
Tensor products of spherical and
equivariant immersions

F. Decruyenaere∗ F. Dillen † I. Mihai‡ L. Verstraelen

In [C1, C2, C3, C4], B.-Y. Chen introduced the tensor product of two immersions
of a given Riemannian manifold; he proved that the set of all immersions of the

given manifold, provided with direct sum and tensor product, defines a commutative
semiring.

In [DDVV] we introduced I, the commutative semiring of all transversal immer-
sions of all differentiable manifolds in Euclidean spaces, provided with the binary
operations direct sum and tensor product. In this paper we further investigate which

immersions define a subsemiring or a multiplicative subsemigroup ; in particular, we
fix our attention on spherical immersions of differentiable manifolds, isometric and
equivariant immersions of Riemannian manifolds and immersions of finite type.

Denote by En the n-dimensional Euclidean space with Euclidean metric 〈 , 〉.
The n-dimensional sphere with radius r is denoted by Sn(r). Let f : M → Em be
an immersion of a differentiable manifold in a Euclidean space. Then f is said to be
transversal in a point p ∈M if and only if the position vector f(p) is not tangent to
M at p, i.e. f(p) /∈ f∗(TpM). If f is transversal in every point of M , then f shortly

is called transversal. Consider two differentiable manifolds M and N of dimensions
r resp. s and assume that f : M → Em and h : N → En are two transversal
immersions. Then the direct sum map f⊕h : M×N → Em+n : (p, q) 7→ (f(p), h(q))

and the tensor product map f ⊗ h : M × N → Emn : (p, q) 7→ f(p) ⊗ h(q) are
again two transversal immersions. We define a symmetric relation ∼ as follows : if
f : M → Em is an immersion and i : Em ⊂ En is a linear isometric immersion, then
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f ∼ i(f); if f : M → Em is an immersion and d : N → M is a diffeomorphism, then
f ∼ f ◦d. Then ∼ is an equivalence relation on the set of all transversal immersions

Z and we put I = Z/ ∼. It is proved in [DDVV] that I,⊕,⊗ is a commutative
semiring, with e : {0} → E1 : 0 7→ 1 as identity element.

Theorem 1.

• The set of all spherical immersions of all differentiable manifolds induces a
subsemiring I∫ of I,⊕,⊗;

• the tensor product of two spherical immersions f and h of Riemannian mani-
folds M and N is an isometric immersion of the Riemannian product M ×N
if and only if f(M) is contained in a sphere of radius r, h(N) is contained in
a sphere of radius r′, f is a homothetical immersion with factor 1/r′ and h is
a homothetical immersion with factor 1/r

• the tensor product of two spherical isometric immersions f and h of Rieman-
nian manifolds M and N such that both f(M) and h(N) are contained in

a sphere of radius 1, is an isometric immersion of the Riemannian product
M ×N

• if f and g are two homothetical spherical immersions in a sphere of radius 1
with the same factor λ, then f ⊗ g is again a homothetical immersion of the
Riemannian product with factor λ.

Corollary. The set of all spherical immersions of all differentiable manifolds
into a unit sphere induces a subsemigroup Iu∫ ,⊗ of I,⊗.

Proof Let f : M → Em and h : N → En be immersions such that f(M) ⊆
Sm−1(r) and h(N) ⊆ Sn−1(s). Then, obviously, f and h are transversal immersions
such that f ⊗ h is also an immersion. It easily follows that

(f ⊕ h)(M ×N) ⊆ Sm+n−1(
√
r2 + s2)

and that
(f ⊗ h)(M ×N) ⊆ Smn−1(rs).

In order to prove (2), we assume that (M, g) and (N, g′) are Riemannian mani-
folds. Take p ∈M with vp, v

′
p ∈ TpM and q ∈ N with wq, w

′
q ∈ TqN . Then

〈(f ⊗ h)∗(vp, wq), (f ⊗ h)∗(v
′
p, w

′
q)〉 = 〈f(p) ⊗ h∗(wq) + f∗(vp)⊗ h(q),

f(p) ⊗ h∗(w′q) + f∗(v
′
p)⊗ h(q)〉

=〈f(p) ⊗ h∗(wq), f(p) ⊗ h∗(w′q)〉+ 〈f(p) ⊗ h∗(wq), f∗(v′p)⊗ h(q)〉
+ 〈f∗(vp)⊗ h(q), f(p)⊗ h∗(w′q)〉 + 〈f∗(vp)⊗ h(q), f∗(v

′
p)⊗ h(q)〉(*)

