
Tensor Slicing and Optimization for Multicore
NPUs

Rafael Sousa
IC-UNICAMP

Campinas, Brazil
rafael.sousa@ic.unicamp.br

Marcio Pereira
IC-UNICAMP

Campinas, Brazil
mpereira@ic.unicamp.br

Yongin Kwon and Taeho Kim
Electronics and Telecommunications

Research Institute (ETRI)
Seoul, Republic of Korea

{yongin.kwon, taehokim}@etri.re.kr

Namsoon Jung and Chang Soo Kim
SilicoNeuro/AiM Future
Seoul, Republic of Korea

{yongin.kwon, changsoo.kim}@siliconeuro.com

Michael Frank
MagiCore

Santa Clara, USA
michael@magicore.com

Guido Araujo
IC-UNICAMP

Campinas, Brazil
guido@unicamp.br

Abstract—Although code generation for Convolution Neural
Network (CNN) models has been extensively studied, performing
efficient data slicing and parallelization for highly-constrained
Multicore Neural Processor Units (NPUs) is still a challenging
problem. Given the size of convolutions’ input/output tensors
and the small footprint of NPU on-chip memories, minimizing
memory transactions while maximizing parallelism and MAC
utilization are central to any effective solution. This paper
proposes a TensorFlow XLA/LLVM compiler optimization pass
for Multicore NPUs, called Tensor Slicing Optimization (TSO),
which: (a) maximizes convolution parallelism and memory usage
across NPU cores; and (b) reduces data transfers between host
and NPU on-chip memories by using DRAM memory burst
time estimates to guide tensor slicing. To evaluate the proposed
approach, a set of experiments was performed using the Neuro-
Morphic Processor (NMP), a multicore NPU containing 32 RISC-
V cores extended with novel CNN instructions. Experimental
results show that TSO is capable of identifying the best tensor
slicing that minimizes execution time for a set of CNN models.
Speed-ups of up to 21.7% result when comparing the TSO
burst-based technique to a no-burst data slicing approach. To
validate the generality of the TSO approach, the algorithm was
also ported to the Glow Machine Learning framework. The
performance of the models were measured on both Glow and
TensorFlow XLA/LLVM compilers, revealing similar results.

Index Terms—burst-based model, convolutional neural net-
work, NPU, mapping strategies

I. INTRODUCTION

Deep Learning using Convolutional Neural Network (CNN)
has become a significant architecture model technique that
considerably increases the accuracy on many modern AI
applications. The steady increase in the adoption of CNNs is
driven mostly by applications in the Computer Vision domain
where it addresses problems like Object Recognition [1]–[3],
Object Detection [4], [5], and Video Classification [6], [7].
Other areas, like Speech Recognition and Natural Language
Processing (NLP) have also benefited from the application of
CNN models [8], [9].

Followed by its accuracy improvements, the size and com-
plexity of state-of-the-art CNNs have also grown signifi-
cantly. For instance, LeNet-5 [10], a model that recognizes

handwritten digits, has less than 1 Million parameters, while
more complex models, like InceptionV3 [11] which classifies
thousands of different object categories, has more than 23
million parameters. Such increase in the model complexity and
parameters size, not only demands more computational power
but also produces a significant increase in the data movement
between host (off-chip) and the AI accelerator (on-chip) mem-
ories thus considerably impacting energy-consumption [12]
and memory traffic.

It is well-known that convolution is the most expensive
operation of a CNN, accounting for the largest share of a CNN
execution. Given the size of its tensor inputs and the wide
variety of configuration parameters (e.g., kernel size, stride,
etc), selecting the best data mapping which maximizes con-
volution parallelism while minimizing memory transactions is
a key factor to the performance of any AI accelerator. This
is particularly critical for multicore Neural Processing Units
(NPUs), which have stringent (on-chip) memory constraints
and need to achieve large inference throughput.

To achieve that, Convolution input tensors and weights need
to be divided into slices that fit into NPU on-chip memories.
Slices are brought from (slow) external DRAM to (fast) on-
chip memories. Input tensors and weight slices are then used
to perform Convolution, one set of slices at a time. Depending
on how the slice shapes and sizes are selected, the convolution
execution time can drastically change. As an example, consider
Figure 1, which shows the time taken by a Convolution when
using slices of different shapes. In that example, the input
tensor is a single channel with 128 × 128 16-bit fixed-point
elements (row-major) computed over a single kernel of size 1×
1. In the figure, slices are represented as light/dark gray areas,
and each red dot represents a (128B) memory burst access to
the DRAM. Accessing time in a DRAM can be divided into
two components: (a) CAS latency, which is the time taken to
read the first byte of a memory burst from the DRAM Row
Buffer; and (b) Access latency, which is the time taken to read
the following bytes of the burst. For example, reading the first
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Fig. 1: Memory access with different slice shapes.

byte from a 128B burst of a typical DDR3 memory takes ∼
14ns, the same time it takes to read all the remaining 127
bytes of that burst. Depending on how data is sliced, memory
bursts can have an enormous impact on execution time. For
example, in Figure 1 the Convolution can be divided into: (a)
8 128× 32B slices resulting in 1024 bursts (red dots) and an
execution time of 84us; (b) 4 128× 64B slices corresponding
to 512 bursts and a reduced 58us execution time; and (c) 4
64×128B slices which require 256 bursts and 46us execution
time, a 45% reduction in the convolution time when comparing
to the slicing in (a). In Figure 1, slicing (c) is represented by
the smallest memory access time at w = 128B. From that
point on, as the width (w) of the slice continues to increase,
memory access time worsens and then improves again at the
next memory burst alignment (w = 256).

Although memory access coalescing is a common problem
in GPU code generation, it has not been explored in the
context of multicore NPU parallelism. This paper proposes
a compiler optimization for multicore NPUs, called Tensor
Slicing Optimization (TSO), which has two goals: (a) to max-
imize the parallelization of convolutions across the memories
of the available NPU cores; and (b) to reduce data transfers
between host and the cores’ on-chip memory. This is achieved
by modeling, at compile time, the memory utilization of the
various NPU cores in the search for the best input/output
tensor slicing which minimizes data transfers between the host
and the NPU cores’ memories. To evaluate this approach, a
set of experiments was performed using the NeuroMorphic
Processor (NMP), a multicore NPU containing 32 cores, and
the TensorFlow XLA LLVM compiling toolchain.

This paper is divided as follows. Section II provides a
background review. Section III describes details about the
NMP accelerator. Section IV shows how to map Convolution
Layers on NMP using the TSO algorithm. Section V describes
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Fig. 2: A Tiled Convolutional Layer.

the compilation flow using the TF-XLA compiler. Section VI
shows the experimental results. Section VII analyzes the works
related to this paper, and finally, Section VIII concludes the
work.

II. BACKGROUND

A CNN model can be seen as a directed acyclic graph
composed of multiple layers of operations in which a set
of input channels (e.g., images) is processed. After been
processed through a very deep hierarchy of layers, an output
results. The output result is usually an array composed of a
probabilistic distribution that classifies the given image into a
set of classes (e.g., dog, cars, etc). Our focus on this work is
on inferences applied to already pre-trained models.

Among all possible layers that compose a CNN, the Conv-
layer account for more than 90% of the execution time [13]
of a model, and generates a large amount of data movements.
This is especially critical on architectures with small on-chip
memories like NPUs that are used to perform inference on
mobile and embedded devices. Data tiling approaches like
the one proposed herein are thus a key technique to reduce
memory transactions on such devices.

