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0. Introduction

0.0. Let g be a semisimple Lie algebra, U = U(g) its enveloping
algebra, Z = Z( U) the ring of Laplace operators, i.e. the centre of U.
Irreducible representations of g are naturally distinguished by eigen-
values of Laplace operators, i.e. by characters of Z. It often happens
that various properties of representations corresponding to different
characters are the same. For example, it is well known that the

decompositions of representations of the principal series of SL(2, R)
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at all integer points (i.e. points where a finite-dimensional subre-
presentation exists) have similar structures.

Statements of this kind may be proved by the following trick:

choose a finite dimensional g-module V and two characters 0, 0’ of Z,
i.e. two sets of eigenvalues of Laplace operators. For a g-module M
with eigenvalue 03B8 we construct a module M’ equal to the 0’-com-
ponent in the décomposition of the module V Q9 M with respect to the
eigenvalues of Laplace operators. It turns out that many properties of
M’ can be deduced from analogous properties of M. In particular, for
some pairs (0, 0’) we obtain a one-to-one correspondence between
two families of g-modules corresponding to 0 and 0’.

This approach proved useful in various problems of the theory of
infinite-dimensional représentations of semisimple Lie algebras (see
[1-8], [21-24]).
The aim of this article is to de scribe this method in the most general

situation possible.

0.1. Brief contents of this paper. Choose a finite-dimensional g-
module V. The map M H V0 M defines a functor on the category of
g-modules denoted by Fv. In §2 we study the relation between actions
of Laplace operators on M and on Fv(M). Namely, we define an
action of the algebra ZQ9 Z on FV(M) = VQ9 M via (Zl Q9 z2)
(v ~ m) = z1(v ~ z2m) for zi, z2 ~ Z, v E V, m E M. Theorem 2.5

describes the idéal of those éléments from Z ~ Z that act trivially on
all modules Fv(M). This theorem generalizes the Kostant theorem
from [8]; in fact, our proof repeats Kostant’s.
The module M is called Z-finite if dim Zm  00 f or any m E M.

Theorem 2.5 implies that the functor FV maps Z-finite modules into
Z-finite ones.

0.2. Generally, the functor Fv is indécomposable. However, its
restriction to the subcategory of Z-finite modules has a lot of direct
summands. For example, dénote the functor choosing the 03B8-com-

ponent of every Z-finite module by Pr(0) f or any character 0 of the
algebra Z. Then Fv = ~03B8,03B8’ Pr( 0) o Fv 0 Pr(03B8’).

Usually infinité dimensional g-modules were investigated only by
f unctors of the f orm Pr( (J) 0 FV Pr(03B8’). However, these f unctors are
often decomposable themselves. It is highly important that functors
Fv corresponding to différent modules V can have isomorphic direct
summands. Section 3 deals with the study of direct summands of
functors Fv on the category of Z-finite modules. We call thèse direct
summands projective functors.
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The main theorems of section 3 describe all projective functors
(Theorem 3.3) and their morphisms (Theorem 3.5). The proof of these
theorems is based on the following remarkable property of projective
functors. Let 0 be a character of Z and M(03B8) be the category of all

g-modules with eigenvalue 0. Then the restriction of any projective
functor F to M(03B8) is completely defined by the unique g-module
F(M~), where Mx is a Verma module with dominant weight X (see
[3]). In particular, direct summands of a functor F correspond to
those of the module F(M,).

0.3. In the following sections of the paper we gather the dividends.
In section 4 the f ollowing conséquences of the properties of pro-
jective functors are derived.

( 1 ) We prove that the f unctor Pr(03B8) FV Pr(03B8’) defines an

équivalence between the catégories M(03B8) and M(03B8’) for some pairs
(03B8, 03B8’) (Theorem 4.1). This result generalizes the results of Zuckerman
[1] (see also [22-24]).

(2) We establish a correspondence between two-sided ideals in the
enveloping algebra U(g) and submodules in Verma modules

(Theorem 4.3). (This has been obtained also by A. Joseph [26]). In
particular, we reaffirm a result of Duflo [9] on primitive ideals in U(g)
(Theorem 4.4).

(3) We study multiplicities in Jordan-Hölder séries of Verma

modules (see 4.5). In particular, we were able to compute these

multiplicities for the algebra 61(4) completely. (Jantzen [23, Sect. 5]
obtained more général results.)

0.4. In the second chapter (sections 5, 6) of this paper projective
functors are applied to the study of représentations of complex
semisimple Lie groups. The possibility of such application is based
on the following. Let Gc be a complex Lie group whose Lie algebra
(with a natural complex structure) coincides with g. To a Harish-
Chandra module M over Gc, we assign the functor in the category of
g-modules which is obtained by factoring a projective functor. Using
the description of indécomposable projective functors, we give a
classification of irreducible Harish-Chandra modules of the group Gc
(Theorem 5.6). Note that the classification of irreducible Harish-
Chandra modules of complex semisimple Lie groups was obtained by
Zhelobenko [10] (see also [11]) by analytical methods (theory of
intertwining operators). Our methods are purely algebraic.

Further, we give a more detailed description of Harish-Chandra
modules. Namely, we define an équivalence between the category of
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Harish-Chandra modules of the group Gc with given eigenvalues of
Laplace operators and a category of modules that can be described in
a sufficiently simple way (namely, a part of the category 0; see

Theorem 5.9).
In section 6 we show that with respect to this equivalence

representations of the principal series of the group Gc correspond to
dual modules of Verma modules.

This implies that multiplicities in the Jordan-Hôlder series of

representations of the principal series of a complex group Gc coincide
with multiplicities in the Jordan-Hôlder series of Verma modules over
g (Theorem 6.7). Note that the relation between representations of
complex groups and Verma modules was found by Duflo [9] and
Duflo-Conze-Berline [12]. In particular, studying representations of
the principal series we in fact reproduce results from [12], while
Theorem 6.7 sharpens proposition 4 in [9] (see also [25, 26]).

0.5. In section 1 for the reader’s convenience we have accumulated

all necessary facts of algebraic nature. This includes some infor-

mation on Abelian categories, on geometry of the weight space of
semisimple Lie algebras g, and some general results on g-modules. In
particular, we provide a detailed description of properties of the
category 0 and of Verma modules. At the same time we introduce
the necessary notations.

The paper has two appendices. The first gives the proof of one of
the lemmas from section 1 that we could not find in the literature.

In appendix 2 we describe the relations between our notations for
complex Lie groups and the standard ones.

1. Notations and preliminaries

1.1. Algebras and modules
In the sequel an algebraically closed field k of a characteristic 0 is

fixed. All vector spaces, algebras and so on are defined over k ; we
shall usually write 0, dim instead of (Dk, dimk.
An algebra is an associative k-algebra with unit, a module is a left

unitary module. Denote by A° the dual algebra of A.
Let M be an A-module, B a subalgebra of A. For an ideal J in B

put JM = {03A3 j03B1m03B1|ja E J, ma E M} and MIJ = M/JM.
An element of m E M is called B-finite if dim Bm  00. The module

M is called B-finite if all its elements are B-finite.
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1.2. Category theory
We shall widely use the language of category theory, all the

necessary facts and notions being contained in books by Bass [13, ch.
I, II], or Mitchell [14], or MacLane [15].
We shall consider Abelian k-categories (see [13, II, 2]) and denote

them by script capitals A, JK, C, 7le. All functors are assumed to be

k-linear and additive. For any algebra A denote by A-mod the

category of A-modules. Denote by Hom(F, G) the space of mor-

phisms of F into G for any two functors F, G.
Let 7le c H be a complete subcategory. It is clear that W is Abelian,

if  contains subquotients (i.e. if 7le contains with any object, all its
subquotients). Otherwise this has to be proved separately.
Let A be category, e some class of objects in A closed with

respect to finite direct sums. An object A e sî is called -generated
(respectively -presentable) if there is an exact sequence P ~ A ~ 0
(respectively P’ ~ P ~ A ~ 0), where P, P’ ~ . Denote by A a

complete subcategory of d consisting of p-presentable objects.
We say that .91 contains enough projective (respectively enough

injective) objects if any object of A is a quotient of a projective
object (respectively a subobject of an injective object).
Suppose that the functor F : A ~ B is left adjoint to the functor

G : B ~ A, i.e. there is given a bifunctor isomorphism

(see [13, 1, 7]). Then the f ollowing statements are valid:
(a) F is right exact and commutes with inductive limits and G is

left exact and commutes with projective limits (see [13, 1, 7]).
(b) If the f unctor G is exact, then F transf orms pro jective objects

into projective ones ; conversely, if A has enough projective objects
and F transforms them into projective ones, then the functor G is
exact.

In fact, if P is a projective object of d and B’ ~ B ~ B" is an exact
séquence in 00, then

Hom.S2t(P, G(B’) ~ G(B) ~ G(B")) ~ HomB(F(P), B’ ~ B ~ B")

are exact simultaneously (see [14, V, 7]).
(c) If F’ is a direct summand of the functor F, then there is a direct

summand G’ of the functor G, such that F’ is left adjoint to G’; any
direct summand G’ of a functor G is obtained by such a construction.

In fact, direct summands of F are described by idempotents in
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Hom(F, F). Let p : F ~ F be an idempotent. Let us consider a

bifunctor

and define an idempotent p in the algebra End H(A, B) by the

formula p(~) = ~pA, where cp, p(~)~Jp,)FA. B) and PA is an

idempotent in Hom(FA, FA). Let us prove that any idempotent
q E End H(A, B) is defined in this way. In fact, for a given A we
obtain an idempotent in the algebra of endomorphisms on the functor
B  Hom(FA, B). As is shown in [ 13, ch. II] to this idempotent there
corresponds an idempotent pA:FA-FA. The set of idempotents
{pA, A E sil defines the idempotent p.

Similarly, we prove that idempotents in End H correspond bijec-
tively to idempotents in End G.
Hence direct decompositions of the form F = F’ ~ F" correspond

bijectively to decompositions G = G’ ~ G", and the functors F’ and
G’ are conjugate.

1.3. Bimodules and functors
Let A, B be two algebras. Modules X over A Q9 BO will be called

(A, B)-bimodule. We shall consider X as the left A-module and as the
right B-module; if a E A, b E B, x E X then (aQ9 b)x = axb.
To each (A, B)-bimodule X assign a functor h(X) : B-mod ~ A-mod

via h(X)(M) = X~B M.
If the functor is right exact and commutes with inductive limits it

will be called right continuous.

PROPOSITION (see [13, II, 2]): (i) The functor h(X) is right con-
tinuous.

(ii) If Y is an (A, B)-bimodule, then

(iii) Let F : B-mod ~ A-mod be a right continuous functor. Suppose
X = F(B) E A-mod and define the right B-module structure on X via
rx(b) = F(rB(b)), where rx(b) and rB(b) are the right multiplication
morphisms by elements b E B in X and in B respectively. Then the
functor F is naturally isomorphic to the functor h(X).

