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Introduction

Kaplansky [14,15,16] singled out a class of C*-algebras, called A W*

- algebras, which imitates the W*-algebras (=von Neumann algebras) alge

braically, and carried out much of the theory of W*-algebras for this class of 

C*-algebras. However there does not seem to be a satisfactory AW*-version 

of the W*-tensor product of W*-algebras except for a few special cases. 

For instance an _??_-homogeneous type I AW*-algebra B can be regarded as a 

sort of an _??_•~_??_ matrix algebra over its center A [15,16]. Hence B is a 

certain "tensor product" of the commutative AW*-algebra A and the type 

I W*-factor B(K) with K an _??_-dimensional Hilbert space. Moreover 

Berberian [1] showed that the tensor product A_??_Mn of any AW*-algebra A 

and the algebra Mn of all n•~n matrices over C is also an AW*-algebra.

In this paper we work on a subclass of AW*-algebras-the monotone 
complete C*-algebras-and introduce a tensor product, written A_??_M, of a 
monotone complete C*-algebra A and a W*-algebra M which is a monotone 
complete C*-algebra uniquely determined by A and M. The algebra A_??_M 
is called the monotone complete tensor product of A and M and satisfies the 
following properties (Theorem 4.2):

(a) A_??_M is W* or non W* according as A is W* or non W*, and in 
the former case it is the usual W*-tensor product of A and M.

(b) A_??_M contains A_??_1 and 1_??_M as monotone closed C*-subalgebras 
and it is the monotone closure of the algebraic tensor product A_??_M (i.e., 
the smallest monotone closed C*-subalgebra, containing A_??_M, of A_??_M).

(c) If A (resp. M) is a monotone closed C*-subalgebra (resp. W*-sub
algebra) of a monotone complete C*-algebra B (resp. W*-algebra N), then 
A_??_M is the monotone closure of A_??_M in B_??_N.

Moreover the properties (b) and (c) characterize uniquely the operation 
_??_ defined for each pair of a monotone complete C*-algebra and a W*-algebra.

In Section 2 the regular monotone completion (A_??_B(K))-, in the sense 
of [11], of the minimal C*-tensor product A_??_B(K) of a monotone complete
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C*-algebra A and a type I W*-factor B(K) is characterized as the monotone 

complete C*-algebra of _??_•~_??_ matrices over A with _??_=dim K. Following 

an idea by Tomiyama [21, 22], we define in Section 3 an operator system 

_??_(V, W) on H_??_K, called the Fubini product of V and W, for operator 

systems V•¼B(H) and W•¼B(K). In Section 4 we use _??_(A, M) to construct 

A_??_M and extend some results known for the W*-tensor products to the 

case of the monotone complete tensor products. As a consequence the 

existence is shown of a pair of non *-isomorphic ƒÐ-finite monotone complete 

non W*, AW*-factors of type III (Theorem 4.9). First examples of non W*, 

AW*-factors were given by. Dyer [7] and Takenouchi [20] independently, and 

they were shown to be ƒÐ-finite, monotone complete and of type III by Saito 

[19]. As applications of the results in the preceding sections we investigate 

in Section 6 the regular monotone completion of a hereditary C*-subalgebra 

of a C*-algebra (resp. the minimal C*-tensor product of two C*-algebras).

•˜ 1. Notation and preliminaries

Throughout the paper (excluding a part of Section 6) C*-algebras to be 

considered are unital, their C*-subalgebras contain the same units as they 
do, and the notation and terminology in [9,10,11] are used. For two C*

- algebras A and B, A_??_B, A_??_B and A_??_B denote the algebraic tensor prod
uct, the minimal C*-tensor product and the W*-tensor product (if A and B 
are both W*-algebras) of A and B respectively.

Each C*-algebra A has a unique regular monotone completion A (resp. 

injective envelope I(A)) with A•¼A•¼I(A), and the inclusion maps A_??_A_??_I

(A) are normal [9,11]. For C*-algebras A and B the maps AxH

xQ1eA®B and ByH1GyeA®B are normal [11, Proposition 4.1].

Now we modify slightly the convergence of nets in a monotone complete 

C*-algebra defined by Kadison-Pedersen [12]. Let A be a C*-algebra. If an 

increasing net {Xƒ¿} in As,a, has a supremum x in As.a., then we write xƒ¿•ªx (O) 

or -xƒ¿•«-x (O). A net {Xƒ¿} in A order-converges to an x•¸A, written xƒ¿

x(O) or O-lim xƒ¿=x, if there are bounded nets {x(j)ƒ¿}, {x'(j)ƒ¿} in As.a. and 

elements x(j)•¸As,a., j=0, 1, 2, 3, such thatand

It is immediate to see that the x, called the order limit of {Xƒ¿}, does not de

pend on the special choice of {x(j)ƒ¿}, {x'(j)ƒ¿} and x(j) and that if A is a commuta

tive AW*-algebra, then xƒ¿x (O) in A in the above sense if and only if {Xƒ¿} 

order-converges to x in the sense of Widom [23].
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Suppose for a while that A acts on a Hilbert space H. Then there is a 

completely positive projection ƒÓ on B(H) so that A•¼Im ƒÓ and we may identify 

I(A) with Im ƒÓ equipped with the order, involution and norm induced by 

those of B(H) and the multiplication given by xoy=ƒÓ(xy). If xƒ¿•«x (O) in A
, 

then xƒ¿•«x (O) in I(A) and ƒÓ(s-lim xƒ¿)=x, where s-lim xƒ¿ denotes the strong 

limit of xƒ¿ in B(H) (cf. [21, the proof of Theorem 7.1]).

LEMMA 1.1. If xƒ¿x (O) in A, then there are a subnet {xƒÀ} of {Xƒ¿} and an 

x•¸B(H) such that xƒÀx weakly in B(H) and ƒÓ(x)=x.

PROOF. Let {x(j)ƒ¿}, {x'(j)ƒ¿} and x(J) be as above. By the weak compactness 

of the unit ball of B(H) we can choose subnets {X(j)ƒÀ}, {X'(j)ƒÀ} and elements x(j), x'(j)•¸

B(H) so that x(j)ƒÀx(j) and x'(j)ƒÀx'(j)ƒÀ weakly in B(H). Since x'(j)ƒÀ•«0 (O) 

in A, the above remark implies that (i))=0. On the other hand it follows 

from 0<xa''-x'~that 0<x~" hence that 0<_~(x("-x5) _<

~(x'~")=0 and Thus x=03a'xJ3i''=x say, weakly 

in B(H) and ƒÓ(x)= x. q.e.d.

The basic properties of the order convergence are stated as follows:

LEMMA 1.2. If xƒ¿x (O) and yƒ¿y (O) in A, then we have:

(i) xƒ¿+yƒ¿x+y (O);

(ii) axƒ¿baxb (O) for all a, b•¸A;

(iii) xƒ¿yƒ¿xy (O);

(iv) xƒ¿•…yƒ¿ for all ƒ¿ implies x•…y;

(v) •ax•a•…lim sup •axƒ¿•a.

PROOF. To see (i) and (ii) modify the argument in [12, Lemma 2.1].

(iii) By (i) and (ii) we need only show that if 0_<xa<_xa\0(0) and 0<ya

<_ya\0 (0), then xaya+0 (0). We may assume that IIx aII<1 and IIyaII<1 for 

all ƒ¿. Then (ya+i'xa)*(ya+i~xa)2(x«+ya)2(xa+ya)2(xa+ya)\0(0),j=0,

1,2,3; hence 4xaya=~3.oi'(ya+i'xa)*(ya+i'xa)-±0(0).

(iv) By (i) we need only show that 0<_xa±x(0) implies x•†0. But 

Lemma 1.1 shows xƒÀx weakly in B(H) and ƒÓ(x)=x for some subnet {xƒÀ} of 

{Xƒ¿} and x•¸B(H). Then x•†0 and so x=ƒÓ(x)•†0.

(v) Let {xƒÀ} and x be as in (iv). Then IIxII=IIfi(x)IIIxI_<_lim sup IIx~

=lim sup •axƒ¿•a. q .e.d.

Given a family {Xa}a€i in A we define the order convergence of the series 

with the ƒ¿th term xƒ¿ as that of the net xa:I'CIfinite}, and we write 

s=0-~aEIxa if s is the order limit of the net.

DEFINITION 1.3. A family {Xa}a51 in A is a e2-family if the net {LIaEI,xaxa:
I'dIfinite} is bounded. For a cardinal number _??_ the C*-algebra A is
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_??_-additively complete if 0-
aeixaxa exists for each e2-family {Xa}aei in A 

with I (the cardinality of I)•…_??_, and it is additively complete if it is _??_-addi

tively complete for each _??_. when A is a C*-subalgebra of another C*-

algebra B, A is _??_-additively closed in B if, whenever 0-~jaGIxaxa exists in 

B for a e2-family {Xa}a€i in A with I•…_??_ , then it is in A.

