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Abstract—In recent years, there has been extensive research on sparse representation of vector-valued signals. In the matrix case, the
data points are merely vectorized and treated as vectors thereafter (for e.g., image patches). However, this approach cannot be used
for all matrices, as it may destroy the inherent structure of the data. Symmetric positive definite (SPD) matrices constitute one such
class of signals, where their implicit structure of positive eigenvalues is lost upon vectorization. This paper proposes a novel sparse
coding technique for positive definite matrices, which respects the structure of the Riemannian manifold and preserves the positivity
of their eigenvalues, without resorting to vectorization. Synthetic and real-world computer vision experiments with region covariance
descriptors demonstrate the need for and the applicability of the new sparse coding model. This work serves to bridge the gap between
the sparse modeling paradigm and the space of positive definite matrices.
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1 INTRODUCTION

In the past decade there has been extensive research on
sparse representations of signals [1], [2], [3] and recovery
of such sparse signals from noisy and/or under-sampled
observations [4], [5]. Much of the work has been asso-
ciated with vector-valued data, and higher-order signals
like images (2-D, 3-D, or higher) have been dealt with
primarily by vectorizing them and applying any of the
available vector techniques. A review of the applications
of sparse representation in computer vision and pattern
recognition is presented in Wright et al. [6].

More recently some researchers have realized the ad-
vantages of maintaining the higher–order data in their
original form [7] to preserve the inherent structure,
which may be lost upon vectorization. One such data
type consists of n × n symmetric positive semi-definite
(SPSD) matrices (Sn+). A symmetric matrix A is positive
semidefinite if, for any vector x,

xTAx ≥ 0.

This is also succinctly denoted as A � 0. This funda-
mental property arises from the implicit structure in
the matrix A, i.e., A has non-negative eigenvalues. By
implicit, we mean that this necessary condition cannot
be easily expressed in terms of the elements of A directly,
unlike say, symmetry of a matrix. When the eigenvalues
of a symmetric A are strictly positive, we call A a
symmetric positive definite (SPD) matrix (Sn++), denoted
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by A � 0. Correspondingly, for any vector x 6= 0, we
have xTAx > 0.

Positive definite matrices are a very natural gener-
alization of positive scalars and positive vectors. They
are used widely in probability and statistics, as well as
to model certain physical phenomena. The covariance
matrix of any (non-degenerate) multivariate distribution
is a positive definite matrix. Kernel matrices from many
popular machine learning algorithms [8] are positive
semidefinite. In medical imaging, the revolutionary new
field of Diffusion Tensor Imaging (DTI) represents each
voxel in a 3-D brain scan by a 3 × 3 SPD matrix, called
the diffusion tensor, whose principal eigenvector gives the
direction of water diffusion in that region. More recently
in the image processing and computer vision commu-
nity, a new feature known as the region covariance de-
scriptor has been introduced [9], [10], which represents
an image region by the covariance of n-dimensional
feature vectors at each pixel in that region. These feature
descriptors are currently being used for human detection
and tracking, object recognition, texture classification,
query-based retrieval of image regions, etc. [11]. Unlike
general vectors, SPD matrices do not form a Euclidean
space when vectorized. Rather, they form a connected
Riemannian manifold, and the distance between two
points is measured using the geodesic connecting them
on this manifold [12], [13], [14].

In this work we propose a novel algorithm for sparse
representation of symmetric positive definite matrices
called tensor1 sparse coding. The sparse decomposition of
a positive definite signal in terms of a given dictionary
of positive definite atoms is formulated as a convex op-
timization problem. The proposed formulation belongs
to the class of MAXDET optimization problems [15]

1. From the ‘tensor’ in ‘diffusion tensor’ [13].
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which can be solved through efficient interior point
(IP) algorithms. We believe that this extension of sparse
coding techniques to the space of SPD matrices will
benefit the development of sparse models tailored to
the relevant problem domains. This forms the first step
toward extending the vast toolbox of sparsity-based
algorithms to this class of data points.

The rest of the paper is organized as follows: In
Section 2, we provide a brief description about region co-
variance descriptors, since they form the primary moti-
vation behind this work and are used in all of our exper-
iments. Section 3 presents an overview of previous work
on region covariances, especially those approaches that
deal with the manifold geometry of these descriptors.
Section 4 describes the sparse coding problem for SPD
matrices, and our tensor sparse coding approach is ex-
plained in Section 5. In Section 6, synthetic experiments
are presented to demonstrate the need for a direct tensor
approach as opposed to those involving vectorization.
Experiments on real-world data, i.e., region covariances
for human appearance modeling, texture classification
and face recognition, are presented in Section 7 and
show the applicability of sparse modeling by compar-
ing with previous techniques on these positive definite
descriptors. Section 8 illustrates the similarity between
the geodesic distance on the Riemannian manifold and
the objective used in our formulation. Conclusions and
future research directions are presented in Section 9.

