TENSOR PRODUCTS OF TSIRELSON'S SPACE

BY
Raymundo Alencar ${ }^{1}$, Richard M. Aron and Gerd Fricke

Tsirelson's space T has attracted considerable interest during the past few years, somewhat eclipsing the original space T^{*} discovered in 1973 by B. S. Tsirelson [12]. However, in [1], the first two authors and Dineen showed that T^{*} held the greater interest, from the point of view of holomorphic functions. Specifically, the main result of [1] is that for all positive integers $n, P\left({ }^{n} T^{*}\right)$ is reflexive. As a consequence, it is shown that the space $\left(H\left(T^{*}\right), \tau_{\omega}\right)$ of complex-valued holomorphic functions on T^{*}, endowed with the Nachbin ported topology, is reflexive. Here, we continue our study of multilinear properties of T^{*} by showing that $P\left({ }^{n} T^{*}\right)$ is "Tsirelson-like", in the sense that it is reflexive, with (not unconditional) basis, and contains no l_{p} space for $1<p<\infty$. In fact, our method of proof enables us to prove that $\left(H\left(T^{*}, l_{p}\right), \tau_{\omega}\right)$ and $P\left({ }^{n} T^{*}, l_{p}\right)$ are reflexive for all $n=1,2, \ldots$ and all p, $1<p<\infty$.

Our notation and terminology will follow the earlier paper [1]. Given Banach spaces X and $Y, L\left({ }^{n} X, Y\right)$ is the Banach space of continuous n-linear mappings $A: X \times \cdots \times X \rightarrow Y$, with norm

$$
\|A\|=\sup \left\{\left\|A\left(x_{1}, \ldots, x_{n}\right)\right\|: x_{j} \in X,\left\|x_{j}\right\| \leq 1,1 \leq j \leq n\right\}
$$

$L\left({ }^{n} X\right)$ denotes $L\left({ }^{n} X, K\right)$ where $K=R$ or C. An important observation for us will be the fact that $L\left({ }^{n} X, Y\right)$ is isometrically isomorphic to the space $L\left(\hat{\otimes}_{\pi}^{n} X, Y\right)$ of linear mappings between the n-fold completed projective tensor product of X with itself and Y. Similarly the space $L_{s}\left({ }^{n} X, Y\right)$ of symmetric continuous n-linear mappings is isometrically isomorphic to the space $\left.L(S)^{n} X, Y\right)$, where © ${ }^{n} X$ is the symmetric n-fold completed projective tensor product of X with itself. $\quad L_{s}\left({ }^{n} X, Y\right)$ is also isomorphic to the Banach space $P\left({ }^{n} X, Y\right)$ of n-homogeneous continuous polynomials from X to Y, where each element $P \in P\left({ }^{n} X, Y\right)$ is defined as $P(x)=A(x, \ldots, x)$ for a unique element $A \in L_{s}\left({ }^{n} X, Y\right)$. For basic properties of tensor products, we refer to [3] (See also [11]). See [4] for any unexplained notation and definitions from infinite dimensional holomorphy.

[^0]Our proof that $P\left({ }^{n} T^{*}\right)$ is Tsirelson-like will show somewhat more. Specifically, our main result is that for every $p \in(1, \infty)$, every linear continuous mapping R : $\hat{\otimes}_{\varepsilon}^{n} T \rightarrow l_{p}$ is compact where $\hat{\otimes}_{\varepsilon}^{n} T$ is the completed n-fold injective tensor product of T with itself. We will show how this implies that $P\left({ }^{n} T^{*}\right)$ is Tsirelson-like and also derive other consequences of this result for spaces of polynomials and analytic functions. A basic tool which we use is a lemma which states that if X is a Banach space such that every continuous linear operator from X to l_{p} is compact, then every continuous linear operator from X to l_{q} is compact for all $q<p$. We recall the classical result (for example, see [10]) that every continuous linear operator from l_{p} to l_{q} is compact, whenever $q<p$. Therefore it is natural to ask whether the following more general result holds. Given three Banach spaces X, Y, and Z, such that all continuous linear operators from X to Y and from Y to Z are compact, does it follow that every continuous linear operator from X to Z is compact. At the end of this note, we give a counterexample due to J. Bourgain.