Clearly monotone completeness implies additive completeness. Although 

the validity of the converse implication is not obvious, we see:

PROPOSITION 1.4. An additively complete C*-algebra is an AW*-algebra.

PROOF. Let A be additively complete. For the proof we have to show 

that (a) any orthogonal family {pƒ¿} of projections in A has a supremum, 

written •ÉPƒ¿, in the set of all projections of A and (b) any maximal abelian 

*-subalgebra C of A is generated by its projections
. But by hypothesis 

0-Jpa exists in As.a. and it coincides with •ÉPƒ¿ by [11, Lemma 3.11]. The 

algebra C, being maximal abelian, is the fixed point algebra under the inner 

*-automorphisms of A implemented by all unitaries in C
, and so it is also 

additively complete and AW*. Hence (b) follows. q.e.d.

LEMMA 1.5. Let {Xa}aei and {ya}ai E with I•…_??_ be e2-families in an 

_??_- additively complete C*-algebra A.

(i) {xa±yb}aais a e2-family for all a, b•¸A.

(ii) 0-LJa€Iyaxa exists in A; in more detail,

PROOF. (i) follows from the inequality ~jael,(xaa-}-yab)*(xaa+yab)<_

2[a*(JaEI'xax«)a+b*(~a€ry«ya)b] with I'•¼I finite. (ii) follows from the fact 

that the right hand side in the above equality exists by (i). q.e.d.

•˜ 2. Matrix units in a C*-algebra

By a family of matrix units in a C*-algebra B we mean a family {eap}a ,flel 

of partial isometries in B such that ea~ea,p,=U~a,ea~' for all ƒ¿, ƒ¿', ƒÀ, ƒÀ' and 

0eaa=1, where oa~3 denotes the Kronecker's symbol. Then B can be viewed 

as an algebra of _??_•~_??_ matrices over A=eaoaoBeaoao, where _??_=I and aoe I is 

fi xed. In fact, to each x•¸B there corresponds a matrix x=[xa~]a ,pEI over A 

given by xaa=eaoaxe~ao, and the involution and multiplication in B are calcu

lated in A as follows:

(2.1)
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the order sum being converging in A by Lemma 1.2. We will show that B 
with the above property exists uniquely for each A and _??_ under the assump
tion of the monotone completeness of A and B (Theorem 2.5). A similar 
result for the _??_-additively complete case will be given in Corollary 3.13.

LEMMA 2.1. Let B be an _??_-additively complete C*-algebra and {Pa}aCI an 

orthogonal family of projections in B such that 0-~pa=1 and I•…_??_. Let J 

be the family o f all finite subsets of I and put qr=jr5Par for reJ. Suppose 

that {X1}75, is a bounded net in B such that grxr,qr=xr for all r,r'eJ with rCr'. 

Then there is an 0-limxr=x, say, in B such that grxqr=xr for all reJ and 

1lxil=supllxr!I.

PROOF. For a,43E I and reJ with a,48er put xa~=paxrpp. Then {Xap}a51 

with ƒÀ fixed is a e2-family in B since for each reJ with a,48er we have 

>a€Txapxa~<-ppxxrpp<22, where A=supIIx7II. It follows from Lemma 1.5 and 

paxas=xaj that 0->axaQ=yp, say, exists. Then {y}51~~is also e2 since for 

each 43e I and r,r'eJ with 48erCr' we have qr,y~=xr'pfl,qr'(~serysys )qr'

x,x<xr,x*<,2, and so yys*<A2 by Lemma 1.2. Since yp=(y~*)*ps, 

Lemma 1.5 implies the existence of 0-~Ery~=x, and we have grxqr=
0(qy)q1~=0(xp)q7~=xx, x=0-limqrxqr=0-limx. Moreover
 xII=supI1x711sinceIIxII-<_supI1xrII by Lemma 1.2, q.e.d.

LEMMA 2.2. For j=1, 2 let Bj be an _??_-additively complete C*-algebra 

and {pja}a51 an orthogonal family of projections in Bj such that 0-~apja=1 

and I•…_??_. Let J and qjƒÁ be defined as in Lemma 2.1 and suppose that there 

are *-isomorphisms ƒÎƒÁ of girB1g1r onto g2rB2g2r such that err,!q1B1q1rr=rr for all 

r,r'eJ with rCr'. Then there is a *-isomorphism ƒÎ o f B1 onto B2 such that 

 Jq17Biqi7_2rr for all reJ.

PROOF. For each xeB1 and rEJ put yr=trr(girxgir). Then {r}reyJ is 

bounded and g2ryr'qtr=yr for all r,r'eJ with 7C71. Hence Lemma 2.1 shows 

the existence of O-lim yr=ir(x), say, such that 112r(x)1f=supIIyr11=supIIglrxglr

=IIxII. Thus ƒÎ is a linear isometry of B1 into B2 which, being unital
, is 

positive. For an xeB1 and a fixed r'eJ we have

so that ir(x*)~r(x) _<_rc(x*x). The above argument applied to ~cr' implies that ƒÎ 

has the inverse ƒÎ-1 and that -1(y*)7r-1(y)<7r-1(y*y) for yeB2. Hence lr(x*x)

=~r(x*)7r(x) for xeB1 and ƒÎ is a *-isomorphism of B1 onto B2. q.e.d.

LEMMA 2.3. For j=1, 2 let B1 be an _??_-additively complete C*-algebra 

which has a family {eja}aei~g, of matrix units such that I=_??_ . If ƒÎ0 is a *-iso-
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morphism of e,aoaoB1elaoao onto e,apapB2e,aoao with aoE I fixed, then there is a unique 

*-isomorphism ƒÎ of B1 onto B
2 such that irlelaoaoBlelaoa,=iro and 7r(ela~)=e,,a for 

all a,9€1.

PROOF. Let J and qjƒÁ be as above. The application of Lemma 2.2 to the 

maps err:gl1Biglr-*q,,7B2g,r given by 7r(x)=a,8Ere,aapir0(exaoaxelsao)e,ao~g implies 

the existence of ƒÎ, and the uniqueness of ƒÎ is clear from the construction.

q.e.d.

The proof of the following lemma is quite similar to that of [11, Proposi

tion 1.11], so we omit it.

LEMMA 2.4. If C is a self-adjoint linear subspace, containing the unit, of 

a C*-algebra B such that the monotone closure m-clB C is B and if a is a pro

jection of B, then m-c1B eCe=eBe.

THEOREM 2.5. Let A be a monotone complete C*-algebra, _??_ a cardinal 
number and K an _??_-dimensional Hilbert space. Then the regular monotone 
completion (A_??_B(K))- of A_??_B(K) is a monotone complete C*-algebra B uni

quely characterized by one of the following conditions:
(i) B contains the algebraic tensor product A_??_B(K) as a *-subalgebra 

so that A_??_1 and 1_??_B(K) are monotone closed in B and B is the monotone 
closure of A_??_B(K).

(ii) There is a family {ea}a,err, of matrix units in B such that eaaBeaa is 
*-isomorphic to A and I=_??_.

In particular if A is a W*-algebra, then (A_??_B(K))- is *-isomorphic to 
the W*-tensor product A_??_B(K).

PROOF. It follows from the normality of the maps Ax+-fx®1E
A®B(K), B(K)y1®yeA®B(K) and the inclusion map A®B(K)-~
(A®B(K)) that (A_??_B(K))- satisfies (i).

We show that for a monotone complete C*-algebra B, (i) implies (ii). Let 

{ea}aei be an orthonormal basis in K with I=_??_ and {fa}a,pigE the family of 
matrix units in B(K) defined by f=(rj,Ep)Ea,r~E K. Putting eap=1®fa~, we 
obtain a family of matrix units in B since 0-Jeaa=1 by the monotone 
closedness of 1_??_B(K) in B. Let C be the C*-subalgebra of B generated by 
A_??_B(K). Then eaaBeaa=A®fas is monotone closed in eaaBeaa since A_??_1 
is monotone closed in B. Moreover by Lemma 2.4 we have eaaBeaa=
eaa(m-c1BC)eaa=m-c1BeaaBeaa=A®faa~A.

Therefore (A_??_B(K))- satisfies both (i) and (ii). On the other hand a 
monotone complete C*-algebra B satisfying (ii) is *-isomorphic to (A_??_B(K))

- by Lemma 2.3. The final assertion in the above statement is clear since both 
(A_??_B(K))- and A_??_B(K) satisfy (ii). q.e.d.
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COROLLARY 2.6. Let A be a C*-algebra, _??_ a cardinal number and K 
an _??_-dimensional Hilbert space. If B is a C*-algebra which has a family 

{e}a,eiar~ of matrix units such that eaaBeaa is *-isomorphic to A and I=_??_, then 
B is *-isomorphic to (A_??_B(K))-.