2 REGION COVARIANCE DESCRIPTORS

Region Covariance Descriptors (RCDs) were first intro-
duced by Tuzel et al. [9] as a novel region descriptor
for object detection and texture classification. Given an
image I, let φ define a function that extracts an n-
dimensional feature vector zi from each pixel i ∈ I, such
that

φ(I, xi, yi) = zi,

where zi ∈ Rn, and (xi, yi) is the location of the ith pixel.
A given image region R is represented by the n × n

covariance matrix CR of the feature vectors {zi}|R|i=1 of the
pixels in region R. Thus the region covariance descriptor
is given by

CR =
1

|R| − 1

|R|∑

i=1

(zi − µR) (zi − µR)
T
,

where, µR is the mean vector,

µR =
1

|R|

|R|∑

i=1

zi.

The feature vector z usually consists of color informa-
tion (in some preferred color–space, usually RGB) and
information about the first and higher order spatial
derivatives of the image intensity, depending on the
application intended.

Although covariance matrices can be positive semi–
definite in general, the covariance descriptors themselves
are regularized by adding a small constant multiple
of the identity matrix, making them strictly positive
definite. Thus, the region covariance descriptors belong
to Sn++. Given two covariance matrices A and B, the
Riemannian distance metric Dgeo(A,B) gives the length
of the geodesic connecting these two points on this
manifold. This is given by [12],

Dgeo(A,B) =
∥∥∥log

(
A−1/2BA−1/2

)∥∥∥
F
,

where log(·) represents the matrix logarithm and ‖ · ‖F
is the Frobenius norm.

The geodesic distance is affine-invariant, in that any
non-singular congruence transformation on the covari-
ances does not change the distance:

Dgeo(XAXT , XBXT ) = Dgeo(A,B),

for any invertible X . This corresponds to a linear trans-
formation of the feature vectors zi 7→ Xzi. Therefore,
region covariances can be invariant to illumination, ori-
entation and scale of the image region, depending on the
features used and how the regions are defined. Many
existing classification algorithms for region covariances
use the geodesic distance in a K-nearest-neighbor frame-
work. The geodesic distance can also be used with a
modified K-means algorithm for clustering [16].

Arsigny et al. [17] proposed another metric known
as the Log-Euclidean distance, which is the distance
between two positive definite matrices measured on the
tangent space of Sn++ at the identity matrix. The tangent
space of SPD matrices at any point on the manifold
is Sn, the space of n × n symmetric matrices, and the
tangent operator is the matrix logarithm. If A is SPD,
then logA is a symmetric matrix, with no constraints on
its eigenvalues. The Log-Euclidean metric is given by

DLE(A,B) = ‖logA− logB‖F .
This is a lower bound on the actual geodesic distance,
and the bound is exact when the two matrices com-
mute [18]. Some works in the literature use this metric
due to its simplicity, and since the tangent space is
Euclidean the symmetric matrices in this space can be
vectorized for further processing. Other relevant metrics
for positive definite matrices are also elaborated in [19],
showing results from diffusion tensor imaging.

3 RELATED WORK

As mentioned earlier, region covariances were first intro-
duced in [9]. Porikli and Tuzel [20] describe a technique
for fast construction of region covariances for rectan-
gular image windows, using integral images, enabling
the use of these compact features for many practical
applications that demand real–time performance. Since
then, they have been used for tracking [10], [21], texture
classification and segmentation [22], [23], object detec-
tion [11], [24], [25], face recognition [26], and action
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recognition [27]. In [28], Cargill et al. provide a per-
formance evaluation of the covariance descriptor as a
suitable feature for generic target detection.

In [10], the authors track non-rigid objects with an
update mechanism based on Lie algebra defined at the
tangent space of the identity matrix. [11] present a
boosting framework over region covariances. Zheng et
al. [29] apply a manifold learning method for tracking
people with region covariances. Sivalingam et al. [16]
describe a framework for metric learning over positive
semi-definite matrices. Wang and Wu [30] perform ob-
ject tracking using region covariances by incrementally
learning a low-dimensional model for the covariances in
an adaptive manner.

Porikli [31] provides a collective description of most of
the different learning algorithms used above for region
covariances. The most successful algorithms are those
which respect the structure of the Riemannian manifold.

In machine learning, multiple kernel learning attempts
to learn a convex or conic combination of pre-defined
kernel matrices that optimizes certain objectives. These
pre-determined kernels can be parametric kernels with
different parameter choices. [32], [33] optimize a per-
formance measure over the conic combination of the
individual kernel matrices, without specifying an actual
target kernel - they have a constraint on the trace of the
target kernel only. [34] minimizes the Logdet divergence
between a target kernel (the optimal kernel formed from
the ground truth labels) and a convex combination of
a set of pre-defined kernels. The combination weights
are optimized using project gradient descent over the
simplex, and there is no sparsity constraint suggested.
Further, optimizing an `1 sparsity term or constraint is
not feasible here since a convex combination is used
(the weights are non-negative and sum to 1). In our
work, we use a conic combination of positive definite
(or semidefinite) matrices, with a sparsity constraint on
the coefficient vector.

