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Abstract

In tensor completion tasks, the traditional low-rank tensor de-
composition models suffer from the laborious model selec-
tion problem due to their high model sensitivity. In particu-
lar, for tensor ring (TR) decomposition, the number of model
possibilities grows exponentially with the tensor order, which
makes it rather challenging to find the optimal TR decom-
position. In this paper, by exploiting the low-rank structure
of the TR latent space, we propose a novel tensor comple-
tion method which is robust to model selection. In contrast
to imposing the low-rank constraint on the data space, we in-
troduce nuclear norm regularization on the latent TR factors,
resulting in the optimization step using singular value de-
composition (SVD) being performed at a much smaller scale.
By leveraging the alternating direction method of multipli-
ers (ADMM) scheme, the latent TR factors with optimal rank
and the recovered tensor can be obtained simultaneously. Our
proposed algorithm is shown to effectively alleviate the bur-
den of TR-rank selection, thereby greatly reducing the com-
putational cost. The extensive experimental results on both
synthetic and real-world data demonstrate the superior per-
formance and efficiency of the proposed approach against the
state-of-the-art algorithms.

Introduction

Tensor decompositions aim to find latent factors in tensor-
valued data (i.e., the generalization of multi-dimensional
arrays), thereby casting large-scale and intractable tensor
problems into a multilinear tensor latent space of low-
dimensionality (very few degrees of freedom designated by
the rank). The latent factors within tensor decomposition can
be considered as the latent features of data, which makes
them an ideal set of bases to predict missing entries when
the acquired data is incomplete. The specific forms and op-
erations among latent factors determine the type of ten-
sor decomposition. The most classical and successful ten-
sor decomposition models are the Tucker decomposition
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(TKD) and the CANDECOMP/PARAFAC (CP) decompo-
sition (Kolda and Bader 2009). More recently, the matrix
product state/tensor-train (MPS/TT) decomposition has be-
come very attractive, owing to its super-compression and
computational efficiency properties (Oseledets 2011). Cur-
rently, a generalization of TT decomposition, termed the
tensor ring (TR) decomposition, has been studied across
scientific disciplines (Zhao et al. 2016a; 2018). These ten-
sor decomposition models have found application in var-
ious fields such as machine learning (Wang et al. 2018;
Novikov et al. 2015; Anandkumar et al. 2014; Kanagawa et
al. 2016), signal processing (Cong et al. 2015), image/video
completion (Liu et al. 2013; Zhao et al. 2016b), compressed
sensing (Gandy, Recht, and Yamada 2011), to name but a
few. Tensor completion is one of the most important appli-
cations of tensor decompositions, with the goal to recover an
incomplete tensor from partially observed entries. The theo-
retical lynchpin in tensor completion problems is the tensor
low-rank assumption, and the methods can mainly be cate-
gorized into two types: (i) tensor-decomposition-based ap-
proach and (ii) rank-minimization-based approach.

Tensor decomposition based methods find latent factors
of tensor by the incomplete tensor, and then the latent fac-
tors are used to predict the missing entries. Many comple-
tion algorithms have been proposed based on alternating
least squares (ALS) method (Grasedyck, Kluge, and Kramer
2015; Wang, Aggarwal, and Aeron 2017), gradient-based
method (Yuan, Zhao, and Cao 2017; Acar et al. 2011), to
mention but a few. Though ALS and gradient-based algo-
rithms are free from burdensome hyper-parameter tuning,
the performance of these algorithms is rather sensitive to
model selection, i.e., rank selection of the tensor decompo-
sition. Moreover, since the optimal rank is generally data-
dependent, it is very challenging to specify the optimal rank
beforehand. This is especially the case for Tucker, TT, and
TR decompositions, for which the rank is defined as a vec-
tor; it is therefore impossible to find the optimal ranks by
cross-validation due to the immense possibilities.

Rank minimization based methods employ convex sur-
rogates to minimize the tensor rank. One of the most
commonly-used surrogates is the nuclear norm (a.k.a. Schat-
ten norm, or trace norm), which is defined as the sum
of singular values of a matrix and it is the most popular
convex surrogate for rank regularization. Based on differ-
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ent definitions of tensor rank, various nuclear norm reg-
ularized algorithms have been proposed (Liu et al. 2013;
Imaizumi, Maehara, and Hayashi 2017; Liu et al. 2014;
2015). Rank minimization based methods do not need to
specify the rank of the employed tensor decompositions be-
forehand, and the rank of the recovered tensor will be au-
tomatically learned from the limited observations. However,
these algorithms face multiple large-scale singular value de-
composition (SVD) operations on the 2D unfoldings of the
tensor when employing the nuclear norm and numerous
hyper-parameter tuning, which in turn leads to high com-
putational cost and low efficiency.

