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TENSOR PRODUCTS OF TSIRELSON’S SPACE

BY

RAYMUNDO ALENCAI, RICHARD M. ARON AND GERD FRICKE

Tsirelson’s space T has attracted considerable interest during the past few
years, somewhat eclipsing the original space T* discovered in 1973 by B. S.
Tsirelson [12]. However, in [1], the first two authors and Dineen showed that
T* held the greater interest, from the point of view of holomorphic functions.
Specifically, the main result of [1] is that for all positive integers n, P("T*) is
reflexive. As a consequence, it is shown that the space (H(T*), "r,,,) of
complex-valued holomorphic functions on T*, endowed with the Nachbin
ported topology, is reflexive. Here, we continue our study of multilinear
properties of T* by showing that P("T*) is "Tsirelson-like", in the sense
that it is reflexive, with (not unconditional) basis, and contains no lr space for
1 <p < o0. In fact, our method of proof enables us to prove that
(H(T*, 1,), .r,.,) and P("T*, 1,) are reflexive for all n 1,2,... and all p,
1 <p< o0.

Our notation and terminology will follow the earlier paper [1]. Given
Banach spaces X and Y, L("X, Y) is the Banach space of continuous n-linear
mappings A" X X Y, with norm

Ilall sup{ Ila(xx,..., x,)I1" x+ x, IIx+ll < 1, 1 < j < n }.
L("X) denotes L("X, K) where K R or C. An important observation for us

will^be the fact that L(nx, Y) is isometrically isomorphic to the space
L((R)X, Y) of linear mappings between the n-fold completed projective
tensor product of X with itself and Y. Similarly the space L("X, Y) of
symmetric continuous n-linear mappings is isometrically isomorphic to the
space L((nX, Y), where (nX is the symmetric n-fold completed projective
tensor product of X with itself. L,(nx, Y) is also isomorphic to the Banach
space P("X, Y) of n-homogeneous continuous polynomials from X to Y,
where each element P P("X, Y) is defined as P(x)= A(x,..., x) for a
unique element A Ls("X, Y). For basic properties of tensor products, we
refer to [3] (See also [11]). See [4] for any unexplained notation and definitions
from infinite .dimensional holomorphy.
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Our proof that P("T*) is Tsirelson-like will show somewhat more. Specifi-
cally, our main result is that for every p (1, oo), every linear continuous
mapping R" (R)"T Ip is compact where (R)"T is the completed n-fold
injective tensor product of T with itself. We will show how this implies that
P("T*) is Tsirelson-like and also derive other consequences of this result for
spaces of polynomials and analytic functions. A basic tool which we use is a
lemma which states that if X is a Banach space such that every continuous
linear operator from X to l, is compact, then every continuous linear operator
from X to q is compact for all .q < p. We recall the classical result (for
example, see [10]) that every continuous linear operator from l to q is
compact, whenever q < p. Therefore it is natural to ask whether the following
more general result holds. Given three Banach spaces X, Y, and Z, such that
all continuous linear operators from X to Y and from Y to Z are compact,
does it follow that every continuous linear operator from X to Z is compact.
At the end of this note, we give a counterexample due to J. Bourgain.
We begin by recalling the following result which is essentially proved in [1].

PROPOSITION 1. L("T*) is reflexive for every n N.

As a consequence, the isomorphic space L(T*, L("-IT*)) of linear map-
pings of T* to L("-tT *) is reflexive. Since all spaces involved here have the
approximation property and T is reflexive, we conclude that every such linear
mapping is compact and therefore L("T*) = T (R)eL("-IT*). Continuing by
induction, we see that L("T*) =- (R) "T. Note that by the defining property of
the projective tensor product, L("T*) is also isomorphic to ((R)nT*)*. Also it
is well known [6] that the completed injective tensor product of Banach spaces
with basis has a basis.

LEM_MA 2. Every continuous linear operator S: L("T*)* 11 is compact.