PROOF. Note that {eap}a,pei and B [resp. {1®faQ}a,&€i and (A_??_B(K))-] 
satisfy the above (ii). q.e .d.

COROLLARY 2.7. Let A be a monotone complete C*-algebra, K a Hilbert 

space and A_??_B(K) a C*-tensor product of A and B(K). If the maps AxH

x®1EA®rB(K) and B(K)yH1®yeA®rB(K) are normal, then A_??_ƒÁB(K)

 is the minimal C*-tensor product A_??_B(K).

PROOF. Note that since the inclusion map A®rB(K)=-~(A®rB(K))

is normal, A_??_1 and 1_??_B(K) are monotone closed in (A_??_ƒÁB(K))-, hence 

that (A®rB(K))°"(A®B(K)). q.e.d.

•˜ 3. Fubini products of operator systems

An operator system is a self adjoint linear subspace, containing the unit, 

of B(H) with H some Hilbert space, and it is injective if there is a completely 

positive projection of B(H) onto it [4]. Each operator system V•¼B(H) is 

contained in a minimal injective operator system I(V)•¼B(H), called the 

injective envelope of V, which is unique up to unital complete order isomor

phism [10].

DEFINITION 3.1. An operator system V•¼B(H) is a C*-algebra (resp. W*-

algebra, monotone complete C*-algebra, etc.) if it is unitally completely order 

isomorphic to some C*-algebra (resp. W*-algebra, monotone complete C*-

algebra, etc.).

Note that an operator system is unitally completely order isomorphic to 
at most one C*-algebra.

For future reference we record the following result due to Choi-Effros 

[4, Theorem 3.1] and Tomiyama [21, Theorem 7.1].

LEMMA 3.2. Let V and W be operator systems with V•¼W•¼B(H) such 

that there is a completely positive projection ƒÓ of W onto V.

(i) If W is a C*-algebra, then V is a C*-algebra equipped with the 

order, involution, norm induced by those of W and the multiplication given by 

xoy=~b(xy),x,yeV, where xy denotes the product of x, y in the C*-algebra W.

(ii) If, in addition, W is monotone complete, then Vxa/x(0) in W 

implies xa/c5(x)(O) in V and V is monotone complete.
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Lemma 3.2 means that each injective operator system is a monotone 
complete C*-algebra. Since the injective envelope of a C*-algebra [9] coin
cides with that as an operator system, an operator system V is a C*-algebra 

(resp. monotone complete, additively complete C*-algebra) if and only if V is 
a C*-subalgebra (resp. monotone closed, additively closed C*-subalgebra) of 
its injective envelope 1(V).

In the remainder of the paper we assume that operator systems are 

always norm closed and K denotes a fixed Hilbert space with an orthonormal 

basis {a}aeI. As before {f},'aga~E denotes the family of matrix units in B(K) 

given by fap1J=(,~~~)Ea,ieK. For another Hilbert space H let Ja:H-*H®K 

be the linear isometry given by Jai=0e. Then each x•¸B(H_??_K) is 

written as the strong sum x=s-~a,xa~®fa~, where xap=JaxJ~EB(H). For 

f•¸B(H)*(resp. g•¸B(K)*) we denote by f•¸idB(K)(resp. idB(H)_??_g) the right 

(resp. left) slice map, in the sense of Tomiyama [21], of B(H_??_K) into B(K)

(resp. B(H)).

DEFINITION 3.3. For operator systems V•¼B(H) and W•¼B(K) let 

V_??_B(K)(resp. B(H)_??_W) be the subspace of B(H_??_K) consisting of elements 

x such that (idB(H)_??_g)(x)•¸V for all g•¸B(K)* (resp. (f_??_idB(k))(x)•¸W for all 

f•¸B(H),). We call the norm closure V_??_W of V_??_W (resp. intersection 

_??_(V, W)=V_??_B(K)•¿B(H)_??_W) the spatial tensor product (resp. Fubini 

product) of V and W.

Tomiyama [21] observed that if V and W are W*-subalgebras of B(H) 
and B(K) respectively, then Tomita's commutation theorem implies _??_(V, W)
=V_??_W.

LEMMA 3.4. For an operator system V•¼B(H) an x•¸B(H_??_K) is in 

V_??_B (K) if and only if x is written as x=s-~a,xa~®fcg with xa~EV for all a,3.

PROOF. Denote by the element of B(K)* given by w,(y)=(yi,/),

~,r~'EK and yEB(K). Since (idB(H)OxWEB,ea)(x)=xa~, the necessity follows. 

Conversely suppose that x=s-~xa~®f~~ with xa~E V for all ƒ¿, ƒÀ. Each g•¸

B(K)* is the norm limit of a sequence gn•¸B(K)* which is a finite linear 

combination of elements of the form w,,,,. Then V3(idB(H)0gn)(x)-+

(idB(H)0g)(x) in norm and (idB(H)_??_g)(x)•¸V since V is norm closed. q.e.d.

LEMMA 3.5. Let V~CB(H),j=1,2, be operator systems.

(i) If ƒÓ: V1V2 is a unital completely positive map, then the map 

 0idB~K)V1QB(K)-~V2®B(K) defined by

(3.1)

is a unique completely positive extension of c0idB(K):V10B(K)-~V20B(K),
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and satisfies

(3.2)

for all x•¸V1_??_B(K) and b1, b2•¸B(K).

(ii) With ƒÓ as in (i), ƒÓ_??_idB(K) is a complete order isomorphism (resp. 

faithful on positive elements, ƒÐ-weakly continuous) if and only if ƒÓ is a complete 

order isomorphism (resp. faithful on positive elements, ƒÐ-weakly continuous).

(iii) If ƒÓ: V1V2 is a linear combination of unital completely positive 

maps (resp. f•¸V*1) and ƒÓ_??_idnB(K) (resp, f_??_idB(K): V1_??_B(K)B(K)) is defined

as in (i) (resp.(fOidB(K))(x)=s-Jf(xa~)fag), then for each g•¸B(K)*
,

(3.3)

PROOF. (i) Since a,EI,c5(xa~)®fapIIIa ,aEI,xapOfa~IIIIxII for each 

fi nite I'•¼I and xeV1OB(K),s-Y~15(xap)®fa~ defines an element of V2_??_B(K) 

of norm<IIxI; hence ƒÓ_??_idB(K) is well-defined and contrastive. More

over, replacing K in the above argument by the direct sum of n copies of K 

(n=1, 2,¥¥¥) we see that it is completely positive. Thus it follows from 

cidB(K)I1®B(K)=idl©B(K) and Choi [3, Theorem 3.1] that (3.2) holds. To see the 

uniqueness of OidB(K) let :V1OB(K)V2OB(K) be another completely 

positive extension of ~50idB(K). For the same reason for q'.OidB(K), ƒµ satisfies 

(3.2) with ~idB(K) replaced by ƒµ. Hence for xeV10B(K) and a,j9e I 

we have (1®faa)Y`(x)(1®f~~)=J'((1®fa a)x(1®f~~))=J(xa~®fa~)=c5(xas)®fap=

(1®faa)(cOid)(x)(1®fa~) and so Jr=OidB(K).

(ii) is immediate from the definition of 00idB(K)

(iii) Since, as in the proof of Lemma 3.4, g•¸B(K)* is the norm limit of 

a sequence of finite linear combinations of the WE~
,Ea, we need only consider 

the case g=cvE~ ,Ea. Then a(idB(H1)Og)(x)=y'(xa8)=(idB(H2)Og)°(~5®idB(K))(x)

forxeV1OB(K) and similarly for fOidB(K). q .e.d.

LEMMA 3.6. Let V•¼B(H) and W•¼B(K) be operator systems with W ƒÐ-

weakly closed.

(i) (f_??_idB(K))(_??_(V, W))•¸W for all f•¸V*.

(ii) An x•¸B(H_??_K) is in _??_(V, W) if and only if (f_??_idB(K))(x)•¸Wand 

(idB(H)_??_g)(x)•¸V for all f•¸B(H)* and g•¸B(K)*.

PROOF. (i) if f1•¸B(H)* is an extension of f•¸V*, then f1OidB(K)lv®B(K)

=fOidB(K) and fr-~f1a(B(H)*, B(H)) for some net {fƒÁ} in B(H)* . Then 

(frO1dB(K))(x)e W for all xc(V,W) and (frOidf(K))(x)-±(flOidB(K))(x)=

(f0idB(K))(x) a-weakly in B(K) since by (3.3), go(f0idB(K))(x)=
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fro(idB(H)g)(x)--~f1°(idB(H)Og)(x)=g°(f1OOidB(K))(x) for all g•¸B(K)*, so that 

(fx0idB(K))(x)eW.

(ii) follows readily from (i). q.e.d.

