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TENSOR PRODUCTS OF LOCALLY CONVEX MODULES
AND APPLICATIONS TO THE MULTIPLIER PROBLEM

BY

ROGER RIGELHOFC)

Abstract. In this paper we present a representation theorem for the tensor product
of locally convex modules. This theorem has a number of consequences in the study of
the multiplier problem in harmonic analysis, and the remainder of the paper is devoted
to these applications.

1. Introduction. In a previous paper [9] concerned with induced representations
of locally compact groups we studied tensor products of locally convex spaces
which are modules over a topological algebra. In the introduction to that paper we
mentioned that this study also provides an appropriate setting for the multiplier
problem in Harmonic Analysis and this is the subject with which we now deal.
This is the paper promised in the introduction of [9].

We begin by stating a classical multiplier problem and then we will consider more
general situations. Let T be a locally compact abelian group, A(V) the algebra of
functions on the character group r of T which are Fourier transforms of functions
in F^r) and B(F) the algebra of functions on f which are Fourier-Stieltjes trans-
forms of bounded regular Borel measures on I\ A multiplier problem is to deter-
mine those complex-valued functions (/> on T such that <j>fe B(t) whenever/e A(T). It
is known that such functions are precisely the elements of B(V) [10, Theorem 3.8.1].

To reach a more general situation, we reformulate the above problem in the
following way. Let M1(V) be the Banach algebra of bounded regular Borel measures
on T. Given a function <f> as above define a map m^,: F^O -*■ Mx(r) by mi)f=p.
where ß(y) = </>(y)f(y) ; f is the Fourier transform of/, and fi the Fourier-Stieltjes
transform of p.. It is easily seen that mé(g *f)=g * m^fiwhere g e V-(Y). Moreover
using the closed graph theorem one can show that m,¡, is continuous. Conversely if
m is a continuous linear map of LX(Y) into MX(Y) such that m(g *f)=g * mfifor
g in L\r), then g * mfi=f* mg and it follows that there is a complex-valued func-
tion ^ on E such that w = w^. Now L^T) is a Banach algebra and M 1(F) is an
F^O-module and the multiplier problem is precisely the problem of determining
the continuous module homomorphisms of Ll(T) into M1^).
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A more general multiplier problem may now be stated. Let A be a Banach
algebra, and E and F Banach ^-modules. (A Banach ^-module E is a left A-
module which is a Banach space and which satisfies ||ax||B^ |MUI*IU0 The multi-
plier problem is that of determining the continuous module homomorphisms of £
into F. As a final step one can suppose only that A is a topological algebra and E
and F are locally convex /1-modules in the sense of [9].

In recent years a large amount of work has been done on special cases of the
above problem. (See, for example, [3], [4], [5], [6] and [8].) This indicates a need
for general techniques which unify these results. The first steps in this direction
have been made by M. A. Rieflel [7], [8] by the introduction of a suitable tensor
product of Banach modules. Rieffel obtained the fundamental equation

HomA(F,E')^(E®AF)'

(see [7] for the definition of E ®A F). By proving general representation theorems
for E ®AF one can then obtain representation theorems for multipliers from a
Banach module to the normed dual of another Banach module.

In this work we consider locally convex spaces which are modules over a topo-
logical algebra A and we show that for a given polar topology -3 on E' there is a
locally convex topology t(©) on the tensor product E®AF such that

UomA{F,E'z) = ((E®AF\)'.

This gives a method for representing multipliers between locally convex A-
modules. By obtaining representation theorems for E ®A F we are able to give
rather easy proofs of a number of known results on multipliers as well as some new
ones. However the main purpose of this paper is to develop a general framework
for the study of multipliers, and the fact that we obtain some new results is some
indication of the merit of this general approach.

The paper is organized as follows. §2 contains the general results and definitions
needed throughout the paper. Also in this section we give some representation
theorems for E ®A A for the case in which A has a unit or an approximate unit. In
§3 we prove our main representation theorems. The final section is devoted to
applications. In addition to some new results, we obtain easy proofs of results in
[3], [4], [6] and [8].