We begin by recalling the following result which is essentially proved in [1].

Proposition 1. $L\left({ }^{n} T^{*}\right)$ is reflexive for every $n \in N$.

As a consequence, the isomorphic space $L\left(T^{*}, L\left({ }^{n-1} T^{*}\right)\right)$ of linear mappings of T^{*} to $L\left({ }^{n-1} T^{*}\right)$ is reflexive. Since all spaces involved here have the approximation property and T is reflexive, we conclude that every such linear mapping is compact and therefore $L\left({ }^{n} T^{*}\right) \cong T \hat{\otimes}_{e} L\left({ }^{n-1} T^{*}\right)$. Continuing by induction, we see that $L\left({ }^{n} T^{*}\right) \cong \widehat{\otimes}_{\varepsilon}^{n} T$. Note that by the defining property of the projective tensor product, $L\left({ }^{n} T^{*}\right)$ is also isomorphic to $\left(\otimes_{\pi}^{n} T^{*}\right)^{*}$. Also it is well known [6] that the completed injective tensor product of Banach spaces with basis has a basis.

Lemma 2. Every continuous linear operator $S: L\left({ }^{n} T^{*}\right)^{*} \rightarrow l_{1}$ is compact.
Proof. Let $\left(x_{j}\right)$ be an arbitrary bounded sequence in $\left(L^{n} T^{*}\right)^{*}$. Without loss, we may assume that $\left(x_{j}\right)$ converges weakly to a point x_{0} since $L\left({ }^{n} T^{*}\right)$ is reflexive. Therefore ($S x_{j}$) converges weakly, and hence in norm, to $S x_{0}$ in l_{1}, which completes the proof. Q.E.D.

Lemma 3. Let $P: L\left({ }^{n} T^{*}\right)^{*} \rightarrow l_{1}$ be a continuous k-homogeneous polynomial. Then P is compact; that is, P takes bounded subsets of $L\left({ }^{n} T^{*}\right)^{*}$ to relatively compact subsets of l_{1}.

Proof. Let A be the symmetric k-linear mapping associated to P,

$$
A: \stackrel{k}{\times} L\left({ }^{n} T^{*}\right)^{*} \rightarrow l_{1}
$$

where $\times E$ denotes the product of E with itself k times. Using the reflexivity of $L\left({ }^{n} T^{1}\right.$), we see that A is a k-linear mapping,

$$
\left.A:{\underset{1}{X}}_{\nless}^{\otimes_{\pi}^{n}} T^{*}\right) \rightarrow l_{1}
$$

As such, there is a unique continuous linear mapping associated to A,

$$
\tilde{A}: \hat{\otimes}_{\pi}^{k}\left(\hat{\otimes}_{\pi}^{n} T^{*}\right) \rightarrow l_{1}
$$

However, the domain of \tilde{A} is isomorphic to $L\left({ }^{n k} T^{*}\right)^{*}$, and so \tilde{A} is compact by Lemma 2. Hence A and P are compact. Q.E.D.

Lemma 4. Let $q \in N$ and let $S: L\left({ }^{n} T^{*}\right)^{*} \rightarrow l_{q}$ be a continuous linear mapping. Then S is compact.

Proof. Define $P_{q}: l_{q} \rightarrow l_{1}$ by $P_{q}(x)=\left(x_{1}^{q}, x_{2}^{q}, \ldots\right)$. It is not difficult to show that a bounded set C in l_{q} is relatively compact if and only if $P_{q}(C)$ is relatively compact in l_{1}. Using this, let us assume that $S(B)$ is not relatively compact, where B is the unit ball of $L\left({ }^{n} T^{*}\right)^{*}$. But then $P_{q} \circ S: L\left({ }^{n} T^{*}\right)^{*} \rightarrow l_{1}$ is a q-homogeneous non-compact polynomial, contradicting Lemma 3. Q.E.D.