As shown in Figure 2, a Conv-layer uses N input feature
maps (IFM) of size H (height) × L (width) and a set
of pre-trained weights. The weight set (KS) is a set of
M multidimensional (e.g., 3-D) arrays kernels/filters of size
N × K × K. Each filter slides over the IFMs performing a
3-D convolution with a stride factor of S. After sliding over
the entire input image (IFMs), an R × C output feature map
(OFM) is generated. A set of M OFMs results after applying
all M filters in KS to the IFMs.

Different Conv-layers in a CNN usually have different
kernel sizes, different numbers of IFM and OFM with distinct
sizes, and variable strides. For instance, the first Conv-layer
from Inception-V3 [11] has 3×299×299 elements in its input.
If we consider the data type of the input as 16-bit fixed-point,
the size of the input becomes 524KB. This is impractical to
store at once into the constrained on-chip memories available
on typical NPUs. Because of that, data tiling is a mandatory
task in the computation of a Conv-layer.



Data tiling of a Conv-layer consists in partitioning its IFM
and OFM data maps into small tiles and dividing the filters
in KS so that each IN , OUT and W tiles fit together at the
same time into the NPU on-chip memories. Figure 2 shows
how the IFM and OFM data maps are respectively divided into
IN = (TN , TH , TL) tiles, and OUT = (TM , TR, TC) tiles.
Notice that the dimensions TH and TL of the IFM can thus
be computed using the dimensions TR and TC of the OFM
through Equation 1.

TH = (TR − 1)S +K

TL = (TC − 1)S +K
(1)

where K and S are the kernel size and stride, respectively.
Moreover, if the filters/kernels in KS do not fit into their
respective NPU on-chip memories, KS is also partitioned into
W = (TM , TN ,K,K) tiles, where TM is the number of filters
and TN the number of channels to be loaded from each filter.

Different tile shapes can be explored when partitioning a
convolution to execute on an NPU. Each tile shape leads to
different memory accesses and usage of the resources available
on the NPU. Besides that, different scheduling strategies can
be explored, each one with a specific memory access pattern
that leads to different data-reuse. The way computation is
mapped can considerably affect the data movement between
host and NPU memories leading to a poor data re-use. More-
over, if not properly done, tiling can also result in a poor
utilization of the NPU’s Multiplier Accumulator (MAC) units,
which can become idle during the computation (more details
in Section IV).

III. THE NMP ARCHITECTURE

Although CPUs have been proposed to accelerate CNNs by
relying on multicore parallelism and SIMD instructions [14],
[15], the number and complexity of the layers in modern CNN
models make it very difficult to run the entire network on
CPUs. To improve inference throughput, (fast) GPU solutions
have been proposed to process a large amount of data [16],
[17]. Field Programmable Gate Arrays (FPGAs), on the other
hand, have been extensively used as an alternative to this
problem as they offer good performance and reconfigurability
[18]–[22]. Nevertheless, these architectures are not efficient
power-performance solutions for critical edge applications,
like surveillance cameras and cellphone face recognition, etc.,
which have stringent execution and power consumption con-
straints. Several types of accelerators have been proposed to
accelerate CNNs in a power-efficient way. Specialized ASICs
[23], Neural Processing Units (NPUs) [24], [25], and Tensor
Processing Units (TPUs) [26] are some examples.

This paper uses the NeuroMorphic Processor (NMP) by LG
Electronics (LGE) as a compiling target. The key idea behind
the NMP architecture is to use RISC-V ISA Extensions to
design relevant CNN instructions like Conv-layers, FC-layers,
Pooling layers, Element Wise operations, etc.

The NMP architecture (Figure 3) is a multicore NPU that
contains an ARM57 processor that works as a host for a set of
multiple Tile (TLE) processors, containing each a set of Tilelet

Host

DDR

MAC Unit

MB2
(OUT)

MB1
(WEIGHT)

MB0
(IN)

RISC-VI$

DME

Junction
Ringbus

Global R
ingbus

Tile 0

Tile 1

Tile nTilelet 0

Tilelet 1

Tilelet m

AXI

Fig. 3: NMP Architecture.

(TLT) cores. Each TLT has one RISC-V core, three on-chip
(scratchpad) memories, namely MB0, MB1 and MB2, which
respectively store the IN , W and OUT tiles from the IFM, KS
and OFM data maps. Besides that, each TLT is also equipped
with a MAC acceleration unit to execute CNN operations. The
MAC unit execution is triggered by the RISC-V core and is
capable of executing 8- and 16-bit fixed-point operations with
the memory layout organized in NCHW format. The datapath
between the MAC unit and TLT on-chip memories (MBLOBs
- MB0, MB1 and MB2) is 128-bit wide which means that for
8-bit fixed-point, up to 16 MAC operations are executed per
cycle, while for 16-bit fixed-point, up to 8 MAC operations
per cycle may be executed.

The data transfers between NMP and host happens through
a Data Movement Engine (DME) module, as shown in Figure
3. The host communicates with the NMP through an AXI
interface and data can be shared between TLTs of different
TLEs by using a Global Ringbus. The TLTs of a TLE also
have their own Ringbus to communicate data between them.
The instructions executed by the RISC-V cores are fetched
from the host memory and stored into a cache instruction,
which is shared between the TLTs of the same TLE.

To execute any computation on NMP, the model is first
compiled using the TF-XLA compiler. The execution of the
compiled model starts on the RISC-V cores of each TLT, each
one of them executing independently of each other. To invoke
any computation on the MAC units, one of the following ex-
tended instructions are run by the RISCV-core: nmp conv2d,
nmp veop, nmp pool, nmp activation and nmp percept. To
load data from the DRAM to the TLT on-chip memory,
the RISC-V has to execute a data movement instructions
(nmp load and nmp load3d) so that the DME is invoked to
do the job. Data is brought back from each TLT on-chip
memory to the host DRAM by executing the RISC-V extended
nmp store and nmp store3d instructions.

Despite the fact that each one of the TLTs of a single TLE
executes its computation independently of the others, NMP has
support to a special multicast load instruction which executes
on a single TLT but enables all TLTs of that TLE to load



the same data from the DRAM. As an example, suppose that
all TLTs of a given TLE process the same IFMs but using
different filters each. Instead of having to load the (IFMs) IN
tiles multiple times, one for each TLT of the TLE, a multicast
load can be used to load all TLTs with the same IN tile, thus
allowing it to be processed by different filters in parallel, for
example. Notice that TLTs from distinct TLEs cannot use the
same multicast to load the same data. In such case, multiple
multicast loads are required, one for each TLE, to load the
same data to all its TLTs.

Three levels of hardware-based semaphores are available
in NMP to perform synchronization among TLEs and TLTs.
They enable the following operations: (a) synchronize com-
putation inside a TLT (e.g., after invoking the MAC unit
to execute an operation, it is possible to block the RISC-V
execution until the unit finishes its work); (b) synchronize
computation between TLTs of the same TLE (e.g., during a
multicast load, all TLTs of a specific TLE are blocked until
their corresponding on-chip memories receive the data from
the DRAM); and (c) synchronize computation between TLTs
of different TLEs (e.g., assume for a given model that a layer
has a dependency on its predecessor layer; if a TLT finishes its
computation before all other TLTs working on the same layer,
it must be blocked so it can not proceed to the following layer).