2. General results. We begin by recalling some of the basic definitions and
facts used in [9]. A topological algebra A is a linear associative algebra over the
complex field C which is a topological vector space in which the maps a^-ab and
a-^ba are continuous for each b e A. A locally convex algebra is a topological
algebra which is a locally convex (Hausdorff) space.

Definition. Let A he a topological algebra. A locally convex left ^-module E is
a locally convex space which is a left ^-module such that the map (a, x) -> ax of
A x E into E also satisfies
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1. for each a e A, the map x -*■ ax is a continuous map of F into itself,
2. for each xeE, the map a -*■ ax is a continuous map of .4 into F.
A locally convex right ^(-module is defined in the analogous fashion.
Let A be a topological algebra, F a locally convex right ,4-module, F a locally

convex left .4-module, and G a locally convex space. A bilinear map/of Ex F into
G is called ^-balanced if/(xa, y)-fi(x, ay) for any a e A, x e E, y e F. B(E, F, G)
is the set of all ,4-balanced bilinear maps. We shall write B(E, F) in place of
B(E, F, C).

For each pair (x, y)e Ex F, the map/^/(x, y) is a linear form on B(E, F) and
hence is an element x 0 _y of the algebraic dual B(E, F)*. The map

X:(x,y)^>x®y

of Ex F into B(E, F)* is bilinear and y4-balanced. The linear span of x(ExF) in
B(E, F)* is called the tensor product of F and F and is written F ®A F.

Now let 3 be a set of bounded subsets of F such that (J 3 is total in F, and let
Fs be the dual of F given the polar topology of sets in 3. If for any S in 3 and any
O-neighborhood F in F there is a O-neighborhood W in A such that x e S and
aeW imply xa 6 K, then we shall say that the action of A on F is 3-hypocontinu-
ous.

Proposition 1. Suppose that the action of A on E is S-hypocontinuous. Then E's
is a locally convex left A-module and there is a locally convex topology t on E 0,, F
such that ((E 0X F)z)' s Horn,, (F, Fs) wa a« isomorphism <¡j jwc/í í/iaí (t/>m(y), x>
= <»î, x 0 y) for m e ((E ®A F),)' awa* x e F, j; e F.

Proof. The first assertion follows from Proposition 3 of [9], the remaining asser-
tions are consequences of Theorem 2 of [9].

Whenever 3 is the set of finite subsets of F we write E'a in place of Fs and the
topology r is called the inductive topology and is denoted by "»".

The problem now is to represent (E 0A F\, and the remainder of this paper is
devoted to doing this for special cases. We begin with a lemma which will be used
several times in the sequel. We first recall from [9, Theorem 1] that if 6 is an A-
balanced 3-hypocontinuous bilinear map ExF-+G [1; Chapitre III, §4, No. 2],
then there is a unique continuous linear map 0 : (E ®A F), -> G such that 0(x 0 y)
= 0(x,y).

Lemma 1. Let G be a locally convex space and 6 an A-balanced'B-hypocontinuous
bilinear map ExF-> G. Let 0 be the continuous linear map (E ®A F)z -> G such
that @(x® y)=6(x, y). If for any finite subsets xl5 x2,..., xn e F and yly
y2,..., yneF such that 2?=i 0(*>, yd=0 we have 2"-i <jnyu x¡> = 0 for all m e
Hom^ (F, E'q), then 0 is a continuous injection.

Proof. To show that 0 is one-one it is sufficient to show that for each continuous
linear functional «' on (F 0¿ F)t there is a linear functional v' on 0(F 0A F) such
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that <«', u) = (v', ©(«)> for all ueE®AF. Let m e HomA (F, E'&) he such that
(m(y), x} = (u', x <g> y} (Proposition 1), then define v' on 0(7f ®A F) by

n<»', i;> = 2 <'"(>'i). *i>i = i
where v = Jiî=1 d(xu ^¡). The hypotheses of the lemma imply that v' is well defined.
Clearly, v' is a linear functional, moreover, <«', m> = <t/, 0(w)> for all « e E ®A F,
and this completes the proof.