An immediate consequence of Lemma 4 is that $L\left({ }^{n} T^{*}\right)$ contains no isomorphic copy of l_{p} for any $p>1$. Indeed, if $L\left({ }^{n} T^{*}\right)$ contained an isomorphic copy of some l_{p}, then the adjoint R of this isomorphism R : $L\left({ }^{n} T^{*}\right)^{*} \rightarrow l_{p^{\prime}}$, would be surjective, where $1 / p+1 / p^{\prime}=1$. But then if q is any integer larger than $p^{\prime}, i \circ R: L\left({ }^{n} T^{*}\right)^{*} \rightarrow l_{q}$ would have dense range, contradicting Lemma 4. However, in order to obtain the stronger result mentioned in the introduction, we shall need to extend Lemma 4 to the case of all real numbers $q>1$, using a sliding hump argument.

Lemma 5. Suppose a Banach space X has the property that for some $p>1, L\left(X, l_{p}\right)=K\left(X, l_{p}\right)$. Then $L\left(X, l_{q}\right)=K\left(X, l_{q}\right)$ for all $q \in[1, p]$. Here, $K\left(X, l_{p}\right)$ denotes the compact linear operators from X to l_{p}.

Proof. If the conclusion is false then for some $q, 1 \leq q<p$, there is a non-compact linear operator $S \in L\left(X, l_{q}\right)$, and so there is a bounded sequence (c^{j}) in $S\left(X_{1}\right)$ with no convergent subsequence. (Here, $X_{1}=\{x \in X$: $\|x\| \leq 1\}$. Also, for each point $y \in l_{q}$ and each integer k,

$$
\left.\Pi^{k}(y)=\left(y_{1}, \ldots, y_{k}, 0,0, \ldots\right) \in l_{q}\right)
$$

Without loss of generality, we may assume that for some $\delta>0,\left\|c^{j}-c^{k}\right\|_{q}>$
2δ whenever $j \neq k$. By a diagonal process, we may assume further that for each $n,\left(c_{n}^{j}\right)_{j}$ converges to some number c_{n}. Therefore, taking $b^{j}=c^{j}-c^{j+1}$, we may assume that each b_{j} is in $S\left(X_{1}\right), 2 \delta \leq\left\|b^{j}\right\|_{q} \leq 1$, and $b_{n}^{j} \rightarrow 0$ as $j \rightarrow \infty$, for each n. We claim that there are increasing sequences $\left(j_{n}\right),\left(k_{n}\right)$ such that for all n,

$$
\begin{equation*}
\left\|\left(\Pi^{k_{n+1}}-\Pi^{k_{n}}\right)\left(b^{j_{n}}\right)\right\|_{q}>\delta \tag{*}
\end{equation*}
$$

Indeed, since $\Pi^{n}\left(b^{1}\right) \rightarrow b^{1}$ as $n \rightarrow \infty$, there is some $k_{1} \in N$ such that $\left\|\Pi^{k_{1}}\left(b^{1}\right)\right\|_{q}>3 \delta / 2$. Let $j_{1}=1$. Choose $j_{2} \in N$ such that $\left\|\Pi^{k_{1}}\left(b^{j_{2}}\right)\right\|_{q}<\delta / 2$. Next, choose $k_{2} \in N, k_{2}>k_{1}$, such that $\left\|\Pi^{k_{2}}\left(b^{j_{2}}\right)\right\|_{q}>3 \delta / 2$. Hence

$$
\left\|\left(\Pi^{k_{2}}-\Pi^{k_{1}}\right)\left(b^{j_{2}}\right)\right\|_{q} \geq\left\|\Pi^{k_{2}}\left(b^{j_{2}}\right)\right\|_{q}-\left\|\Pi^{k_{1}}\left(b^{j_{2}}\right)\right\|_{q}>3 \delta / 2-\delta / 2=\delta
$$

Continuing this process, we find the required sequences $\left(j_{n}\right),\left(k_{n}\right)$ satisfying (*).

