from Propositions 5.1

and 5.2, if we establish

ZI .t/ . 1 and sup
s2Œt0;t�

E.IN u.s// . 1 for all t 2 Œt0; T �:

Given the assumption that E.IN u.t0// . 1, it suffices to show that

(5.23) ZI .t/ . krIN u.t0/k2 for all t 2 Œt0; T �

and

(5.24) sup
s2Œt0;t�

E.IN u.s// . E.IN u.t0// for all t 2 Œt0; T �:

We achieve this via a bootstrap argument. We want to show that the set of times

that those two properties hold is the set Œ0; 1/. We define

�1 WD
n
t 2 Œt0; T � W ZI .t/ � C1krIN u.t0/k2;

sup
s2Œt0;t�

E.IN u.s// � C2E.IN u.t0//
o

�2 WD
n
t 2 Œt0; T � W ZI .t/ � 2C1krIN u.t0/k2;

sup
s2Œt0;t�

E.IN u.s// � 2C2E.IN u.t0//
o
:
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If we can prove that �1 is nonempty, open, and closed, then since the set Œ0; 1/

is connected, we must have that �1 D Œ0; 1/. Thus in order to run the bootstrap

argument successfully, we need to check four things:

(1) �1 ¤ ¿. This is satisfied since t0 2 �1 if we take C1 and C2 sufficiently

large.

(2) �1 is a closed set. This follows from Fatou’s lemma.

(3) If t 2 �1, then there exists � > 0 such that Œt; t C �� 2 �2. This follows

from the dominated convergence theorem combined with (5.8) and (5.14).

(4) �2 � �1. This follows from (5.8) and (5.14) taking C1 and C2 sufficiently

large depending on absolute constants (like the Strichartz constant) and

choosing N sufficiently large and � sufficiently small depending on C1,

C2, k, and E.IN u.t0//.

The last two points prove that �1 is open and so Proposition 5.3 is proved. �

Finally, we are ready to prove Theorem 1.4.

PROOF OF THEOREM 1.4: Given Proposition 5.3, the proof of global well-

posedness for (1.1) is reduced to showing

(5.25) kukL4
t L8

x
� C.ku0kH s

x
/:

This also implies scattering, as we will see later by an argument close to what we

used to obtain Theorem 1.3. We have proved that

kukL4
t L8

x
. ku0k1=2

2 kuk1=2

L1
t

PH
1=2
x .I�R/

(5.26)

on any space-time slab I � R
2 on which the solution to (1.1) exists and lies in

H
1=2
x . However, the H

1=2
x norm of the solution is not a conserved quantity either,

and in order to control it we must resort to the H s
x bound on the solution. As

we remarked at the beginning of this section, this will be achieved by controlling

kIuk PH 1 . Thus, in order to obtain a global Morawetz estimate, we need a global

bound for kIuk PH 1 . This will be done by patching together time intervals where

the norm kukL4
t L8

x
is very small.

This sets us up for a bootstrap argument. Let u be the solution to (1.1). Because

E.Iu0/ is not necessarily small, we first rescale the solution such that the energy

of the rescaled initial data satisfies the conditions in Proposition 5.3. By scaling,

u�.x; t/ WD �� 1
k u.��2t; ��1x/

is also a solution to (1.1) with initial data

u�
0.x/ WD �� 1

k u0.��1x/:
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By (2.8) and Sobolev embedding for s � 1 � 1
kC1

,

krIu�
0k2 . N 1�sku�

0k PH s
x

D N 1�s�1� 1
k

�sku0k PH s
x
;

kIN u�
0k2kC2 . ku�

0k2kC2 D �
1

kC1
� 1

k ku0k2kC2 . �
1

kC1
� 1

k ku0kH s
x
:

Since s > 1� 1
4k�3

> 1� 1
kC1

> 1� 1
k

, choosing � sufficiently large (depending

on ku0kH s
x

and N ) such that

(5.27) N 1�s�1� 1
k

�sku0kH s
x

� 1 and �
1

kC1
� 1

k ku0kH s
x

� 1;

we get

E.IN u�
0/ � 1:

Thus

� � N
s�1

1�s�1=k :

We now show that there exists an absolute constant C1 such that

(5.28) ku�kL4
t L8

x
� C1�

3
4

.1� 1
k

/:

Undoing the scaling, this yields (5.25). We prove (5.28) via a bootstrap argument.