For the remainder of this section A is a locally convex algebra. We shall also
consider A as a locally convex left ^4-module, and our concern now is to establish
representation theorems for E®AA. The proof of the following proposition is
immediate from the proof of Proposition 5 of [9]. The reader, however, can easily
prove this for himself after reading the proof of Proposition 4 below.

Proposition 2. Suppose that A has a unit and the action of A on E is <Z-hypo-
continuous. Then (E <giA A)r = E.

When A does not have a unit then it need not be true that (E®A A\^E. To
proceed we use the following definition.

Definition. The essential part Ee of a right ^-module E is the linear span of EA
in E. E is called essential if Ee is dense in E.

The next proposition gives a useful sufficient condition on A for which the
natural map (E ®A A\ into Ee is a continuous isomorphism.

Proposition 3. Suppose that the action of A on E is <&-hypocontinuous, and that
for any subsets ax, a2,..., anofA anda[, a'2,..., a'n of A' such that 2?=i a¡'ai = 0 we
have 2 <a¡, ai> = 0. Then there is a continuous isomorphism of(E®A A)z onto Ee.

Proof. Let ®:(E®a A\ -*■ Ee be the continuous linear map satisfying @(x <g) a)
= xa. We shall use Lemma 1 to prove the result. Accordingly let m e HomA (A, E's)
and let alt a2,..., an and xx, x2,..., xn be finite subsets of A and E such that
2 x¡aj = 0. Then for any a e A,

0 = 2 (XiOi, ma} = 2 (x¡, a¡ma>
= 2 O» maia> = 2 <m'xi, fliß> = 2 ((m'xi)ai, à).

Thus 2 («j'x¡)a¡ = 0, so by hypothesis 2 <*i, «iöi> = 2 <«1'^i» ö(>=0. This completes
the proof.

Definition. A net (uf.jeJ) in a locally convex algebra A is called a weak right
approximate unit if for each a e A, a' e A' we have

lim <a«y, a'} = <a, a'}.
i

A weak right approximate unit is called bounded if it is a bounded subset of A.
Note that if A has a weak right approximate unit then A satisfies the hypotheses

of Proposition 3. If A has a bounded weak right approximate unit then more is true.
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Proposition 4. Suppose that E is barreled and that A has a bounded weak right
approximate unit. If the action of A on E is Z-hypocontinuous, then (E 0A A\~Ee.

Proof. Let 0 be as in the proof of Proposition 3. By that proposition it is suffi-
cient now to show that ©(//) is an equicontinuous subset of ((E%A A)%)' only if H
is an equicontinuous subset of (Fe)'. By Theorem 1 of [9],

&'(H)oX = {Q'(h)°x: heH}

is an 3-equihypocontinuous subset of B(E, A) (x is the canonical map Ex A ->
E®AA). Since F is barreled, ®'(H) ° x is a ß-equihypocontinuous subset of
B(E, A) where ß is the set of bounded subsets of A [1, Chapitre 3, §4, Proposition 6].
Let (Uj-.jeJ) be a bounded weak approximate unit in A, then given e>0 there is a
O-neighborhood F in F such that xeV implies

10'(A) o x(x, Uj)\ < e/2   for all j e J.

Let W= V n Ee, then for x e W and he W there is a j0 such that j ^ j0 implies
|<x — xUj, h}\ iZe/2 since the map a -> xa is continuous with respect to the a(A, A')
and o(E, F')-topologies. Thus if xeW and he H we have

|<x,/i>| ^ |<x-xu„A>|-r-|<xw„A>| ^ e/2+|0'(A)°x(x,h,)| ^ e.

Thus H is equicontinuous and this completes the proof.

Corollary. Let E and A be as in the theorem, and let E (g)A A be the completion
of(E®A A)x. If E is complete and essential, then E <g)AA^E.