The NMP architecture used in this work is composed of 4
TLEs, each containing 8 TLTs (RISC-V + MAC unit). Each
TLT has three on-chip memories of size 8KB each. With
an operating frequency of @1GHz, NMP (all the 32TLTs
together) has a theoretical performance peak of either 512-
or 256-GMACs/sec when executing 8- or 16-bit fixed-point,
respectively. The DRAM memory is a DDR3 that operates
on a 1066MHz clock rate (DDR3-2133 – 17GB/s). For this
edition of the architecture, NMP does not enable MAC/LOAD
overlap. For future NMP-architectures, we anticipate the addi-
tion of extra on-chip (dual-port) memories that will allow the
compiler to software-pipeline MAC/LOADs.

IV. NMP MAPPING STRATEGIES

There are different ways to transfer data from the host
to an accelerator memory during the execution of a Conv-
layer. If not done properly, the number of data movements
may considerably increase, thus impacting performance and
energy consumption [12]. This paper proposes a search space
exploration optimization algorithm called Tensor Slicing Op-
timization (TSO) that seeks to identify the best TLE/TLT data
partitioning that minimizes the number of memory transfers
during the execution of Conv-layers.

A. TSO Algorithm

TSO works by exhaustively exploring the solution space in
the search for the best convolution tiling/scheduling strategy
that minimizes execution time. It first slices the input tensor
of the convolution (IFMs) and its corresponding filters (KS)
among the TLE processors of the NMP so that each TLE
computes a different slice of the Conv-layer’s output. After
that, each TLE slice is further partitioned into multiple tiles

Algorithm 1 Select best TLE/TLT mapping
1: function TSO(CONVS, #TLE, #TLT)
2: #pragma omp parallel
3: #pragma omp single
4: for each conv ∈ CONV S do
5: #pragma omp task
6: . Let conv = (IFM,KS,OFM)
7: map[conv].bestT ile.time←∞
8: . Let PARTTLE = {KS,KS&OFM,OFM}
9: for each p ∈ PARTTLE do

10: . Let slice = (TLER, TLEW )
11: slice← TLESLICING(p, conv,#TLE)
12: . Let PARTTLT = {IS,OS,WS}
13: for each q ∈ PARTTLT do
14: . Let tile = (IN,W,OUT, time, schedule)
15: tile← TLTTILING(q, conv, slice,#TLT )
16: if tile.time < map[conv].bestT ile.time

then
17: map[conv].bestSlice← slice
18: map[conv].bestT ile← tile

19: return map

so as to distribute the computation among the TLT cores of
the corresponding TLE processor. These two steps of the TSO
algorithm are detailed below. Before moving further please
consider from now on that every mention to slice refers to
a TLE data partitioning and every mention to tile refers to a
TLT partitioning.

Initially (refer to Algorithm 1), TSO takes as input the set of
convolutions of the model (CONV S) and the number of TLEs
(#TLE) and TLTs (#TLT ) of the architecture (line 1). It
then iterates over all convolutions (line 4) and initializes a map
which stores the best TLE slice and TLT tile for that specific
convolution (lines 7). Then for all possible TLE slicing strate-
gies p available in PARTTLE (line 9, see Subsection IV-B for
details), the algorithm uses a call to function TLESlicing to
divide the convolution IFMs and KS data across the TLEs.
TLESlicing returns tuple slice = (TLER, TLEW ), where
TLER refers to the part of the OFM (rows) that is generated
from the slice of the IFMs designated to the TLE processor,
and TLEW a subset of the KS filters that will run on that
TLE processor.

Remember that each TLE processor in NMP has a set of
TLT cores, and thus for each TLE slice produced in line 11, the
slice data needs to be divided among its corresponding TLT
cores. Hence, for each TLT scheduling strategy q (line 13,
see Subsection IV-C for details), TSO computes the best TLT
tile for the current TLE data slice using a call to TLTTiling
(line 15). This function takes as input the TLT scheduling
strategy q, the convolution data (conv), the current TLE slice,
and the number of TLTs (#TLT ). It then determines the best
tiling of the TLE data among the TLT cores. The TLTTiling
function returns tuple tile = (IN,W,OUT, time, schedule),
where IN , OUT are the tiles of the IFM and OFM data
maps assigned to the TLTs of that TLE, and W is a tile that
contains a subset of the filter in KS.

The tuple also returns an estimate of the time taken to
compute the convolution using that specific combination of



TLE slice and TLT tile for the best possible scheduling
(schedule) strategy (see Subsection IV-E for details). To
achieve that, it takes into consideration the cost to load the
IN and W tiles from DRAM into the (on-chip) TLT memories
MB0 (IN) and MB1 (W), respectively, and the time to store
the OUT from the MB2 TLT (OUT) memory back to the
host DRAM. Moreover, time also includes the time taken by
each evaluated partitioning to run on the MAC Unit using
the various scheduling alternatives (see Subsection IV-D for
details).

After returning from TLTTiling, TSO compares (line 16)
the estimated time for the evaluated partitioning with the
best time (map[conv].bestT ile.time) found so far for that
specific convolution. It then stores it into the appropriate map
entry (i.e., map[conv]) the corresponding TLE slice (line 17)
and TLT tile (line 18). Finally, the map containing the best
slices/tiles for each convolution is then returned (line 19), so
it can be used later by the code generator to synthesize and
schedule the code for the TLT cores.

TSO is an algorithm that exhaustively explores the solution
space of all possible tensor slicing solutions for each Con-
volution of a model. As such, it may take a long time to
be executed, particularly when the CNN has a large number
of Convolutions. Given that estimating the execution time
of a Convolution is independent of the others, the process
of exploring the solution space is highly parallel. In this
work, we use OpenMP task-parallelism to accelerate this
exploration, by running the simulation of the execution time
of all Convolutions in parallel. The parallel execution starts at
line 2 with the creation of a thread pool. At this point of the
execution, a unique thread is selected from the thread pool
(line 3) to create a task for each Convolution (line 5). The
tasks are then distributed across the threads within the thread
pool to compute the TLE/TLT data partitioning and scheduling
of the Convolutions in parallel.

B. TLE Partitioning

The first step in the TSO optimization is to divide the filters
in KS among the TLEs and define which part of the OFM
(rows) the selected filters will compute. This is done according
to the partitioning set defined in Algorithm 1 – PARTTLE =
{KS,KS&OFM,OFM}, where KS, KS&OFM and OFM
are partitioning strategies computed by Algorithm 2.

KS partitioning – In the first partitioning scheme (line 4),
only the convolution filters in KS are divided into slices among
the TLEs (line 5). In terms of data replication, all the R×C
elements of an OFM have to be computed by the TLE, which
requires loading the entire IFMs at runtime on each TLE. This
partitioning scheme usually works well on the last Conv-layers
of a CNN model, given the increase in the number of filters
as well as in their channels’ depth. Thus, dividing the filters
may reduce data transfers between DRAM and NMP.

KS and OFM partitioning – The second partitioning
scheme (line 7) divides both the filters and the OFM rows
among the TLEs. For the NMP used in this work (#TLE = 4),
it slices the OFM rows into two sets as well as the filters in

Algorithm 2 TLE Slicing
1: function TLESLICING(p, conv, #TLE)
2: rows← conv.R
3: filters← conv.M
4: if p = KS then
5: TLEW = dfilters/#TLEe
6: TLER = rows
7: if p = KS&OFM then
8: TLEW = dfilters/(#TLE/2)e
9: TLER = drows/(#TLE/2)e

10: if p = OFM then
11: TLEW = filters
12: TLER = drows/#TLEe
13: return (TLER, TLEW )

KS, which are then combined to generate one slice for each
TLE. This TLE partitioning scheme reduces the data transfer
over the IFMs, compared to the first TLE partitioning scheme,
but increases the loads over the filters, given that more filters
are assigned to the slices. This scheme usually works better
when both the KS and IFMs data have similar sizes.