Usually the algebras A and B coincide. To emphasize their
different roles we will write A~ and A’ for A and B. Similarly the
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superscripts e and r will be used for other objects, for example, if J
is an ideal in A, then J" and Jr are the appropriate ideals in A’ and
A’. The notion A2 stands for the algebra A 0 AO.

1.4. Lie algebras, weights and roots
In the sequel we fix a semisimple Lie algebra g and its Cartan

subalgebra b.
We shall use the f ollowing notations (cf. [16], [17]):
U = U(g) - the enveloping algebra of g.
b*-the dual space to b; elements of b* are called weights.
R C b* - the system of roots in g with respect to b.
If y E R, then hy G t) is the dual root and ay is the reflection

corresponding to the root y.

W - the Weyl group, i.e. the group generated by cry.

- the lattice of integer weights in b*.
T C A - the lattice generated by R.
For a weight X, define a subset R~ C Rand subgroups Wx, W~+0393 in

W via

If ~ - 03C8 E A, then R. - R,; Wx+r = W03C8+0393. If Wx = {e}, then the
weight X is called regular. Put

Define a W-action on 039E0 by the formula w(03C8, X) = (w03C8, wX). Denote
by 3 a quotient space with respect to this action.

1.5. A partial ordering in fj*
Fix a system of positive roots R+ ~ R and denote by n+ the

corresponding nilpotent subalgebra in g. Put
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y

If X, Ji E h*, y E R+ we write tp X, whenever t/J = 03C303B3~, X(hy) E Z. We
write 03C8~ whenever there exists sequences of weights
03C80, 03C81, ..., 03C8n ~ b* and of roots 03B31, ..., yn ~ R+ such that 03C8 = 03C80 03C81 qio, tpi, tp,, and of roots y, ..., 03B3n E R such that il 1,. 1,1
··· 03C8n = X. The relation  defines a partial ordering on b.
The weight X is called dominant if it is maximal with respect to the

ordering , i.e. ~(h03B3) ~ {-1, -2,...} for any y E R+.
Call weights y and 0 equivalent, and write x -- 03C8, if W(~) = W(03C8)

and ~+0393=03C8+0393.
The conditions x - y and ip E W~+0393(~) are equivalent. It is clear

that if tp  ~, then Ji - X. Conversely, the following lemma shows that
if tp - x, there is a weight cp such that X  cp and Ji  ç.

LEMMA: Let X be a weight. Then
(i) R~ is a root system, Wx+r is its Weyl group. In particular, Wx+r is

generated by reflections.
(ii) There are weights Xmax and ~min in the set Wx+r(X) such that

~min  03C8  Xmax for any 03C8 E W~+0393(~)·
(iii) Let X be a dominant weight. Suppose that there are given

weights 03C8 = ~ + 03BB, ~ = ~ + 03BC, where À, ju E  such that cp  Ji. Then
|03BC| ~ |03BB|; if |03BC| = |03BB| there is an element w E Wx such that li = WÀ,
ço = w03C8.

(In (iii) |03BB| stands for the length of the weight 03BB with respect to a
W-invariant inner product on ).
The proof of this Lemma is in Appendix 1.

1.6. The Harish-Chandra theorem

Let Z be the centre of the algebra U, 0 the set of characters of Z,
i.e. the set of homomorphisms 03B8 : Z ~ k. If 0 E 0398, then Jo = Ker B is a
maximal ideal in Z.

Denote by S(b) the symmetric algebra of the space fj. We shall
consider elements P E S(b) as polynomial functions on b* (if P E
S(b), ~ E b* then P(~) is the value of P at the point X).
Denote by ~* the Harish-Chandra homomorphism ~* : Z ~ S(b)

(cf. [16, 7.4]). It is known that q* defines an isomorphism of Z onto
the subalgebra S(b)W consisting of W-invariant elements ([16, 7.4.5]).
Denote by q the corresponding map q : b* ~ 0398, q(x)(z) = ~*(z)(~) for
z E Z.

THEOREM: ~ is an epimorphism and ~-1~(~) = W(x) for any
~~b*.

The proof is in [16].
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1.7. The Kostant theorem

Consider the adjoint action of the Lie algebra g on U (defined via
ad X(u) = Xu - uX, for X E g, u~U) and denote by Uad this g-
module. For any finite dimensional g-module L we endow the space
Homg(L, Uad) with the Z module structure via (z~)(~) = z~(~), where
z E Z, ~ E Homq(L, uad), tEL.

THEOREM (Kostant [18]): Homq(L, Uad) is a free Z-module, its rank
equals the multiplicity of the zero weight in L.

1.8. Categories of U-modules
In the sequel denote by « the category of all U-modules. Consider

the following complete subcategories of JK.
Mf - the category of finitely generated modules.

MZf - the category of Z-finite modules.

Let 03B8 E 0. Put

It is clear that «(0) C M2(03B8) ~··· C .Jioo( 8). All these subcategories
are closed with respect to subquotients (Mf is closed because U is

Noetherian, see [16]).
Put 0 = 0 Uo = U103B8. We shall often identity the category

Mn(03B8) with U é -mod.
It is easy to check that each module M ~ MZf can be uniquely

represented in the form M (D Me, where Mo E M~(03B8). Therefore MZf
is a product of categories M~(03B8), when 03B8 ranges over 0. Denote by
Pr(03B8) the corresponding projection functor MZf~M~(03B8), M M· Mo.

1.9. The category C and Verma modules
A module M ~ M is an O-module, if it is finitely generated, b-

diagonisable and U(n+)-finite (see 1.1). Denote by Ù a complete
subcategory in JK consisting of O-modules.
For any weight X E b*, define a Verma module Mx ~ M via Mx =

U/ U(Ix-p + n), where I~-03C1 is the ideal in U(b) generated by h -
(X - p)(h) for h EE b. We recall general properties of the category C
and Verma modules (see [16], [19]).



254

(a) Let M ~ O, 03C8 ~ b*. Then the subspace MO C M consisting of
vectors of weight t/1 is finite-dimensional. Put P(M) =
{03C8 ~ b* | M03C8 ~ 01. There are weights 03C81,..., t/1n E fj* such that P(M) C
U, i (t/1i - 0393+). In particular, if M ~ 0, then there is a maximal weight y
in P(M) (i.e. a weight X such that (x + r+) ~ P(M) = X).
(b) 0 C MZf.
(c) M~ G 6 for any weight t/1 E fj*. Besides, Endq(M~) = k and the

natural homomorphism Z ~ Endq(M~) coincides with the character
0 = q((X). In particular, Mx E ae(8) = Uo-mod.

(d) Each module M~ has the unique simple quotient L~ ; L03C8 ~ JL for
03C8~ ~ and the modules L,, ~ ~ b* exhaust all simple modules in C.

Any simple g-module containing a vector f of the weight y such that
tt+f = 0, is isomorphic to L,+P. In particular, if À E  is a dominant

weight, then L,+p is a finite dimensional g-module with the highest
weight À.

(e) If M, M’ E 0, then dim Hom u(M, M’)  00. Each module M E C

is of finite length; we denote by JH(M) the multiset of factors of
Jordan-Hölder series of a module M.

(f) Let V be a finite dimensional g-module, 03BC1,..., 03BCn a multiset of
weights of the space V (i.e. there is a basis v1,..., vn of the module V
such that the weight of the vector vi equals /Li). Then the module

V Q9 Mx has a filtration such that its quotients coincide with the
multiset of modules M~+03BCi, i = 1, 2,..., n.

1.10. Involution in the category C
Fix an anti-automorphism t : g ~ g, X ~ tX, such that t2 = id and

t(h) = h for any h ~ b.
Let M e C. Define a g-action on M* by (Xm*)(m) = m*eXm),

where X E g, m * E M*, m E M. Denote by MT the g-submodule in
M* consisting of all b-finite vectors.

(a) (M03C4)03C8 = (Mc/J)* (see 1.8.a)). In particular, dim(M03C4)03C8  00, (MT)T =
M and T is an exact (contravariant) functor.

(b) If X E b*, then (Lx)" - L~. In particular, if ME (J then MT ~ O
and JH(MT ) = JH(M).

Statement (b) easily follows from the irreducibility of the module
L’ in view of (a) and P(L03C4~) = P(L~).

1.11. Projective objects in the category C and multiplicities in Verma
modules (see [19])

(a) In the category 0, there are enough projective objects (see 1.2).
(b) For any weight y there is a unique indecomposable projective

object P~ in 6 such that Hom(Px, Lx) 0 0. We have
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dim Hom(P~, M) = [M : L~] for any M E (J (here [M : L~] is the

multiplicity of L,, in JH(M)).
(c) Put d,,,,, = [M~ : L,] = dim Hom(P03C8, M~). Then dx,’" &#x3E; 0 iff

Hom(M03C8, M~) ~ 0, iff X &#x3E; 03C8. Besides, d~,~ = 1.
(d) Each module P03C8 admits a filtration, the corresponding quotients

being isomorphic to the modules M,. The multiplicity of M~ in this
filtration equals

Let S be an équivalence class of weights (see 1.5). Dénote by Os
the complète subcategory in 0 consisting of modules M such that
P(M) C UxEs (X - P - 0393+) and M E M~(03B8), where 8 = ~(~) for X E S.
From (a), (b), (c) we deduce that the decomposition b* = U Sa into
équivalence classes corresponds to a decomposition O=~03B1OSn,
where OSa are no longer decomposable.

If S C b* is the union of équivalence classes of weights, put
Os = ffia OSa’ Sa C S.

1.12. The Grothendieck group of the category 0
Dénote by K(O) the Grothendieck group of the category (9. Let

M E 0; dénote by [M] the corresponding élément of K(O). We have
[M] = 03A303C8 [M : L03C8][L03C8].

Put 6,, = [M~]. Using 1.11(c), it is easy to check that elements 8x,
X E b* form a free basis of K(O).
The f ollowing properties of 8x’s hold
(a) If V is a finite dimensional g-module, 03BC1,..., iln is a multiset of

weights of V, then

(b) [P03C8] = 03A3~&#x3E;03C8 dx,,,,5x (see 1. 1 1(d».
(c) Let us define an inner product {·,·} on K(O) by formulas

{03B4~, 03B403C8} = 0 for X 0 Ji and {03B4~, 03B4~} = 1. If P is a projective object in O
and M E O, then {[P], [M]} = dim Hom(P, M).

In fact, it suffices to check this when P = P03C8 and M = Mx ; but then
both the left-hand side and the right-hand side equal dx,’" (see 1.11(b),
(c), (d)).

Define a W-action on K(O) by w03B4~ = 5wx for w E W, X E b*. This
action preserves the inner product {·, ·}.

(d) The Weyl character formula. If LA is a finite dimensional
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module, i.e. k - p E ll is a dominant weight, then

1.13. Theorems on annulators

(a) Let u E U, u ~ 0. Then there is a A E A, such that LA is a finite
dimensional module and uLA 0 0.

For any positive n one can choose 03BB so that 03BB(h03B3) &#x3E; n for any

e R+ (see [20]).
(b) (The Duflo Theorem [9]). Let X be a weight, 03B8 = q((X), u G Uo

(see 1.8). Suppose that u ~ 0. Then uM~ ~ 0.