3. The main theorems. In this section we establish our main results. Much of the
remainder of the paper is devoted to consequences of these results. The setting is
the following: A is a topological algebra F=indlimFa and F=indlimFa are
locally convex right and left ^-modules respectively which as locally convex spaces
are inductive limits of metrizable spaces, we suppose also that Ea (or the Fa) are
barreled. G is a complete locally convex space and 8 is a separately continuous A-
balanced bilinear map of Ex F into G. For each a let (pi) and (ql) be directed sets
of seminorms generating the topology of Ea and Fa. For each a let

Ha = \ueG : u = £ 0(x„ y,), T pßn(xt)q%( yt) < oo, all n,
V i = l i

ß ^ a and x, e Ea, y, e Fa \.

For each n and a we define a seminorm r„ on Ha by

r&u) = inf11 pl(Xi)qan(yi) :u = % 8(Xi,ydj.

We give each Ha the topology generated by (r%).
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Proposition 5. Let Van = {xeEa: pan(x)^l} and W%={yeFa:qí(y)¿l} then
r„ is the gauge of cl co 9( V" x W"), the closure in Ha of the circled convex hull of
d(V*xW£).

Proof. We argue as in [11, Chapter III, §6.3]. Let N={u : ran(u)< 1} and
717={m : r£(w)= I}, it is sufficient to show

TVc clco0(K£x W%)c M.

Clearly 9(V% x W%) <= M and since M is closed and convex we have

clcoé^xH^c M.

Now suppose ueN, then u=^.6{xi,yl) with 2P"(Xi)q"(yd< 1 • There are real
numbers £¡ > 0 such that if ft = (pn(xt) + qX^SCft) + «¡)> then 2 ft < 1. Put vt = xtlp%,(x^)
+ Si and Wi=yi/qan(yi) + ei, then v, e Wan and w = 2 ßAv{, wt) e cl co 0(FB« x WS). This
completes the proof.

From Proposition 5 and the continuity of 6\EaxFa~^ G [1, Chapitre III, §4,
Proposition 2] it follows that the injection 77a -> G is continuous. This coupled
with the completeness of G yields

Proposition 6. 77^ is a Fréchet space.

Proof. We will only be concerned with showing completeness. Let (un) he a
Cauchy sequence in 77a. Choose a subsequence (fn)c(i/„) such that rl(vn+1 — vn)
á 1/2". Then (vn) is Cauchy in the original topology of G so there is a v such that
v = lim vn in G. It remains to show that v = lim vn in 77œ. For m^nwe have

rl(v-vm) = r«(2 »,+!-»,)* 2'nfe+i-^) ^ ¿\rKv,^-v,) S 2 1/2'.

And this completes the proof.
For a^ß the injection 77a -> Hß is continuous, thus the locally convex inductive

limit 77= ind lim 77a exists. While it is true that 6\Ea x Fa is a continuous map into
77 one cannot conclude that 8 is continuous from Ex F into 77 since one does not
in general have Ex F= ind lim EaxFa as topological spaces. However all we need
is the separate continuity of 6 and this we can demonstrate.

Proposition 7. 6: ExF^- 77= ind lim 77a is separately continuous.

Proof. Given y in F let 6y be the map x -*■ 6(x, y). By the definition of the induc-
tive topology it is sufficient to show that there is an a0 such that «^a0 implies
0y\Ea is continuous from Ea into 77. Choose a0 such that y e Fao, then y e Fa for
every a^a0, and it follows from Proposition 5 that 6y\Ea is continuous into 77a,
and hence into 77. An analogous argument works for the continuity of y -> 6(x, y)
for each x in E.