OFM partitioning – Finally, the third partitioning only
divides the OFM rows among the TLEs (line 12). Given
that the filters in KS have to be loaded by each TLE, this
partitioning scheme usually works better on the first Conv-
layers, since the IFMs are bigger when compared to the filters
in KS.

Since the NMP board used to collect the experiments for
this paper does not have a global shared-buffer (shared among
the TLEs), we have not considered this feature in designing
TSO. However, TSO can be easily extended to consider a
global shared-buffer since different slices of the IFMs/KS from
different TLEs may be the same.

C. TLT Partitioning

After choosing a TLE partitioning scheme, the workload
of each TLE is divided among their corresponding TLTs
by means of a call to function TLTTiling in line 12 of
Algorithm 1. TLTTiling takes as input the TLT schedul-
ing strategy (q), the convolution data (conv), the TLE slice
(slice) resulting in line 8 of Algorithm 1 and the number of
TLTs at each TLE (#TLT ). It then produces as output the
tuple (IN,W,OUT, time, schedule) which will be used to
generate code for the TLTs.

Initially (refer to Algorithm 3), TLTTiling initializes vari-
able bestT ile.time with infinity as it will store the smallest
(estimated) execution time of all possible tiles visited by the
function. To achieve that, a sequence of three nested loops
(lines 4-6) generate the values TR, TC and TN that are used
to explore all possible IN, W and OUT tiles shapes that can
be formed from a TLE slice. But before computing the IN
and OUT tiles for that TLE slice, the convolution filters in
TLEW need to be divided among the various TLTs. This is
done in line 7, which also determines the maximum number
of filters (TM ) that can fit into the MB1 (W ) memory of a
TLT, and in line 8, which generates the corresponding W tile.



Algorithm 3 TLT Tiling
1: function TLTTILING(q,conv,slice,#TLT)
2: . Let tile = (IN,W,OUT, time, schedule)
3: bestT ile.time←∞
4: for TR ← 1 to slice.TLER do
5: for TC ← 1 to conv.C do
6: for TN ← 1 to conv.N do
7: TM ← GETFIL-

TERS(TR, TC , q, slice.TLEW ,#TLT )
8: W ← GENTILEW (TM , TN , conv, q)
9: OUT ← GENTILEOUT (TM , TR, TC )

10: IN ← GENTILEIN (TN , TR, TC , conv)
11: (time, schedule) ←

CALCTIME(IN,W,OUT, q)
12: if time < bestT ile.time then
13: bestT ile← (IN,W,OUT, time, schedule)

14: return bestT ile

In the case of an unbalanced filter partitioning, the remaining
filters are spread among the TLTs which have the lowest IDs.
This is followed by calling functions to generate the OUT tile
(GenTILEOUT in line 9) and IN tile (GenTILEIN in line
10). These two functions also check if the tiles OUT and IN
respectively fit into memories MB2 (OUT) and MB0 (IN) of
a TLT, as shown in Equation 2, where type stands for either
8- or 16-bit fixed-point. The functions between lines 8-10 also
calculate the number of times the IN, OUT and W tiles have
to loaded/stored from/to the DRAM to cover all the workload
of a TLE slice (more details in Subsection IV-C).

IN = TN × TH × TL × type ≤MB0

W = TM × TN ×K ×K × type ≤MB1

OUT = TM × TR × TC × type ≤MB2

(2)

Tiles IN , W , OUT and the tiling strategy q, are then
passed to function CalcT ime (line 11), so it can estimate
the best schedule and time to compute the TLE slices using
the generated tiles (more details in Subsection IV-E). Finally,
the algorithm tests if the time computed for the current tiling
is smaller than the bestT ile.time seen so far, and if so, it
updates the bestT ile.

D. Scheduling

With the data divided among the TLEs/TLTs, different
scheduling strategies – Input Stationary (IS), Output Station-
ary (OS) and Weight Stationary (WS) – may be used by
the TLT cores to execute the convolution, each providing a
different memory access pattern (schedule). Given that the
data-transfers of the mapping strategies presented herein can
be determined statically, we compute the number of accesses
to the DRAM required by each one of them, according to their
data-flow patterns, so as to determine the one that can result
in the best data reuse.

Input Stationary (IS) – is a scheduling strategy that focuses
on reusing the IN tiles. Figure 4 shows the execution flow of
IS. The first step ( 1 in Figure 4) is to load the IN tile from
the DRAM into the NMP MB0 on-chip memory; then, the W
tile is also loaded 2 from the DRAM into MB1. To make

IFMs (IN tile) OFMs (OUT tile)KS (W tile)
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2 5
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3
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Fig. 4: Input Stationary.

full reuse of the IN tile, the W tile has to include all the filters
designated to the TLT – even if just a small part of each one of
them. With the IN and W tiles already loaded, the MAC Unit
executes the convolution on them. The result is stored into
the MB2 (OUT) memory which, at this point, only contains a
partial sum of the Convolution – the final result of the OUT
tile is only generated after computing all elements through
the depth of the IFMs. To do that, multiple IN 3 and W tiles
4 may be required to be loaded while going through the

channel (depth) direction. After computing and accumulating
the results, the OUT tile is ready to be stored into the DRAM
5 . After that, a new IN tile is loaded, going first on the width
6 and then on the height 7 directions of the IFM – for each

one of them, the same W tiles are reloaded again and again.
Given the access pattern performed by IS when load-

ing/storing data from/to the DRAM, one can use Equation
3 to identify, for each tile (IN, W and OUT tile), the number
of times it is required to load/store each one of them to cover
the entire computation of a Conv-layer over the TLEs/TLTs.
The αin and αw symbols denote the number of times the
TLEs/TLTs have to load the IN and W tiles from the DRAM to
compute an entire Conv-layer. The αout stands for the number
of times the OUT tiles are stored to the DRAM.
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Fig. 5: Output Stationary.

Output Stationary (OS) – is a mapping strategy that
prioritizes the generation of the OUT tiles, no matter if the
same IN and W tiles have to be loaded multiple times from
the DRAM into their respective on-chip memories. Figure 5
shows the execution flow of OS. First, based on the OUT tile
1 dimensions, the corresponding IN 2 and W 3 tiles are



loaded from the DRAM into their respective on-chip memories
to compute a convolution on them using the TLT’s MAC Unit.
Given that typically the on-chip memories have not enough
space to accommodate all the required input data, multiple
IN 4 and W 5 tiles have to be loaded using the channel
(depth) direction. After finishing the computation of an OUT
tile, it is stored into the DRAM and a new OUT tile starts to
be computed using the channels’ (depth) direction 6 . After
that, the other OUT tiles are computed by following first the
OFM’s width 7 and then its height 8 . The number of times
each IN, W and OUT tile have to be loaded/stored from/to the
DRAM is defined in Equation 4.
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Weight Stationary (WS) – is a mapping strategy that
focuses on loading the filters from the DRAM only once and
reuse them as the convolution tiles are computed. Figure 6
shows the execution flow of WS. First, the TM filters in W tile
are loaded from the DRAM into the MB1 on-chip memory 1 .
In this strategy, each loaded filter includes all its N channels.
The loaded filters are then reused until the resulting OFMs are
computed 2 . Prior to executing the nmp conv2d instruction,
an IN tile is loaded from the DRAM 3 . Multiples loads of
an IN tile along the channels’ depth may be required 4 ,
each computing and storing partial results that will later be
accumulated to form the final OUT tile 5 , so it can be
stored back to the DRAM. This is followed by loading other
IN tiles in sequence over the width 6 and then over the
height 7 . This proceeds until all the OFMs of the respective
filters in W tile are computed. After that, a new W tile with
other filters may be required to be loaded 8 to compute their
corresponding OFMs – at this point, for each iteration, the
same IN tiles are again loaded. Equation 5 defines the number
of required data transfers to/from the DRAM to cover the
entire Conv-layer.
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The NMP architecture enables other partitioning strategies
beyond the one proposed in this paper, which leverages a
MULTICAST instruction to load IFM slices into 8 TLTs/TLE
in parallel. For example, one could consider an approach
that divides the IFMs (channels) among the TLEs so that
they compute partial OFM sums, which are later reduced
to the final OFM result. Unfortunately, in NMP, the process
of reducing partial sums would require many ring-network
messages between the TLEs, thus impacting performance
and making some TLTs idle while others are computing the
reduce-tree. Moreover, besides leveraging MULTICAST loads
to reduce data transfers, the partitioning strategies proposed
herein also guarantee load-balancing between the TLEs/TLT.