DEFINITION 3.7. For operator systems V•¼B(H), W•¼B(K) with W ƒÐ-

weakly closed and feV*, geW* (=the restrictions to W of elements of 

B(K)) the map Rf=fOidB(K)I1(V,W).F(V,W)-±W(resp.Lg=idB(H)Og1,(V,W)

F(V,W)--~V) is the right (resp, left) slice map on _??_(V, W). The element 

_??_(f, g) of _??_(V, W)* defined by _??_(f, g)(x)=g(Rf(x))=f(Lg(x)) is the product 

functional of f and g.

If the above f(resp. g) is a state, then the map xH1®Rf(x)(resp.x

Lg(x)®1) is a completely positive projection of _??_(V, W) onto 1_??_W (resp. 
V_??_1).

LEMMA 3.3. Let Vj•¼B(Hj), j=1, 2, and W•¼B(K) be operator systems 

and ~5:V1-~V2 a unital completely positive map. If (i) W is ƒÐ-weakly closed 

or if (ii) V1 and V2 are ƒÐ-weakly closed and ƒÓ is ƒÐ-weakly continuous, then 

(q~idB(K))(F(V1,W))C(V2,W).

(iii) If, in addition to (i) or (ii), V2•¼V1•¼B(H1) and ƒÓ is a completely 

positive projection of V1 onto V2, then ~idB(K)IF(V1,W) is a completely positive 

projection of _??_(V1, W) onto _??_(V2, W).

PROOF. We have (~i5OidB(K))(F(V1,W))C(c0idB(K))(1710B(K))C

V2B(K) and from the construction, (f0idB(K))o(O0idB(K))=fo¢QidB(K) on V

1_??_B(K) for all f•¸B(H2)*.

(i) By Lemma 3.6, (f®idB(K))(~50idB(K))(~(V1,W))=(foc0idB(K))
((V1,W))cW for all feB(H2)*, so that (~QidB(K))((V,,W))cB(H2)0W 
and (c/5idB(K))(F(V1,W))CF(V2,W).

(ii) Since fo¢eB(H1)* for feB(H2)*, (focbidB(K))(F(V1,W))CW and 
the argument as in (i) implies the asserted inclusion.

(iii) is clear, q.e.d.

For j =1, 2 let Vj•¼B(Hj), Wj•¼B(Kj) be operator systems and c:V1-~V2, 

ijr:W1-~W2 unital completely positive maps. We will show that the map 

 Cfr:V1®V2-*W1OW2 extends to a completely positive map of _??_(V1, W1) 

into _??_(V2, W2) under some additional hypotheses. By Lemma 3.5 we ob

tain completely positive maps ~0idB(K3):V10B(K3)-~V20B(K3),idB(H3)0

B(HP)-x0W1-B(HP)OxW2 and so

Obviously (idB(H2)0`I')°(ybO1dB(Ki))IV1®Wl=(Y®idB(K,))°(idB(H1)OY')IVi®wi_,
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say, is a unique completely positive map of V1_??_W1 into V2_??_W2 which extends 
 0p'. (This fact is implicit in Effros-Lance [8, Lemma 2.5].)

LEMMA 3.9. Keep the above notation.

(i) If ƒÓ and ƒµ are unital complete order isomorphisms, then ¢®Jr is a 

unital complete order isomorphism.

(ii) If V1 and W2 are ƒÐ-weakly closed, then

(iii) If W1 and W2 are ƒÐ-weakly closed and ƒµ is a-weakly continuous, 

then (idB(H,)®J)°(cO1dBcK
1))LF(Vl,Wl)_(c1dB(K,))°(1dB(Hl)oY')J,(V1,W,)`F(~5,P), 

say, maps _??_(V1, W1) into _??_(V2, W2) and it is a unital complete order isomor

phism (resp. faithful) if and only if ƒÓ and ƒµ are unital complete order isomor

phisms (resp. faithful).

PROOF, (i) Note that ~5®i-1 is the complete positive inverse of 
®iJt• 

(ii) By Lemma 3.8 (i), (idB(H1)OXIJI)(~'(V1,W1))C(V1f142) and 
(TO1dB(K2))°(1dB(H1)0)(;(Vl,W1))c(V2,W2)•

(iii) As in (ii) we apply Lemma 3.8 to obtain (idB(H,)i)°(~0idB(Kl))
(F(V1,W1))C(V2,W2)• By Lemma 3.5 (iii),~i5°(idB(H,)0g~)=(idB(x2)0g)

~(qO1dB(K,>) on VV1OxB(K) for g1eB(K3)*. If g2eB(K2)*, then g2°iji' extends 
to a g1eB(K1), and (idB(Hj)Og2)°(idB(H3)0t)=idB(H2)®1IB(H)oW1 Hence

on _??_(V1, W1) for all g2eB(K2)* , so that

on The necessity of the second assertion is clear and to see the sufficiency 

note that if ƒÓ and ƒµ are unital complete order isomorphisms (resp . faithful), 

then (~,V) is the inverse of F(~5,) (resp. J) is faithful by Lemma 

3.5 (ii)). q .e.d.

The results similar to the above lemmas were proved by Nagisa and 

Tomiyama [17] when Vj and Wj are W*-subalgebras
, but ƒÓ and ƒµ are not 

necessarily unital.

The following is an analogue of [21, Theorem 7.5].

PROPOSITION 3.10. Given operator systems V•¼B(H) and W•¼B(K) with 

W ƒÐ-weakly closed, _??_(V, W) is injective if and only if V and W are injective .
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PROOF. For a state feV* (resp. gEW*) the map xH1®Rf(x) (resp. 

XHLg(x)®1) is a completely positive projection of _??_(V, W) onto 1_??_W (resp. 

V_??_1). Hence the necessity follows. Conversely if V and W are injective, 

then there are completely positive projections ƒÓ of B(H) onto V and ƒµ of 

B(K) onto W. Then (c0idB(K))°(idB(~)r)(B(H)0B(K))CF(V,W) by 

Lemma 3.9 (ii) and clearly (~idB(K))o(id Bcx)*)F(v,w)=id ,,(V,W). Thus _??_

(V, W) is injective. q.e.d.

The injective envelope of the spatial tensorr product of the form V_??_B(K) 
is determined as follows:

PROPOSITION 3.11. Let V•¼B(H) be an operator system and I(V) its in

jective envelope with V•¼I(V)•¼B(H). Then I(V)_??_B(K) is the injective 

envelope of V_??_B (K), i.e., I(V_??_B(K))=I(V)_??_B(K).

PROOF. By Proposition 3.10, I(V)_??_B(K) is injective and contains 

V_??_B(K). Hence it suffices to show that the completely positive map ¢:

I(V)iB(K)--I(V)OB(K) with qIV®B(K)=idv®B(K) is necessarily idj(v)©B(K). But 

it follows from [3, Theorem 3.1] that ƒÓ is a (1_??_B(K))-module homomorphism, 

hence that O(I(V)®1)c1(V)0B(K)(1(1®B(K))°=I(V)B(K)nB(H)®1

=1(V)®1. Then the map Ji:I(V )-~I(V) given by q(a®1)=iLr(a)®1 is com

pletely positive and ® idB(K):1(V)B(K)--J(V)0B(K) is a completely 

positive map with qII(V)oB(K)=0idB(K)~I(v)oB(K), so that ¢=idB(K) by 

Lemma 3.5 (i). ®n the other hand, p=idl(V) since Jil=id; hence ~b=

. 1dl(v)©B(K)• q.e.d.

The next result is the main theorem of this section.

THEOREM 3.12. Let VC B (H) be an operator system, M•¼B(K) a W*

- subalgebra, {fcj}a ,i the family of matrix units in B(K) defined as above and 

dim K=_??_.

(i) V_??_B(K) is a C*-algebra if and only if V is an _??_-additively com
plete C*-algebra. In this case V_??_B(K) is also _??_-additively complete and 
{1®fa~}a,eEI is a family o f matrix units in V_??_B(K).

(ii) V_??_B(K) is an additively complete C*-algebra (resp. monotone com
plete C*-algebra, W*-algebra) if and only if V is an additively complete C*-
algebra (resp. monotone complete C*-algebra, W*-algebra).

(iii) If V is an additively (resp. monotone) complete C*-algebra, then _??_
(V, M), V_??_1 and 1_??_M are additively (resp. monotone) closed C*-sub

algebras of V_??_B(K).