From Proposition 7 above and Theorem 1 of [9] we have the existence of a
continuous linear map ®: (E ®A F\ -*> 77 such that ®(x ® y) = 8(x, y).
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Theorem 1. Let E, F, H, 8 and 0 be as above. The following conditions are
equivalent:

(a) 0 is a topological isomorphism of(E 0¿ F), onto a dense subspace of H.
(b) For sequences (xn) <= Ea and (yn) <= Fa such that 2 #(*,, yd = 0 and 2 pßn(x%)qßn(y,)

< oo for every n and ßä a we have 2 (*» my>/=0 for every m e Hom^ (F, E'a).
(c) For any finite subsets xlt x2,..., xn of E and ylt y2, ■ ■ -,yn of F such that

2 Ufa, yd = 0 we have 2 <*» my,} = 0 for every m e Hom¿ (F, E'a).

Proof. We begin by showing (a) implies (b). If (a) is true, then the map 0' is an
isomorphism of H' onto (F 04 F)[ with the property that for any m e HomA(F, E'a)
there is a u' e H' such that the equation (u', 0(x 0 y)} = (x, my} holds for x e F
and yeF (Proposition 1). Now letting wn = 2m = i 8(xt,yd where (Xi)<=Ea and
( Jf)c Fa satisfy the condition of (b) we have un -*■ 0 in H. Consequently <w', m„> -> 0
and since <«', wn> = 2"=i (.x¡, myt} we have that 2¡" i <*i> «?>>(> = 0.

Clearly (b) implies (c) so we suppose now that (c) holds. By Lemma 1 we have
that 0 is one-one. From Proposition 5 it is clear that 8(Ea x Fa) is total in Ha and
from this we see that 0(F0yl F) is dense in H. Let M be a subset of H', to show
that 0 is a topological isomorphism it is sufficient to show that the equicontinuity
of ®'(M) implies that M is equicontinuous. If ®'(M) is equicontinuous in (F 0A F)'
then by Theorem 1 of [9], ®'(M) ° x = {Q'u' °x : u' e M} (x is the canonical map
of Ex F into (F0„ F)J is a separately equicontinuous subset of bilinear maps.
Thus since either Ea or Fa is barreled we have by [1, Chapitre III, §4, Proposition 10]
that @'(M) o x\EaxFa is an equicontinuous set of bilinear forms, thus there are
O-neighborhoods Va, Wa in Ea and Fa such that xeVa,yeWa and u e M imply

\<u',8(x,y)y\ = |0V°x(x,>O| = I-

If u e cl co 8(Va x Wa) then | <w', u) \ g 1. By Proposition 5, cl co 8(Va x Wa) is a
neighborhood for each a and this implies that M is equicontinuous.

If we apply the above theorem to the situation in which F=A, G = E and 8(x, a)
= xa, we can argue as in the proof of Proposition 3 and obtain the following:

Theorem 2. Suppose that A is a locally convex algebra and that for any subsets
ax, a2,..., an of A anda[, a2,..., a'n of A' such that 2 a¡a¡ = 0 we have 2 (.au a|> = 0.
Then (E ®A A), is topologically isomorphic to a dense subspace of H.

The above two theorems have some interesting consequences. We will in the
next section derive a number of known and new results from them. We do not think
this exhausts all possibilities.

4. Applications. We begin this section by using Theorem 2 to generalize a
result of Gaudry [4]. Let T be a locally compact group, Jf(r) the space of continu-
ous complex-valued functions on T having compact support, and for each compact
subset A' of T let Jf (I\ K) be the subspace of Jf (f) of functions whose support is in
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K. Each Jf(Y, K) is a Banach space given the uniform norm, and we give Jf(r) the
finest locally convex topology such that for each K the injection ¿f(Y, K) -* Jf(Y)
is continuous; i.e. Jf(Y)= ind lim Jf(Y, K). X~(Y) is a topological algebra with the
convolution product

/* g(ro) = I f(yov)g(y *) ¿y-

For/e JfYT), let/~(y)=/(y-1)A(y-1). By ¿f(r)r we mean X(Y) considered as a
locally convex right Jf (r)-module with the action of Jf(r) on Jf(Y)r given by
g^f~ * g. Our purpose now is to represent JT(Y)r (g)jr(r) Jf(Y). We shall need
the following lemma, which is probably not at all new.

Lemma 2. Let fe Jf(Y) and p. e M(Y) = jf(Y)', then given any e>0 there is an
h e JT(Y) such that | </, ¿> -</*«, ¡jl> | ̂  £.