By time reversal symmetry, it suffices to argue for positive times only. Define

�1 WD ˚
t 2 Œ0; 1/ W ku�kL4

t L8
x.Œ0;t��R2/ � C1�

3
4

.1� 1
k

/
�
;

�2 WD ˚
t 2 Œ0; 1/ W ku�kL4

t2Œ0;t�
L8

x.Œ0;t��R2/ � 2C1�
3
4

.1� 1
k

/g:
In order to run the bootstrap argument, we need to verify four things:

(1) �1 ¤ ¿. This is obvious since 0 2 �1.

(2) �1 is closed. This follows from Fatou’s lemma.

(3) �2 � �1.

(4) If T 2 �1, then there exists � > 0 such that ŒT; T C �/ � �2. This is a

consequence of the local well-posedness theory and the proof of (3). We

skip the details.

Thus, we need to prove (3). Fix T 2 �2; we will show that in fact, T 2 �1. By

(5.26) and the conservation of mass,

ku�kL4
t L8

x.Œ0;t��R2/ . ku�
0k1=2

2 ku�k1=2

L1
t

PH
1=2
x .Œ0;T ��R2/

. �
1
2

.1� 1
k

/C.ku0k2/ku�k1=2

L1
t

PH
1=2
x .Œ0;T ��R2/

:

To control the factor ku�k
L1

t
PH

1=2
x .Œ0;T ��R2/

, we decompose

u�.t/ WD P�N u�.t/ C P>N u�.t/:
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To estimate the low frequencies, we interpolate between the L2
x norm and the

PH 1
x norm and use the fact that I is the identity on frequencies j�j � N :

kP�N u�.t/k PH
1=2
x

. kP�N u�.t/k1=2
2 kP�N u�.t/k1=2

PH 1
x

. �
1
2

.1� 1
k

/C.ku0k2/kIN u�.t/k1=2

PH 1
x

:

To control the high frequencies, we interpolate between the L2
x norm and the

PH s
x norm and use Lemma 2.4 and the relation between N and � to get

kP>N u�.t/k PH
1=2
x

. kP>N u�.t/k1�1=2s

L2
x

kP>N u�.t/k1=2s

PH s
x

. �.1� 1
2s

/.1� 1
k

/N
s�1
2s kIu�.t/k1=2s

PH 1
x

. �
1
2

� 1
k kIu�.t/k1=2s

PH 1
x

:

Collecting all these estimates, we get

(5.29) ku�kL4
t L8

x.Œ0;t��R2/ .

�
3
4

.1� 1
k

/C.ku0k2/ sup
t2Œ0;T �

�krIu�.t/k1=4
2 C krIu�.t/k1=4s

2

�
:

Thus, taking C1 sufficiently large depending on ku0k2, we obtain T 2 �1, pro-

vided

(5.30) sup
t2Œ0;T �

krIu�.t/k2 � 1:

We now prove that T 2 �2 implies (5.30). Indeed, let � > 0 be a sufficiently

small constant as in Proposition 5.3 and divide Œ0; T � into

L �
�

�
3
4

.1� 1
k

/

�

�4

subintervals Ij D Œtj ; tj C1� such that

ku�kL4
t L8

x.Ij �R2/ � �:

Applying Proposition 5.3 on each of the subintervals Ij , we get

sup
t2Œ0;T �

E.IN u�.t// � E.IN u�
0/ C E.IN u�

0/LN �1C:
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To maintain small energy during the iteration, we need

LN �1C � �3.1� 1
k

/N �1C � 1;

which, combined with (5.27), leads to�
N

1�s

s�1C 1
k

	3.1� 1
k

/
N �1C � c.ku0kH s

x
/ � 1:

This may be ensured by taking N large enough (depending only on ku0kH s.R/

and k), provided that

s > s.k/ WD 1 � 1

4k � 3
:

As can be easily seen, s.k/ ! 1 as k ! 1.