=〈f(p), f(p)〉〈h∗(wq), h∗(w′q)〉+ 〈f(p), f∗(v
′
p)〉〈h∗(wq), h(q)〉+

〈f∗(vp), f(p)〉〈h(q), h∗(w
′
q)〉+ 〈f∗(vp), f∗(v′p)〉〈h(q), h(q)〉

If 〈f(p), f(p)〉 = r2 and 〈h(q), h(q)〉 = r′2, then

〈(f ⊗ h)∗(vp, wq), (f ⊗ h)∗(v
′
p, w

′
q)〉 =〈f∗(vp), f∗(v′p)〉r′

2
+ 〈h∗(wq), h∗(w′q)〉r2

=g(vp, v
′
p) + g′(wq, w

′
q),
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and thus f ⊗ h is an isometric immersions. The converse can be proved in the
same way, based on (∗). (3) is an immediate consequence and (4) can be proved

similarly as (2). 2

If (M, g) is a compact Riemannian homogeneous manifold, denote by G the
identity component of the group of all isometries of M . Then G is a compact Lie
group which acts transitively on M . Thus M = G/K, where K is the isotropy

subgroup of G at a point x ∈M .
Definition. An (isometric) immersion f : (M, g)→ Em is said to be equivariant

if and only if there exists a Lie homomorphism ψ : G→ SO(m) such that f(q(p)) =

ψ(q)(f(p)), ∀q ∈ G and p ∈ M .

Theorem 2. The set E of all isometric equivariant transversal immersions of

all compact homogeneous Riemannian manifolds induces a subsemiring of I,⊕,⊗.
Proof. Let f : (M, g) → Em and h : (M ′, g′) → Em′ two isometric equivariant

transversal immersions of the compact homogeneous Riemannian manifolds (M, g)
and (M ′, g′). Denote by G (resp. G′) the identity component of the group of all

isometries of M (resp. M ′).
Then there exists ψ : G→ SO(m) (resp. ψ′ : G′ → SO(m′)) such that

{
f(q(α)) = ψ(q)(f(α)), ∀α ∈M, q ∈ G
h(q′(β)) = ψ′(q′)(h(β)), ∀β ∈M ′, q′ ∈ G′.

Define {
ψ⊕ : G×G′ → SO(m +m′)
ψ⊗ : G×G′ → SO(mm′)

by {
ψ⊕(q, q′) = (ψ(q) 00 ψ′(q′) )
ψ⊗(q, q′) = ψ(q)⊗ ψ(q′).

Then we have

(f ⊕ h)((q, q′)(α, β)) = (f(q(α)), h(q′(β)))

= (ψ(q)(f(α)), ψ′(q′)(h(β))

= ψ⊕(q, q′)(f(α), h(β))

= ψ⊕(q, q′)[(f ⊕ h)(α, β)]

(f ⊗ h)((q, q′)(α, β)) = f(q(α))⊗ h(q′(β))

= ψ(q)(f(α))⊗ ψ′(q′)(h(β))

= ψ⊗(q, q′)[(f ⊗ h)(α, β)]

Thus, f ⊕ h and f ⊗ h are isometric equivariant immersions. 2

We now concentrate on the tensor product of spherical isometric immersions
(with spherical it is meant that the image is contained in a sphere of radius 1).



646 F. Decruyenaere – F. Dillen – I. Mihai – L. Verstraelen

Lemma A.Assume that f : (M, g)→ Em and h : (N, g′)→ En are two spherical
isometric immersions with Im(f) ⊆ Sm−1(R) and Im(h) ⊆ Sn−1(R′). Let p ∈ M
and q ∈ N . Suppose dimM = r with basis of TpM given by e1, . . . , er and let a
basis of the normal bundle of f(M) in Sm−1(R) at p be given by ξ1, ξ2, . . . , ξm−r−1;
suppose dimN = s with basis of TqN given by f1, . . . , fs and let a basis of the
normal bundle of h(N) in Sn−1(R′) at q be given by ζ1, ζ2, . . . , ζn−s−1. Then a basis

of (f ⊗ h)∗(T(p,q)(M ×N)) is given by

{f(p) ⊗ h∗(fj), f∗(ei)⊗ h(q)|1 ≤ i ≤ r, 1 ≤ j ≤ s}.

A basis of the normal space of (f ⊗ h)(M ×N) in Smn−1(RR′) at (p, q) is given by

{f∗(ei)⊗ h∗(fj), 1 ≤ i ≤ r, 1 ≤ j ≤ s;

f∗(ei)⊗ ζj , 1 ≤ i ≤ r, 1 ≤ j ≤ n− s− 1;

ξi ⊗ h∗(fj) , 1 ≤ i ≤ m− r − 1, 1 ≤ j ≤ s;

ξi ⊗ ζj , 1 ≤ i ≤ m− r − 1, 1 ≤ j ≤ n− s− 1;

ξi ⊗ h(q) , 1 ≤ i ≤ m− r − 1;

f(p) ⊗ ζj , 1 ≤ j ≤ n− s− 1}.