To address the problems of high sensitivity to rank se-
lection and low computational efficiency which are inherent
in traditional tensor completion methods, in this paper, we
propose a new algorithm named tensor ring low-rank fac-
tors (TRLRF) which effectively alleviates the burden of rank
selection and reduces the computational cost. By virtue of
employing both nuclear norm regularization and tensor de-
composition, our model provides performance stability and
high computational efficiency. The proposed TRLRF is ef-
ficiently solved by the ADMM algorithm and it simulta-
neously achieves both the underlying tensor decomposition
and completion based on TR decomposition. Our main con-
tributions in this paper are:

• A theoretical relationship between the multilinear tensor
rank and the rank of TR factors is established, which al-
lows the low-rank constraint to be performed implicitly
on TR latent space. This has led to fast SVD calculation
on small size factors.

• The nuclear norm is further imposed to regularize the TR-
ranks, which enables our algorithm to always obtain a sta-
ble solution, even if the TR-rank is inappropriately given.
This highlights rank-robustness of the proposed TRLRF
algorithm.

• An efficient algorithm based on ADMM is developed to
optimize the proposed model, so as to obtain the TR-
factors and the recovered tensor simultaneously.

Preliminaries and Related Works

Notations

The notations in (Kolda and Bader 2009) are adopted in this
paper. A scalar is denoted by a standard lowercase letter
or an uppercase letter, e.g., x,X ∈ R, and a vector is de-
noted by a boldface lowercase letter, e.g., x ∈ R

I . A ma-
trix is denoted by a boldface capital letter, e.g., X ∈ R

I×J .
A tensor of order N ≥ 3 is denoted by calligraphic let-

ters, e.g., X ∈ R
I1×I2×···×IN . The set {X (n)}Nn=1 :=

{X (1),X (2), . . . ,X (N)} denotes a tensor sequence, with

X
(n) being the n-th tensor of the sequence. Where appro-

priate, a tensor sequence can also be written as [X ]. The
representations of matrix sequences and vector sequences
are designated in the same way. An element of a tensor
X ∈ R

I1×I2×···×IN of index (i1, i2, . . . , iN ) is denoted
by X (i1, i2, . . . , iN ) or xi1i2...iN . The inner product of two
tensors X , Y with the same size R

I1×I2×···×IN is defined

as 〈X ,Y〉 =
∑

i1

∑

i2
· · ·

∑

iN
xi1i2...iN yi1i2...iN . Further-

more, the Frobenius norm of X is defined by ‖X‖F =
√

〈X ,X 〉.
We employ two types of tensor unfolding (matricization)

operations in this paper. The standard mode-n unfolding
(Kolda and Bader 2009) of tensor X ∈ R

I1×I2×···×IN

is denoted by X(n) ∈ R
In×I1···In−1In+1···IN . Another

mode-n unfolding of tensor X which is often used in TR
operations (Zhao et al. 2016a) is denoted by X<n> ∈
R

In×In+1···INI1···In−1 . Furthermore, the inverse operation
of unfolding is matrix folding (tensorization), which trans-
forms matrices to higher-order tensors. In this paper, we
only define the folding operation for the first type of mode-
n unfolding as foldn(·), i.e., for a tensor X , we have
foldn(X(n)) = X .

Tensor ring decomposition

The tensor ring (TR) decomposition is a more general de-
composition model than the tensor-train (TT) decomposi-
tion. It represents a tensor of higher-order by circular multi-
linear products over a sequence of low-order latent core ten-
sors, i.e., TR factors. For n = 1, . . . , N , the TR factors are

denoted by G
(n) ∈ R

Rn×In×Rn+1 and each consists of two
rank-modes (i.e., mode-1 and mode-3) and one dimension-
mode (i.e., mode-2). The syntax {R1, R2, . . . , RN+1} de-
notes the TR-rank which controls the model complexity of
TR decomposition. The TR decomposition applies trace op-
erations and all of the TR factors are set to be 3rd-order; thus
the TR decomposition relaxes the rank constraint on the first
and last core of TT to R1 = RN+1. Moreover, TR decom-
position linearly scales to the order of the tensor, and in this
way it overcomes the ‘curse of dimensionality’. In this case,
TR can be considered as a linear combination of TTs and
hence offers a powerful and generalized representation abil-
ity. The element-wise relation of TR decomposition and the
generated tensor is given by:

X (i1, i2, . . . , iN ) = Trace

{

N
∏

n=1

G
(n)
in

}

, (1)

where Trace{·} is the matrix trace operation, G
(n)
in

∈

R
Rn×Rn+1 is the inth mode-2 slice matrix of G(n), which

can also be denoted by G
(n)(:, in, :) according to the Matlab

notation.

Tensor completion

Completion by TR decomposition Tensor decomposi-
tion based algorithms do not directly employ the rank con-
straint to the object tensor. Instead, they try to find the low-
rank representation (i.e., tensor decompositions) of the in-
complete data from the observed entries. The obtained latent
factors of the tensor decomposition are used to predict the
missing entries. For model formulation, the tensor comple-
tion problem is set as a weighted least squares (WLS) model.
Based on different tensor decompositions, various tensor
completion algorithms have been proposed, e.g., weighted
CP (Acar et al. 2011), weighted Tucker (Filipović and Jukić
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2015), TRWOPT (Yuan et al. 2018) and TRALS (Wang, Ag-
garwal, and Aeron 2017). To the best of our knowledge,
there are two proposed TR-based tensor completion algo-
rithms: the TRALS and TRWOPT. They apply the same op-
timization model which is formulated as:

min
[G]

‖PΩ(T −Ψ([G]))‖2F , (2)

where the optimization objective is the TR factors, [G],
PΩ(T ) denotes all the observed entries w.r.t. the set of in-
dices of observed entries represented by Ω, and Ψ([G]) de-
notes the approximated tensor generated by [G]. Every ele-
ment of Ψ([G]) is calculated by equation (1). The two algo-
rithms are both based on the model in (2). However, TRALS
applies alternative least squares (ALS) method and TR-
WOPT uses a gradient-based algorithm to solve the model,
respectively. They perform well for both low-order and high-
order tensors due to the high representation ability and flex-
ibility of TR decomposition. However, these algorithms are
shown to suffer from high sensitiveness to rank selection,
which would lead to high computational cost.

Completion by nuclear norm regularization The model
of rank minimization-based tensor completion can be for-
mulated as:

min
X

Rank(X ) +
λ

2
‖PΩ(T −X )‖2F , (3)

where X is the recovered low-rank tensor, and Rank(·) is a
rank regularizer. The model can therefore find the low-rank
structure of the data and approximate the recovered tensor.
Because determining the tensor rank is an NP-hard problem
(Hillar and Lim 2013; Kolda and Bader 2009), work in (Liu
et al. 2013) and (Signoretto et al. 2014) extends the concept
of low-rank matrix completion and defines tensor rank as
a sum of the rank of mode-n unfolding of the object ten-
sor. Moreover, the convex surrogate named nuclear norm is
applied to the tensor low-rank model and it simultaneously
regularizes all the mode-n unfoldings of the object tensor. In
this way, the model in (3) can be reformulated as:

min
X

N
∑

n=1

‖X(n)‖∗ +
λ

2
‖PΩ(T −X )‖2F , (4)

where ‖ · ‖∗ denotes the nuclear norm regularization in the
form of a sum of the singular values of the matrix. Usually,
the model is solved by ADMM algorithms and it is shown
to have fast convergence and good performance when data
size is small. However, when dealing with large-scale data,
the multiple SVD operations in the optimization step will be
intractable due to high computational cost.

Tensor Ring Low-rank Factors
To solve the issues traditional tensor completion methods
have, we impose low-rankness on each of the TR factors and
so that our basic tensor completion model is formulated as
follow:

min
[G],X

N
∑

n=1

‖G(n)‖∗ +
λ

2
‖X −Ψ([G])‖2F ,

s.t. PΩ(X ) = PΩ(T ).

(5)

To solve (5), we first need to deduce the relation of the
tensor rank and the corresponding core tensor rank, which
can be explained by the following theorem.