Proof Let (xj) be an arbitrary bounded sequence in (L"T*)*. Without
loss, we may assume that (xj) converges weakly to a point x0 since L("T*) is
reflexive. Therefore (Sxj) converges weakly, and hence in norm, to Sxo in l,
which completes the proof. Q.E.D.

LEM_M 3. Let P: L("T*)* 11 be a continuous k-homogeneous poly-
nomial. Then P is compact; that is, P takes bounded subsets of L(nT*)* to
relatively compact subsets of 11.

Proof Let A be the symmetric k-linear mapping associated to P,

k

a. X --,
1
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k

where M E denotes the product of E with itself k times. Using the reflexivity
1

of L("T*), we see that A is a k-linear mapping,

As such, there is a unique continuous linear mapping associated to A,

However, the domain of is isomorphic to L(nkT*) *, and so is compact
by Lemma 2. Hence A and P are compact. Q.E.D.

LEMMA 4. Let q N and let S" L( nT*)* --, lq
mapping. Then S is compact.

be a continuous linear

Proof Define Pq: lq 11 by Pq(x)= (x, x,...). It is not difficult to
show that a bounded set C in lq is relatively compact if and only if Pq(C) is
relatively compact in 11. Using this, let us assume that S(B) is not relatively
compact, where B is the unit ball of L("T*)*. But then Pq S: L("T*) * ---,

is a q-homogeneous non-compact polynomial, contradicting Lemma 3. Q.E.D.

An immediate consequence of Lemma 4 is that L("T *) contains no
isomorphic copy of l, for any p > 1. Indeed, if L("T *) contained an
isomorphic copy of some lp, then the adjoint R of this isomorphism R"
L(nT*)* ---, 1,,, would be surjective, where 1/p + 1/p’= 1. But then if q is
any integer larger than p’, R" L("T*)*---, lq would have dense range,
contradicting Lemma 4. However, in order to obtain the stronger result
mentioned in the introduction, we shall need to extend Lemma 4 to the case of
all real numbers q > 1, using a sliding hump argument.

LEMMA 5. Suppose a Banach space X has the property that for some
p > 1, L(X, 1,) K(X, 1,). Then L(X, lq) K(X, lq) for all q [1, p ].
Here, K( X, lp) denotes the compact linear operators from X to lp.

Proof. If the conclusion is false then for some q, 1 < q < p, there is a
non-compact linear operator S L(X, q), and so there is a bounded se-
quence (cj) in S(X1) with no convergent subsequence. (Here, X { x X:
Ilxll -< 1). Also, for each point y q and each integer k,

IIk(Y) (Yl,"’, Y,, O, 0,... ) lq).
Without loss of generality, we may assume that for some > 0, Ilc ckllq >
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2/I whenever j : k. By a diagonal process, we may assume further that for
each n, (c)j converges to some number cn. Therefore, taking bJ c c+ 1,
we may assume that each b is in S(Xt),2/I < [[bJllq < 1, and b---, 0 as
j ---, oo, for each n. We claim that there are increasing sequences (jn),(kn)
such that for all n,

(*) [1(II"+ yI#,.)(bJ.)[[q > .
Indeed, since II’(bl) ---, b as n oo, there is some kt N such that
[[IIkl(bt)llq > 3/t/2. Let Ji 1. Choose J2 N such that [[Ilkl(bJ2)llq < /2.
Next, choose k2 N, k2 > kx, such that [[IIk2(bJ2)llq > 3/I/2. Hence

Continuing this process, we find the required sequences (j,,),(k,,) satisfying

Define T: lq lp by T(x) (Tn(x)) n, where

kn+
Tn(x) E blb/"lq-2xi

i--kn+

Note that by Ht$1der’s inequality,

E Ib/"lq-llxil < E (I b/J" q-1 ) E
i-k + 1 i--.k + 1 i--.k +

Ib/.Iq Ix, q

i-kn+l i=,kn+l

kn+l )
1/q

< Ixil q
i--kn+ l

since we always have II bll q 1. Therefore,

kn+
E

i--kn+ l

i=k.+l

Since p > q, we see that II Txll < 1 and so T is a continuous linear operator.