1.14. Let V be finite dimensional g-module, P(V) ~  the set of its
weights. This set is W-invariant.

For any irreducible module V with highest weight A the weights
belonging to the set WA are called extremal weights. If JL E P( V),
then |03BC| ~ |03BB|. Moreover, if |03BC| = |03BB|, then li is an extremal weight.
Besides, P( V) C ~w~W w(03BB - 0393+).
Denote by Fv the functor FV : M ~ M, M  V ~ M (see 2.1),

denote by Ov the ( U, U)-bimodule VQ9 U (see 2.2).

I. PROJECTIVE FUNCTORS

2. The Kostant theorem

2.1. The functors Fv
Let V be a finite dimensional g-module. For any g-module M,

define a g-module structure on Vo M via X(v~m) =
Xu0 m + v Q9 Xm, for v e V, m E M. The correspondence
M - V0 M defines the functor Fv : U-mod ~ U-mod. The main point
of this paper is the description of such functors and their relations
with Laplace operators (i.e. elements z E Z).

Let us ennumerate the simplest properties of the functors Fv.
(a) The functor Fv is exact and commutes with (infinite) direct

sums and products.
(b) To each g-morphism ~ : V1 ~ V2 there corresponds the mor-

phism of functors FV1 ~ FV2. If V = k is the trivial one-dimensional

g-module, then the functor Fv is naturally isomorphic to the identity
functor IdM in M = U-mod.

(c) The composition of functors Fv. - FV2 is naturally isomorphic to
the functor fV1~ V2.
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(d) If V* is the g-module dual to V, then the functor FV* is both

right and left adjoint to the functor Fv (to the morphism ~ : M ~
V ~ M corresponds the morphism ~’ : V* ~ M ~ N defined by the
formula ~’(v* ~ m) = 03A3~v*, vi~ni where ~(m) = 03A3 vi~ni. The

isomorphism Hom( V ~ M, N) = Hom(M, V* ~ N) is verified

similarly, V being replaced by V* and V* by V.

2.2. Define a ( U, U)-bimodule structure on the space Ov = V0 U
by

where X E g, v E V, u E U. It is easy to see that the functor

h (0v): M ~ « (M - 03A6V~UM, see 1.3) is naturally isomorphic to the
functor Fv.

For any ( U, U)-bimodule Y define the adjoint action, ad, of the Lie
algebra g on Y by the formula ad X(y) = Xy - yX, X E g, yey.
Denote by Yad this g-module.

LEMMA: (i) There is a natural isomorphism

PROOF: (i) To each U2-module morphism (see 1.3) ~ : 03A6V ~ Y
there corresponds the morphism 03C8 : V ~ Yad, 03C8(v) = ~(v ~ 1). Con-
versely, from 03C8 we recover the morphism ~ via cp(v (g) u) = fjJ(v)u.
Clearly this correspondence defines the required isomorphism.

(ii) Since V U = Ov, it suffices to verify that UV is invariant with
respect to the right action of g. This follows from the formula

2.3. COROLLARY : (i) Fv(,«f) ~ Mf, FV(O) C (j.
(ii) In the categories Al, Alf and 0, the functors Fv transforms

projective objects into projective ones.

PROOF: (i) Lemma 2.2(ii) implies that the f unctor Fv is exact and
Fv(U) = 03A6V E Alf so FV(Mf) C Alf.
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If ME (9 then Fv(M) = VQ9 M is b-diagonisable and U(n+)-finite
because V E 0; also, as Fv(M) ~ Mf, we have Fv(M) E O.

(iii) follows from (i), 2.1 (a), (b) and 1.2.

2.4. Action of Laplace operators on the functors Fv
Let M E.J1. There is a relation between the Z-action on Fv(M) (see

1.6) and the Z-action on M. The Kostant theorem describes this

relation. Define a Z2-action on the functor FV (i.e. a homomorphism
Z2 ~ EndFunct(FV)). For z=’LafQ9b’iEZ2 and af,b’iEZ define the
Z2-action on Fv(M), when ME.J1 by putting z(v~m) =
X ai(vi~ bim), where v E V, m E M.
The functor FV was identified with the ( U, U)-bimodule Ov (see 1.3

and 2.2). The Z2-action described above coincides with the natural
action of the subalgebra Z2 C U2 on U2-module Ov. Denote by Iv the
kernel of this action, 7y = f z E Z2|z(VQ9 M) = 0 for any M E M}.
For an explicit description of the ideal Iv C Z2, let us consider Z2 as

a subalgebra of S(b~ b), polynomial functions depending on the pair
03C8, ~~b*.
Consider the embedding

It is clear that the image of Z2 consists exactly of polynomial
functions Q(03C8, ~) that are W-invariant in each variable (see 1.6).

2.5. THEOREM: Let z ~ Z2, Q(z) = (~*~~*)(z)~S(b~b). Then

the following conditions are equivalent:
(i) z E Iv.
(ii) Q(X + 03BC, X) ~ 0 for an y weight u E P(V) (see 1.14).
This theorem is a refinement of the Kostant theorem [8]. Our proof,

in fact, repeats that of Kostant.

PROOF: (a) A weight À E  is called n-dominant, n E N, if 03BB(h03B3) &#x3E; n
for any y E R+. One can choose a positive integer n = n(V), such that
for any n-dominant weight À

where 03BC1,..., gk is the multiset of weights of V.
In fact, since the functor Fv is exact and preserves the category (j,

the map [M] ~ [FV(M)] can be extended to a homomorphism K(O) ~
K(O). In K(O) the following equality, due to 1.12, holds:
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if all weights À + JLi - p are dominant.
Since both modules are finite dimensional, hence completely

reducible, they are isomorphic.
(b) Consider the action of an element z E Z2 on V Q9 LA (D L03BB+03BCi.

The definition of the action of z and 1.9(c), (d) imply that z multiplies
each component L03BB+03BCi by a scalar equal to Q(03BB + 03BCi, 03BB).

(c) Let z Ei Iv. Then z(V ~ L03BB) = 0, i.e. Q(03BB + 03BC, 03BB) = 0, for any

p, E P(V). Thus, the polynomial function Q03BC(~) = Q(~ + g, X)
vanishes on every n-dominant weight À. Since such weights are dense
in b* in the Zariski topology, we have Q03BC(~) ~ 0.

(d) (ii) ~ (i). Let Q satisf y condition (ii). Then Q(03BB + JL, À) = 0 for
any li E P(V), hence z(V~L03BB) = 0 for all n-dominant weights À.
Let vl, ..., v" be a basis of V. Consider the action of z on VQ9 U

and define elements uii E U by z(vj~1) = 03A3ni=1 vi~ uij. Evidently, the
action of z on V0 M for any g-module M is defined by

Therefore the condition z(Vo Lk) = 0 means that uijLÀ = 0 for any
i, j. Since this is true for any n-dominant weight, 1.13(a) implies that
uii = 0 for any i and j.
Thus z(V0 M) = 0 for any g-module M, i.e. z E Iv.

2.6. COROLLARY: (i) Z2/Iv is finitely generated Zr-module.
(ii) FV(MZf) C MZf (see 1.8).

PROOF: (i) Put A = S(b), B = S(b)W,

J is an ideal in A2, Jv = J fl B2 is an ideal in B2. It is necessary to
verify that B2/JV is a finitely generated Br-module.

Since W is a finite group, A is a finitely generated B-module.
Define a Br-module homomorphism i : B2/JV ~ ~03BC~P(V) A via i(Q) =
i03BC(Q), where i03BC(Q)(~) = Q(X + 03BC, X). It is easy to check that i is

well-defined and is an embedding. Since ~03BC~P(V) A is a finitely
generated B-module and B is Nôetherian, the algebra B2/Jv is finitely
generated over Br.
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(ii) If J is an ideal in Z of finite codimension then by (i) the algebra
Z2/(JV + Z~~J) is finite dimensional, hence the ideal J’ =

f z E Z|z~ 1 E (Jv + Z~~J)} has finite codimension in Z. If M is a
g-module such that JM = 0, it is clear that J’(V(g)M)=0, i.e.

V ~ M ~ MZf. Since the functor FV commutes with inductive limits,
FV(MZf) C MZf.
Using Theorem 2.5, it is not difficult to prove the following state-

ment that strengthens Corollary 2.6(ii).
Let X be a weight, 0 = ~(~), 8p. = ~(~ + 03BC). Then FV(M~(03B8)) C

03A003BC~P(V) M~(03B803BC) (see 1.8).
We omit the proof of this statement here, since as in section 3 we

shall obtain stronger results.

3. Decomposition of the functors F v

3.1. Projective functors
Let V be a finite dimensional g-module. Then the functor Fv

preserves the subcategory «zf ~ M consisting of Z-finite modules
(See 2.6). Denote by FV|MZf the restriction of Fv to MZf.
The functor FV|MZf has a lot of direct summands. An example is an

identity functor Id : M ~ M (corresponding to V = k) which is in-

decomposable, while its restriction to «zf decomposes into the direct
sum ~03B8~0398 Pr(03B8) (see 1.8). The aim of this section is to give sufficiently
explicit description of indecomposable components of functors FV|MZf.

DEFINITION: The functor F : MZf ~ MZf is called projective if it is

isomorphic to a direct summand of the functor FV|MZf for a finite
dimensional g-module V.

The meaning of the term projective will be clear from section 5.
We show that each projective functor decomposes into direct sum

of indecomposable functors and describe all indecomposable pro-
jective functors (Theorem 3.3).

3.2. Let us list the simplest properties of projective functors.

LEMMA: Let F, G be projective functors. Then
(i) The functor F is exact and preserves direct sums and products.

Di’rect summands of F are projective.
(ii) Functors F~ G and F 0 G are projective.
(iii) We have a natural isomorphism of functors F =
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~03B8,03B8’ Pr(03B8’)  F Pr(03B8) where 0, 0’ E 0 (see 1.8) and all the functors
Pr(03B8’) F 0 Pr(03B8) are projective.

(iv) The functor F preserves 0 and transforms projective objects of
(j into projective ones.

(v) There is a projective functor F’ left adjoint to the functor F.
(Similarly there is a projective functor F" right adjoint to the functor
F).

Proof follows from 2.1, 2.2, 1.8, and 1.3(c).

3.3. Basic theorems on projective functors
Section 3 deals with the classification of projective functors. In

subsections 3.3-3.5 we give formulations of the main theorems. The
other subsections deal with the proofs of these theorems.

Put 30 = {(03C8, X) 03C8, X E b*, .p - X E }. Define a W-action on 30 via
w(03C8, x) = (w03C8, wX) and denote by 3 the quotient set with respect to
this action. Each element e E 3 can be written as a pair (03C8, X). The
pair (ip, X) is called a proper notation for e if X is a dominant weight
and  W~(03C8), i.e. 03C8  w.p for any w E Wx. It is clear that each

element e E 3 can be written properly.
Put ~r(03C8, ~) = ~(~) for any (03C8, ~) E 039E0. Evidently l7r is the map

~r : 039E ~ 0398.