There has also been work on regression over positive
semidefinite matrices where the response variable is a
scalar, i.e.,

y = f (WX) ,

where X ∈ Rn×n, W ∈ Sn
+, and y ∈ R. A quadratic

loss function over the response variables and their pre-
dictions is optimized. [35] uses the von Neumann diver-
gence term as a regularizer for the optimization over the
positive definite W . [36] uses Riemannian optimization
over positive semidefinite W to learn a regression model.
They also describe a connection between the Rieman-
nian affine-invariant metric and the LogDet divergence.
Nesterov and Todd [37] explore the connections between
Riemannian geometry and self-concordant barrier func-
tions used in interior-point methods.

In the area of metric learning, Davis et al. [38] learn
a distance metric (or kernel matrix) based on pairwise
constraints on the data samples, and optimize a Logdet
divergence measure between a given matrix A0 and

the learned matrix A, A,A0 ∈ Sn
+. This is carried out

to satisfy the pairwise constraints as much as possible,
while staying close to the original matrix.

In our work, the goal is to represent a positive definite
matrix by a linear (or conic) combination of a set of posi-
tive definite matrices, while trying to enforce sparsity on
the coefficients. Some other works trying to learn similar
sparse decompositions are given below: In [39], Guo et
al. take the covariance descriptors to the tangent space,
by the logarithm map and perform vector sparse coding
in this Euclidean space. The resultant algorithm gives
good performance for action recognition in video. Wang
and Vemuri [40] also learn sparse representations over
positive definite matrices in the tangent space, via the
logarithm and exponential maps. In a similar approach,
Sra and Cherian [41] learn a generalized dictionary of
rank-1 positive semidefinite atoms to sparsely repre-
sent covariance descriptors. However, the authors in the
above two approaches use the Frobenius norm as the
error metric. Pfander et al. [42] decompose a general
matrix as a sparse linear combination of a dictionary
of matrices by multiplying all the involved matrices
on a known vector reducing the matrix problem to a
known vector problem with well-established guaran-
tees. Wang et al. [43] present the Common Component
Analysis problem, where the authors learn a common
low-dimensional subspace for a set of high-dimensional
covariance matrices.

We present a novel sparse coding approach that uses a
distortion function derived from the Wishart probability
distribution. This approach maintains the positive defi-
nite matrices as such without vectorization, and there-
fore is more respectful of the matrix manifold geometry
than vectorizing the matrices and treating them as points
in Euclidean space.

4 PROBLEM STATEMENT

We begin with a known dictionary consisting of K n ×
n positive definite matrices A = {Ai}Ki=1, where each
Ai ∈ Sn++ is referred to as a dictionary atom. Given a
signal S ∈ Sn++, our goal is to represent S as a linear
combination of the dictionary atoms, i.e.,

S = x1A1 + x2A2 + . . .+ xKAK =

K∑

i=1

xiAi, (1)

where x = (x1, x2, . . . , xK)T is the coefficient vector.
With a slight abuse of notation, we will henceforth

represent the sum
∑K

i=1 xiAi as Ax for the sake of
convenience2.

Since only a non-negative linear combination of posi-
tive definite matrices is guaranteed to yield a positive
definite matrix, we impose the constraint x ≥ 0 on
the coefficient vector. However, we will also explore the
effect of removing this constraint in later sections.

2. This can be distinguished from the regular Ax matrix-vector
multiplication through the calligraphic notation of A.
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It is to be noted that the given matrix S need not
always be exactly representable as a sparse non-negative
linear combination of the dictionary atoms. In other
words, S need not be exactly sparse in the space of
the dictionary A. Hence, we will try to find the best
approximation Ŝ = Ax to S, by minimizing the residual
approximation error.

S ≈ Ŝ = Ax∗, where x∗ = arg min
x

d (Ax, S) , (2)

and d(·, ·) is an appropriate distortion measure over
positive definite matrices.

Since we are reconstructing a positive definite signal
S, we also require the approximation Ŝ to be positive
definite,

Ŝ � 0 =⇒ x1A1 + x2A2 + . . .+ xKAK � 0.

Although this would be ensured by construction due to
the non-negativity of x and the strictly positive definite
dictionary atoms, we nonetheless retain this constraint
explicitly for reasons which will become clear shortly.

We further require that the representation be sparse,
i.e., S is to be represented by a sparse linear combination
of the dictionary atoms. To this effect, we impose a
constraint on the `0 “pseudo-norm” of x:

‖x‖0 ≤ T,
where T is a predefined parameter denoting the maxi-
mum number of non-zero elements in x.

Next we need to select the distortion measure in
Equation (2). While the Riemannian geodesic distance (1)
would be our first choice - however it is a non-convex
function (consider | log x|) and therefore difficult to opti-
mize directly. Hence we search for another loss function
to optimize. The Logdet divergence, as we will elaborate
next, is a well-suited distortion measure, not only due
to its significant relation with Wishart and Gaussian
distributions, but also because it results in a well-known
and tractable convex optimization problem.

� �

�

� �

�

Fig. 1. Data points S on the manifold of positive definite
matrices are to be represented by a linear combination of atoms
Ai from the dictionary A.

5 APPROACH
5.1 The Logdet Divergence
The Logdet divergence [44] Dld (X,Y ) is a Bregman
divergence [45] between two matrices X ∈ Sn+ and

Y ∈ Sn++, and is given by,

Dld(X,Y ) = tr
(
XY −1

)
− log det

(
XY −1

)
− n. (3)

It is asymmetric (and therefore, a divergence)
Dld (X,Y ) 6= Dld (Y,X), and is convex only in the first
argument. It is also known as Stein’s loss in covariance
estimation in statistics, or the Burg matrix divergence (a
matrix generalization of the Burg divergence).