PROOF. Since I(V) is an injective C*-algebra, we replace H by the 

representation space of a faithful *-representation of I(V) to assume that 
I(V) is a C*-subalgebra of B(H). We describe the multiplication o in the
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injective C*-algebra I(V)_??_B(K) by means of that in I(V). (Note that 

I(V)_??_B(K) need not be a C*-subalgebra of B(H_??_K). See Corollary 3.15 be

low.) For a completely positive projection ƒÓ of B(H) onto I(V), ~idB(K) is a 

completely positive projection of B(H_??_K) onto I(V)_??_B(K), and for x

S,xap®fa~,y=s-Yyap®fapeI(V)5B(K) we have xoy=(~i5OidB(K))(xy)

c(s-~rxary3p)®fa~. It follows from Lemma 1.1 that

(3.4)

where the sum in the parentheses order-converges in I(V), and that 

{1®f},1aasE is a family of matrix units in I(V)_??_B(K). Moreover if x or y 
is in I(V)_??_B(K), then xoy=(c®idB(K))(xy)=xy since cidB(K) is an 

(I(V)®B(K))-module homomorphism.
Since V®B(K)cV®B(K)cI(V)0B(K)=I(V®B(K)),V®B(K) is a 

C*-algebra if and only if it is a C*-subalgebra of I(V)_??_B(K). Noting 
V®fas=(1®faa)(V0B(K))(1®faa)=(1®faa)0(VOB(K))0(1®faa), we see the 
necessity of (ii) and that if V_??_B(K) is a C*-algebra, then V is a C*-algebra .

Necessity of (i): We need only show that V is _??_-additively complete . 

If {Xa}ai is a £2-family in V and ƒÀ•¸I is fixed, then s-Jaxa®f a~ exists in 

V_??_B(K) since the family (~a5I'xa®faa)*(~jael'xa®fa
~9)a5l'xaxa®fgpy 

with I'•¼I finite, is bounded. Hence by (3.4), (0-~
jaxaxa)®fj~=

(s-'axa®fap)*0(s-'axa®fa~)EV®B(K) and 0-JxaxaEV.

Sufficiency of (i): If V is an _??_-additively complete C*-algebra, then it 

is an _??_-additively closed C*-subalgebra of I(V). For x,yeV®B(K) we 

have 0Jxaryr~e V by Lemma 1.5 and xoy=s-~(0-~
rxaryrp)®faAe

V®B (K). Hence V_??_B(K) is a C*-algebra.

We show that if V_??_B(K) is a C*-algebra, then it is _??_-additively com

plete. If _??_=dim K is finite, we have nothing to prove. Hence suppose that _??_ 
is infinite. Then (V®B(K))B(K)=V®B(K®K)VOxB(K) is a C

*- algebra and from the foregoing V_??_B(K) is additively complete.
Sufficiency of (ii): If V is an additively complete C*-algebra, then as 

above (VOB(K))®B(K')=V-x0B(K®K') is a C*-algebra for each Hilbert 
space K' and so V_??_B(K) is additively complete.

If V is a monotone complete C*-algebra, then V_??_B(K) is monotone 

closed in I(V)_??_B(K), hence monotone complete. In fact, for a fixed oeI,

V®fapap is monotone closed in I(V)_??_B(K). If {xƒÁ•p is a bounded increasing 

net in (V0B(K))sa, then it has an order limit O-lim xƒÁ in I(V)_??_B(K). 

Since (1®fapa)xr(1®fpap)eV®fapap for all ƒ¿, ƒÀ, Lemma 1.2 implies that 

(1®fapa)®-limx7(1®fpap)=0-lim(1®fapa)xr(1®f)eV®fapap, hence that 

0-limxreVOB(K).

If V is a W*-algebra, then it is unitally completely order isomorphic to 

a W*-subalgebra V1 of B(H1) and V_??_B(K) is unitally completely order iso-
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morphic to the W*-tensor product V1_??_B(K).

(iii) Since F(V,M)=VOxB(K)(1B(H)0M=V0xB(K)f(1®M')', 
where primes denote commutants, _??_(V, M) is the intersection of V_??_B(K) 
and the fixed point algebra under the inner *-automorphisms x(1®u)oxo

(1®u*)=(1®u)x(1®u*) of I(V)_??_B(K) with u unitaries in M'. Hence the 
conclusion follows from (ii). q.e.d.

From the theorem and Lemma 2.3 we deduce the following:

COROLLARY 3.13 If dim K=_??_ and V•¼B (H) is an operator system which 

is an _??_-additively complete C*-algebra, then V_??_B(K) is a unique _??_-addi

tively complete C*-algebra B which has a family {ea}ra,pel of matrix units such 

that ea«Beaa is *-isomorphic to V and I=_??_.

We follow the line of argument similar to that of Theorem 3.14 to obtain:

PROPOSITION 3.14. Let V•¼W•¼B(H) be operator systems with W an _??_-

additively complete C*-algebra and dim K=_??_. Then V_??_B(K), canonically 

embedded in W_??_B(K), is a C*-subalgebra of W_??_B(K) if and only if V is an 

_??_-additively closed C*-subalgebra of W. In this case V_??_B(K) is also 

_??_- additively closed in W_??_B(K), and if in addition V is monotone closed in W, 

then V_??_B(K) is monotone closed in W_??_B(K).

COROLLARY 3.15. Let A be a C*-subalgebra of B(H). Then A_??_B(K) is 
a C*-subalgebra of B(H_??_K) for each Filbert space K if and only if A is a 
W*-subalgebra of B(H).

PROOF. By the proposition A_??_B(K) is a C*-subalgebra of B(H_??_K) 
for each Hibert space K if and only if A is additively closed in B(H). But 

the latter condition implies that A is an AW*-subalgebra of B(H), hence 
that it is a W*-subalgebra of B(H) by Pedersen [18]. q.e.d.

COROLLARY 3.16. Let V•¼W•¼B(H) be operator systems such that W is 

a monotone complete C*-algebra and V is its monotone closed C*-subalgebra 

and let M•¼N•¼B(K) be W*-subalgebras of B(K). Then _??_(M, V) is a mono

tone closed C*-subalgebra of _??_(N, W).

PROOF. Combine the proposition with Theorem 3.12 (iii). q.e.d.

Theorem 3.12 is generalized as follows:

PROPOSITION 3.17. Let V•¼B(H) be an operator system and M•¼B(K) a 

W*-subalgebra. Then _??_(V, M) is a monotone complete C*-algebra (resp. 

W*-algebra) if and only if V is a monotone complete C*-algebra (resp. W*-
algebra).
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PROOF. We need only show the necessity. If g is a normal state of M, 
then the map xi>Lg(x)®1 is a completely positive projection of _??_(V, M) 
onto V_??_1. Hence by Lemma 3.2 if _??_(V, M) is a monotone complete C*-
algebra, then V is also a monotone complete C*-algebra. Thus by Theorem 
3.12 (iii), V_??_1 is a monotone closed C*-subalgebra of _??_(V, M), so that if _??_

(V, M) is a W*-algebra, then V is a W*-algebra. q.e.d.

We close this section with a result on the associativity of the Fubini 

products, whose straightforward proof is left to the reader.

PROPOSITION 3.18. Let Vj•¼B(Hj), j=1, 2, 3, be operator systems. Then 

ff(''1,S(V2,V3))=F(F(V1,V2),V3).

•˜ 4. Monotone complete tensor products

Henceforth we are concerned with only monotone complete C*-algebras. 

For simplicity we regard them as C*-subalgebras, containing the unit, of 
some B(H). In this situation they are called monotone complete C*-sub
algebras of B(H).

DEFINITION 4.1. Given a monotone complete C*-subalgebra A of B(H) 

(resp. W*-subalgebra M of B(K)), the monotone complete tensor product of A 
and M, written A_??_M, is the monotone closure of A_??_M in the Fubini prod
uct _??_(A, M)(i.e., the smallest monotone closed C*-subalgebra, containing 
A_??-M, of _??_(A,M)).

The results in the preceding sections are summarized in the following:

THEOREM 4.2. Let A (resp. M) be a monotone complete C*-subalgebra of 

B(H)(resp. W*-subalgebra of B(K)).

(i) The monotone complete tensor product A_??_M does not depend on 

the underlying Hilbert spaces H and K. Namely if ƒÓ(resp. ƒµ) is a *-isomor

phism of A (resp. M) onto a monotone complete C*-subalgebra Al of B(H1)

(resp. W*-subalgebra M1 of B(K1)), then there is a unique *-isomorphism ~5Q

 of A_??_M onto A1_??_M1 which extends qCJi'.

(ii) The operation _??_ defined for each pair of a monotone complete C*-
algebra and a W*-algebra satisfies the following properties:

(a) A_??_M is a monotone complete C*-algebra which contains A_??_1 and 
1_??_M as monotone closed C*-subalgebras and is the monotone closure of 
A_??_M.

(b) If A (resp. M) is a monotone closed C*-subalgebra of a monotone 
complete C*-algebra B(resp. W*-subalgebra of a W*-algebra N), then A_??_M 
is the monotone closure of A_??_M in B_??_N.
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(c) A_??_M is a W *algebra if and only if A is a W*-algebra.
(iii) The operation _??_ is characterized uniquely by the properties (a) and 

(b).