THEOREM: (i) Each projective functor decomposes into a direct
sum of indecomposable projective functors.

(ii) For each element 03BE ~ 039E there is indecomposable projective
functor Fe, a unique up to isomorphism, such that

(a) F03BE(M~) = 0 if ~r(03BE) ~ ~(~), ~ ~ b*.
(b) If e is written properly, 03BE = (03C8, X), then Fe(Mx) = P03C8 (see 1. 11).
The map e - Fe defines a bijection of 3 with the set of isomorphism

classes of indecomposable projective functors.

3.4. Assign to each projective functor F an endomorphism FK of
the group K(O) (see 1.12) via FK([M]) = [FM], M E O. The FK are
well-defined, because F«(j) ~ O and F is exact (see 3.1).
For example, (FV)K(03B4~) = 03A3 03B4~+03BCi, where 03BC1,..., 03BCn is the multiset of

weights of V (see 1.9f); Pr(03B8)K(03B4~) = 03B4~ for ~(~) = 03B8 and

(Pr(03B8))K(03B4~) = 0 for ~(~) ~ 0 (see 1.9(c)).

THEOREM: Let F, G be projective functors. Then
(i) If FK = GK, then F is isomorphic to G.
(ii) (PE9 G)K = pK E9 GK, (F 0 G)K = FK 0 GK.
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(iii) If the functor F is left adjoint to the functor G, then the
operators FK and GK are conjugate with respect to the inner product
.1 in K(O) (see 1.12).

(iv) The operator FK commutes with W-action (see 1.12).

If e E S, then by this theorem we can explicitly define the operator
FK03BE corresponding to the indecomposable functor Fe. Namely, sup-
pose 03BE = (03C8, ~) is written properly. Then FK03BE(03B4~) = 0 if ~~ W(X) and
FK03BE(03B4w~) = 03A3~&#x3E;03C8 d~,03C803B4w~ (see 1.12).

Thus, all constants d~,03C8 being known, we can define the decom-
position of the functor F into indecomposable functors, using F . In
particular, we can write out the multiplication table (in terms of d~,03C8):

3.5. Choose a character 0 E 0. To prove Theorems 3.3, 3.4, we
consider the restriction of projective functors to the subcategory
M(03B8) consisting of the modules M which satisfy JOM = 0 (see 1.8).
For a projective functor F, dénote by F(O) its restriction to the

subcategory M(03B8).

DEFINITION: The f unctor F : M(03B8) ~ M is called a pro jective 0-

functor, if it is isomorphic to a direct summand of the functor Fv(O)
for a finite dimensional g-module V.

As we shall see below, each projective 0-functor is of the form

F( 8) for some projective functor F.
The crucial point in the description of projective functors is the

following theorem, describing the space Hom(F, G) for projective
8-functors F, G (hère Hom(F, G) stands for the space of morphisms
of the functor F into the functor G).

THEOREM: Let F, G be projective 8-functors, XE ’T/-I(8) a weight.
Define the homomorphism

ix : Hom(F, G) ~ Hom(FM~, GM~)

via i~(~) = ’PMx (here ~M~ : FM~ ~ GM~ is the value of the functor
morphism ~ : F ~ G on the module M~ ~ M(03B8)). Then i, is a

monomorphism. If X is a dominant weight, then i, is an isomorphism.
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This theorem reduces the study of projective functors to the study
of projective objects of category 0.

Proofs of the theorems on projective functors
The remainder of this section deals with the proof of Theorems 3.3,

3.4, 3.5. In subsection 3.6 we prove Theorem 3.5; in subsection 3.7 we
discuss how to extend projective 0-functors to projective functors. In
subsections 3.8-3.10 we prove Theorems 3.4 and 3.3.

3.6. PROOF OF THE THEOREM 3.5: (a) Let F be projective 0-

functor. By definition, there is a decomposition FV(03B8) = f~ Fl,
where V is a finite dimensional g-module. Hence there is the decom-
position

This decomposition implies that it suffices to prove the theorem only
for F = Fv(O). Similarly, we may assume that G = FL(8), where L is a
finite dimensional g-module.

(b) We prove that ix is injective. Choose a basis vl, ..., vn in V and
~1,..., ~m in L. Consider a morphism ~U03B8 : F(U03B8) ~ G(U03B8) for any

morphism ’P E Hom(F, G) (i.e. ’PUB: V0 U03B8 ~ K ~ U8), and define

elements uij ~ U03B8 by formula ~U03B8(vj~1) = 03A3 ~i~uij, i=1, 2,..., m;
j = 1, 2,..., n.

For M ~ M(03B8), m E M the map u - um is a g-module morphism
Uo - M. This immediately implies that the morphism ~M : V~ M
L 0 M is given by the formula ~M(vj~ m) = 2 ~i~ uijm. Therefore, if
i~(~) = ~M~ = 0, we have uijMx = 0 for any i, j. It follows from 1.13

that i~(~) = 0 implies uij = 0, i.e. cp = 0. Thus ix is injective.
(c) Prove that if y is a dominant weight, then dim Hom(F, G) -

dim Homo(FMx’ GMx). For this, let us estimate both dimensions

separately.
Consider the (U, U8)-bimodules 03A6V/Jr03B8 = V ~ U8 and tPJJ8 =

L ~ U8 (see 2.2). Since M(03B8) = Ue-mod 1.3 implies that

By Lemma 2.2(i) the latter space coïncides with

Homg(V, (03A6L/Jr03B8)ad) = Homg( V, (L ~ U03B8)ad) = Homg(V ~ L*, U8d).
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Since the representation of g in Uad is completely reducible, this

space coincides with (Homg(V ~ L*, uad»/J8. The dimension of this
space is equal to dim( V Q9 L*)0, i.e. to the multiplicity of the weight 0
in VOL* (see 1.7). Thus

Let us estimate the dimension of the second space. We have

The space (V* ~ L) ~ M~ admits a filtration, the corresponding quo-
tients being isomorphic to M~+03BBi, where 03BB1,..., 03BBn is a multiset of

weights of V* Q9 L. Since HomO’(Mx’ Mt/!) = 0 for a dominant weight X
with 03C8~~ (see 1.11(c)) and HomO(M~, M~) = k, we see that

dim Homo(FMx’ GM~) does not exceed the multiplicity of the weight
0 in V*~L. Thus

(d) Theorem 3.5 follows immediately from (b) and (c).

REMARK: It can be proved similarly that if X is an antidominant

weight (i.e. X is minimal with respect to the ordering ), then i~ is an
isomorphism. In fact,

and since HomO(M03C8, M~) = 0, when 03C8~~ (see 1.11(c)), we see that

dim HomO(V~M~, L~M~) does not exceed the multiplicity of the
weight 0 in L* Q9 V.
We do not know if the corresponding statement is true for an

arbitrary weight X. It seems not.

3.7. Let F be a projective functor. We want to show that its restric-
tion to the subcategory M~(03B8) is thoroughly defined by its restriction
to the subcategory M(03B8).
Denote the restriction of the functor F onto Mn(03B8), n = 1,2, ...,00

by F"(O). Note that all categories MZf, Mn(03B8) are Z-categories, so that
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Z acts on all functors F, Fn(8) (to the morphism z : M ~ M, z E Z

corresponds the morphism F(z) : FM - FM). In particular, if F, G are
projective functors, all spaces Hom(Fn(8), Gn(03B8)) are Z-modules.

PROPOSITION: Let F, G be projective functors. Then each morphism
~ : F(03B8) ~ G(03B8) could be continued up to a morphism  : F~(03B8) ~
G°°(8). If ~ is an isomorphism, then so is 4;. If F = G and ço is

idempotent, then for  we can choose an idempotent.

PROOF OF THE PROPOSITION: Put Hn = Hom(Fn(8), Gn(03B8)), n =

1,2, ...,00. Denote by rnm : Hn ~ Hm (for m ~ n) the natural map that

assigns to each functor morphism its restriction to the subcategory
.J,lm(8) C Mn(03B8).

(a) H~ = lim Hn. This follows from the fact that the functor F

commutes with inductive limits and each module M ~ M~(03B8) is the
inductive limit of the modules Mn ~ Mn(03B8).

(b) Prove that Hn = H~/Jn03B8. As in 3.6, step (a) we assume that
F = Fv, G = FL. Further, as in 3.6, step (c) we prove that Hn =

(Homg(L* ~ V, Uad»/J é’. This and (a) imply the desired statement.
(c) Thus, we have shown that Hoo = lim H~/Jn03B8I, i.e. the space H°° is

complete in the J,,-adic topology. 
~

Since Hom(F(O), G(03B8)) = H1 = Hoo/J8, each element ço E H1 can be
lifted to an element çb E H~.

Let ç be isomorphism, 03C8 = ’P -1. In order to prove that e is an

isomorphism, it suffices to verify that morphisms cf;,fr and  are

invertible. Therefore, we may assume that F = G and ~ = 1. But
 = 1- a, where a E JeH°°, so as -1 = 1 + a + 03B12 + ··· and this series
converges because of completeness of H°° in Jo-adic topology.

If F = G and ~ E End F(03B8) is an idempotent, then  can be chosen

as idempotent, too, due to [13, III, 2.10].

3.8. The following corollary follows from Theorem 3.5 and Pro-
position 3.7.

COROLLARY: Let F, G be projective functors, X be a dominant
weight, 8 = ~(~). Then each isomorphism FMx == GMx can be con-
tinued up to an isomorphism of functors F~(03B8) ~ G~(03B8) and each
decomposition FM,, = (D M can be continued up to a decomposition
of functors F~(03B8) = ~ Fi with FiM~ = M.

Let F be projective functor. Then F = ~03B8~0398 F 0 Pr( 8). Each of the
functors FoPr(6) is defined by its restriction to the subcategory
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M~(03B8). Hence, this corollary implies that F Pr(03B8) décomposes into a
direct sum of a finite number of indecomposable projective functors.
This proves Theorem 3.3(i).

If F is indecomposable projective functor, then F = po Pr( 0) for a
0 E 0. So, if ~(~) ~ 03B8, then FM, = 0. If ~(~) = 0 and X is a dominant
weight, then by Corollary 3.8 and 3.2(iv), we see that FMx is in-

decomposable projective object of (J, i.e. FM, = P, for a 1Jt E b*.

3.9. PROOF OF THEOREM 3.4: (a) Statement (ii) is evident. To prove
(i), it suffices to show that F’(0) = G~(03B8) for any 0 E 0. By 3.8 this is
equivalent to FM, - GM~, where X E ~-1(03B8) is a dominant weight.
Since F’ = G’, we have [FM~] = [GM~]. But FM~ and GM, are
projective objects in 6 and by 1.12(b) their isomorphism class is

defined by their image in K(O).
(b) Let us prove (iii). We must show that {FKx, y} = {x, GKy},

x, y E K(O). By 1.12(b), we can assume that x = [P], where P is

projective object in 0 and y = [M], M E 0. Since FP is also a

projective object, we have {FKx, y} = {[FP], [M]} =
dim Hom(FP, M) and {x, GKy} = {[P], [GM]} = dim Hom(P, GM)
(see 1.12(c)).
The desired equality follows from the fact that the functor F is left

adjoint to the functor G.
(c) To prove (iv), let us show that the operator FK E End K(O)

commutes with the W-action. The decomposition F = ~ Pr(03B8’)  F
Pr(O) allows us to take

where 03B8, 03B8’ ~ 0 are fixed characters.
We carry out the proof in 2 steps.
(d) Let ~ ~ ~-1(03B8) be dominant weight. Put S = ~-1(03B8’) ~ (~ + ).