TENSOR PRODUCTS OF TSIRELSON’S SPACE 21

Also, for each fixed r, and m > r,

T(bira) T(bj’) ll >- T (bj" bj) s’

(,i, ibl, i-bl ibl, )
i=kr+

Since b/- -> o as j, -, o0 for all i, there is mo > r such that

1
bi, qI’i’lbi’lq-2bi’l 1 k + 1 < < kr+ for all m >_ m o.

Therefore

T(b-D" ) T( b-D’)II - kr+ kr+
E Ibi’l’- E

i’-kr+ i-kr+

kr+l
>_ Ibi’l q-

i-’kr+

kr+l
E i’lbi’lq-2bi

i’-kr+

p

>_ Ibi, q

i-kr+l i-’kr+l
Ii’1 Ibi’lq-2lbi’l )

p

1
>_ Ibi, q - Ibi’l q

i-kr+ i’-kr+

kr+l ) P1 bl, q

i-kr+ l

1
2ll(ri,+, Hk,+l)(b,.)I1’q
qP

> - for all rn > rn0.

Consequently we can find a set N1 c N and a constant c such that

T(b’) T(b7k)ll. > c for all m, k N1, m, k.

Thus, { T(bi’) rn Nt} is not relatively compact in Is’, and so To S
K(X, l,), a contradiction. Q.E.D.

Now, if L("T*) contained an isomorphic copy of some Is’, then the adjoint
of the inclusion mapping would be a continuous linear surjection of L("T*)*
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onto lp,. However, Lemmas 4 and 5 show that every linear operator from
L(nT*)* to 1,, is compact. Thus we have proved the following.

THEOP.dSM 6. The space L("T*) is a reflexive Banach space with basis which
does not contain an isomorphic copy of any lp space.

The next result has both good and bad aspects, since although it shows that
L("T*) is not quite as "good" as Tsirelson’s space T, it also proves that it
cannot be isomorphic to it.

PROPOSITION 7. L("T*) does not have an unconditional basis for any n > 1.

Proof By [12], T* is finitely universal and thus is sufficiently Euclidean [7,
p. 37]. By [7, 3.4], (T* , T*)* L(ZT *) does not have local unconditional
structure, and in particular, L(ZT *) cannot have an unconditional basis. In
general, since T* is a complemented subspace of E (R)T*, ,E is suffi-
ciently Euclidean. Applying [7, 3.4] again, we conclude that (E (R), T*)*
L("+ 1T*) does not have local unconditional structure, and so does not have
an unconditional basis. Q.E.D.

COROLLARY 8. For all n N andp (1, oo), L("T*, l) is reflexive.

Proof This is a simple consequence of the proof of Theorem 6. Indeed

by the defining property of the projective tensor product and the above
remarks. Since both factors are reflexive and have the approximation property,
an application of the above lemmas and [8] completes the proof. Q.E.D.

Corollary 8 implies an improvement of the main result of [1].

COROLLARY 9. For all p (1, ), (H(T*, lp), *w) is reflexive.

Proof The proof is an immediate application of [5]. Indeed, by Corollary
8, P("T*, lp) is reflexive for every n, since this space is a complemented
subspace of L("T *, l,). Since (H(T*, l,), w) is barreled and (P("T*, 1))=o
is a shrinking equi-Schauder decomposition of (H(T*, l), w), an application
of [5, cf. 9] completes the proof. Q.E.D.

Finally, we remark that Lemma 5 shows that there are non-trivial examples
of triples (X, Y, Z) of Banach spaces with the property that if every continu-
ous linear operator from X to Y is compact and if every continuous linear
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operator from Y to Z is compact, then every continuous linear operator from
X to Z is compact. We are grateful to J. Bourgain for showing us that such a
transitive relation fails in general. Indeed, if one takes X Z 12, and Y the
space of Bourgain-Delbaen [cf. 2] with a 2/3, then every operator from X
to Y and from Y to X is compact.
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