Proof. First suppose |jLi|(Supp/)=0. Then we can find a relatively compact
neighborhood W of the identity in T such that |ii|((Supp/)H/)<£/||/||. Then
choosing heJf(Y) such that Supph<^W,h^0 and J"«(y_1) dy= 1, we have
| </* A, /x> | <£. Thus we may suppose |/¿|(Supp/)=|. Let U he an open relatively
compact subset containing Supp/ such that \p.\(U)Sî and let V be an open set
containing U with |/t|(K)^l. Choose ge Jf(Y) such that g|£/=l; O^ggl and
Supp g<= K. Since/is uniformly continuous there is a compact neighborhood W of
the identity of Y such that \f(y)-f(yy0)\^e for all y e Y and y0 e If; (Supp/) W
c £/ and 1F= If-1. It is simple to conclude that for y0 e Wwe have |/(y)— /(yyo)|
úeg(y) for all y e Y. Now choose heJf(Y) such that Supp «c If, A^0 and
J/i(y-1)i/y=l.Then

!</,/*>-</* *,/*>! = jfdp. ( «(yo"1) ¿y«,- j \f(yy0)h(vô1) dy0 dp.(y)

ffl/(y)-/(yyo)l%o1)^l^l(y)^yo

)  ¡eg(y)h(yö1)d\p.\(y)dy0^e.

To obtain a representation of Jf(Y)r (g^n -^"(F), we apply Theorem 2 with
the following changes in notation: E=Jf(Y)'; Ea = Jf(Y,K), A = Jf(Y); Aa =
Jf(Y, K'1) and 6(g,f) = /~ * g. We put 7Jif(r) = 77a, D(Y) = H and our notation
conforms precisely to that of Gaudry [4].

Theorem 3. J^(Y)r (g>jf(r) ̂ (Y) is topologically isomorphic to a dense vector
subspace of D(Y).

Proof. We show that the hypothesis of Theorem 2 is satisfied. Let /i,.. .,/„
e Jf(Y) and p.,,..., p.ne M(Y) and suppose 2/i ° Mi = 0. Given any e>0 there is,
by Lemma 2, ht e Jf(Y) such that
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Since </ * h¡, /x¡> = <A¡,/¡ ° /¿¡> we have 2 ifiu M¡>=0, and this completes the proof.
In [4] Gaudry calls the elements of D(F)' quasimeasures and he defines a con-

volution product of fie Jf(F) and a e D(F)' to be the element of F>(r)' defined by
<*,/* "> = </* g, °> for any g e D(T),fe Jf(F) [A, Lemma 2.9].

Corollary. Let m be a continuous linear map Jf(F) -*■ M(F)a satisfying

(*) m(g *f) = g* mfi.
Then there is a quasimeasure o e D(T)' such that

O mf = f*a.
Conversely given any a e D(F)', the equation (*.) defines a continuous linear map
X~(F) -> M(F)a satisfying (*).

Proof. By Theorem 3 and Proposition 1, we have Homjr(n (3f(F), M(F)a)
= D(T)'.

Remark. For locally compact abelian groups G, the above corollary is Gaudry's
Theorem 3.2 of [4].

The representation of tensor products of other modules arising in harmonic
analysis is often considerably easier than Theorem 3 above. The next theorem gives
some of these. For a locally compact group T let C(r) be the space of continuous
complex-valued functions given the compact-open topology. C0(r) is the subspace
of C(T) of functions which " vanish at infinity" taken with the usual norm topology.
M1(F) = C0(F)' is the subspace of M(T) of bounded measures and Mc(r) = C(r)'
is the subspace M (F) of measures having compact support. We give MC(F), the
<j(Mc(F), C(r))-topology. Jf(T) and C(r) are locally convex right Mc(r)-modules
and C0(r) is a locally convex right M1(r)-module with action defined by/->/~ * /x
where in each case

/* Kyo) = jfiiYoY-Wy-1) dp.(y).

Theorem 4. Let r be a locally compact group. Then
(a) (¿fYT) 0Mc(r) MC(F)\ ? cf(Y),
(b)(C(r)0Mc(r)Mc(r))^c(r),
(c) (co(r)0Mi(nM1(r))l s c0(r).