We say that the weight X dominates the character 03B8’, if X - «/1 is a

dominant weight for any e E S. Let us prove then, that the operator
FI commutes with W-action. (We assume that condition (*) holds).
Put GV = Pr(03B8’)  FV  Pr(03B8). We prove that the operator FI is a

linear combination of the operators G5 for some finite dimensional
g-modules V. Due to explicit formulas (see 3.4), GKV commutes with
W. This implies that FI commutes with W.

It suffices to consider the case of indecomposable F. Then FM, =

P,p, where e E S (see 3.8).
Choose h ~ b, so that y(h) E Z+ for any y E R+ (e.g. h = 1 hy,

y E R+) and prove by induction in i(03C8) = (X - 03C8)(h).
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Let À = X - 03C8, L be the indecomposable module with highest
weight À and L* its dual. Let us decompose the functor GL* into
indecomposable ones. By 3.8 such a decomposition is of the form
GL. = (B Flp, where FM, = P~ and all ~’s belong to S. On the other
hand, [GL*(M~)] = 03A3 a~03B4~, where a03C8 = 1 and a~ &#x3E; 0 only when

Hence, the décomposition of GL. is of the f orm F~(~ F~i), where
’Pi E S, ’Pi ~ 03C8 and ’Pi E t/1 + 0393+, so that 1(ç;) &#x3E; i(03C8). Induction on 1(o)
immediately implies that the operator FK is a linear combination of
operators GKV.
At the same time, we have proved that in the considered case

there exists an indécomposable projective functor F such that

FM,, = P03C8.
(e) Now consider the général case. Let y be a maximal weight in

~-1(03B8). Choose an integer n sufficiently large and put ç = x + np E b*,
8" = 17(’P) (see 1.5). For n sufficiently large, ç dominates 8 and 03B8’.

By (d), there is an indécomposable projective functor G satisfying
GM, - Px = M~, so that GK(03B4~) = 03B4~.
Let F = Pr(03B8’)  F Pr(03B8) be a projective functor. It follows from

(iv) that operators GK and (F  G)K = FK  GK commute with W-
action. To prove that FK commutes with W action it suffices to verify
that wFK(03B4~) = FK(03B4w~) for any w e W. But this follows from

since FK  GK and G’ commute with W.
Theorem 3.4 is entirely proved.

3.10. It remains to prove Theorem 3.3(ii).
(a) For a projective functor F, put aF(03C8, ~) = {03B403C8, FK03B4~}, where

03C8, ~ E b*. If X is a dominant weight, then FM, is a projective module
so that aF(03C8, ~) ~ 0 for any tp (see 1. i 2(c». Since operator FK com-
mutes with W-action we have that aF(03C8, ~) ~ 0 for any 03C8, ~. Put
S(F) = {(03C8, X) | aF(03C8, X) &#x3E; 0}, sm(p) = {(03C8, X) E S(F)||~- 03C8| is max-
imal in S(F)). The non-negativity of the coefficients aF(03C8, X) implies
that if F = ~ Fa, then S(F) = U S(F03B1), hence S’(F) C U sm (Fa). In
particular, since S(Fv) ego, we have S(F) C go. The operator FK
commutes with W-action, therefore S(F) and Sm(F) are W-invariant.

(b) Let F be an indecomposable functor. Then Sm(F)/W consists
only of one element.
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In fact, F = F 0 Pr(8) for a 8 E 0. If X E ~-1(03B8) is a dominant

weight, then by 3.8 FM, = P03C8 for some weight «/1. We prove that

Sm(F) = W(03C8, X). It suffices to verify that (q;, X) E sm(F) implies
~ ~ W~(03C8). Since aF(~, ~) &#x3E; 0 only if ~  03C8 (see 1.12(b)), this state-
ment follows from Lemma 1.5(c).

(c) We have assigned to each indécomposable projective functor F
an element 03BE ~ Sm(F)/W~039E. It follows from (b) that if 03BE = (03C8, ~) is
written properly, then FMx == P,y. It only remains to show that each
élément e E 039E is obtained in this way.

Let e = W(f/1, X) and let V be the finite dimensional g-module with
an extremal weight f/1- X. It is clear that (03C8, X) belongs to S’ (Fv). The
functor FV being decomposed into a sum of indécomposable sum-
mands Fv = EB Fa we see (cf. (a)) that (03C8, X) E Sm(F03B1) for some a.

Q.E.D.
Theorem 3.3 is entirely proved.

4. Conséquences of the properties of
pro jective functors

The equivalence of categories M~(03B8)
4.1. Let 0, 8’ E 0 be characters of Z and let V be a finite dimen-

sional g-module. Denote by F03B8,V,03B8’ the functor Pr(03B8’)  Fv o Pr( 8), which
we will consider as a functor from M~(03B8) into M~(03B8’).

THEOREM: Let 8, 8’ E 0. Suppose X ~ ~-1(03B8), 03C8 E ~-1(03B8’) satisfy
(a) 03C8-~~.
(b) X and o are dominant.
(c) W, = W",.
Then the categories M~(03B8) and are equivalent. Equivalence is

defined by functors F(J’, V,(J : M~(03B8) ~ M~(03B8’) and F03B8,V*,03B8’ : AlOO( 8’) ~ AlOO( 8),
where V, V* are finite dimensional g-modules with extremal weights
A = «/1- X and -A respectively.

PROOF: By Theorem 3.3, there are indécomposable projective
functors FI and F2 such that FIM, = P,, F2M", = P,. Since «/1 and X are
dominant, P03C8 = M, and P~ = Mx. Therefore f2F1M~ ~ Mx, and

Theorem 3.3 implies that thé functor F2F, is isomorphic to Pr( 8).
Similarly FiF2 - Pr(8’). By restricting FI and F2 to subcategories
M~(03B8) and M~(03B8’), we obtain the desired equivalency of categories.

It remains only to verify that FI = F03B8’,V,03B8, i.e. that F03B8’,V,03B8M~ = M.". It
is équivalent to inequality ~(~ + 03BC) ~ 03B8’ for any 03BC ~ P(V), 03BC~03BB
which easily follows from Lemma 1.5(b), (c).
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4.2. REMARKS: (a) Let e be a complete subcategory of JK preser-
ved by all the Fv. For example, either e is category of Harish-
Chandra modules with respect to a reductive subalgebra go C g (see
[16]) or y = O. Put 03B8 = ~M~(03B8). Then, under the assumptions of
Theorem 4.1, the functors F8’,v,8 and F8,v*,8’ define the equivalence of
the categories 03B8 and 03B8’.

(b) Suppose that condition (c) of the Theorem is replaced by the
weaker condition.

(c) Wt/1 c W,.
Then the functor F03B8,V*,03B8’  F03B8’,V,03B8 is isomorphic to a direct sum of

/ Wx/ Wt/1/ copies of the identity functor

It suffices to verify this statement for the module M,,, which is

straightforward, if we use 1.5 and 3.4.
(c) The statements of remarks (a) and (b) refine results of

Zuckerman [1] on the behaviour of the functors F,,,,v,,, on irreducible
G. Harish-Chandra modules. (D. Vogan [22] and T. Enright [24] have
also refined these results, see also [23].)

Two-sided ideals and submodules of Verma modules
4.3. Let 0 E 0, X be a dominant weight in q-’(0). Denote by 03A903B8 the

lattice of two-sided ideals in the algebra Ue, Ue included. Evidently,
this lattice is equivalent to the lattice of two-sided ideals in the

algebra U containing the ideal Je C Z. Denote by 03A9~ the sub-module
lattice of M,.

Define a map v : 03A903B8 ~ 03A9~ by assigning to each two-sided ideal

J C Ue the submodule v(J) = J(M,) C M,,.
It is clear that v(J1 + J2) = v(J1) + v(J2), v(JIJ2) = JI v(J2), it follows

from Ji C J2 that v(Jl) C v(J2).

THEOREM: Let X be dominant weight, 0 = 11(X),
(i) if X is a regular weight (i. e. Wx = fel), then the map v : 03A903B8 ~ 03A9~ is

a lattice isomorphism.
(ii) In general, v is an embedding.
Denote by  the class of modules isomorphic to direct sums of PP,

for «/!  x and tp  W~(03C8). Then the image of v consists exactly of all
P-generated submodules in Mx (see 1.2). (A. Joseph [26] has obtained
this theorem by different methods.)

PROOF: (i) is essentially a special case of (ii). In fact, (ii) implies
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that if x is a regular weight, then v is a bijection. Now a C b iff

a + b = b and a fl b = sup{x|x C a, x C bl. Since v preserves sums, it
preserves inclusions and intersections.

Prove statement (ii). Let (~, F) be a pair such that F : M(03B8) ~ M is a
projective 0-functor, ~ : F ~ Id(03B8) is a functor morphism. For such a
pair put

(a) J(~, F) is a two-sided ideal in Ue and v(J(cp, F)) = M(~, F).
In fact, the functor F corresponds to a ( U, Ue)-bimodule X and ~

corresponds to a bimodule morphism  : X ~ Ue. It is clear that

J(~, F) = (X) is a submodule, i.e. the two-sided ideal in Ue, and
M(cp, F) = Im(X~U03B8 M~ ~ U03B8~U03B8 M~) = J(~, F)Mx = v(J(~, F)).

(b) Each two-sided ideal J in Ue is of the form J(~, F) for some F
and cp.

Since Ue is Nôetherian, J has a finite number of generators
ul, ..., un. Thèse generators belong to a finite dimensional space V C J
which is invariant with respect to the adjoint action ad (see 2.2). The
morphism V- uad may be continued to a bimodule morphism
cf; : V Q9 U03B8 ~ Ue (see 2.2), i.e. to a functor morphism cp: FV(03B8) ~ Id o.
It is clear that J = J (cp, Fv).

(c) If M(~, F) C M(~’, F’), then J(cp, F) C J(~’, F’). In particular, if
M(cp, F) = M(cp’, F’), then J(cp, F) = J(~’, F’).

Since Im ~M~(FM~) ~ Im ~’M~(F’M~) and FMx is a projective object
in O there is a morphism a : FM~ ~ F’M~ such that ~M~  = CPMx. By
Theorem 3.5 the morphism  is continued to a morphism of functors
03B1 : F ~ F’ and ~’  03B1 = ~. This immediately implies that J(~, F) =
Im CPU8 C Im ~’U03B8 = J(~’, M’).