PROOF. (i) and (ii) are immediate from the construction and Theorem 

3.12. 
N

(iii) Let an operation _??_ be defined for each pair of a monotone com

plete C*-algebra A and a W*-subalgebra M of B(K) and satisfy (a) and (b) 

with replaced by _??_. Then A_??_B (K) satisfies (a) with _??_ and M replaced 

by _??_ and B(K), so that Theorem 2.5 implies the existence of a *-isomorphism 

ƒÎ of A_??_B(K) onto A_??_B(K) which fixes A_??_B(K) elementwise. Moreover 

(b) shows that ir(ACx0M)=2r(m-c1A®B(K)A0M)=m-clA®B(K)7c(A0M)=AQM.
q.e.d.

In connection with the tensor product of normal completely positive 

maps, we obtain:

THEOREM 4.3. For j=1, 2 let Aj (resp. Mj) be a monotone complete C*
-subalgebra of B(Hj)(resp. W*-subalgebra of B(Kj)). If ¢:A1-A2 and fr:M1
-M2 are normal completely positive maps , then F(q,r):(A1,M1)F(A2,M2) 
is a normal completely positive map, and c®i=F(~b,`Y)IAl®M1 is a unique 
normal completely positive extension of ~50 such that (qQ'1Jr)(A10M1)c
A2oM2.

The proof follows from the following two lemmas. Noting that ƒµ is 

ƒÐ-weakly continuous, Lemma 3.9 (iii) shows the existence of the completely 

positive map F(~5,if/)(qO1dB(K2))o(IdB(H1)O)L~CA,,M1):F(A1,111)-`F(A2,M2).

LEMMA 4.4. The restriction (idB(H1)01I1)L~(A1,M1):(A1,M1)F(A1,M2) is 

normal.

PROOF. Take the injective envelope I(A1) of A1 so that A1•¼I(A1)•¼B(H1) 

and let ƒÎ be a completely positive projection of B(H1) onto I(A1). Then 

acOxidBcK2)IB(H1)®M; is a completely positive projection of B(H1)_??_Mj onto 

_??_(I(A1), Mj) and _??_(A1, Mj) is monotone closed in _??_(I(A1), Mj) (Corollary 

3.16). Hence the order limit of a net in _??_(A1, Mj) coincides with that calcu

lated in _??_(I(A1), Mj), so that Lemma 3.2 implies that for each bounded in

creasing net {xƒ¿} in _??-(A1, M1)s.a., ®-lim,(A1,M1)xa=O-lim,(I(A1),M1)xa=(l~idB(Kl))

(s-limB(H1)®M1xa), where 0-limaxa(resp.s-limaxa) means the order (resp. strong) 

limit in B. Similarly

®-hm~(A1,M2)(1dB(HilOj)(xa)=(2rO1dB(K2))(s-limB(H,)~M2(idB(H1)0~')(xa))•

Hence by. Lemma 3.9 (iii) and the ƒÐ-weak continuity of idB(H,)0j',
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q.e.d.

If we write as in Section 3, x=s-Jxa~0fa~eA10B(K2), where xa~eAl 

and {fƒ¿ƒÀ} is the family of matrix units in B(K2), then it is readily shown that 

for an increasing net {x},rxr/x(0) in A1_??_B(K2) if and only if (xr)a--~xa~(0) 

in Al for all ƒ¿, ƒÀ. From this fact, (3.1) and the normality of ƒÓ we conclude 

the following:

LEMMA 4.5. The map c5idB(K2):A10B(K2)-A2OxB(K2) is normal.

If we denote the restriction to A_??_M of the right (resp, left) slice map 

Rf(resp. Lg) on _??_(A, M), f•¸A* (resp, g•¸M*), again by Rf(resp. Lg) and we 

write fOxg="(f,g)IA©, then we can show the next result, whose almost 

obvious proof is omitted.

PROPOSITION 4.6. With notation as above {Rf:feA*}(resp.{Lg:geM*}) 

is a separating family of continuous linear maps from A_??_M into M (resp. A) 

which satisfies the following properties:

(i) Rf!AoM=fOidM and LgIAQM=idAGg, where (fOidM)(~a30b)=

f(a1)b~ and (1dAOg)Q~a~®b~)=g(b3)a2.

(ii) Rf((10b1)x(10b2))=b1Rf(x)b2 and L2((ai®1)x(a2®1))=aiLg(x)a2 for 

all xEA0M, a1, a2eA and b1, b2eM.

(iii) If g•¸M* is a state, then Lg is a unique normal completely positive 

extension of idA0g.

(iv) (f0g)(x)=g(R1(x))=f(Lg(x)) for all xeA0M.

PROPOSITION 4.7. Let A (resp. M) be a monotone complete C*-subalgebra 

of B(H) (resp. W*-subalgebra of B(K)) and G1 (resp. G2) a group of *-auto

morphisms of A (resp. M). Then the fixed point algebra _??_(A, M)G1•~G2 of 

_??_(A, M) under the *-automorphisms F(ir,p) with areG1 and pEG2 coincides 

with the Fubini product _??_(AG1, MG2) o f the fixed point algebras AG1 and MG2 

under G1 and G2 respectively.

PROOF. For an xeF(A,M) we have (iridB(K))(x)=x for all ~reG1 if 

and only if (idB(H)g)(x)EAGE for all geB(K)* since by (3.3), ro(idB(H)Og)(x)

=(idB(H)Oxg)°(2r0idB(K))(x). Similarly (idB(H)0p)(x)=x for all peG2 if and 

only if (fidB(K))(x)eMG2 for all fEB(H)* since by the ƒÐ-weak continuity of 

ƒÏ and Lemma 3.9 (iii), p°(f0idB(K))(x)=(fidB(K))°(idB(H)Cx0 p)(x). Hence 

(ir,p)(x)=(2r0idB(K))°(idB(H)0p)(x)=x for all rEG1 and peG2 if and only 

if (idB(H)fig)(x)EAG1 and (fQidB(K))(x)EMG2 for all feB(H)* and geB(K)*
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if and only ifxe(Ad1,M02) (Lemma 3.6 (ii)), q.e.d.

COROLLARY 4.8. Let A (resp. M) be a monotone complete C*-algebra (resp. 

W*-algebra) and A1(resp. M1) a C*-subalgebra of A (resp. M).

(i) (A10Ml)'flF(A,M)=F(A(1A,MlflM), where B'•¿C denotes the 

relative commutant of B in C.

(ii) If A and M are factors, then A_??_M and _??_(A, M) are factors.

PROOF. (i) Take as the above G1(resp. G2) the group of all inner *-auto
morphisms of A (resp. M) implemented by unitaries in A1(resp. M1).

(ii) Putting A1=A and M1=M in (i) we get ZjMC(A0M)'(1F(A,M)
=(ZA,ZM)=Cl®1 and similarly for Z_??_(A , M). q.e.d.

THEOREM 4.9. Let A be the injective envelope of a separable infinite 

dimensional simple C*-algebra and M the type II1 W*-factor generated by the 

left regular representation of the free group on two generators. Then A and 

A_??_M are non *-isomorphic ƒÐ-finite monotone complete non W*, AW*-factors 

of type III.

PROOF. By [11, Corollary 3.8], A is injective (hence monotone complete) 

ƒÐ-finite non W*, AW*-factor of type III with a faithful state
, say, f. Then it 

follows from Theorem 4.2 and Corollary 4.8 that A_??_M is a non W*, mono

tone complete AW*-factor. Moreover A_??_M is noninjective since the map 

x~--~1®Bf(x) is a completely positive projection of A_??_M onto 1_??_M and M 

is noninjective, so that it is not *-isomorphic to A. If g is a faithful normal 

state of M, the product functional f_??_g on A_??_M is also a faithful state 

(Lemma 3.9 (iii)). Hence A_??_M is ƒÐ-finite and is of type III by Wright [24, 

Corollary]. q.e.d.

The associativity for monotone complete tensor products is valid.

PROPOSITION 4.10. If A is a monotone complete C*-subalgebra of B(H) 
and M1, M2 are W*-subalgebras of B(K1), B(K2) respectively, then (A®M1)®M2
=A®(M1®M2)•

PROOF. Since (A0B(K1))®B(K2)=A®(B(K1)®B(K2)), it follows from 
the normality of the maps BxHx®1eB®N,NyHl®yeB®N with 
B a monotone complete C*-algebra and N a W*-algebra that the both sides 
in the above equality are the monotone closure of A_??_M1_??_M2 in 
A_??_B(K1)_??_B(K2). q.e.d.

COROLLARY 4.11. If A (resp. M) is a type I AW*-algebra (resp. type I 
W*-algebra), then A_??_M is a type I AW*-algebra.

PROOF. We may assume that A and M are homogeneous, i.e., A=
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ZA_??_B(H) and M=ZM_??_B(K) for some Hilbert spaces Hand K. Then ABM=

(ZAOxZM)OxB(H®K) and ZA_??_ZM, being the monotone closure of ZA_??_ZM, is 
a commutative AW*-algebra. q.e.d.