Proof. These are all immediate consequences of Proposition 2 of §2.
If m is a mapping of some subspace of C(r) into C(r), then we say that m

commutes with translations if m(yf)=ymf for all yeF, where yf is defined by
yfi(yo)=f(y'1yo)-

Corollary (Brainerd and Edwards [3]). Let F be a locally compact group.
Then

(a) Ifm: Jf(r) -»- C(r) is linear, continuous and commutes with translations, then
there is a p.e M(F) such that mf=f* p..
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(b) Ifm: C(Y) —> C(Y) is linear, continuous and commutes with translations, then
there is a p.e A7C(P) such that mf=f* p.

(c) If m: C0(r)^C0(r) is linear, continuous and commutes with translations,
then there is a p.e M\Y) such that mf=f* p..

Proof, m satisfies (a) if and only if its adjoint m' is in HomMs(n (A7c(r), M(Y)a).
Similarly for (b) and (c).

Definition. Let A be a Banach algebra. A Banach left A -module E is a left
y4-module such that for a e A and x e E, \ax\ ú\o\ \x\.

We now consider the 7p(r) spaces where Y is a locally compact group. For
Ifkpúco, these are Banach left 71(r)-modules with the action of L1(Y) on 7p(r)
given by g~^f*g- For l<pfico, L"(Y) is the dual module of 7"(r), l<;<7<oo,
l/P + l/q= 1 and as such is a Banach right 71(F)-module. Let Ll(Y) be the subset of
L1(Y) consisting of elements having compact support and let Ll¡K(Y) (70= F, K
compact) be the subspace of Ll(Y) of elements whose support is in K. We give
L\(Y) the finest locally convex topology such that the maps Ll¡K(Y) -*■ Ll(Y) are
continuous: Ll(Y) with this topology is a locally convex algebra.

Theorem 5. Let ß be the set of bounded subsets of L"(Y), 1 <p<co, and let
LP(Y) ®Ll(n Ll(Y) be the completion of(L"(Y) <g)Li(r) LJ(T)W Then

L>(Y)®Lhr)Ll(Y)^L»(Y).
Proof. This follows from Proposition 4. We leave the details to the reader.

Corollary (Brainerd and Edwards [3]). Suppose l<p<oo and that m: Ll(Y)
->L"(Y) is linear, continuous and commutes with translations. Then there is an
fe LP(Y) such that mg=g */.

Now let A be a Banach algebra, E a Banach right /1-module and Fa Banach left
/1-module. In this case every separately continuous bilinear map of Ex F into a
Banach space G is continuous and hence all the topologies r on E ®A F coincide
with the finest locally convex topology tt on E ®A F such that the canonical map
x: ExF^- E <S>A F is continuous. This topology is normable, and a suitable norm
on E®AFis given by

hi = inf{S mi wi: u = 2x'®>4-
Proposition 8. The completion E®AF of (E®A F)n is a Banach space having

the following property: for each A-balanced bounded bilinear map 9 of Ex F into a
Banach space G, there is a bounded linear map ®: E <g)AF-> G such that ®(x ® y)
= 9(x,y)and\\®\\ = \\9\\.

Proof. From Theorem 1 of [9], and the well-known property of the completion
of a normed space we obtain the existence of 0. It remains now to show || 0|| = ||0||.
Clearly we have  ||ö||^||0||. Let ueE®AF and suppose u = 2 xt <g> y¡, then
l|0(")lla||ö||2lki|lbi||andhence||0|| = ||0|.
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Remark. The above proposition and Theorem 2.5 of [7] show that F ®A F is
isometric and isomorphic to the tensor product used by Rieffel in [7] and [8].