(d) It follows from (a)-(c) that v is an embedding. It follows from
(a), (b) that v(03A903B8) consists exactly of those submodules M C M~ that
are of the form M = M(~, F). By Theorem 3.5 they are exactly
submodules of the form ~(FM~), where F is a projective 03B8-functor,
~ E HomO(FM~, M~). The statement of the theorem follows from 3.3,
3.8 and 1.11 (c).

4.4. The Duflo theorem
Theorem 4.3 implies a simple proof of the following remarkable

result of Duflo (see also [26]).

THEOREM [9]: Let 0 E 0398, J a prime two-sided ideal in Ue. Then a
weight I/J E ~-1(03B8) exists such that J = Ann L03C8.
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In fact, consider Jordan-Hôlder series of the module M =

Mxlv(J). Let Li, L2, ..., Ln be its consequent compositional factors
and L = AnnUe(L;). Since JM = 0 we have J C Ii for any i. Besides,
ideal 1 = I1I2...In annuls M and by 4.3 1 C J. Since J is a prime ideal,
we have that J = Ii, for some i. By 1.11(c) Li = L03C8, where 03C8  ~, so
that J = AnnU03B8(L03C8).
Note that in general the weight tp in the Duflo theorem cannot be

chosen uniquely. Using theorems 3.3, 3.4 and 4.3 it is possible to
refine a choice of tp.

4.5. Multiplicities in Verma modules
Now apply the results of section 3 to the study of multiplicities

d~03C8 = [M~ : L,]. Choose a dominant weight X and put 03B8 = ~(~). Let us
restrict ourselves to the case of the regular weight X.

Let W = Wx,r, S = W(X), Ks a subgroup in K(O) generated by 03B4~,
cp E S. Let us identify Ks with the group ring of the group W,
assigning to an element w E W the element 03B4w~ E Ks.
On W, consider an ordering such that w  w’ iff wX  w’X. It is

possible to show (see [9]) that this ordering is defined by a system of
positive roots R+~ = R~ ~ R+ in R~. Namely, let us consider a system
of simple roots 77y ~ R+~, and put 03C303B1w  w for any a ~ R+~, if é(a«w) &#x3E;

~(w) (é is a length function on W corresponding to IIx). It is transi-
tive closure of all relations  that is the relation of order (in [9] the
opposite relation &#x3E; is considered).

For any w E W, consider an indecomposable projective functor
Fw = F(wx,x) such that FwM~ = Pw~ (see 3.3). Then operator FKw pre-
serves a subgroup Ks. Since FKw commutes with W action, we have in
Z[W] = KS, that FKw is an operator of right multiplication by fw =
FKw(03B4~).

Let us realize elements of Z[ W] as functions on W. By definition of
Fw, we have fw(s) = {[Pw~], 03B4s~} = ds~,w~ = [Ms~ : Zw~] (see 1.1(c), (d)).
We wish to compute multiplicities d~,03C8, i.e. functions fw. Describe their
properties.

(1) fw(s) ~ Z+ and fw(s) ~ fw(s’) for s ~ s’; besides fw(s) &#x3E; 0 iff
s &#x3E; w and fw(w) = 1 (see 1.11 (c), (d)).

(2) A semigroup (with respect to addition) of Z[ W] generated by fw,
w E W is invariant with respect to convolution, i.e. fw1 * fw2 =
1 wl,w2fwl where Cww1,w2 E Z+.

Since Fw1  Fw2 is projective functor and hence it may be decom-

posed into the sum of indecomposable functors, we have (2). Derive
from (1) and (2) some consequences.

(3) Let U E W be a simple reflection. Then fl(u) = fu(e) = 1,
f,(s) = 0 for s ~ 03C3, e (e is the identity of W).
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In fact, it follows from (1) that f03C3 = u + ne where n &#x3E; 0. Therefore,
f03C3 * f03C3 = 2n03C3 + (n2 + 1)e = 2nf03C3 + (1 - n2)fe. Since elements fw are

linearly independent in Z( W], (2) implies that 1 - n2 ~ 0, hence n = 1. In
particular, f, * f, = 2f03C3.

(4) Let s &#x3E; w and e(w) = e(s) + 1. Then fw(s) = 1.
The proof is by induction on ~(w). If «w) = 1 our statement is

contained in (3). Choose a simple reflection a in W so that w = o-wB
where w’ &#x3E; w. Then it is clear that f, *fw’ = fw + Y- CJ" where ~(t) ~
~(w). Since fw’(s) = 0 and s ~ w’ and fw’(03C3s) ~ 1 by inductive hypo-
thesis and fw’(uw’) = 0, fw’(w’) = 1, we have (fu * fw’)(s) ~ 1. Hence
fw(s):5l. Q.E.D.

(5) Let be simple reflection in W and aw &#x3E; w. Then fw(03C3s) =
fw(s) for any s. Similarly, if w03C3 &#x3E; w, then fw(s03C3) = fw(s): In particular,
if wo E W is the element of maximal length, then fw0(s) = 1 for any s.

Consider a function f = f, * fw. It is clear that f(s) = 0 if s  w and
f(w) = 2. Hence, the decomposition of f is of the form f = 2fw + ....
Comparing sums of coefficients we see that f = 2fw, hence fw(us) =
fw(s). We similarly prove the second statement.

(6) fw(s) = fw--(s-’) for any w, s e W. It easily follows from 3.4(c).

EXAMPLE: Using properties (1)-(6) it is possible to find out all

functions fw for the group G = SL4 (i.e. W is the Weyl group of the
root system A3). Provide the answer.

(a) fw(s) = 0, for s w ; fw(s) = 1, 2 for s &#x3E; w.

(b) fw(s) = 2 in the following cases:
(i) w = (3412), s = (1324) and (1234)
(ii) w = (4231), s = (2143), (2134), (1234) and (1243).

We depict elements of S4 by substitutions. For simple reflections
we take elementary transpositions.
We have to note that the results of (4)-(6) and some more general

results about fW(s) are contained in Jantzen thesis [23, sect. 5].

II. REPRESENTATIONS OF COMPLEX GROUPS

5. Equivalent subcategories in the category 0
and in the category of Harish-Chandra modules

In section 4 we had proved that sometimes the two-sided ideal
lattice in Ue coincides with the submodule lattice in M~. On the other
hand Duflo [9] had realized this lattice as submodule lattice of a



273

Harish-Chandra module of the algebra U2 = U~ U°. In this section
we will connect these two approaches.

5.1. Harish-Chandra modules
We will use the following notations:
g2 = g EB go, where g° is the opposite Lie algebra.
t={(X,-X), X ~ g} ~ g2 the diagonal subalgebra naturally

isomorphic to g.
U2 = U(g2) = U(g) 0 U(gO).
Z2 = Z ~ Z ~ U2 - the centre of algebra U2.
We shall often realize U2-module Y as ( U, U) bimodule.
For abuse of notation we denote by Ylt both the restriction of the

representation of g2 in Y on a Lie subalgebra t = g and the space of
representation itself. It is evident that Ylt coincides with g-module
Yaa constructed via ( U, U)-bimodule Y, see 2.2.
For any finite dimensional g-module V denote by Ov and U2-module

V Q9 U constructed in 2.2.

5.2. DEFINITION: The U2-module M is t-algebraic if the module

Mlt can be decomposed into the direct sum of finite-dimensional
irreducible t-modules. Denote by  a complete subcategory in U2-
mod, consisting of algebraic modules. Denote by gef a complete
subcategory of Ye consisting of finitely generated modules.

LEMMA: (i) Categoties Ye and Xf are closed with respect to subquo-
tients.

(ii) Modules Ov belong to f; any module Y E Xf is isomorphic to
a quotient of a module Ov.

(iii) Modules Ov are projective objects in categories :!t and :!tf.

PROOF: (i) holds because U2 is Nôetherian.
(ii) By 2.2, Ov E f. Let Y G llÇ and let yl, ... , yn be its generators.

It follows from the definition of an algebraicness that there is a finite
dimensional t-invariant subspace V C Y containing yi,...,yn. In-

clusion V  Y defines by 2.2 a morphism 03A6V ~ Y; since Im Ov
contains generators yi, we have Im Ov = Y.

(iii) Let Y’ ~ Y - Y" be an exact sequence in . Then by 2.2

But this sequence is exact, because Y’, Y, Y" are completely reduci-
ble t-modules.
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5.3. PROPOSITION: Let Y E f. The following statements are

equivalent.
(i) For any finite-dimensional g-module V the space

Homg( V, Ylt) = Hom(03A6V, Y) is finite-dimensional.
(ii) Any irreducible representation of t enters in the restriction Ylt

with a finite multiplicity.
(iii) The ideal Annz2(Y) = (z E z2 , zY = 01 has a finite codimension

in Z2.

(iv) The module Y is Zr finite, (here Z2 = Z~ Z C UQ9 UO, Zr =

1 ~ Z C z2, see 2.4).

The module Y satisfying these conditions we call a Harish-Chan-
dra module (with respect to t). Denote by  the category of such

modules. It is a complete subcategory in ef closed with respect to
subquotients.

PROOF: Clearly (i) ~ (ii) ~ (iii) ~ (iv).
(iv) ~ (i). Let Y be Zr-finite module. Let yi, i = 1, ..., n be genera-

tors of Y, Ji = {z E Zr | zyi = oi, J = n Ji. Then dim(ZrIJ)  00 and JY =
0. By 5.2(ii), Y is a quotient of the module OL, hence the module
0,JJ so we may assume that Y = 03A6L/J. Then for any finite-dimen-
sional t-module V we have

(the first equality uses the complète irreducibility of the f-module tPL).
The latter space is finite-dimensional in view of 1.7.

5.4. Classification of irreducible Harish-Chandra modules
As in 1.8, we can décompose the category  into the sum of

catégories corresponding to différent characters of Z2. Each character
of Z2 is determined by a pair (03B81, (2), where 61 is a character of Z~
and 62 is a character of Zr. Accordingly, put mf(03B8)r =
{Y ~ f| (Jr03B8)m Y = 0}, ~f(03B8)r .= U m mf(03B8)r. Similarly define mf(03B8)~.
Our nearest aim is to study the category f(03B8)r = 1f(03B8)r, where

6 E 0398 is a fixed character of Z. This category is a complète sub-
category in the category of ( U, Uo)-bimodules. For any finite-dimen-
sional g-module V put 03A6V(03B8) = 03A6V/Jr03B8 E f(03B8)r.

Recall that we dénote by H the set of équivalence classes of pairs
(03C8, ~), «/J, ~ ~ b*, 03C8 - ~ ~ . where (w03C8, w~) ~ (03C8, ~) for w ~ W. We
put ~r(03C8, ~) = ~(~) ~ 0398. A pair (03C8, ~) is called proper, if X is a

dominant weight and 03C8  W~03C8.
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PROPOSITION: (i) The modules 03A6V(03B8) are projective objects in

f(03B8)r. Each module Y ~ f(03B8)r is a quotient of a module 03A6V(03B8).
(ii) If Y, Y’ E f(03B8), then dim HomU2( Y, Y’)  00.