Theorem 1. Given an N -th order tensor X ∈
R

I1×I2×···×IN which can be represented by equation (1),
then the following inequality holds for all n = 1, . . . , N :

Rank(G
(n)
(2) ) ≥ Rank(X(n)). (6)

Proof. For the n-th core tensor G(n), according to the work
in (Zhao et al. 2016a), we have:

X<n> = G
(n)
(2) (G

( 6=n)
<2> )⊤, (7)

where G
( 6=n) ∈ R

Rn+1×
∏N

i=1,i 6=n
Ii×Rn is a subchain tensor

generated by merging all but the n-th core tensor. Hence, the
relation of the rank satisfies:

Rank(X<n>) ≤ min{Rank(G
(n)
(2) ),Rank(G

( 6=n)
<n>)}

≤ Rank(G
(n)
(2) ).

(8)

The proof is completed by

Rank(X<n>) = Rank(X(n)) ≤ Rank(G
(n)
(2) ). (9)

This theorem proves the relation between the tensor rank
and the rank of the TR factors. The rank of mode-n unfold-
ing of the tensor X is upper bounded by the rank of the
dimension-mode unfolding of the corresponding core tensor

G
(n), which allows us to impose a low-rank constraint on

G
(n). By the new surrogate, our model (5) is reformulated

by:

min
[G],X

N
∑

n=1

‖G
(n)
(2)‖∗ +

λ

2
‖X −Ψ([G])‖2F

s.t. PΩ(X ) = PΩ(T ).

(10)

The above model imposes nuclear norm regularization on
the dimension-mode unfoldings of the TR factors, which can
largely decrease the computational complexity compared to
the algorithms which are based on model (4). Moreover,
we consider to give low-rank constraints on the two rank-
modes of the TR factors, i.e., the unfoldings of the TR fac-
tors along mode-1 and mode-3, which can be expressed by
∑N

n=1 ‖G
(n)
(1)‖∗+

∑N

n=1 ‖G
(n)
(3)‖∗. When the model is opti-

mized, nuclear norms of the rank-mode unfoldings and the
fitting error of the approximated tensor are minimized simul-
taneously, resulting in the initial TR-rank becoming the up-
per bound of the real TR-rank of the tensor, thus equipping
our model with robustness to rank selection. The tensor ring
low-rank factors (TRLRF) model can be finally expressed
as:

min
[G],X

N
∑

n=1

3
∑

i=1

‖G
(n)
(i) ‖∗ +

λ

2
‖X −Ψ([G])‖2F

s.t. PΩ(X ) = PΩ(T ).

(11)
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Our TRLRF model has two distinctive advantages. Firstly,
the low-rank assumption is placed on tensor factors instead
of on the original tensor, this greatly reduces the compu-
tational complexity of the SVD operation. Secondly, low-
rankness of tensor factors can enhance the robustness to rank
selection, which can alleviate the burden of searching for
optimal TR-rank and reduce the computational cost in the
implementation.

Solving scheme

To solve the model in (11), we apply the alternating di-
rection method of multipliers (ADMM) which is efficient
and widely used (Boyd et al. 2011). Moreover, because the
variables of TRLRF model are inter-dependent, we impose
auxiliary variables to simplify the optimization. Thus, the
TRLRF model can be rewritten as

min
[M],[G],X

N
∑

n=1

3
∑

i=1

‖M
(n,i)
(i) ‖∗ +

λ

2
‖X −Ψ([G])‖2F ,

s.t. M
(n,i)
(i) = G

(n)
(i) , n = 1, . . . , N, i = 1, 2, 3,

PΩ(X ) = PΩ(T ),

(12)

where [M] := {M(n,i)}N,3
n=1,i=1 are the auxiliary variables

of [G]. By merging the equal constraints of the auxiliary
variables into the Lagrangian equation, the augmented La-
grangian function of TRLRF model becomes

L ([G],X , [M], [Y ])

=

N
∑

n=1

3
∑

i=1

(

‖M
(n,i)
(i) ‖∗+ < Y

(n,i),M(n,i) − G
(n) >

+
µ

2
‖M(n,i) − G

(n)‖2F
)

+
λ

2
‖X −Ψ([G])‖2F ,

s.t. PΩ(X ) = PΩ(T ),
(13)

where [Y ] := {Y(n,i)}N,3
n=1,i=1 are the Lagrangian multipli-

ers, and µ > 0 is a penalty parameter. For n = 1, . . . , N ,

i = 1, 2, 3, G(n), M(n,i) and Y
(n,i) are each independent,

so we can update them by the updating scheme below.