The representation theorems of §3 become for Banach modules the following

Theorem 6. Let 8 be an A-balanced bilinear map of Ex F into a Banach space G.
Let

H = lue G : m = 2 e(xu yù> 2 NI NI < °°f-

Then with respect to the norm

{GO CO ^
2 IWI lb*! '■u = 2ö(x"->;i)}>

// is a Banach space and the following conditions are equivalent:
(a) 0 : F 0,4 F-> 7/ w a norm isomorphism.
(b) For sequences (xn)<=E and (yn)<=F such that 2 #(xn, >y) = 0 and 2 ||x„|| || jn||

<oo we have 2 <xn, myn) = 0for every m e Hom¿ (F, F¿).
(c) For any finite subsets xu x2,..., xn of E and ylt y2,..., yn of F such that

2 0(xu y,) = 0 we have 2 <*i, myl} = 0for every m e Hom^ (F, E'ß).

Proof. This follows from Theorem 1 and the well-known properties of the com-
pletion of a normed space.

For F=A, G = E and 8(x, a) = xa we obtain as in §3:

Theorem 7. If for subsets ax, a2,..., an of A and a[, a2,..., a'n of A' such that
2 Oidi = 0 we have 2 <ßi> a[} = 0, then E §)AA is norm isomorphic to H.

Now let F = A so that H becomes the space which Maté denotes by Y' in [6],
and A' the dual of A with the norm topology.

Corollary (Maté). Let A be a Banach algebra satisfying the condition of
Theorem 7, then Hom^ (A, A) is norm isomorphic to a subspace of H'.

Proof. Observe that

Hom.4 (A, A) c Hom„ (A, A") = (A' ®A A)' = Y'.

Theorem 6 is closely related to the results of [8], particularly Theorem 5.5. To
see this we first need the following definitions.

Let l<p<co, l<q<co; l/p+l/q^l and l/a+l/g' = l.
We want to describe HomLi(r) (Fp(r), L"'(F)) = M. The ultraweak operator

topology on M is the topology generated by the seminorms of the form
co

p(m) = 2   | <g„ mfi) |i = i
where g¡ eL"(F),fi¡ eV(F) and 2 ||i?i|| 11/II <°o- This topology corresponds to the
weak* topology on (L"(F) ®ii(r) Fp(r))' via the identification

M^(F*(r)®Ll(r)F*(r))'.
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Let heJf(F) then the Riesz convexity theorem implies that for /eFp(r),
/*AeF"'(r)and

J/*A|,á ||A~||r«lA-1'>A~||i-*'<'||/||J,

A locally compact group F is said to satisfy property Pg (resp. QJ) if every
element of HomLi(r) (Fp(r), F"'(r)) can be approximated in the ultraweak (resp.
weak) operator topology by operators of the form/n>/* h with h e Jf(F).

We define a bilinear map 8: L"(F)xL"(F)^Lr(F) where l/r=l/p+l/q-l by
8(g,f) = A^(f~ * g) and then \\8(g,fi)\\ ¿ ¡fiUgL

In conformity with the notation of Rieffel and others we let A% be the Banach
space H of Theorem 6.

Theorem 8. Let F be a locally compact group. The following are equivalent
conditions on F :

(a)L\F)®LhT,V(F)^A%,
(b) T satisfies property Pp,
(c) T satisfies property Q£.

Proof. We first show that (a) implies (b). Let X be the subspace of

Homil(r)(Fp(r),F«'(r))

of maps of the form fi^f* h with heJf(F). If 2 A1/p/~ *ge X^A« then
2 A1,p'/~ * g * h=0 for all h e Jf(F) and this means that 2 A1/p'/~ * g = 0. By (b)
of Theorem 6, 2í <g¡,mfii)=0 for all meHomL\r)(Lp(F),L"'(F)) and this says
that X00 = HomLi(r)(Lp(F),L','(F)) (Xo is the polar of JTin Lq(F) 0Li(r)Fp(r), and
X00 its bipolar), which by the Bipolar Theorem is condition (b). Now (b) implies
(c) trivially, and it is easy to see that (c) implies condition (c) of Theorem 6.

Remark. As far as the author knows, it is unknown if every locally compact
group satisfies Q*. The most general known result is due to C. S. Herz who has
shown that every amenable group has this property.
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