(iii) Each projective object in f(03B8)r can be decomposed into the
finite direct sum of indecomposable projective objects.

(iv) To each element e E E, such that ~r(03BE) = 0 there corresponds
an indecomposable projective object P03BE E f(03B8) which is determined
up to isomorphism by the following condition:

If 1 is written properly, 03BE = (03C8, ~), then P03BE~U Mx == Pt/r
Each indecomposable projective object P E f(03B8)r is isomorphic to

one of the objects Pe.

PROOF: (i) It is clear that each morphism Ov- Y, Y E f(03B8)r,
factors through a morphism 03A6V(03B8) ~ Y. Hence (i) follows from 5.2(ii).

(iii) If Y is a quotient of a module Ov(0) then HomU2( Y, Y’) C
HomU2(03A6V(03B8), Y’) = HomU2(03A6V, Y’) = Hom,( V, Y’). This space is
finite-dimensional by 5.3.

(iii) f ollows from (ii).
(iv) Let P be a projective object in f(03B8)r. By (i) we have that P is

a quotient of the module Ov(0) and since P is a projective object, it is a
direct summand of 03A6V(03B8).
The module Tv(0) can be realized as a projective 0-functor

FV(03B8):,M(03B8)~M (see 1.3 and 3.5). To a decomposition of the module
Tv(0) into direct summands there corresponds a decomposition of the
functor FV(03B8) into direct sum of subfunctors. Therefore, statement (iv)
follows from Theorems 3.3-3.5.

5.5. LEMMA: Each projective module P03BE has the unique simple
quotient Le and dim Hom(P03BE, L03BE) = 1 while dim Hom(P03BE, L03BE’) = 0 for
el 0 e.

PROOF: (a) There exists an irreducible quotient due to the Zorn
lemma.

(b) Since End Pe is a finite-dimensional ring and it does not have
and idempotents different from 0 and 1, it is local (see [13], Chapter
III) and its maximal ideal is nilpotent.

(c) If Pl, P2 are proper submodules of PC then P1 + P2 ~ Pe. Other-
wise by the projectivity of Pe the map Hom(P03BE, Pl) (D Hom(Pe, P2) ~
Hom(Pe, Pe) would be an epimorphism, i.e. in End Pe we would have
1 = (Pl + ~2, where Im ~i C Pi. Since End Pe is a local ring, one of
morphisms çi or ~2 would be invertible, i.e. one of submodules P1 or
P2 would coincide with Pe.
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Hence, we have proved that the moduule Pe has the unique
irreducible quotient Le.

(d) By (c) Hom(Pe, L03BE) = Hom(L03BE, L03BE) = k. If Hom(Pe, L03BE’) ~ 0, then
Le L03BE’. Let us lift the non-zero morphisms ~’ : P03BE ~ L03BE’, and 03C8’ : P03BE’ ~
Le to morphisms ç : P03BE ~ P03BE’ and 03C8 : Pj, - Pe. It is clear that ~03C8 and t/J’P
are not nilpotent. This implies that ~03C8 and t/J’P are invertible, i.e. ç
and e are isomorphisms. Hence, Pe P03BE’ and by 5.4(iv) we have that
03BE = 03BE’.

5.6. THEOREM: Assign to each element e E S the irreducible quo-
tient Le of the module Pe. This map defines a one-to-one cor-

respondence between S and the set of equivalence classes of simple
Harish-Chandra modules.

This theorem follows from 5.5 because each simple module of 
belongs to the category f(03B8)r for some 03B8 and by 5.4 is a quotient of
the module Pe.

5.7. COROLLARY: (i) If J C Z2 is an ideal of finite codimension, we
have a finite number of simple Harish-Chandra modules L, such that
JL=0.

(ii) Let Y G W be a module satisfying:
(a) Y is annihilated by an ideal J C Z2 of a finite codimension.
(b) dim Homt(V, Y)  00 for any finite dimensional g-module V.

Then Y is of a finite length ; in particular, each Harish-Chandra
module has a finite length.

PROOF: (i) follows straightforward from Theorem 5.6.
(ii) Let L,, ..., Ln be a set of simple modules such that JLi = 0 (see

(i)). Then, there is a finite dimensional q-module V (not necessarily
irreducible) such that Homt( V, Li) ~ 0 for any i. Note that on , a
functor X ~ Homt(V, X) is exact. If X is a non-zero subquotient of
Y, then X has an irreducible subquotient L. Since JL = 0, L = Li so
that Homr( V, L) 0 0, and hence Homr( V, X) ~ 0. This immediately
implies that the length of Y does not exceed dim Homf(V, Y).

5.8. The functor T~
We may consider each module Y E 1t as ( U, U)-bimodule. There-

fore, the bifunctors ~M~M:(Y,M)~Y~UM and ~~
:(Y, Y’)Y~U Y’ are defined. These bifunctors are right exact

with respect to each variable and there is a natural isomorphism
(YQ9u Y,)~U M = YQ9u (Y’Q9uM). The functors Q9uC/Jv,
03A6V~U :  ~  are exact and the functor 03A6V~U : M ~ M coincides with
the functor Fv considered in §§2, 3.
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Since each module Y ~ f is a quotient of the module cPv, we have
that for Y ~ f the functor Y~U : M ~ M préserves subcategories
MZf, Mzf, O while the functor YQ9u:  ~  préserves subcategories f
and .

In §§2-4, we had fixed the module Y E f and had considered the
functor Y~U : M~M. Now we do conversely, we choose a module
M E JU and study the f unctor TM = ~UM:~M.

It is clear that the functor TM préserves the left action of Z and

multiplication from the left by Y E 7le (i.e. TM(z) = z for z E Z~ and
TM(Y~U Y’) = Y~UTM(Y’).

5.9. Choose a character 0 E e and let us show, using functors TM,
that the category f(03B8)r is équivalent to a complète subcategory of a
category 6. Choose a weight X E ~-1(03B8) and consider the functor
T~ = T Mx. It is clear that the functor T~ is defined by its values on the
subcategory f(03B8)r and T~(f) ~ (J. Therefore, we shall consider T~ as
the functor T~ : f(03B8)r~O.

Let X be a dominant weight. Dénote by P(~) the class of projective
objects of the category O consisting of direct sums of modules P03C8,
where «/1 E X + , 03C8  W~(03C8). Let OP(~) be the complète subcategory of
O consisting of P(~)-presentable modules (see 1.2).

THEOREM: Let X be a dominant weight, 0 = ~(~).
(i) If X is a regular weight, then the functor T~ defines the

equivalence between f(03B8)r and O~+ (this category consists of
modules M ~ O such that M03C8 = 0 for 03C8~~ + ; see 1.11).

(ii) In general case the functor Tx defines the equivalence between
f(03B8)r and the complete subcategory OP(~) of the category (J.

Note that the category O~+ is closed with respect to subquotients
so that for a regular dominant weight X the functor T~ : f(03B8)r ~ O is
exact. Generally, it is not so. For example if g = b[(4) and a, 03B2, y are
simple roots (a is orthogonal to y) and X is a weight such that
X(ha) = X(hy) = 0, ~(h03B2) = 1, then it is easy to see that the functor Tx
is not exact.

5.10. PROOF oF THEOREM 5.9: Statement (i) is a spécial case of the
statement (ii), because for a regular weight X the class P(~) contains
all projective objects of O~+ so that OP(~) = O~+. To prove (ii) we use
the f ollowing général fact.

PROPOSITION: Let A, B be Abelian categories, P the class of
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projective objects of d and T : A ~ 9lJ right exact functor. Suppose
that

(i) /Â = AP, i.e. all objects of A are e-presentable.
(ii) T(P) is a projective object in 9lJ for any P ~ P. Denote by T(P)

the class of such objects.
(iii) If P, P’EE OP then the map

is isomorphism.
Then functor T is fully faithful and defines the equivalence of the

category A with the complete subcategory BT(P) of B consisting of
T(P)-presentable objects.

PROOF: (a) If A E -4, then object T(A) ~ B is T(P)-presentable. In
fact, by (i) there is an exact sequence P’ ~ P ~ A ~ 0, and since
functor T is right exact, so is the sequence T(P’) - T(P) ~ T(A) - 0.
Let us prove that each object B E BT(P) is isomorphic to an object of
the form T(A), A E si. In fact, let T(P’) ~ T(P) ~ B ~ 0 be its re-
presentation. By (iii) there is a morphism 03B2 : P’ ~ P such that T(03B2) =
a. Put A = Coker 03B2. Functor T transforms the exact sequence P’
P - A - 0 into the exact sequence T(P’)  T(P) ~ T(A) ~ 0, which
immediately implies that B is isomorphic to T(A).

(b) Let A ~ A, Q ~ P. Then TQ,A : HomA(Q, A) ~
HomB(T(Q), T(A)) is isomorphism.

In fact, consider the P-presentation P’ ~ P - A - 0 and its T image
T(P’) ~ T(P) ~ T(A) ~ 0. Since Q and T(Q) are projective objects,
the f ollowing sequences are exact

Since vertical arrows TQ,P’ and TQ,p are isomorphisms due to con-
dition (iii) so is TQ,A.

(c) Let A, C ~ A. Then TA,c : HomA(A, C) ~ Homoo(T(A), T(C)) is
isomorphism.

Consider again exact sequences P’-P-A-0 and T(P’)~
T(P)~T(A)~0.
Using the exactness of the functor Hom, we obtain
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As it is shown in (b), vertical arrows 7p c and Tp,c are isomor-
phisms. Hence, so is TA,c. Proposition is proved.
Now apply this proposition to A = f(03B8)r, B = 0, T = T~ and let 9

be the class of projective objects in f(03B8)r. Let us verify conditions
(i)-(iii) of the previous proposition.

Condition (i) follows from Proposition 5.4(i). To check (ii) and (iii)
we consider projective objects of f(03B8)r as projective 0-functors

M(03B8) ~ M; it may be done because they are direct summands of
modules Ov(0) considered as functors FV(03B8). The validity of con-
ditions (ii)-(iii) now follows from 3.2 and Theorem 3.5.
To prove Theore’m 5.9 it only remains to verify that the class of

objects T(9) = T~(P) coincides with the class of objects 9(x). It

immediately follows from 5.4(iii)-(iv).

5.11. Let X be a dominant weight 0 = ~(~), Y E f(03B8)r, M = Tx(Y).
If y is a regular weight, then Theorem 5.9 implies that the submodule
lattices of M and Y are isomorphic. Generally, it is not so for an

arbitrary X.
Denote by f2y and 03A9M the submodule lattices of Y and M and

define a map v : 03A9Y ~ flM in the following way.
If Y’ C Y, i.e. when an embedding cp: Y’ - Y is given, put v( Y’) =

Im(T~(~) : T~(Y’) ~ T~(Y)).

THEOREM: The map v : 03A9Y ~ 03A9M is an embedding. Its image con-
sists exactly of all C;;x - generated submodules of M (see 1.2).

This theorem is proved exactly as Theorem 4.3.