The Logdet divergence is equal to twice the Kullback-
Leibler divergence (K-L divergence) between two multi-
variate Gaussians with equal mean [38]. Consider:

Px = N (µx,Σx) ,

Py = N (µy,Σy) ,

where µx, µy ∈ Rn and Σx,Σy ∈ Sn++. The K-L diver-
gence between Px and Py is given by

DKL (Px‖Py) =
1

2

(
tr
(
Σ−1y Σx

)
− log det

(
Σ−1y Σx

)
+

(µx − µy)
T

Σ−1y (µx − µy)− n
)
.

When µx = µy ,

DKL (Px‖Py) =
1

2

(
tr
(
Σ−1y Σx

)
− log det

(
Σ−1y Σx

)
− n

)
,

∴ DKL (Px‖Py) =
1

2
Dld (Σx,Σy) .

According to Banerjee et al. [46], there exists a bijection
between regular exponential families and a large class
of Bregman divergences known as regular Bregman di-
vergences. For example, the squared-error loss function
which is minimized in vector sparse coding methods
comes from the squared Euclidean distance, which is
the Bregman divergence corresponding to the multi-
variate Gaussian distribution. Thus, the minimization of
a squared error objective function corresponds to the
assumption of Gaussian noise. The Wishart distribu-
tion [47], which is a distribution over n × n positive
definite matrices, with positive definite parameter matrix
Θ ∈ Sn++ and degrees of freedom p ≥ n, is given by

Pr(X|Θ, p) =
|X|(p−n−1)/2 exp

(
− 1

2 tr(Θ−1X)
)

2pn/2|Θ|p/2Γn(p/2)
, (4)

where | · | is the determinant. The Logdet divergence
Dld(X,Θ) is the Bregman divergence corresponding to
the Wishart distribution Pr(X|Θ, p) [48].

The Wishart distribution is also a conjugate prior
for the inverse sample covariance matrix (or precision
matrix) of a multivariate Gaussian distribution. Corre-
spondingly, the inverse Wishart distribution is the con-
jugate prior for the sample covariance matrix. [49]. Since

Dld(X,Y ) = Dld(Y −1, X−1),

the Bregman divergence for the inverse Wishart dis-
tribution Pr(X−1|Θ−1, p) is Dld(Θ−1, X−1). Here Θ−1

refers to the true covariance of the multivariate Gaussian
distribution and X−1 the sample covariance matrix.
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In the sparse coding framework, if Σ∗ is the true
covariance, and S is the sample covariance signal pro-
vided, the goal is to estimate the true covariance as a
sparse linear combination of certain basis atoms. There-
fore, the Logdet divergence Dld(Σ∗, S) appears to be a
suitable candidate as the objective function for the sparse
coding formulation.

Note that the Logdet divergence is also affine-
invariant like the geodesic distance, in terms of its
arguments:

Dld(XAXT , XBXT ) = Dld(A,B),

for any invertible X .
In Section 8 we will also show a further similarity

between the Riemannian geodesic distance (1) and the
Logdet divergence (3).

5.2 Tensor Sparse Coding Formulation

Motivated by the aforementioned reasons, the optimiza-
tion problem is defined as minimizing the Logdet diver-
gence Dld(Ŝ, S) between the approximation Ŝ and the
given matrix S.

Dld(Ŝ, S) = tr
(
S−1Ax

)
− log det

(
S−1Ax

)
− n. (5)

In order to reduce the problem to a canonical form,
and to improve numerical stability, we apply the invari-
ant property of the trace and the log det under similarity
transformations. The objective function is unaffected by
the similarity transformation X 7→ S1/2XS−1/2, where
X is the argument of the trace or log det.

Dld(Ŝ, S) = tr
(
S−1/2 (Ax)S−1/2

)

− log det
(
S−1/2 (Ax)S−1/2

)
− n (6)

= tr
(
Âx
)
− log det

(
Âx
)
− n, (7)

where Â = {Âi}Ki=1, and Âi = S−1/2AiS
−1/2. Exploiting

the linearity of the trace, setting c : ci = trÂi, and
discarding the constant n,

f (x) = cTx− log det
(
Âx
)
. (8)

While the approaches in this paper use a given fixed
dictionary, future work in this framework on learning
the dictionary A from the data necessitates an added
constraint that the residual E = S − Ŝ be positive
semidefinite.

Ŝ = Ax � S or Âx � In, (9)

where In is the n× n identity matrix. This constraint is
useful scenarios where we learn the dictionary from data
or augment the dictionary with new atoms. When this
is not the case, we can relax this upper cone constraint.
In the Section 7, we show results both from retaining
this constraint (denoted by “2-cone”) and relaxing it (“1-
cone”).

The `0 sparsity constraint in Equation (3) is non-
convex and and therefore we replace this with its nearest
convex relaxation - the `1 norm of x:

‖x‖1 =

K∑

i=1

|xi| .