Define $T: l_{q} \rightarrow l_{p}$ by $T(x)=\left(T_{n}(x)\right)_{n}$, where

$$
T_{n}(x)=\sum_{i=k_{n}+1}^{k_{n+1}} \overline{b_{i}^{j_{n}}}\left|b_{i}^{j_{n}}\right|^{q-2} x_{i}
$$

Note that by Hölder's inequality,

$$
\begin{aligned}
\sum_{i=k_{n}+1}^{k_{n+1}}\left|b_{i}^{j_{n}}\right|^{q-1}\left|x_{i}\right| & \leq\left(\sum_{i=k_{n}+1}^{k_{n+1}}\left(\left|b_{i}^{j_{n}}\right|^{q-1}\right)^{q^{\prime}}\right)^{1 / q^{\prime}}\left(\sum_{i=k_{n}+1}^{k_{n+1}}\left|x_{i}\right|^{q}\right)^{1 / q} \\
& =\left(\sum_{i=k_{n}+1}^{k_{n+1}}\left|b_{i}^{j_{n}}\right|^{q}\right)^{1 / q^{\prime}}\left(\sum_{i=k_{n}+1}^{k_{n+1}}\left|x_{i}\right|^{q}\right)^{1 / q} \\
& \leq\left(\sum_{i=k_{n}+1}^{k_{n+1}}\left|x_{i}\right|^{q}\right)^{1 / q}
\end{aligned}
$$

since we always have $\left\|b^{j}\right\|_{q} \leq 1$. Therefore,

$$
\begin{aligned}
\|T x\|_{p}^{p} & =\left.\left.\sum_{n=1}^{\infty}\left|\sum_{i=k_{n}+1}^{k_{n+1}} b_{i}^{j_{n}}\right| \bar{b}_{i}^{j_{n}}\right|^{q-2} x_{i}\right|^{p} \\
& \leq \sum_{n=1}^{\infty}\left[\sum_{i=k_{n}+1}^{k_{n+1}}\left|x_{i}\right|^{q}\right]^{p / q}
\end{aligned}
$$

Since $p \geq q$, we see that $\|T x\|_{p}^{p} \leq 1$ and so T is a continuous linear operator.

Also, for each fixed r, and $m>r$,

$$
\begin{aligned}
\left\|T\left(b^{j_{m}}\right)-T\left(b^{j_{r}}\right)\right\|_{p}^{p} & \geq\left|T_{r}\left(b^{j_{m}}-b^{j_{r}}\right)\right|^{p} \\
& =\left|\sum_{i=k_{r}+1}^{k_{r+1}}\left(\bar{b}_{i}^{j_{r}}\left|b_{i}^{j_{r}}\right|^{q-2} b_{i}^{j_{m}}-\left|b_{i}^{j_{r}}\right|^{q}\right)\right|^{p} .
\end{aligned}
$$

Since $b_{i}^{j_{m}} \rightarrow 0$ as $j_{m} \rightarrow \infty$ for all i, there is $m_{0}>r$ such that

$$
\left.\left.\left|\bar{b}_{i}^{j_{r}}\right| b_{i}^{j_{r}}\right|^{q-2} b_{i}^{j_{m}}\left|\leq \frac{1}{2}\right| b_{i}^{j_{r}}\right|^{q}, k_{r}+1 \leq i \leq k_{r+1} \quad \text { for all } m \geq m_{0}
$$