This completes the bootstrap argument and hence (5.28), and moreover (5.25),

follows. Therefore (5.30) holds for all T 2 R; and the conservation of mass and

Lemma 2.4 imply

ku.T /kH s
x

. ku0kL2
x

C ku.T /k PH s
x

. ku0kL2
x

C �s�.1� 1
k

/ku�.�2T /k PH s
x

. ku0kL2
x

C �s�.1� 1
k

/kIu�.�2T /kH 1
x

. ku0kL2
x

C �s�.1� 1
k

/
�ku�.�2T /kL2

x
C krIu�.�2T /kL2

x

�
. ku0kL2

x
C �s�.1� 1

k
/.�1� 1

k ku0kL2
x

C 1/

. C.ku0kH s
x
/

for all T 2 R. Hence,

kukL1
t H s

x
� C.ku0kH s

x
/:(5.31)

Finally, we prove that scattering holds in H s
x for s > sk . The construction of the

wave operators is standard and follows by a fixed point argument (see [4]). Here

we show only asymptotic completeness.

The first step is to upgrade the global Morawetz estimate to global Strichartz

control. Let u be a global H s
x solution to (1.1). Then u satisfies (5.25). Let ı > 0

be a small constant to be chosen momentarily and split R into L D L.ku0kH s
x
/

subintervals Ij D Œtj ; tj C1� such that

kukL4
t L8

x.Ij �R2/ � ı:
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By Lemma 2.2, (5.31), and the fractional chain rule [5], we estimate

khrisukS0.Ij / . ku.tj /kH s
x

C khris.juj2ku/k
L

4=3
t;x .Ij �R2/

. C.ku0kH s
x
/ C kuk2k

L4k
t;x

khrisukL4
t;x.Ij �R2/;

while by Hölder and Sobolev embedding,

kuk2k

L4k
t;x.Ij �R2/

. kuk
2k

2k�1

L4
t L8

x.Ij �R2/
kuk

4k.k�1/
2k�1

L8k
t L

16k.k�1/
3k�2

x .Ij �R2/

. ı
2k

2k�1 kjrj 8k2�13kC4

8k2�8k uk
4k.k�1/

2k�1

L8k
t L

8k
4k�1
x .Ij �R2/

. ı
2k

2k�1 khrisuk
4k.k�1/

2k�1

S0.Ij /
:

The last inequality follows from the fact that for any k � 2 we have that

sk D 1 � 1

4k � 3
>

8k2 � 13k C 4

8k2 � 8k
:

Therefore,

khrisukS0.Ij / . C.ku0kH s
x
/ C ı

2k
2k�1 khrisuk1C 4k.k�1/

2k�1

S0.Ij /
:

A standard continuity argument yields

khrisukS0.Ij / � C.ku0kH s
x
/;

provided we choose ı sufficiently small depending on k and ku0kH s
x

. Summing

over all subintervals Ij , we obtain

(5.32) khrisukS0.R/ � C.ku0kH s
x
/:

We now use (5.32) to prove asymptotic completeness; that is, there exist unique

u˙ such that

(5.33) lim
t!˙1

ku.t/ � eit�u˙kH s
x

D 0:

Arguing as in Section 4, it suffices to see that����Z 1

t

e�is�.juj2ku/.s/ds

����
H s

x

! 0 as t ! 1:(5.34)

The estimates above yield����Z 1

t

e�is�.juj2ku/.s/ds

����
H s

x

. kuk
2k

2k�1

L4
t L8

x.Ij �R2/
khrisuk1C 4k.k�1/

2k�1

S0.Œt;1��R/
:

Using (5.25) and (5.32) we derive (5.34) and conclude the proof of Theorem 1.4.

�
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