Under certain assumptions [50], minimizing the `1
penalty has been proven to yield equivalent results
as minimizing ‖x‖0 for sparse vector decompositions.
Hence it is appealing to perform the same relaxation here
as well.

Combining all the above constraints with the objective
function we wish to minimize, we have the following
optimization problem:

min
x≥0

cTx− log det
(
Âx
)

+ λ ‖x‖1 (10)

s.t. 0 � Âx � In, (11)

where λ ≥ 0 is a parameter which represents a trade–
off between a sparser representation and a more accurate
reconstruction. Since xi ≥ 0, the `1 norm simply becomes
the sum of the components of x:

‖x‖1 =

K∑

i=1

xi, (12)

yielding the optimization problem:

min
x≥0

ĉTx− log det
(
Âx
)

(13a)

s.t. 0 � Âx � In, (13b)

where ĉi = ci + λ.
Concurrent with other vector sparse coding tech-

niques, we may express this optimization problem in
an alternate form which puts a hard constraint on the
`1 norm of x instead of a penalty term λ‖x‖1 in the
objective function.

min
x≥0

cTx− log det
(
Âx
)

(14a)

s.t.
K∑

i=1

xi ≤ T (14b)

0 � Âx � In, (14c)

We denote the optimization problems defined by
Equations (13a–13b) and Equations (14a–14c) as Type I
(`1-regularized) and Type II (`1-constrained) respectively.
These two formulations are equivalent for appropriate
choices of λ and T .

5.3 The MAXDET problem

The above formulations of tensor sparse coding fall
under a general class of optimization problems known
as determinant maximization (MAXDET) problems [15],
of which semi-definite programming (SDP) and linear
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Fig. 2. The feasible set consists of the region of intersection
of two positive semidefinite cones, one centered at the origin
O, and the other an inverted cone centered at S. Ŝ is pushed
towards S by the log det term in the objective. The linear term
serves as a regularizer on the coefficients xi.

programming (LP) are special cases. The MAXDET prob-
lem [15] is defined as:

min
x

cTx + log detG(x)−1 (15a)

s.t. G(x) , G0 + x1G1 + . . .+ xKGK � 0 (15b)
F (x) , F0 + x1F1 + . . .+ xKFK � 0, (15c)

where x ∈ RK , Gi ∈ Sn and Fi ∈ SN . The MAXDET
problem is convex and can be solved by efficient interior
point (IP) methods.

Note that the G(x) inside the log det term also explic-
itly appears as a constraint in the standard form of the
MAXDET problem, leading to our inclusion of the same
in our formulation.

The optimization problems in Type I and II are pre-
sented here in their canonical MAXDET form. Compar-
ing to the optimization problem Type I, we have

ci = trÂi + λ, for i = 1, . . . ,K, (16a)

G(x) =

K∑

i=1

xiÂi � 0, (16b)

F (x) =

[
diag(x) 0

0 In −
∑K

i=1 xiÂi

]
� 0, (16c)

with N = K + n.
Comparing to the optimization problem Type II, we

have

ci = trÂi, for i = 1, . . . ,K, (17a)

G(x) =

K∑

i=1

xiÂi � 0, (17b)

F (x) =




diag(x) 0 0

0 T −∑K
i=1 xi 0

0 0 In −
∑K

i=1 xiÂi


 � 0,

(17c)

with N = K + n+ 1.
As is evident in the canonical forms of Equations (16)

and (17), there exists more structure in the problem
than is given by the basic MAXDET formulation. While
Gi’s and Fi’s are only required to be symmetric in the
MAXDET optimization, here the Gi’s (i 6= 0) are positive
definite, F0 is diagonal and positive semidefinite, and

the Fi’s (i 6= 0) are block-diagonal, having a positive
semidefinite block and a strictly negative definite block.

When the upper cone constraint Ax � S is relaxed, the
problem dimension (N ) in the MAXDET formulation is
reduced, decreasing the time taken for the sparse coding
routine.

Thus, we have formulated two variations of our
tensor sparse coding problem (`1-regularized and `1-
constrained), both of which are convex and have been
expressed in the standard MAXDET form. The feasible
set consists of the region of intersection of two positive
semidefinite cones (see Figure 2), one centered at the
origin O, and the other - an inverted cone centered at
S. The approximation Ŝ lies in the strict interior of this
closed convex set. The − log det term in the objective
pushes the approximation Ŝ toward S, motivating a bet-
ter approximation. The linear term serves as a weighted
regularizer on the coefficients xi.

6 SYNTHETIC EXPERIMENTS

Our first set of experiments were run on a synthetic
data set. The dictionary A = {Ai}Kk=1 is generated as
follows: each positive definite dictionary atom is com-
puted as Ak = WkW

T
k , where Wk ∈ Rn×n and each

Wk(i, j), i, j = 1, . . . , n, is sampled i.i.d from U(0, 1). For
Sections 6.1 and 6.3, the sample point S to be sparse-
coded is also generated in this manner. For Section 6.2,
a known k-sparse vector x∗ ∈ RK

+ is first generated - the
support of x∗ is generated by selecting k of K locations
uniformly at random without replacement, and the non-
zero values in x∗ are sampled i.i.d. from U(0, 1). The true
signal is constructed as S∗ = Ax∗, and the test signal S
to be sparse-coded is obtained as the sample covariance
from a set of N i.i.d. multivariate Gaussian samples from
N (0, S∗) (with N = 10n2). The sample covariance matrix
of a multivariate Gaussian distribution follows a Wishart
distribution [47], and therefore our optimization problem
is well suited to this model.