E. Estimating Time

In order to decide which slicing strategy is the best among
those discussed in the sections above, for each convolution
TSO combines multiple solutions from the search space
<PARTTLE ,PARTTLT ,TM ,TN ,TR,TC>, and estimates the
time taken by each valid combination to select the one which
provides the best performance. This estimate has the following
components, listed in increasing order of their contribution
to the convolution execution: (a) the time required to run
the RISC-V instructions at each TLT; (b) the time needed to
perform the MAC unit operations on the slices; and (c) the
time required to load/store data between the DRAM and the
NPU on-chip memories. An estimate for the execution time
is calculated by function CalcTime (defined in Algorithm 3
– line 11), which sums the time of each component of the
execution according to Equation 6.

TCONV = TMAC + TDRAM + TSW (6)

where TMAC , TDRAM and TSW stands for the time taken by
the MAC Unit, the time taken to transfer data between the
NPU’s on-chip memories and DRAM and the time taken to
execute the RISC-V instructions, respectively. Since TSW is
not significant (usually less than 5% of the total execution),
we will not cover it in detail in this paper.

The time TMAC is calculated according to the number of
Multiply-accumulate operations (MAC operations) of a Conv-
layer. In the first step (see Equation 7), it is identified the
number of MAC operations required to compute a channel
over the IFMs, which is then divided by the number of
MAC operations that a MAC unit can execute at each cycle.
After that, the other feature maps are then considered to
compose the estimated time of the entire tile (TileMAC).
Given the time taken of a single tile, it is then possible to
estimate the total time required to compute the entire Conv-
layer’s workload, which is distributed over all the TLTs cores
(#TLEs×#TLTs) in NMP (see Equation 8).

TileMAC = TN × TM ×
(⌈

TR × TC ×K ×K
#MACs

⌉)
× 1

Freq
(7)



Algorithm 4 Estimate the time taken by Data Transfer
1: function CALCDATATRANSFER(tile, conv, arch)
2: type← arch.type
3: BW ← arch.BW
4: if model = TSO-burst then
5: nbursts← CALBURSTCOUNT(tile, conv, type)
6: cas latency ← nbursts ∗ CAS
7: tile size← GETTILESIZE(tile, type)
8: transfer time← tile size/BW
9: total time← transfer time+ CAS latency

10: else
11: . TSO-noburst
12: tile size← GETTILESIZE(tile, type)
13: total time← tile size/BW

14: return total time

TMAC =
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To evaluate the data transfer between the on-chip memories
and DRAM, TSO uses two approaches to estimate the time
taken to load/store the IN, W and OUT tiles. They are:
(a) TSO-burst, a burst-based model that estimates the tile’s
DRAM transfer time by determining the number of memory
bursts and the total CAS and access time it takes; and (b)
TSO-noburst, a data volume-based model, which estimates the
DRAM transfer time solely based on the size of the tile’s
data and the memory bandwidth. Algorithm 4 describes how
the DRAM transfer time is computed using both approaches.
For the sake of explanation of Algorithm 4 assume a DDR3
memory with CAS latency (us), BW bandwidth (Bytes/sec)
and BURST size in bytes (e.g., 128B)

In order to estimate the time taken by data transfers (see
Equation 9) in both approaches (TSO-burst & TSO-noburst),
the number of memory accesses each tile requires (αin, αw

and αout) is combined with a call to function CalcData-
Transfer (defined in Algorithm 4 – more details below). The
estimated time of each tile is then composed to form TDRAM .

TDRAM = αin ∗ CalcDataTransfer(IN, conv, arch)+
αw ∗ CalcDataTransfer(W, conv, arch)+

αout ∗ CalcDataTransfer(OUT, conv, arch)
(9)

Burst-based data transfer (TSO-burst) – The key idea
behind TSO-burst is to determine the number of bursts taken
by each access to a tile row to use it to determine an estimate
for the DRAM access time of the tile. For instance, consider an
IN tile containing TN (channels) × TH (rows) × TL (columns)
where each entry has 16-bit (2B) elements. Given that the
channel is laid out in row-major, loading the first element of
a row takes time CAS, while loading the remaining elements
∼ (2 × (TL − 1))/BW . Thus, an IN row takes CAS+ ∼
(TL− 1)/BW to load. This is true if the size of the row (2×
TL) is smaller than BURST bytes. Otherwise, other memory
bursts may occur when loading the row, and additional CAS
penalties will impact the time.

Algorithm 4 is used to estimate the execution time when
convolution conv is divided into tiles tile on architecture arch.
Initially, the tile data size type (e.g., 16-bit fixed-point) (line 2)
and the DRAM memory bandwidth BW (line 3) are extracted
from the arch data structure. Next (line 4), the algorithm
selects the memory transfer model (e.g., TSO-burst) and uses
a call to function CalBurstCount (line 5) to determine the
number of bursts (nburts) required to load all the TH rows of
an (IN) tile. Then, the impact of the CAS latency is computed
into cas latency (line 6) and the size of the tile (tile size)
is determined in line 7 by calling function GetTileSize. The
time to transfer all the data in a tile (transfer time) is then
determined (line 8), and finally, the total time to load the tile
is computed (line 9) and returned (line 14).

TSO-burst does not make any assumptions about the ex-
ternal DRAM or memory-controller designs, besides the exis-
tence of burst-based accesses typically found in these memo-
ries. The memory-controller found in the NMP board follows
the ARM-bus protocol. Besides CAS-latency, other DRAM
parameters (e.g., Trcd/Trp/Tras) could also be included to
improve the precision of data transfer modeling. Nevertheless,
since CAS-latency is the most relevant of these DRAM
parameters Algorithm 4 focused only on it.

Volume-based data transfer (TSO-noburst) – This ap-
proach is typically used by all previous works which address
this problem. As shown in lines 12-13 of Algorithm 4, it
estimates the tile time by considering only the time to transfer
the tile data (line 12) and not the impact of the CAS latency
of the tile’s memory bursts.

V. NMP XLA COMPILER

In this work, we used Tensorflow XLA (TF-XLA) [27]
which is a domain-specific compiler for linear algebra. TF-
XLA Ahead-of-time (AOT) compilation was used to generate
executable binaries for machine learning models on the NMP
architecture.