Update of G(n). By using (13), the augmented Lagrangian

function w.r.t. G(n) can be simplified as

L(G(n)) =

3
∑

i=1

µ

2

∥

∥

∥
M

(n,i) − G
(n) +

1

µ
Y

(n,i)
∥

∥

∥

2

F

+
λ

2

∥

∥X −Ψ([G])
∥

∥

2

F
+ CG ,

(14)

where the constant CG consists of other parts of the La-

grangian function which is irrelevant to updating G
(n). This

is a least squares problem, so for n = 1, . . . , N , G(n) can be
updated by

G
(n)
+ = fold2

(

(

3
∑

i=1

(µM
(n,i)
(2) +Y

(n,i)
(2) )

+ λX<n>G
( 6=n)
<2>

)(

λG
( 6=n),T
<2> G

( 6=n)
<2> + 3µI

)−1
)

,

(15)

where I ∈ R
R2

n×R2
n denotes the identity matrix.

Update of M
(n,i). For i = 1, 2, 3, the augmented La-

grangian functions w.r.t. [M] is expressed as

L(M(n,i)) =
µ

2

∥

∥M
(n,i) − G

(n) +
1

µ
Y

(n,i)
∥

∥

2

F

+
∥

∥M
(n,i)
(i)

∥

∥

∗
+ CM.

(16)

The above formulation has a closed-form (Cai, Candès, and
Shen 2010), which is given by

M
(n,i)
+ = foldi

(

D 1
µ

(

G
(n)
(i) −

1

µ
Y

(n,i)
(i)

)

)

, (17)

where Dβ(·) is the singular value thresholding (SVT) oper-

ation, e.g., if USV
T is the singular value decomposition of

matrix A, then Dβ(A) = Umax{S− βI, 0}VT .

Update of X . The augmented Lagrangian functions w.r.t.
X is given by

L(X ) =
λ

2

∥

∥X −Ψ([G])
∥

∥

2

F
+ CX ,

s.t. PΩ(X ) = PΩ(T ),
(18)

which is equivalent to the tensor decomposition based model
in (2). The expression for X is updated by inputing the ob-
served values in the corresponding entries, and by approx-
imating the missing entries by updated TR factors [G] for
every iteration, i.e.,

X+ = PΩ(T ) + PΩ̄(Ψ([G])), (19)

where Ω̄ is the set of indices of missing entries which is a
complement to Ω.

Update of Y(n,i). For n = 1, . . . , N and i = 1, 2, 3, the

Lagrangian multiplier Y(n,i) is updated as

Y
(n,i)
+ = Y

(n,i) + µ
(

M
(n,i) − G

(n)
)

. (20)

In addition, the penalty term of the Lagrangian functions L
is restricted by µ which is also updated for every iteration
by µ+ = max{ρµ, µmax}, where 1 < ρ < 1.5 is a tuning
hyper parameter.

The ADMM based solving scheme is updated iteratively
based on the above equations. Moreover, we consider to set
two optimization stopping conditions: (i) maximum number
of iterations kmax and (ii) the difference between two itera-
tions (i.e., ‖X −X last‖F /‖X‖F ) which is thresholded by
the tolerance tol. The implementation process and hyper-
parameter selection of TRLRF is summarized in Algorithm
1. It should be noted that our TRLRF model is non-convex,
so the convergence to the global minimum cannot be theo-
retically guaranteed. However, the convergence of our algo-
rithm can be verified empirically (see experiment details in
Figure 1). Moreover, the extensive experimental results in
the next section also illustrate the stability and effectiveness
of TRLRF.

Computational complexity

We analyze the computational complexity of our TRLRF al-
gorithm as follows. For a tensor X ∈ R

I1×I2×···×IN , the
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Figure 1: Illustration of convergence for TRLRF under dif-
ferent hyper-parameter choices. A synthetic tensor with TR
structure (size 7× 8× 7× 8 with TR-rank {4,4,4,4}, miss-
ing rate 0.5) is tested. The experiment records the change
of the objective function values along the number of itera-
tions. Each independent experiment is conducted 100 times
and the average results are shown in the graphs. Panels (a)
and (b) represent the convergence curve when TR-rank and
λ are changed respectively.