The quantities we consider to represent the perfor-
mance of the reconstruction are the Logdet divergence
Dld(Ŝ, S), the geodesic distance Dgeo(Ŝ, S), the `1 norm
‖x̂‖1 of the estimated coefficient vector x̂ and the mini-
mum eigenvalue λmin(S − Ŝ) of the residual (S − Ŝ).

6.1 Effect of sparsity constraints

Figure 3 shows the effect of varying λ on the quality of
reconstruction, under the Type I sparse coding problem.
The geodesic distance can be seen to vary in a smooth
and similar fashion to the Logdet divergence, reaffirming
our choice of objective function. We also show the actual
solution vector x∗ for λ = 0, where it can be seen that
even the unconstrained case results in a sparse solution
vector. This is due to the constraint that we require a
non-negative coefficient vector, and it is widely noted
in the vector-domain that non-negative decompositions
result in sparsity under certain conditions [51], [52], [53].
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(Ŝ

,S
)

TSC (1−cone)

TSC (2−cone)

1−NN

Vec

Chol+Vec

Log+Vec

0 0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

T/‖x∗‖1

‖x
−

x
∗ ‖

2

TSC (1−cone)

TSC (2−cone)

1−NN

Vec

Chol+Vec

Log+Vec

0 0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

T/‖x∗‖1

‖x
−

x
∗ ‖

2

TSC (1−cone)

TSC (2−cone)

1−NN

Vec

Chol+Vec

Log+Vec

0 0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

T/‖x∗‖1

‖x
−

x
∗ ‖

2

TSC (1−cone)

TSC (2−cone)

1−NN

Vec

Chol+Vec

Log+Vec

Fig. 4. Comparison of 1-NN, tensor and vector sparse coding - geodesic distance (upper row) and coefficient estimation error
(lower row). The x-axis shows the normalized `1 constraint parameter T/‖x∗‖1, i.e., the `1 ‘budget’ is varied as a fraction of the
`1 norm of the true solution x∗. The problem sizes are (n,K, k) = (5, 15, 3) for column 1, (6, 18, 3) for column 2, and (7, 28, 3) for
column 3 (Best viewed in color).
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(Ŝ

,S
)
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Fig. 3. Plot of the various quantities vs. λ for n = 5,
K = 60. We show Dld(Ŝ, S), Dgeo(Ŝ, S), ‖x̂‖1, as well as
λmin(S−Ŝ), plotted in logarithmic scale. The λ values are varied
logarithmically. The solution vector x̂ in the unconstrained case
is also shown on the right, and is observed to be sparse even
without explicitly enforcing any sparsity.

6.2 Comparison with Vector Sparse Coding

In order to clarify the need for a direct tensor sparse
coding method, instead of vectorizing the SPD matrix
and performing vector sparse coding, the advantages
of the former over the latter must be demonstrated.
The data is generated according to the procedure in the
beginning of Section 6. Since we know the true x∗ that

generated the test signal S from the dictionary, we can
consider the efficiency in recovering this true coefficient
vector. The `1-constrained sparse coding technique is
used, where the constraint T is varied as a fraction of the
true required ‘budget’ ‖x∗‖1, i.e., T ∈ [0, ‖x∗‖1]. We show
results for cases where the constraint Ŝ � S is retained
(“2-cone”) and relaxed (“1-cone”). For a baseline, we also
show the performance of the 1-nearest-neighbor recon-
struction (1-NN), where x∗ is an all-zero vector except
for a non-zero coefficient at the index corresponding to
the nearest atom.

For the vector sparse coding case, we vectorize, for
both the signal and the dictionary, and solve the follow-
ing optimization problem:

min
x≥0

‖s−Dx‖22
s.t. ‖x‖1 ≤ T,

where s = vecu(S), D = [a1 . . .aK ] where ai = vecu(Ai),
and vecu is a function denoting the vectorization of the
upper triangular part of the argument matrix. We retain
the non-negativity constraint on the coefficients here as
well for a fair comparison. The matrix reconstruction
is then obtained as Ŝ = vecu−1(ŝ) where ŝ = Dx
and vecu−1 denotes the inverse of the upper triangular
vectorization operation. This is repeated for matrix log-
arithms (since log : Sn

++ 7→ Sn) and the Cholesky factors
of the positive definite matrices.

We compare the geodesic distance between the recon-
struction and the true covariance Dgeo(Ŝ, S∗) as well as
the error in the coefficient vector ‖x−x∗‖22 in the tensor
and vector sparse coding approaches.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXXXXXX 201X 8

This is performed over 100 different coefficient vectors,
given a fixed dictionary. The `1-constrained sparse cod-
ing is used for both the tensor and vector cases, and the
constraint T is varied as a fraction of the true required
‘budget’ ‖x∗‖1.