Compilation flow – TF-XLA compiler receives as input a
protobuf file, that contains the definition of the network (oper-
ations and their connections) and the weights. It then performs
some transformations (using the TF Graph Transform Tool)
on the protobuf, (e.g., folding batch-norm into convolutions),
which are useful later during the quantization pass. After
the transformations are applied, a new protobuf is generated,
which is then used to create the XLA HLO intermediate
representation (see Figure 7). From the initial XLA HLO
representation, target-independent optimizations are applied
(e.g., DCE, CSE, etc), thus producing an optimized HLO
representation. After that, target-dependent optimizations, like
quantization, are executed followed by other specific passes to
ease code generation (e.g., operation fusion). TSO is the last
pass applied to the HLO IR, just before LLVM IR lowering.
After that, the compiler generates LLVM IR from HLO IR,
which calls NMP intrinsics to lower computation to TLT
RISC-V accelerated code.

Quantization pass – in this pass, our TF/XLA compiler
converts weights from 32-bit floating point to 8- or 16-bit
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Fig. 7: Tensorflow XLA Flow.

fixed-point. The goal of quantization is to determine the Q-
points for the input, intermediate tensors and weights. The
Q-point is a radix point that determines how many bits are as-
signed to the integer and fractional parts of the data. The goal
is to ensure that the integer part has enough bits to represent
the minimum and maximum output values that an operation
produces. To capture the data range of the model tensors some
steps need to be performed. First, one has to identify the
minimum and maximum values each layer of the CNN can
produce for a set of different input tensors. To achieve that, the
insert logging method available in the TF Graph Transform
Tool is used to insert probes at the inputs/outputs of all model
operations, producing an instrumented protobuf. After that,
the compiler executes a calibration step, which consists on
the execution of the instrumented protobuf over hundreds or
thousands of images to capture the minimum and maximum
values that each logged operation outputs. These values are
then used to determine the Q-point for each of the logged
operations. Given that some operations are not marked during
the process of logging (e.g., Pool-Layer), a sequence of two
traversals is performed on the TF Graph. In the first traversal
(forward), the already computed Q-points are propagated to
the operators from the input towards the output of the graph.
In the second traversal (backward), from the output of the
graph to its input, the Q-points are adjusted – for example,
the inputs of a Concatenate or an Add operation have to have
the same Q-points. The compiler then modifies the Layout
from NHWC (default on Tensorflow) to NCHW, which is the
layout required by the NMP architecture, and then generates a
file with the quantized weights. Besides that, a memory map
is also generated, which is used at run time by the binary code
of each TLT to schedule tiles so they can load/store data in
the DRAM and TLT on-chip memories.

After optimizing the HLO IR, our TF-XLA compiler lowers
the HLO IR to LLVM IR. During code generation, the HLO
instructions map to intrinsics in an optimized NMP library,
which includes most of the typical CNN operations. From
the LLVM IR, the compiler generates a RISC-V executable

Model
Accuracy (TF-XLA) TSO (us) TLE

partitioning
fixed (us)

TLT
scheduling
fixed (us)

CPU FP
(%)

NMP
(%)

Top-1 Top-5 Top-1 Top-5 Burst No
Burst KS KS&

OFM OFM IS OS WS

InceptionV3 75.1 92 76.9 93.4 72686 88478 82370 81367 91408 73706 93731 101641
LeNet 99.9 100 99.9 100 199 231 202 224 231 199 233 228
MobileNetV2 70.2 89.6 70.5 89.8 14030 15470 17765 16696 17571 14084 17387 15155
ResNet-50 70.6 89.9 70.7 89.9 55927 62375 62077 63118 78844 59714 71905 77535
SqueezeNet 47.1 71 47.1 71 12504 13713 16579 14134 12993 12908 15840 13452
YOLO - - - - 53271 57225 56591 55713 63550 68530 58592 55375

TABLE I: Model accuracy on CPU (FP32) and NMP (16-bit
fixed point), execution times for TSO (burst and noburst) and
fixed strategies. YOLO uses a different metric for accuracy, it
measures the precision of the detection, which is 93.53% on
NMP while on CPU is 93.03%.

(RISCV.bin) that is used by the TLTs, together with the
quantized weight file (Weight.bin), to execute the model.

Other AI compilers have also been used to generate code
for AI accelerators. As an example, Glow [28] generates code
for Intel Habana, and onnx-mlir [29] generates code for an AI
accelerator integrated into the IBM z16 processor.

The execution of TSO takes a couple of minutes. In order
to easy retargetability, we intend in the future to make TSO
a generic MLIR-pass to be used by flows like ONNX and
XLA in a machine-independent manner. The user will specify
the memory-hierarchy, the number of processors/cores and the
MLIR-TSO pass will output the best tiling/scheduling scheme
so LLVM can lower it.

VI. EXPERIMENTAL RESULTS

In order to validate the TSO approach, a set of experiments
was executed on an NMP board equipped with 4 TLEs, each
having 8 TLTs. Each TLT contains three 8KB MB on-chip
memories (MB0–MB2). To evaluate TSO, we used used 5
CNN image classification models: InceptionV3 [11], LeNet
[10], MobileNetV2 [30], ResNetV50 [2], and SqueezeNet
[31]. We have also applied TSO to an object detection ap-
plication - a YOLO-based model [32] used to recognize car
license plates. The selected models have a varied number of
convolutions with different shapes of input (IFMs), weight
(KS) and output (OFMs).

All models were compiled by our TF-XLA compiler with
the quantization pass set to 16-bit fixed-point. The accuracy
achieved by each of the image classification models on NMP
is shown in Table 1. The Top-1 and Top-5 accuracies were
measured by running all images from the validation datasets,
MNIST [33] and ImageNet (ILSVRC2012) [34], for LeNet
and the other image classification models, respectively. The
same datasets were also used to measure the original floating-
point models (FP 32-bit) on CPU. The difference in terms of
accuracy drop ranges from 0.1 up to 1.8%. For the YOLO-
based model, NMP reaches a precision of detection of 93.53%
on a car plate dataset [35] executed on 16-bit quantized data,
and the same model on CPU results in 93.03%.

The quantization scheme used in this paper only quantizes
the convolution data to 16-bit fixed-point. But, for smaller
precision, e.g., 8-bit fixed-point, TSO may decide on selecting
a different solution than the one it would select for the
same convolution quantized to 16-bit fixed-point. For instance,
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Fig. 8: TSO-burst speedup over TSO-noburst.

assume that only after quantizing a given convolution to 8-
bit, one of the components of the convolution (e.g., IFMs)
becomes smaller than its corresponding MBLOB. Keeping this
component stationary would result in a single load of it and
of the other components’ tiles (KS and OFMs) to compute the
convolution. As a result, it would reduce considerably the data
transfer between DRAM and NMP. Therefore, TSO would
tend to select this solution as it would reduce data transfer
over the others.

TSO-burst vs TSO-noburst

We compared TSO with the burst-based modeling activated
(TSO-burst) and without it (TSO-noburst), as the latter is a
common approach found in most previous works. The speedup
of TSO-burst over TSO-noburst ranges from 7.4%, for YOLO,
up to 21.7%, for InceptionV3, as shown in Figure 8. The main
improvements from using TSO-burst come when the IFMs are
divided into IN tiles. This happens because TSO tends to select
larger tiles on the width (row-major) direction. By selecting
larger tiles, TSO minimizes the number of required bursts,
thus reducing the impact of the CAS latency on the memory
access time. By prioritizing bursts on the width direction, TSO
maximizes the usage of the bursts, as it improves memory
access coalescing. For the case of TSO-noburst, the tiles are
selected so as to reduce the number of bytes loaded from the
DRAM to NMP. This approach is adopted by most solutions
that have been proposed so far in the literature [36]–[39].
Contrary to those, the TSO-burst technique proposed in this
paper takes into consideration DRAM access coalescing to
estimate the time taken to LOAD/STORE data from memory,
thus resulting in better partitioning and improved performance.
The resulting execution time for the various models is shown
in Table I. Notice in the table that TSO always produces the
shortest execution.