Algorithm 1. Tensor ring low-rank factors (TRLRF)

1: Input: PΩ(T ), initial TR-rank {Rn}
N
n=1 .

2: Initialization: For n = 1, . . . , N , i = 1, 2, 3,

random sample G
(n) by distribution N ∼ (0, 1),

Y
(n,i) = 0, M(n,i) = 0, λ = 5, µ0 = 1, µmax

= 102, ρ = 1.01, tol = 10−6, k = 0, kmax = 300.
3: For k = 1 to kmax do
4: X last = X .

5: Update {G(n)}Nn=1 by (15).

6: Update {M(n,i)}N,3
n=1,i=1 by (17).

7: Update X by (19).

8: Update {Y(n,i)}N,3
n=1,i=1 by (20).

9: µ = max(ρµ, µmax)
6: If ‖X −X last‖F /‖X‖F < tol, break
7: End for
8: Output: completed tensor X and TR factors [G].

TR-rank is set as R1 = R2 = · · · = RN = R, then the com-
putational complexity of updating [M] represents mainly

the cost of SVD operation, which is O(
∑N

n=1 2InR
3 +

I2nR
2). The computational complexities incurred calculat-

ing G
( 6=n)
<2> and updating [G] are O(NR3

∏N

i=1,i 6=n Ii) and

O(NR2
∏N

i=1 Ii +NR6), respectively. If we assume I1 =
I2 = · · · = IN = I , then overall complexity of our pro-
posed algorithm can be written as O(NR2IN +NR6).

Compared to HaLRTC and TRALS which are the repre-
sentative of the nuclear-norm-based and the tensor decom-
position based algorithms, the computational complexity of
HaLRTC is O(NIN+1). Since TRALS is based on ALS
method and TR decomposition, its computational complex-
ity is O(PNR4IN +NR6), where P denotes the observa-
tion rate. We can see that the computational complexity of
our TRLRF is similar to that of the two related algorithms.
However, the desirable characteristic of rank selection ro-

bustness of our algorithm can help relieve the workload for
model selection in practice, and thus the computational cost
can be reduced. Moreover, though the computational com-
plexity of TRLRF is of high power in R, due to the high
representation ability and flexibility of TR decomposition,
the TR-rank is always set as a small value. In addition, from
experiments, we find out that our algorithm is capable of
working efficiently for high-order tensors so that we can ten-
sorize the data to a higher-order tensor and choose a small
TR-rank to reduce the computational complexity.

Experimental Results

Synthetic data

We first conducted experiments to testify the rank robust-
ness of our algorithm by comparing TRALS, TRWOPT, and
our TRLRF. To verify the performance of the three algo-
rithms, we tested two tensors of size 20 × 20 × 20 × 20
and 7 × 8 × 7 × 8 × 7 × 8. The tensors were generated by
TR factors of TR-ranks {6, 6, 6, 6} and {4, 4, 4, 4, 4, 4} re-
spectively. The values of the TR factors were drawn from
i.i.d. Gaussian distribution N ∼ (0, 0.5). The observed
entries of the tensors were randomly removed by a miss-
ing rate of 0.5, where the missing rate is calculated by
1 − M/num(T real) and M is the number of sampled en-
tries (i.e., observed entries). We recorded the completion
performance of the three algorithms by selecting different
TR-ranks. The evaluation index was RSE which is defined
by RSE = ‖T real − X‖F /‖T real‖F , where T real is the
known tensor with full observations and X is the recovered
tensor calculated by each tensor completion algorithm. The
hyper-parameters of our TRLRF were set according to Algo-
rithm 1. All the hyper-parameters of TRALS and TRWOPT
are set according to the recommended settings in the corre-
sponding papers to get the best results.
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Figure 2: Completion performance of three TR-based algo-
rithms in the synthetic data experiment. The RSE values of
different selected TR-ranks are recorded. The missing rate
of the two target tensors equals 0.5 and the real TR-ranks
are 6 and 4 respectively.

Figure 2 shows the final RSE results which represent the
average values of 100 independent experiments for each
case. From the figure, we can see that all the three algorithms
had their lowest RSE values when the real TR-ranks of the
tensors were chosen and the best performance was obtained
from our TRLRF. Moreover, when the TR-rank increased,
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the performance of TRLRF remained stable while the per-
formance of the other two compared algorithms fell dras-
tically. This indicates that imposing low-rankness assump-
tion on the TR factors can bring robustness to rank selection,
which largely alleviates the model selection problem in the
experiments.