5.12. From Theorem 5.9 we deduce an interesting corollary.

PROPOSITION: Let X, t/J be weights that belong to the same orbit of
the Weyl group W. Then categories 0,,,A and CPIA are equivalent, if
considered as Z-categories.

PROOF: Let ip = wX. Replacing X by y + À and ip by ip + w03BB, where
A E A, we may assume that X and If are regular. Further, replacing X
and ip by dominant elements of W,+r(X) and W03C8+0393(03C8), we may
assume that x and 03C8 are dominant.

Suppose 0 = ~(~) = ~(03C8). By Theorem 5.9 categories O~+ and O03C8+
are both equivalent to the same category f(03B8)r. Hence they are
equivalent.
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6. Multiplicities in représentations of principal series
and in Verma modules

6.1. The functor H
Theorem 5.9 shows that the functor T~ defines an equivalency of

categories f(03B8)r and O~+ for a regular dominant weight X. In

particular, it has the inverse functor. We should like to describe this
functor explicitly. For this, we use a method borrowed from [12].
Below, we apply this explicit description for computation of multi-
plicities of representations of principal series.

Let M, N E A. Endow the space Homk(M, N) with U2-module
structure via ((u~u0)~)(m) = u~(u0m), where m E M, ç G
Homk(M, N), u~ UO E U2. Denote by H(M, N) the space of f-finite
vectors in HOMK(M, N). It is easy to verify that H(M, N) is U2-
submodule of Homk(M, N). Evidently H(M, N) e Y.

Therefore, we have obtained a bifunctor H : M  M ~  con-

travariant in the first variable and covariant in the second one.

For each module M ~ M define a functor HM : M ~  via HM(N) =
H(M, N).

LEMMA: (i) The functor H(M, N) is left exact in each variable.
(ii) The functor HM is right adjoint to the functor TM, i. e.

(iii) The functor N ~ H(M, N) is Z~-linear and the functor
M - H(M, N) is Zr-linear. If V is a finite dimensional g-module then

PROOF: (i) The functor (M, N) ~ Homk(M, N) is exact and the
functor of passage to t-finite elements is left exact.

(ii) HomU(TM(Y),N)=HomU(Y~UM,N)
= Homu2(Y, Homk(M, N)).

Since Y E 7lt, in the latter equation Homk(M, N) may be replaced
by H(M, N).

(iii) is quite straightforward.

6.2. We shall be mainly interested in the functor H(M, N) for
M, N e (9, i.e. we shall consider the functor H : 6 x c - n.
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LEMMA: (i) If M, N E (J, then H(M, N) E .
(ii) If M is projective object in (j, then the functor HM : O ~  is

exact.

PROOF: (i) Let J1 = AnnZ(N), J2 = AnnZ(M). Then by 6.1(iii),
H(M, N) is annihilated by the ideal J = J~1 ~ Jr2 ~ Z2 of a finite
codimension. Therefore by proposition 5.3 it suffices to verify that
dim Homr( V, H(M, N))  00 for any finite dimensional g-module V.
By 6.1 we have

The latter space is finite-dimensional since both 03A6V~U M and N
belong to O.
Note that similarly, if M is a module of a finite length and N is

finitely generated, then H(M, N) E .
(ii) f ollows f rom 6.1(ii) and 1.2.

6.3. Let X be a weight, 03B8 = ~(~). Put H~ = HM~ : O ~ f(03B8)r. The
f unctor H~ is right adjoint to the f unctor T~. Therefore, Theorem 5.9
immediately implies the following statement.

PROPOSITION: Let X be a dominant weight. Then
(i) If X is a regular weight, then Hx defines equivalence between O~+

and f(03B8)r, inverse to the functor Tx.
(ii) In general, H~ defines the equivalence between OP(~) and f(03B8)r

inverse to T~. In particular, the functor H~  T~ is isomorphic to the
identity functor.

6.4. Now we may describe the relations between représentations of
principal séries of Lie algebra g2 and modules M03C8 E O. First, give the
définition of représentations of principal series.

Let M, N E (J. On NQ9 M define a g2-module structure via (x, y)
(n~m)=(-xtn)~m-(n~ym), where t is the anti-automorphism
of g considered in 1.10. The conjugate module (NQ9 M)* is naturally
identified with the space of bilinear forms B : N x M - k and g2-action
is defined via [(x, y)B](n, m) = B(xtn, m) + B(n, xm). Dénote by
Dual(N, M) the représentation of g2 in the space of t-finite vectors in
(N(g)M)*.
For each pair of weights 03C8, ~~b* define X(03C8,~) to be the

représentation of principal séries by setting X(03C8, X) = Dual(M03C8, M~).
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This representation differs somewhat from the traditional definition
(see [10], [11]). As it is shown in Appendix 2, X(03C8, X) may be identified
with (- t/J, -X), where  is a representation of principal series in the
sense of Duflo [11].

6.5. To find out how representations of principal series are trans-
formed by the functor T~, we must describe the relation between
functors Dual and H(-, .). For this purpose we use a contravariant
functor 03C4:O~O, M~M03C4, constructed in 1.10.

PROOF: Define a morphism 1:H(M, N03C4)~Dual(N, M) via i(~)
(n, m) = ~~(m),n~ where ~ : Hom(M, N03C4), i(~) ~ Dual(N, M) =
(N Q9 M)* and (., .) is a natural pairing of NT and N. It is easy to

verify, that i is a U2-module homomorphism and i is injective.
Define a morphism j:Dual(N,M)~Homk(M,N*). If B E

Dual(N, M) C (N 0 M)*, m ~ M, then define the linear functional

j(B)(m) on N via [j(B)(m)](n) = B(n, m). It is easy to see that j is a
U2-module homomorphism if N* is considered together with the
U-action described in 1.10.

Prove that if ~ E Homk(M, N*) is a f-finite homomorphism, then it
belongs to the subspace H(M, N03C4). It suffices to verify that ~(M) ~
NT. Let A be finite-dimensional f-invariant subspace in Homk(M, N*)
and B = U(b)m. Then the subspace AB C N* is finite-dimensional

b-invariant because h~(m) = (hcp - cph)(m) + ~(hm) for h ~b. Hence
ç (M) C NT.
Thus we have constructed a morphism j : Dual(N, M) ~ H(M, N03C4).

It is easy to verify that ij = 1, ji = 1. The proposition is proved.

6.6. COROLLARY: If ~, 03C8 ~ b*, then the representation X(03C8, ~) of
principal series is isomorphic to H(Mx, M03C403C8) = H~(M03C403C8).

6.7. Now we can describe the Jordan-Hôlder series of repre-
sentations of principal series.

THEOREM: Let ~, 03C8 E b* and 03BE E H (see 5.4). Suppose X is a
dominant weight. If 03BE can not be written properly 03BE = (~, x), then
[X(03C8, ~) : L03BE] = 0. If 03BE can be written properly, 03BE = (~, ~), where ~ 
W~(~), then [X(03C8, ~) : L03BE] = [M03C8 : Z.J.

PROOF: The multiplicity of L03BE in X(03C8, ~) coincides with
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dim Hom(P03BE, X(03C8, ~)). We have

(1.11(b), 6.5, 1.4, 1.11 (d) are used.)
REMARKS: (a) X(wip, WX) and X(03C8, X) are known to have the same

Jordan-Hôlder series (see e.g. Duflo [11]). Therefore, our theorem

gives the description of multiplicities in representations of principal
series in terms of multiplicities of Verma modules.

(b) The similar theorem is valid for representations induced from
parabolic subgroups.

(c) A. Joseph [26] and T. Enright [25] have also proved the similar
theorem.

Appendix 1

In this Appendix we prove Lemma 1.5.
Let ~1,..., X, E b*. Any equation L of the form 03A3ri=1 niwi(~i) = 03BB,

where ni E Z, w; E W, À E ll is called a relation.
We shall use the following translation principle.

The translation principle
Let HR = A ~z R. If X1, ..., Xr e b*, then weights xÍ, ..., ~’r ~ &#x26;1 exist

such that satisfy exactly the same relations as ~1,..., Xr do.
Using the principle, all questions of geometric nature put in the

weight space b* we can solve in the space &#x26;1.
To prove this translation principle consider H = (b*)r and HR =

(b*R)r. Each set  = {L03B1} of relations defines affine subspaces H5£ C H
and H " C HR where H’ = {(~1, ..., Xr) EH’ 1 L« (XI, X,) = 0 for any
03B1} and Hi is defined similarly. Since all these subspaces are defined
over Z, we have that H1 C H2 iff H2- C Hi2.
Let  be a set of all relations that are satisfied by weights ~1,..., xr.

Then for each relation L~ we have HUL H, so that HULR
HR. Since there is only a countable number of relations L, we have
that the set U L HULR does not cover H2 and we can choose a point
(Xi, ..., x§) e HO that does not belong to this set. Weights ~’1,..., ~’r
are the desired ones.

PROOF oF LEMMA 1.5: Using the translation principle it is possible
to assume that we are in b*. Then (i) follows from [17, Ex. 1, 227].
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(ii) R being replaced by Rx, we may assume that W~+0393 = W, i.e.

X E A. Then statement (ii) is contained in [17].
(iii) It suffices to consider the case ~ 03C8, where y E R+~ = R~ n R+.

Then X( hy) 2: 0 and f/J( hy) 2: 0, so that X and 03C8 are to the one side of
the hyperplane 7ry corresponding to y. Then ç = uli, where Uy is the
reflection in the hyperplane 7ry. This immediately implies that Ip -
~| ~ |03C8 - ~| and the equality is possible only if either qi E 7ry or X E 7ry.
In the former case ~ = 03C8, while in the latter case ç E W~(03C8).

Appendix 2

Usually (see e.g. [9], [10] or [11]) Lie algebra of a complex group is
identified with a = g ~ g and a subalgebra ta = {(x,-xt)~a|x~a} is
considered. It had been more convenient for us to identify it with the
Lie algebra g2 = g Oq’. In this Appendix we provide the dictionary for
translation from one language into another.

Put ba = b~b~a, na = n~n~a. A weight of the algebra ba is

defined by a pair (p, q) where p, q E h*. The Verma module M(p, q)
of the algebra a with respect to subalgebras b,,, na is naturally
identified with Mp Q9 Mq. The representation of principal series

5£(p, q) is defined as the representation of a in the space of ta - finite
vectors of a module M(- p, - q)* (see [9], [11]).

Let us identify Lie algebras a and g2 via i : a ~ g2, i(x, y) =
(- xt, - y). It is clear that 1(ta) = . It is a straightforward verification
that these isomorphisms transform an a-module M(-p) 0 M(- q)
into a g2-module M-p~M-q with the action defined in 6.4. Hence,
a-module 5£(p, q) is identified with q2_module X(-p,-q). This implies
that the irreducible a-module V(p, q) considered by Duflo in [9, 1.1]
transforms into a q2_module L(-p,-q). Thus, in terms of [9], Theorem
6.7 means that if - q is a dominant weight and p’ 2: Wq(p’), then
[p,q : Vp’,q] = [M p : L-p’].
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