As an example, consider the 5th Conv-layer of InceptionV3,
which has 80 IFMs of size 73x73 each, and 192 filters of size
80x3x3. The shape of the IN tile selected by TSO-burst has
size 14x4x73 (TN × TH × TL). Since the IN tile of the TSO-
burst takes the whole width L (73) of a channel, it results in
a sequence of 584 bytes aligned sequentially on the DRAM
(4× 73× 2B), which requires 5 memory bursts for each tile’s
channel. In total, when considering the 14 channels of that tile,
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the 5th Conv-layer requires a total of 70 memory bursts. On
the other hand, TSO-noburst selects a tile of size 16x11x20,
which corresponds to only 20 bytes aligned on the DRAM,
thus resulting in one memory burst for each row. Given that
the IN tile has 16 channels, each with 11 rows, it requires a
total of 176 memory bursts, which is more than double what is
needed to load the TSO-burst tile. For that specific 5th Conv-
layer, TSO-burst reduces the tile execution time by 28%.

The solution provided by TSO-burst aims to reduce the
total time taken for data transfer operations. To illustrate that,
refer to Figure 9, which shows for each model two bars
representing the breakdown of the percentage of computation
time spent in LOAD, STORE, and MAC operations with
respect to the total execution time. For the TSO-burst’s bars,
the percentage of the execution time is calculated with respect
to the TSO-noburst total time. As shown in Figure 9, when
TSO-noburst is used, the percentage of the LOAD+STORE
transfer time ranges from 51.83%, for InceptionV3, up to
83.80% for LeNet. On the other hand, when TSO-burst is
used to model memory access during TF-XLA compilation,
the time taken by LOAD+STORE operations decreases from
7.08% to 23.71% for YOLO and InceptionV3, respectively.

Speeding-up TSO solution exploration

The goal of this experiment is to evaluate the impact of the
OpenMP task-parallelism annotations in Algorithm 1 (lines
2, 3, and 5) on the overall time of the TSO slicing space
exploration. We did this experiment on an Intel Xeon E5-2620
with 16-physical cores and 64GB of memory. The results are
shown in Figure 10 where each line corresponds to one model,
the y-axys is speedup with respect to sequential execution
as the number of threads used by OpenMP grows (x-axys).
Notice that the multi-threading execution has almost a linear
improvement when compared to the serial execution for most
of the models. For InceptionV3, which has 94 Convolutions,
the multi-threading execution is almost linear. On the other
hand, for LeNet, which has only 2 Convolutions, 2 threads
are enough to accelerate the execution, and thus a slow down
shows up if the number of threads increases from that point
on. In terms of time, the serial execution of TSO varies from
28 ms, for the LeNet network, to 6 min for the InceptionV3
network, while with the multi-threading execution, this time
is reduced to 17 ms and 59 sec, respectively. The total time
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Fig. 11: Roofline model for NMP architecture (TSO-burst).

spent by the compiler, from the beginning to the generation of
the binaries, varies from 20 seconds to 7 minutes, for the same
models, respectively, whereas most of the time is consumed
by the calibration/quantization step.

Roofline Model

To evaluate the performance of the code resulting from
using TSO on the Conv-layers of each model executed on
NMP (TSO-burst), we used the Roofline Model shown in
Figure 11. In the graph, the y-axis presents the Multiply-
and-accumulate (MAC) throughput (in GMACs/sec) achieved
by the architecture and the convolution execution. In the x-
axis is the Operational Intensity, which stands for the number
of MAC operations executed for each byte that is loaded
from the DRAM. The blue lines in the graph represent the
theoretical roofs for both the MAC throughput (horizontal line)
and DRAM bandwidth (sloped line) that can be respectively
achieved by the NMP engine and the memory system. To bet-
ter evaluate the real performance of the system two additional
experiments were undertaken to measure these parameters.
This is required given that other architecture components can
impact their values. The black lines in the graph represent
these measurements. As shown, the measured MAC through-
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put reaches a roof of 192 GMACs/sec, represented by the
horizontal black line. A number of issues can explain this
reduction. For example, the NMP device used in this work
has single-ported on-chip memories, and thus TLTs that are
waiting for data get idle without using its MAC Unit. As for
the memory bandwidth (the sloped black line) the measured
value is also reduced. This can be explained by the fact
that the DRAM bandwidth is constrained by a single DMA
engine per TLE which has to simultaneously serve all 8 TLT
cores. In order to evaluate the performance resulting from
TSO, we plotted one point in Figure 11 for all convolutions
in the models. As shown, most of the convolutions reach
either the roof limited by the (measured) memory bandwidth
(sloped black line), or approach the roof defined by the
MAC throughput (horizontal black line). This makes it clear
that TSO produces code which approaches the maximum
performance of the architecture.

Fixed TLE/TLT Partitioning

Fixed TLE partitioning – in this experiment, the compiler
was set to generate code which fixes each TLE slicing strategy
described in Subsection IV-B for all Conv-layers of a model.
The experiment works as follows. The compiler identifies, for
the fixed TLE slicing, the best TLT tiling/scheduling strategy
(IS, OS and WS). The result of this experiment is shown in
Figure 12 which reports the speedup of the model compiled
with TSO (burst mode) when compared to the model compiled
with the fixed TLE slicing. For the KS case, TSO achieves a
speedup of up to 32.6%, for SqueezeNet. SqueezeNet does
not perform well for TLE slicing since most of its Conv-
layers have IFMs larger than the size of the filter set (KS). For
KS&OFM, TSO speedup reaches up to 19%, for MobileNetV2.
This TLE strategy usually works better for the Conv-layers that
have similar sizes for both IFMs and weights (KS). For OFM,
TSO speedup is 41.0%, for ResNet-50. For most of ResNet-
50’s Conv-layers, the size of the weight set KS is larger than
the size of the IFM data maps. As a result, TSO outperforms
the best fixed TLE slicing strategy.

Fixed TLT partitioning – in this experiment, the compiler
is set to generate code which fixes one of the three TLT



 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

InceptionV3 LeNet MobileNetV2 ResNetV50 SqueezeNet YOLO

T
S
O

 S
p
e
e
d
u
p
 o

v
e
r 
fi
xe

d
 M

a
p
p
in

g
 S

tr
a
te

g
ie

s

Models

IS
OS
WS

Fig. 13: Fixed TLT Scheduling Strategy.

Model Arch. Top-1 Top-5

MNIST 1.3 CPU (FP) 98.9% 100%
NMP 99.2% 99.8%

LeNet CPU (FP) 94.8% 99.9%
NMP 95.2% 99.9%

Resnet18 1.2.1 CPU (FP) 69.9% 89.3%
NMP 66.4% 87.3%

SqueezeNet 48.7 CPU (FP) 49.0% 72.9%
NMP 47.1% 71.0%

Mobilenet 2.1 CPU (FP) 71.8% 90.6%
NMP 70.9% 89.4%

TABLE II: Model accuracy on CPU (FP32) and NMP (16-bit
fixed point) from Glow.

scheduling strategies (IS, OS, and WS) for all the model’s
Conv-layers. The compiler applies the fixed scheduling strat-
egy to all possible TLE slicing options (KS, KS&OFM and
OFM) to search for the best performance. Figure 13 shows
the speedup of TSO when compared to the best fixed TLT
strategy. By fixing IS during TF-XLA Code Generation, TSO
speedup reaches 28,6% on YOLO. For the YOLO network,
IS does not perform well since this network has multiples
Conv-layers with IFMs varying from 102 × 102 (H × L) to
416× 416 – this results in multiples loads of the filters since
multiple IN tiles are required. TSO speedup with respect to
fixed OS reaches up to 28.6% on ResNet-50. When compared
to fixed WS, TSO speedup is 39.8% on InceptionV3. In the
case of InceptionV3, when WS is used, multiples W tiles are
required to work on the slices, and thus multiples loads of the
IFMs become necessary for each W tile, leading to an increase
in data transfers. Here again, TSO outperforms the best fixed
TLT scheduling strategy.