•˜ 5. Tensor products of *-automorphisms

A *-automorphism ƒÐ of a monotone complete C*-algebra A acts freely on 

A if xy=ƒÐ(y)x for all y•¸A with x•¸A implies x=0 (cf. Kallman [13]).

The following is an analogue of [13, Theorem 1.11] and Connes [6, Propo

sition 1.5.1].

PROPOSITION 5.1. Let A be a monotone complete C*-algebra and ƒÐ a 

*-automorphism of A
.

(i) There is the largest projection, written p(ƒÐ), in the set of all projec

tions e•¸A such that ƒÐ(e)=e and the restriction aIeAe is an inner *-automorphism 

of eAe. This p(a) belongs to the center of A.

(ii) The restriction aIp(6)A (resp, aI(1_p(a))A) is an inner (resp. freely acting) 
*-automorphism of p(ƒÐ)A (resp

. (1-p(ƒÐ))A) and this decomposition a=aP(Q)AQ

aI(1-p(a))A to inner and freely acting parts is unique.

(ii) follows from (i), and as observed by Connes [6], (i) is a consequence 

of [13, Lemma 1.9] and the following lemma.

LEMMA 5.2. With A and a as above let e be a projection of A, C(e) the 

central cover of e and let u•¸A be such that u*u=uu*=e and ƒÐ(x)=uxu* for 

all x•¸eAe. Then there is a unique ƒÒ•¸A such that v*v=vv*=C(e),a(x)=vxv* 

for all x•¸C(e)A and ve=ev=u.

PROOF. We may assume that C(e)=1. It follows readily from the com

parability theorem [2, p. 80, Corollary] that the maximal orthogonal family 

{ea}aPI of nonzero projections in A with ea^rfae (say, via a partial isometry 

ƒÒa) satisfies 0->ea=1. We may also assume that eao=vao=e for some caoEI. 

For each x•¸A we have

Lemma 1.5 implies the existence of 0-Ja(va)uva=vin A; hence a(x)=vxv* 

for all x•¸A and ev=a(vao)v=u=vvao=ve. Moreover if a(x)=vFxv* for all 

x•¸A and ev'=v'e=u, then v*v' is a unitary in the center of A and v*v'e=

u*u=e, so that v*U'ea=v*v'vaeva=vav*v'eva=vIXeva=ea for all ƒ¿. Hence v*v'

=1 and v'=v. q .e.d.

PROPOSITION 5.3. Let A (resp. M) be a monotone complete C*-algebra 

(resp. W*-algebra), ƒÎ(resp. ƒÏ) a*-automorphism of A (resp. M) and ƒÎ_??_ƒÏ the 

*-automorphism of A_??_M defined above .
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(i) ƒÎ_??_ƒÏ is freely acting if and only if either ƒÎ or ƒÏ is freely acting.

(ii) ƒÎ_??_ƒÏ is inner if and only if both ƒÎ and ƒÏ are inner.

PROOF. Let A1=p(7r)A,A2=(1p(7r))A,M1=p(p)M and M2=(1p(p))M; 

then AQM=~°A,OMk. Suppose that the sufficiency of (i) was proved. 

Then 7r®pIAi~M,Q+A2QMl$$A2©M2 is freely acting and 7r®pIA1~M1 is inner. Hence 

ƒÎ_??_ƒÏ is freely acting (resp, inner) if and only if p(7r)®p(p)=0(resp.=1®1) if 

and only if p(7r)=0orp(p)=0(resp.p(7r)=p(p)=1). So it suffices to prove the 

sufficiency of (i). Suppose that ƒÎ is freely acting and xy=(r0p)(y)x for all 

yeA0M. Then for each geM* and aeA we have Lg(x)a=Lg(x(a®1))=

Lg((7rp)(a®1)x)=Lg((7r(a)®1)x)=7r(a)Lg(x), so that Lg(x)=0 for all geM* 

and x=0. Thus ƒÎ_??_ƒÏ is freely acting, and if ƒÏ is freely acting, then a similar 

reasoning applies with Lg replaced by Rf, feA*, q.e.d.

•˜ 6. Applications

First we state a simple fact about the matrix representation of a mono
tone complete C*-algebra and determine the injective envelope (resp. regular 
monotone completion) of a hereditary C*-subalgebra of a C*-algebra.

For a monotone complete C*-algebra B and a Hilbert space K we may 
and shall identify B_x0B(K) with the set of all matrices [xa~]a,~EI over B such 
that 7=dim K and sup {Ij[xa]~a,pel,I(:I'dIfinite}<oo([xap]ei, being regarded 
as an element of B_??_Mn with n=I'), in which the involution and multiplica
tion are given by (2.1).

LEMMA 6.1. Let A be a monotone complete C*-algebra and e a projection 

of A with central cover C(e)=1. As in Lemma 5.2 take an orthogonal family 

{ea}aei of nonzero projections in A such that 0-~ea=1 and e«'fa~e (via a 

partial isometry ƒÒƒ¿) for all ƒ¿•¸I. Then putting a(x)=[vaxvfa,~9ei we obtain a 
*-isomorphism ƒÐ of A onto the reduced algebra E(eAe0B(K))E

, where K is 

the Hilbert space of dim K=I and E=diag(fƒ¿) is the projection of eAeB(K) 

whose matrix representation has fƒ¿ in the (ƒ¿, ƒ¿) position, ƒ¿•¸I, and zeros else

where.

PROOF. Clearly a is a *-homomorphism of A into eAe_??_B(K). If a(x)
=[vaxv~]a,sE=0, then eaxe~q=va(vaxv~)v~=0 for all a,~3e I; hence x=0. If 
[xaj]a,eIeE(eAe0B(K))E, then the existence of x=D->vaxa~v~ in A follows 
from Lemma 1.5. Moreover a(x)=[xap]a,er since vaxv~=faxfa~~=xa~. q.e.d. 

COROLLARY 6.2. Let A be a monotone complete C*-algebra, e a projection 
of A and C(e) the central cover of e. If eAe is injective, then C(e)A is injective.

PROOF, we have C(e)A~E(eAe0B(K))E and the right hand side is
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injective by Proposition 3.10. q.e.d.

PROPOSITION 6.3. For a C*-algebra A and a projection e of A we have 
I(eAe)=eI(A)e.

PROOF. Replacing A by its regular monotone completion A we may 

assume that A is a monotone complete C*-algebra. In fact, (eAe)-=eAe [11, 

Proposition 1.11] hence I(eAe)=I((eAe)-)=I(eAe) and eI(A)e=eI(A)e. We 

may also assume that C(e)=1 since I(C(e)A)=C(e)I(A) [11, Lemma 6.2]. 

(Note that, being ZA=ZI(A) [11, Theorem 6.3], the central covers of e as calcu

lated in A and I(A) coincide.) As in Lemma 6.1 take families {ea}aei, {fa}a€i, 

{va}aei in A and the *-isomorphism ƒÐ of I(A) onto E(eI(A)eOB(K))E with 

6(A)=E(eAe0B(K))E. Since eAe•¼eI(A)e and eI (A)e is injective, it suffices 

to show that a completely positive map c:eI (A)e->el(A)e with qIeAe=1deAe is 

necessarily idel(A)e. Then the completely positive map Jr=qSidB(K),E(eI(A)e®B(K))E 

satisfies 'tfr(E(eI(A)e_x0B(K))E)CE(eI(A)eQB(K))E and i/i0eIA=cIA. In fact, 

since EeeAe~B(K) and JIeAe~B(K)=ideAeQB(K), we have 'tji(ExE)=EiIi'(x)E for 

all xceI(A)eQB(K). Therefore 111=idE(eI(A)e®B(K))E and c=idel(A)e. q.e.d.

In the remainder of this section C*-algebras are not necessarily unital. 
Let A be a not necessarily unital C*-algebra. We write A1 for the unital 

C*-algebra obtained by adjoining a unit to A if A is nonunital and for A if 
A is unital. We define the regular monotone completion (resp. injective 
envelope) of A as that of A1 and denote it again by A (resp. I(A)).

Let H be the universal Hilbert space of A. Then the a-weak closure AƒÖ 

of A in B(H) is the enveloping von Neumann algebra A** of A and A1 is 

identified with A+C1 (1 denoting the unit of A**). If ƒÓ is a minimal A1-pro

jection on B(H) [9], then I(A) is identified with Im ƒÓ•½A equipped with the 

order, involution and norm induced by those of B(H) and the multiplication 

o given by xoy=c(xy). Moreover I(A)+IƒÓ is a C*-subalgebra of B(H) and 

c restricted to I(A)+IƒÓ is a *-homomorphism of I(A)+IƒÓ onto I(A) with 

kernel I~={xeB(H)~5(x*x)=~b(xx*)=0}. Note that I_(KerO)+since IƒÓ is 

a C*-subalgebra of B(H), hence that IƒÓ is the linear span of (Ker ƒÓ)+. We 

write (As.a,)m for the set of all elements xeAsa such that aƒ¿•ªx strongly in 

B(H) for some increasing net {aƒ¿} in As,a,. We say that a projection ee1(A) 

is open if aƒ¿•ªe(O) in I(A) for some increasing net {aƒ¿} in A+.