Benchmark images inpainting

Figure 3: The eight benchmark images. The first image is
named “Lena” and is used in the next two experiments.

   TRLRF 

(proposal)

TRALS

TRWOPT

TR-rank(4) TR-rank(6) TR-rank(8) TR-rank(10) TR-rank(12)

RSE=0.1311 RSE=0.1067RSE=0.1111 RSE=0.1014 RSE=0.1011

RSE=0.1286 RSE=0.3596RSE=0.2361 RSE=0.5018 RSE=0.9522

RSE=0.1291 RSE=0.1661RSE=0.1358 RSE=0.1762 RSE=0.2652

Figure 4: Visual completion results of the TRLRF (pro-
posed), TRALS, and TRWOPT on image “Lena” with dif-
ferent TR-ranks, when the missing rate is 0.8. The selected
TR-ranks are 4, 6, 8, 10, 12 respectively, from the first col-
umn to the last column. The RSE results are noted under
each picture.

In this section, we tested our TRLRF against the state-
of-the-art algorithms on eight benchmark images which
are shown in Figure 3. The size of each RGB image was
256× 256×3 which can be considered as a 3rd-order tensor.
For the first experiment, we continued to verify the TR-rank
robustness of TRLRF on the image named “Lena”. Figure 4
shows the completion results of TRLRF, TRALS, and TR-
WOPT when different TR-ranks for each algorithm are se-
lected. The missing rate of the image was set as 0.8, which is
the case that the TR decompositions are prone to overfitting.
From the figure, we can see that our TRLRF gives better
results than the other two TR-based algorithms in each case
and the highest performance was obtained when the TR rank
was set as 12. When TR-rank increases, the completion per-
formance of TRALS and TRLRF decreases due to redundant
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Figure 5: Average completion performance of the eight con-
sidered algorithms, under different data missing rates.

model complexity and overfitting of the algorithms, while
our TRLRF shows better results even the selected TR-rank
is larger than the desired TR-rank.

In the next experiment, we compared our TRLRF to
the two TR-based algorithm, TRALS and TRWOPT, and
the other state-of-the-art algorithms, i.e., TenALS (Jain and
Oh 2014), FBCP (Zhao, Zhang, and Cichocki 2015), HaL-
RTC (Liu et al. 2013), TMac (Xu et al. 2013) and t-
SVD (Zhang et al. 2014). We tested these algorithms on
all the eight benchmark images and for different missing
rates: 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 0.95. The relative
square error (RSE) and peak signal-to-noise ratio (PSNR)
were adopted for the evaluation of the completion perfor-
mance. For RGB image data, PSNR is defined as PSNR =
10 log10(255

2/MSE) where MSE is calculated by MSE =
‖T real −X‖2F /num(T real), and num(·) denotes the num-
ber of element of the fully observed tensor.

For the three TR-based algorithms, we assumed the TR-
ranks were equal for every core tensor (i.e., R1 = R2 =
. . . = RN ). The best completion results for each algorithm
were obtained by selecting the best TR-ranks for the TR-
based algorithms by a cross-validation method. Actually,
finding the best TR-rank to obtain the best completion re-
sults is very tedious. However, this is much easier for our
proposed algorithm because the performance of TRLRF is
fairly stable even though the TR-rank is selected from a wide
large. For the other five compared algorithms, we tuned the
hyper-parameters according to the suggestions of each pa-
per to obtain the best completion results. Finally, we show
the average performance of the eight images for each algo-
rithm under different missing rates by line graphs. Figure
5 shows the RSE and PSNR results of each algorithm. The
smaller RSE value and the larger PSNR value indicate bet-
ter performance. Our TRLRF performed the best among all
the considered algorithms in most cases. When the missing
rate increased, the completion results of all the algorithms
decreased, especially when the missing rate was near 0.9.
The performance of most algorithm fell drastically when the
missing rate was 0.95. However, the performance of TRLRF,
HaLRTC, and FBCP remained stable and the best perfor-
mance was obtained from our TRLRF.
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Table 1: HSI completion results (RSE) under three different tensor orders with different rank selections