Proof. The first part follows from [DDVV], Lemma 2. The second part is then
obvious. 2

Lemma B.With the same notations as in Lemma A, put R = R′ = 1, X =
(X1, X2), Y = (Y1, Y2) ∈ Tp,q(M ×N). If the second fundamental forms of f : M →
Sm−1(1) and h : N → Sn−1(1) are given by σf and σh, then the second fundamental
form of f ⊗ h : M ×N → Smn−1 is given by

σf⊗h(X, Y ) = f∗(X1)⊗h∗(Y2)+f∗(Y1)⊗h∗(X2)+f(p)⊗σh(X2, Y2)+σf (X1, Y1)⊗h(q).

Proof. Let D denote the affine connection of Euclidean space, and let ∇1 and
∇2 denote the Levi Civita connections of M and N . Then

DX(f ⊗ h)∗(Y ) = DX(f(p) ⊗ h∗(Y2)) +DX(f∗(Y1)⊗ h(q))

= DX1f(p) ⊗ h∗(Y2) + f(p) ⊗DX2h∗(Y2)

+DX1f∗(Y1)⊗ h(q) + f∗(Y1)⊗DX2h(q)

= f∗(X1)⊗ h∗(Y2) + f(p)⊗ h∗(∇2
X2
Y2) + f(p) ⊗ σh(X2, Y2)

− 〈Y1, Y2〉f(p) ⊗ h(q) + f∗(∇1
X1
Y1)⊗ h(q) + σf(X1, Y1)⊗ h(q)

− 〈X1, X2〉f(p) ⊗ h(q) + f∗(Y1)⊗ h∗(X2).

The result now follows from Lemma A.

In the following theorem we use the same notations as in Lemma A.
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Theorem 3.

• The set Imu∫ of all minimal spherical isometric immersions of all Riemannian
manifolds into a unit sphere is a subsemigroup of Iu∫ ,⊗;

• The set I{tu∫ of all finite type spherical isometric mmersions of all Riemannian
manifolds into a unit sphere is a subsemigroup of Iu∫ ,⊗;

• The set It∇∫ of all spherical isometric immersions of all manifolds into a

sphere S2m−1 which are totally real with respect to at least one complex struc-
ture on E2m is an ideal of I∫ ,⊕,⊗;

Proof. Assume f and h are minimal spherical isometric immersions; then it is
easy to see that the mean curvature vector of the tensor product immersion

Hf⊗h(p, q) =
1

r + s
(
s∑
j=1

σf⊗h((0, fj), (0, fj)) +
r∑
i=1

σf⊗h((ei, 0), (ei, 0))).

Therefore, by Lemma B,

Hf⊗h(p, q) =
1

r + s
(
s∑
j=1

f(p) ⊗ σh(fj, fj) +
r∑
i=1

σf(ei, ei) ⊗ h(q))

and thus

Hf⊗h =
1

r + s
(sf ⊗Hh + rHf ⊗ h).

It is now clear that if f and h are minimal, then f ⊗ h is minimal too.
In order to prove (2), assume that f = f1 + . . .+ ft with ∆ffi = λifi(1 ≤ i ≤ t)

and h = h1 + . . .+hu with ∆hhj = µjhj(1 ≤ j ≤ u). Then f ⊗h =
∑
i,j fi⊗hj with

∆(fi ⊗ hj) = (λi + µj)(fi ⊗ hj) and thus f ⊗ h is of finite type ≤ tu.
For proving (3), we first remark that the direct sum of any two totally real

immersions is again totally real. Next let f : M → S2m−1 be a totally real spherical

immersion with respect to a complex structure J on E2m, and let h : N → Sn−1

be a spherical immersion. We prove that f ⊗ h is totally real with respect to the
complex structure J ⊗ I on E2mn. This follows immediately from

〈(J ⊗ I)(f ⊗ h)∗(vp, wq), (f ⊗ h)∗(v
′
p, w

′
q)〉

=〈Jf(p), f(p)〉〈h∗(wq), h∗(w′q)〉 + 〈Jf(p), f∗(v
′
p)〉〈h∗(wq), h(q)〉

+〈Jf∗(vp), f(p)〉〈h(q), h∗(w
′
q)〉 + 〈Jf∗(vp), f∗(v′p)〉〈h(q), h(q)〉 = 0.2

Examples. The tensor product of two circles of radius 1 is a flat surface of type
1 in a 3-dimensional unit sphere. In particular, it is the Clifford torus. The tensor
product of a circle of radius 1 and a small circle on a 2-dimensional unit sphere is

a flat surface of type 2. The tensor product of two small circles on a 2-dimensional
unit sphere is a flat surface of type 3. In general, the tensor product of two curves
of finite type on a unit sphere (cf. [CDDVV]) is a flat torus of finite type.
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