Therefore

$$
\begin{aligned}
\left\|T\left(b^{j_{m}}\right)-T\left(b^{j_{r}}\right)\right\|_{p}^{p} & \geq\left.\left|\sum_{i=k_{r}+1}^{k_{r+1}}\right| b_{i}^{j_{r}}\right|^{q}-\left.\sum_{i=k_{r}+1}^{k_{r+1}} \bar{b}_{i}^{j_{r}}\left|b_{i}^{j_{r}}\right|^{q-2} b_{i}^{j_{m}}\right|^{p} \\
& \geq\left(\sum_{i=k_{r}+1}^{k_{r+1}}\left|b_{i}^{j_{r}}\right|^{q}-\left.\left|\sum_{i=k_{r}+1}^{k_{r+1}} \bar{b}_{i}^{j_{r}}\right| b_{i}^{j_{r}}\right|^{q-2} b_{i}^{j_{m}} \mid\right)^{p} \\
& \geq\left(\sum_{i=k_{r}+1}^{k_{r+1}}\left|b_{i}^{j_{r}}\right|^{q}-\sum_{i=k_{r}+1}^{k_{r+1}}\left|\bar{b}_{i}^{j_{r}}\right|\left|b_{i}^{j_{r}}\right|^{q-2} \mid b_{i}^{j_{m} \mid}\right)^{p} \\
& \geq\left(\left.\sum_{i=k_{r}+1}^{k_{r+1}}\left|b_{i}^{j_{r}}\right|^{q}-\frac{1}{2} \sum_{i=k_{r}+1}^{k_{r+1}} \right\rvert\, b_{i}^{\left.j_{r}\right|^{q}}\right)^{p} \\
& =\frac{1}{2^{P}}\left(\sum_{i=k_{r}+1}^{k_{r+1}}\left|b_{i}^{j_{r}}\right|^{q}\right)^{p} \\
& =\frac{1}{2^{p}}\left\|\left(\Pi^{k_{r+1}}-\Pi^{k_{r}+1}\right)\left(b^{j_{r}}\right)\right\|_{q}^{p q} \\
& >\frac{\delta^{q p}}{2^{P}} \text { for all } m \geq m_{0} .
\end{aligned}
$$

Consequently we can find a set $N_{1} \subset \mathbf{N}$ and a constant c such that

$$
\left\|T\left(b^{j_{m}}\right)-T\left(b^{j_{k}}\right)\right\|_{p}>c \quad \text { for all } m, k \in N_{1}, m \neq k
$$

Thus, $\left\{T\left(b^{j_{m}}\right): m \in N_{1}\right\}$ is not relatively compact in l_{p}, and so $T \circ S \notin$ $K\left(X, l_{p}\right)$, a contradiction. Q.E.D.

Now, if $L\left({ }^{n} T^{*}\right)$ contained an isomorphic copy of some l_{p}, then the adjoint of the inclusion mapping would be a continuous linear surjection of $L\left({ }^{n} T^{*}\right)^{*}$
onto $l_{p^{\prime}}$. However, Lemmas 4 and 5 show that every linear operator from $L\left({ }^{n} T^{*}\right)^{*}$ to $l_{p^{\prime}}$ is compact. Thus we have proved the following.

Theorem 6. The space $L\left({ }^{n} T^{*}\right)$ is a reflexive Banach space with basis which does not contain an isomorphic copy of any l_{p} space.

The next result has both good and bad aspects, since although it shows that $L\left({ }^{n} T^{*}\right)$ is not quite as "good" as Tsirelson's space T, it also proves that it cannot be isomorphic to it.

Proposition 7. $L\left({ }^{n} T^{*}\right)$ does not have an unconditional basis for any $n>1$.
Proof. By [12], T^{*} is finitely universal and thus is sufficiently Euclidean [7, p. 37]. By [7, 3.4], $\left(T^{*} \hat{\otimes}_{\pi} T^{*}\right)^{*}=L\left({ }^{2} T^{*}\right)$ does not have local unconditional structure, and in particular, $L\left({ }^{2} T^{*}\right)$ cannot have an unconditional basis. In general, since T^{*} is a complemented subspace of $E=\hat{\otimes}_{\pi}^{n} T^{*}, E$ is sufficiently Euclidean. Applying [7, 3.4] again, we conclude that $\left(E \hat{\otimes}_{\pi} T^{*}\right)^{*}=$ $L\left({ }^{n+1} T^{*}\right)$ does not have local unconditional structure, and so does not have an unconditional basis. Q.E.D.