Figure 4 shows the comparison of geodesic distance
between the reconstruction and the true covariance, for
varying ‘budget’ constraints on the `1 norm of x. Clearly
the tensor sparse coding provides a more rigorous recon-
struction in terms of the distance metric on the manifold.
In fact even when the full `1 budget is provided, the
vector case does not provide as good a reconstruction as
the tensor algorithm that operates directly in the space of
SPD matrices. The plot is shown in a log-scale to clearly
show the gap between the two curves at T = ‖x∗‖1. The
“1-cone” and “2-cone” curves are alike up to a certain
T , but after that the effect of the extra constraint in
preventing a more closer approximation is visible.

From a sparse signal recovery viewpoint, we may
compare the coefficient estimation error, also shown in
Figure 4. In this case as well, the tensor sparse coding
outperforms the vector method above a certain `1 con-
straint limit. The results are shown for three different
problem sizes (n,K, k): (5, 15, 3), (6, 18, 3) and (7, 28, 3).

This experiment validates the importance of being able
to perform sparse coding of positive definite matrices
directly without resorting to vectorization.

6.3 Effect of normalization

Given a set of signals S = {Sj}Nj=1, dictionary learning
usually entails learning both the dictionary A as well
as the sparse coefficients xj , j = 1, . . . , N . However,
the product S = Ax can only be determined up to
a scaling factor, and one can arbitrarily scale up the
“size” of the atoms in order to reduce the ‖x‖1 term
in the objective. Therefore, as is common in the vector
dictionary learning literature, we attempt to normalize
the dictionary atoms to have unit “size” in some sense.
Three different normalization schemes were tested on
the dictionary atoms:

1) by spectral norm, ‖Ai‖2 = 1,
2) by Frobenius norm, ‖Ai‖F = 1, and
3) by trace, tr(Ai) = 1.
As we vary λ, we only get a proportional change in

the four quantities mentioned above. This can be ex-
plained by the fact that all matrix norms are equivalent.
Therefore, throughout the rest of this work, we adhere
to normalization by trace: tr(Ai) = 1.

7 RECOGNITION EXPERIMENTS

We evaluate the tensor sparse coding algorithm in a clas-
sification framework, where the training data is used as
a dictionary A, and the test point S is approximated by a
sparse non-negative linear combination of the dictionary
atoms. In all the following experiments, we use the Type
I objective function for sparse coding, with λ = 10−3.

The datasets used are comprised of region covariance
descriptors from various applications such as human ap-
pearance modeling, texture classification and face recog-
nition.

The baseline comparison for classification is K-nearest-
neighbor (KNN) approach using the geodesic dis-
tance (1), which we refer to as geodesic KNN (or geo-
KNN). We also compare with a multi-class support vec-
tor machine (SVM) classifier with a radial basis kernel,
computed as:

K(Ci, Cj) = exp

(
−D

2
geo(Ci, Cj)

2σ2

)
,

with bandwidth σ. This is referred to as geodesic SVM
(or geo-SVM). Both of the above approaches operate
directly on the region covariances for classification. The
parameters K and σ for the baseline approaches were
chosen based on cross-validation.

Much of the relevant literature on region covariances
uses geodesic KNN for classification. Further, SVMs are
powerful classifiers and very popular in computer vision
applications. These reasons motivated our choice of the
two algorithms to compare our results.

7.1 Human Appearance Descriptors
In this section, we present experiments on classifica-
tion of human appearances, based on region covariance
features. We use a subset of the 18-class Cam5 dataset
from [16], from which we choose the 16 classes which
contain at least 10 data points each. The dataset contains
a total of 407 images from these 16 classes. Represen-
tative images from the dataset are shown in Figure 5.
The descriptors are 5×5 covariances computed from the
{R,G,B,Ix,Iy} features at each pixel corresponding to the
human foreground blobs. From each of the 16 classes, we
select 5 points for training and the remaining are used
for testing.

Our sparse coding method is used for classification
as follows: The training data from each class forms a
dictionary Am, m = 1, . . . ,M , where M is the number
of classes (M = 16 here). The class dictionaries are
concatenated into one large dictionary A:

A = [ A1 | A2 | . . . | AM ] .

The test signal S is sparse coded over this combined
dictionary, to yield a sparse coefficient vector x. This
vector consists of the coefficients corresponding to atoms
from different classes 1, . . . ,M , and can be written as

x =
[
xT
1 | xT

2 | . . . | xT
M

]T
.

The class-wise reconstruction Ŝm is then obtained as
Ŝm = Amxm, and the class-wise reconstruction error is
computed as Em = Dld

(
Ŝm, S

)
. The label m∗ of the

dictionary offering the minimum reconstruction error is
then assigned to the test signal S.

m∗ = arg min
m

Dld

(
Ŝm, S

)
.
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This approach is adapted from [54], and we refer to this
as the combined dictionary approach.

We apply this combined dictionary approach to the
problem of classifying human appearances, forming a
dictionary A of K = 80 atoms. For this experiment, in
addition to the reconstruction error-based classification
(REC), we also compute a weighted label vote (WLV)
for each class from the corresponding coefficient values,
and use this as a score for classification:

m∗ = arg max
m

‖xm‖1.