TRLRF TRALS TRWOPT TMac TenALS t-SVD FBCP HaLRTC

3rd-order, high-rank(Rn = 12) 0.06548 0.07049 0.06695 0.1662 0.3448 0.4223 0.2363 0.1254
3rd-order, low-rank(Rn = 8) 0.1166 0.1245 0.1249 0.2963 0.3312 - - -

5th-order, high-rank(Rn = 22) 0.1035 0.1392 0.1200 0.8064 - 0.9504 0.3833 0.3944
5th-order, low-rank(Rn = 18) 0.1062 0.1122 0.1072 0.7411 - - - -
8th-order, high-rank(Rn = 24) 0.1190 0.1319 0.1637 0.9487 - 0.9443 0.4021 0.9099
8th-order, low-rank(Rn = 20) 0.1421 0.1581 0.1767 0.9488 - 0.9450 0.4135 0.9097

TRLRF TRALS TRWOPT TMac t-SVDTenALS FBCP HaLRTC

Original TR-rank(12) Tucker-rank(12)TR-rank(12) TR-rank(12) CP-rank(12)

90% missing TR-rank(8) TR-rank(8)TR-rank(8) Tucker-rank(8) CP-rank(8)

Figure 6: Completion results under the 0.9 missing rate HSI data. The channels 80, 34, 9 are picked to show the visual results.
The rank selection of TRLRF, TRALS, TRWOPT, TMac and TenALS are given under the corresponding images.

Hyperspectral image

A hyperspectral image (HSI) of size 200× 200× 80 which
records an area of the urban landscape was tested in this sec-
tion1. In order to test the performance of TRLRF on higher-
order tensors, the HSI data was reshaped to higher-order ten-
sors, which is an easy way to find more low-rank features of
the data. We compared our TRLRF to the other seven tensor
completion algorithms in 3rd-order tensor (200× 200×80),
5th-order tensor (10×20×10×20×80) and 8th-order ten-
sor (8× 5× 5× 8× 5× 5× 8× 10) cases. The higher-order
tensors were generated from original HSI data by directly
reshaping it to the specified size and order.

The experiment aims to verify the completion perfor-
mance of the eight algorithms under different model selec-
tion, whereby the experiment variables are the tensor order
and tensor rank. The missing rates of all the cases are set
as 0.9. All the tuning parameters of every algorithm were
set according to the statement in the previous experiments.
Besides, for the experiments which need to set rank manu-
ally, we chose two different tensor ranks: high-rank and low-
rank for algorithms. It should be noted that the CP-rank of
TenALS and the Tucker-rank of TMac were set to the same
values as TR-rank. The completion performance of RSE and
visual results are listed in Table 1 and shown in Figure 6.
The results of FBCP, HaLRTC and t-SVD were not affected
by tensor rank, so the cases of the same order with differ-
ent rank are left blank in Table 1. The TenALS could not
deal with tensor more than three order, so the high-order

1http://www.ehu.eus/ccwintco/index.php/Hyperspectral
Remote Sensing Scenes

tensor cases for TenALS are also left blank. As shown in Ta-
ble 1, our TRLRF gives the best recovery performance for
the HSI image. In the 3rd-order cases, the best performance
was obtained when the TR-rank was 12, however, when the
rank was set to 8, the performance of TRLRF, TRALS, TR-
WOPT, TMac, and TenALS failed because of the underfit-
ting of the selected models. For 5th-order cases, when the
rank increased from 18 to 22, the performance of TRLRF
kept steady while the performance of TRALS, TRWOPT,
and TMac decreased. This is because the high-rank makes
the models overfit while our TRLRF performs without any
issues, owing to its inherent TR-rank robustness. In the 8th-
order tensor cases, similar properties can be obtained and
our TRLRF also performed the best.

Conclusion

We propose a tensor completion method based on TR de-
composition. By exploiting the rank relationship between
the tensor and the TR latent space, we employ low-rank
constraints on the TR factors. To solve the model, we pro-
pose an ADMM solving scheme. Our method can effec-
tively solve the model selection problem which is common
in traditional tensor completion methods. The extensive ex-
periments on both synthetic data and real-world data have
demonstrated that our algorithm outperforms the state-of-
the-art algorithms. Furthermore, it is expected that the idea
of imposing rank minimization constraint on tensor latent
space can be extended to various tensor decomposition mod-
els in order to develop more efficient and robust algorithms.
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