LEMMA 6.4. With notation as above we have (As ,a.)"`CI(A)+I,, and 

¢((As,a,)'")CAs,a.. Moreover ƒÓ maps the set of all open projections of A** onto 

that of I(A).

PROOF. If aƒ¿•ªx strongly in B(H) with {aƒ¿} an increasing net in As .a., 

then aƒ¿•ªƒÓ(x)(O) in I(A) and ƒÓ(x)•†x. Since ƒÓ(x)-x•†0 and ~iS(qS(x)-x)=0,
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we have x=fi(x)-(fi(x)-x)eI(A)+I,. Hence (As .a.)mCI(A)+I1 and ~5((AS.a.)m)

CAs .a.. If p is an open projection of A**, i.e., aƒ¿•ªp strongly for some in

creasing net {aƒ¿} in A+, then aƒ¿•ªƒÓ(p)(O) in I(A) and ƒÓ(p) is an open projec

tion of I(A). Conversely if e is an open projection of I(A), then aƒ¿•ªe(O) in 

I(A) with {aƒ¿} an increasing net in A+. Hence aa/a<e strongly for some 

a E(As,a.)m and ƒÓ(a)=e. The support projection p of a in A** is open [5, 2.2.9, 

2.2.12] and from the foregoing ƒÓ(p) is an open projection of I(A). Moreover 

e=ƒÓ(p) since a_<p<_e and so e=¢(a)_<<q5(p)<_q(e)=e. q.e.d.

THEOREM 6.5. Let A be a not necessarily unital C*-algebra and B its 

hereditary C*-subalgebra. Then there is a unique open protection p of A with 

aƒ¿•ªp(O) in A for some increasing net {aƒ¿} in B+ such that B=pApDB and 

I(B)=pI(A)p. In particular if B is a closed two-sided ideal of A, then p is a 

central projection of A.

PROOF. Since B is also a hereditary C*-subalgebra of A1, we may as

sume that A is unital. Let H and ƒÓ be as above. Then there is an open 

projection p' of A** such that Bw=p'A**p' and aƒ¿•ªp' strongly with {aƒ¿} an 

increasing net in B+. By Lemma 6.4, ƒÓ(p')=p, say, is an open projection of 

A and xop=~5(x~i5(p'))=c(xp')=fi(x)=x for all x•¸B. We show that pI(A)p=

I (B). Since B1^'B+CpCpl(A)p, we need only show that a completely 

positive map +:pI(A)p-*pI(A)p with rIB'=idBl is idpl(A) . For each x•¸pAp 

we have aaxaae B and aaxaa=+(aaxaa)=as+(x)aa since ƒµ is a B1-module 

homomorphism. It follows from aƒ¿•ªp(O) in I(A) that pxp=pƒµ(x)p (Lemma 

1.2) and x=ƒµ(x). Hence IpAp=1dPAp. Since A is a regular extension of A, for 

XEAs .a. we have x=sup1(00,x]A-sUPI(A)(00,x]A,pxp=supl(A)p(00,x]AP

 by [11, Lemma 1.9]; hence pxp<_+(pxp) since p(0,x]Ap=f'(p(-00,x]Ap)

<_+(pxp). Similarly the reverse inequality holds and lJt`PAP=idpAp. It 

follows from Proposition 6.3 that I(pAp)=pI(A)p=pl(A)p, hence that +=

idp7(A)p. Therefore I(B)=pI(A)p.

By definition B=m-cll(B)(B+Cp)=m-clp7(A)p(B+Cp)=m-clpAp(B+Cp)=

m-cl1(B+Cp)CpAp and by Lemma 2.4, m-c1ApAp=pAp. We have pApc

m-cl1(B+Cp. In fact, for each x•¸A+,

With ƒ¿ fixed Bs.a.(a/2x+i~)aa(a/2x+i')*/(a/2x+i~)p(a/2x+j')*(0) in A as ƒÀ•ª. 

Since m-c1A(B+Cp) is a C*-subalgebra of A [11, Lemma 1.4], we have 4aa~2xp

j=0ii(aa12x+ii)p(aIlx+h)*em-c1A(B+Cp) and pxaaxp=(aa~2xp)*(aitxp)e

m-c1A(B+Cp), so that m-cl1(B+Cp)pxaaxp/pxpxp(0)inA,(pxp)2=pxpxpe

m-clA(B+Cp) and pxp=[(pxp)2]1"2em-clA(B+Cp). Hence pApCm-c1A(B+Cp). 

Therefore pAp=m-clApApcm-clA(B+Cp)CpAp and B=pAp.
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If B is a closed two-sided ideal of A, then the above p'•¸(As.a.)m is a 

central projection of A**. Since cbII(A)+I is a *-homomorphism which fixes 

A elementwise, p=~S(p') commutes with A elementwise in I(A) and so be

longs to ZI(A)=ZA. q.e.d.

Now we concern ourselves with the regular monotone completion (resp. 
injective envelope) of a minimal C*-tensor product.

LEMMA 6.6. Let V•¼B(H) and W•¼B(K) be operator systems and I(V) the 

injective envelope of V with V•¼I(V)•¼B(H). Then the operator system I(V)_??_W 

is an essential extension of the operator system V_??_W in the sense of [10].

PROOF. We may and shall assume that I(V) is a C*-subalgebra of B(H). 

Then VOWCI(V)OWcI(V)OB(K) and I(V)_??_B(K) is injective. Hence 

for the proof we need only show that if 0:1(V)0W-~I(V)0B(K) is a com

pletely positive map with qIvow=idvow, then ƒÓ is a complete order injection. 

For each normal state g•¸B(K)* the map 1kg:1(V)®1-+I(V)®1 given by 

'Ilt
g(x)=Lg(~b(x))®1 is completely positive with Jrgw®1=idv®1 and so tg=idl(v)®1• 

Hence 0!Icv)®1=idl(v)®1. Since I(V)_??_B(K) is injective, ƒÓ extends to a com

pletely positive map ƒÓ: B(H)_??_B(K)I(V)_??_B(K) and ƒÓ fixes the C*-sub

algebra I(V)_??_1 elementwise. Thus for each a•¸I(V) and b•¸W we have 

(a®b)=c((a®1)(1®b))=(a®1)q(1®b)=a®b, so that cb=idl(v)oW as desired.

q.e.d.

THEOREM 6.7. For not necessarily unital C*-algebras A and B we have 
A®Bc(A®B)-=(A'FB') and I(A)®I(B)cI(A®B)=I(A'®B').

PROOF. Applying Lemma 6.6 twice, we see that I(A1)_??_I(B1) is an es

sential extension of A1_??_B1 and is contained in I(A1_??_B1) as a C*-subalgebra. 

Since A_??_B is a closed two-sided ideal of A1_??_B1, there is a central projec

tion h of (A1_??_B1)- such that (A®B)=h(A1®B1) and I(A®B)=hI(A1®B1) 

(Theorem 6.5). If 1A and 1B are units of A1 and B1 respectively, then aƒ¿•ª1A(O) 

in I(A) and bƒÀ•ª1B(O) in I(B) for some increasing nets {aƒ¿} in A+ and {bƒÀ} in 

B+ and 1A_??_1B is the unit of A1_??_B1. It follows from the normality of the 

maps 1(A)xHx®1BeI(A)®I(B)=I(A1)®I(B1)CI(A1®B1) and 1(B)yH

lA®yeI(A1®B1)thath>_as®bs/1A®1B(0) in I(A1®B1),h=1A®1B, hence 

that (A®B)=(A1®B1)andI(A®B)=I(A1®B1). Moreover A®1B=

(m-clI(Al)A1)®1B=m-cll(A1®Bl)Al®1BCm-cll(A1®Bl)A1®B1=(A1®B1)~ and simi

larly lA®BC(A1®B1)-. Hence A®BC(A1®B1)~. q.e.d.

THEOREM 6.8. Let V•¼B(H) (resp. W•¼B(K)) be an operator system and 

A (resp. B) its C*-envelope in the sense of [10]. Then the minimal C*-tensor 

product A_??_B is the C*-envelope of the operator system V_??_W.
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PROOF. By Lemma 6.6, I(V)_??_I(W) is contained in I(V_??_W) as a C*
-subalgebra. Since A (resp. B) is the C*-subalgebra of I(V) (resp. I(W)) 

generated by V (resp. W), the C*-envelope of V_??_W, which is the C*-sub
algebra of I(V_??_W) generated by V_??_W, coincides with A ® B C I(V)®1(W).

q.e.d.
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