Corollary 8. For all $n \in N$ and $p \in(1, \infty), L\left({ }^{n} T^{*}, l_{p}\right)$ is reflexive.
Proof. This is a simple consequence of the proof of Theorem 6. Indeed

$$
L\left({ }^{n} T^{*}, l_{p}\right)=L\left(\hat{\otimes}_{\pi}^{n} T^{*}, l_{p}\right)=L\left(L\left({ }^{n} T^{*}\right)^{*}, l_{p}\right)
$$

by the defining property of the projective tensor product and the above remarks. Since both factors are reflexive and have the approximation property, an application of the above lemmas and [8] completes the proof. Q.E.D.

Corollary 8 implies an improvement of the main result of [1].
Corollary 9. For all $p \in(1, \infty),\left(H\left(T^{*}, l_{p}\right), \tau_{w}\right)$ is reflexive.
Proof. The proof is an immediate application of [5]. Indeed, by Corollary $8, P\left({ }^{n} T^{*}, l_{p}\right)$ is reflexive for every n, since this space is a complemented subspace of $L\left({ }^{n} T^{*}, l_{p}\right)$. Since $\left(H\left(T^{*}, l_{p}\right), \tau_{w}\right)$ is barreled and $\left(P\left({ }^{n} T^{*}, l_{p}\right)\right)_{n=0}^{\infty}$ is a shrinking equi-Schauder decomposition of $\left(H\left(T^{*}, l_{p}\right), \tau_{w}\right)$, an application of [5, cf. 9] completes the proof. Q.E.D.

Finally, we remark that Lemma 5 shows that there are non-trivial examples of triples (X, Y, Z) of Banach spaces with the property that if every continuous linear operator from X to Y is compact and if every continuous linear
operator from Y to Z is compact, then every continuous linear operator from X to Z is compact. We are grateful to J. Bourgain for showing us that such a transitive relation fails in general. Indeed, if one takes $X=Z=l_{2}$, and Y the space of Bourgain-Delbaen [cf. 2] with $\alpha=2 / 3$, then every operator from X to Y and from Y to X is compact.

Biblography

1. R. Alencar, R. Aron and S. Dineen, A reflexive space of holomorphic functions in infinitely many variables, Proc. Amer. Math. Soc., vol. 90 (1984), pp. 407-411.
2. J. Bourgain and F. Delbaen, A class of special \mathscr{L}_{∞}-spaces, Acta. Math. vol. 145 (1981), pp. 155-176.
3. J. Diestel and J.J. Uhl, Vector measures, Math. Surveys, no. 15, Amer. Math. Soc., Providence, R.I., 1977.
4. S. Dineen, Complex analysis in locally convex spaces, Math. Studies, no. 57, North Holland, 1981.
5. S. Dineen, Locally convex topologies on $H(U)$. Ann. Inst. Fourier (Grenoble), vol. 23 (1973), pp. 19-54.
6. B.R. Gelbaum and J. Gil de Lamadrid, Bases of tensor products of Banach spaces, Pacific J. Math., vol. 11, (1961), pp. 1281-1286.
7. Y. Gordon and D.R. Lewis, Absolutely summing operators and local unconditional structures, Acta Math., vol. 133 (1974), pp. 27-48.
8. J.R. Holub, Reflexivity of $L(E, F)$, Proc. Amer. Math. Soc., vol. 39 (1973), 175-177,
9. N. Kalton, Schauder decompositions in locally convex spaces, Proc. Cambridge Philos. Soc., vol. 68 (1970), p. 377.
10. H.R. Pitt, A note on bilinear forms, J. London Math. Soc., vol. 11 (1936), pp. 174-180.
11. R.A. Ryan, Applications of topological tensor products to infinite dimensional holomorphy, Thesis, Trinity College, Dublin, 1980.
12. B.S. Tsirelson, Not every Banach space contains an imbedding of l_{p} or C_{0}, Functional Anal. Appl., vol. 8 (1974), pp. 138-141.

Kent State University
Kent, Ohio
Universidade de Sāo Paulo
Sāo Paulo, Brasil
Kent State University
Kent, Оhio
Wright State University
Dayton, Ohio

[^0]: Received November 26, 1984.
 ${ }^{1}$ Research supported in part by FAPESP and CNPG-(Brazil), when the author was visiting Kent State University, Kent, Ohio.