Evaluation on the Glow Framework

A set of experiments were also performed to evaluate the
portability of TSO to another Machine Learning Framework.
The Glow toolchain from Facebook was selected for this
evaluation, and a performance comparison was done with
respect to the accuracy resulting from the TensorFlow/XLA
compiler. A thorough performance comparison with respect to
TensorFlow/XLA was not done given that Glow uses a slightly
different set of models from the ONNX Model Zoo.

Some models were required to be converted from the
Google TFLite Hub to the ONNX format (e.g., Lenet,
Squeezenet, and Mobilenet) while others were used directly
from the ONNX Model Zoo (e.g., MNIST and Resnet18).
Accuracies have been compared to those achieved on CPU
32-bit FP, as listed in the corresponding repositories. To
achieve that, inferences for each model were executed on
NMP architecture over the ImageNet and MNIST validation
datasets, according to the model, and the Top-1 and Top-5
accuracies were measured. As shown in Table II, accuracies
of the code produced by Glow on NMP approach those from
the TensorFlow/XLA compiler (see Table I).

VII. RELATED WORKS

Maestro [40] and Timeloop [41] uses analytical modeling
that evaluates different mapping configurations – dataflow
strategy, data-reuse, tile size, etc; to estimate the runtime
for different configurations. While Maestro designs some
annotations to classify the loops either as temporal or spatial,
Timeloop analysis the nested loops to apply the transforma-
tions on them. For both, given a DNN layer (e.g., a Convo-
lution and its information), hardware configuration (number
of PEs, on-chip memories size, etc), the dataflow strategy,
these approaches estimate the runtime performance, energy
and power. Given the easy use of Maestro, different solutions
have adopted its annotations to estimate computation [42],
[43]. As an example, Marvel [42] uses the Maestro notations
and has for main goal the reduction of the search space by
decoupling the analysis of the cost model of the accesses to
the on-chip/off-chip sub-spaces. Timeloop and Maestro model
Spatial DNN Accelerators, i.e., FPGA-based architectures,
in which the inner-loops of a Convolution are unrolled and
then synthesized into PE array (MAC units) which run in
a synchronized fashion to leverage on data-sharing between
them through inter-PE communication. Similar to Marvel and
Timeloop, our work also performs cost modeling and design
space exploration, but contrary to them, we model execution
on multicore NPU architectures and not on FPGA designs.

Tu et al. [37] and Hu et al. [36] proposed an FPGA-based
accelerator capable of reconfiguring its resources to increase
data reuse. They used the concept of Input Stationary (IS),
Weight Stationary (WS), and Output Stationary (OS). Besides
that, they propose a novel approach called Hybrid Stationary
(HS) that leverages on these concepts to find an optimal
configuration for each Conv-layer. Although their work has
some similarity to ours, instead of mapping the operations
to an array of PEs, we consider an architecture (NMP) with
multiple cores where each core has an accelerator which runs
independently of the others. Besides that, our search space
exploration algorithm considers different tile shapes based on
memory bursts, and not just square shapes that fit into the
hardware topology.

To select different tile sizes, loop order, unroll factor, etc,
TVM [44] uses a machine-learning cost model, which does
not require hardware information, and periodically learns from
previous predictions to search for an improved partitioning.



To the best of our knowledge, and from the available public
literature, TVM has not shown any results for multicore NPUs
like NMP, generating code only for FPGAs, embedded CPUs
and server CPUs.

To improve data reuse, some works use polyhedral-based
optimization techniques [19], [38]. Ma et al. [45] describes a
performance model that implements Output Stationary (OS).
Chen et al. [20] describes an approach called Row Stationary
(RS) that minimizes data movement by exploiting data reuse
through inter-PE communication. The tile selection on those
works is usually selected from the use of a roofline-based
model [39], [46]. Compared to our work, their roofline model
only considers the number of memory accesses without taking
memory burst into consideration. Stoutchinin et al. [47], on
the other hand, uses a technique called reuse distance, which
aims to identify the memory footprint which is required to
accommodate the Convolution’s data into the on-chip memory,
which varies up to 512KB. His work only considers data reuse
over the on-chip memories without taking into consideration
DRAM accesses.

Caffeine [48] is a library that comes with the capability of
converting Fully Connected Layers (FCL) into Conv-Layer.
The conversion takes into consideration modifications in the
data-layout to reduce the number of accesses to the DRAM so
as to increase the burst length. Qiu et al. [49] also modifies
the data layout and applies quantization to improve memory
access. Putra et al. [50] maps the data in the DRAM to reduce
row buffer conflicts. Our work uses a similar idea to increase
the burst length, but instead, we do not rearrange the data
layout. The process of modifying the layout proposed in [48]
creates a certain complexity when writing a layer’s output,
given that the layer’s output data has to be rearranged again
to be accommodated to the next layer’s input configuration
(e.g., tile size).

The work proposed by Alwani et al. [51] and Xiao et al. [52]
focuses on data-flow across multiple Conv-layers. Instead of
processing a layer at a time, as usual, they focus on processing
multiple layers at once without generating intermediate data
between them. Their solution works by fusing multiple layers
resulting in a computation pyramid across those layers. They
use some complex data-structures to keep the intermediate
data of each pyramid. In general, even reducing the mem-
ory transfers between the FPGA and host as they do, their
accelerator still requires a huge amount of memory to store
all the intermediate data from different pyramids. King et al.
[53], on the other hand, proposes an algorithm to evaluate
the scheduling of multiples Conv-layers from the start of a
branch until the merge, thus keeping each layer’s input/output
data as much as possible in on-chip memory. In [53], they
used an NPU with 1MB on-chip memory, which is enough
for many cases, which is a bit expensive for edge inference
AI accelerators.

It is also possible to reduce data transfers by applying data
compression. NullHop [54] does this in hardware, and Han
et al. [55] does it by applying Huffman Coding. Sparsity is
another technique used to avoid computing zero elements and

therefore reducing data transfer of unnecessary data besides
avoiding unnecessary computation. Such technique is used by
several works [55]–[57]. All these techniques could also be
used to improve the approach proposed in this paper, although
they are not the focus herein.

VIII. CONCLUSION

Given the restricted on-chip memory sizes of NPU archi-
tectures, efficient data tiling and scheduling techniques are
crucial to minimizing the cost of memory accesses. This paper
proposes TSO, an optimization pass for the TF-XLA compiler
that identifies the best combination of data tiling, scheduling
and MAC operations that minimizes execution of convolutions
in CNN models. To achieve that, TSO does a precise modeling
of memory burst, achieving a speedup of up to 21.7% for some
typical CNN models when compared to no-burst modeling.
TSO also achieves up to 41.0% speedup when compared to a
fixed TLE slicing, and 39.8% when compared to a fixed TLT
tiling. The TSO generality was also evaluated by porting and
running it on the Glow toolchain.
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