Fig. 5. Representative images from the Cam5 dataset.

.

Classifier Accuracy (%)

Geo-KNN (K = 5) 66.95 (4.89)

Geo-SVM (σ = 0.5) 77.64 (5.96)

VSC + WLV (Vec) 62.00 (3.89)

VSC + REC (Vec) 62.16 (3.67)

VSC + WLV (Chol) 73.53 (2.98)

VSC + REC (Chol) 76.40 (2.84)

TSC + WLV 78.62 (1.49)

TSC + REC 77.85 (2.50)

TABLE 1
Mean classification accuracy for the Cam5 dataset. Results are
averaged over 100 trials and standard deviation values are also

shown in parentheses.

The classification accuracy for this dataset averaged
over 100 random train-test splits is shown in Table 1. The
sparse coding results provide a notable increase in accu-
racy compared to the KNN or SVM techniques. We also
show the REC and WLV classification accuracies with
the vectorized upper-triangular parts of the covariances.
This is obtained using traditional vector sparse coding
(VSC), i.e., the Lasso problem of [1]. In addition, the
vectorized upper-triangular part of the Cholesky factor
of each positive definite matrix descriptor is also used
in the vector sparse coding framework for both REC
and WLV classification. These results are also included
in Table 1.

The tensor sparse coding approaches for appearance
recognition outperform the KNN and SVM baseline
algorithms, and also the vector sparse coding-based
approaches. This demonstrates that sparse coding tech-
niques that retain the positive definiteness of the data

points yield better results not only with synthetic data
but also in practical computer vision applications.

7.2 Face Recognition

In this section, we present experimental results for face
recognition from grayscale images. This is performed
over a subset of the FERET face database [55], consisting
of grayscale images of 10 subjects, where each individual
represents a separate class. The frontal or near-frontal
images corresponding to the two-letter codes ‘ba’, ‘bd’,
‘be’, ‘bf’, ‘bg’, ‘bj’, and ‘bk’ are used for our experiments,
leading to a total of 70 face images. We extract Gabor-
based region covariances from each face image following
the approach of Pang et al. [26].

We crop the images based on the eye positions, and
resize them to be of size 60 × 60 pixels. The Gabor
filters [26] corresponding to 8 orientations (u = 0, . . . , 7)
and 5 scales (v = 0, . . . , 4) are applied to each image,
resulting in 40 different filter responses guv . In addition,
we also test on features such as (x, y) spatial location
of pixels in the image, image intensity I , derivatives of
image intensity Ix, Iy, Ixx, Iyy and gradient orientation
arctan Iy/Ix. The different sets of features used in the
covariance descriptor construction are described in Ta-
ble 2.

.

Mode Feature Set

1 [ x y I |Ix| |Iy | |Ixx| |Iyy | ]
2

[
x y |Ix| |Iy | |Ixx| |Iyy | arctan

|Iy|
|Ix|

]
3 [ x y |Ix| |Iy | |Ixx| |Iyy | ]
4

[
x y I |Ix| |Iy | |Ixx| |Iyy | arctan

|Iy|
|Ix|

]
5 [ x y g00 g01 . . . g7vmax ]

6 [ x y I g00 g01 . . . g7vmax ]

7 [ g00 g01 . . . g7vmax ]

TABLE 2
Features used in construction of region covariances for face

recognition on the FERET face dataset. Feature sets 5–7
consist of 5 subsets each (a)–(e), where the number of octaves

is varied from vmax = 0, . . . , 4.

We compute the region covariance descriptor over the
entire face only, and not subsections of each face image
as was done in [26]. At each iteration of the experiment,
4 out of 7 images from each subject are taken for training,
and the remaining 3 are used as test images, yielding a
total of

(
7
3

)
= 35 different train-test splits.

The face recognition is performed using the recon-
struction error-based approach. In addition to the com-
bined dictionary approach explained before, we also
classify the signal by sparse coding it with each class
dictionary Am independently to obtain the coefficient
vector xm, and predicting the label m∗ as:

m∗ = arg min
m

Dld

(
Ŝm, S

)
.
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.

TABLE 3
Mean classification accuracy for the FERET face recognition dataset. Results are averaged are over 35 trials, and standard

deviations are provided in parenthesis.

Mode Covariances Precisions Geo-KNN Geo-SVM

(n) Separate (%) Combined (%) Separate (%) Combined (%) (%) (%)

1-cone 2-cone 1-cone 2-cone 1-cone 2-cone 1-cone 2-cone K = 1 σ = 20.0

1 (7) 85.81 (9.57) 85.81 (10.40) 83.24 (10.40) 79.14 (11.14) 76.48 (10.26) 76.67 (11.63) 40.86 (6.14) 43.81 (5.17) 77.62 (9.55) 66.95 (7.23)

2 (7) 69.24 (12.75) 64.76 (11.93) 71.33 (11.82) 64.19 (13.20) 53.71 (10.59) 54.95 (11.94) 20.95 (7.28) 24.76 (6.49) 62.67 (9.62) 49.62 (8.08)

3 (6) 65.24 (11.96) 64.48 (14.14) 71.43 (13.12) 65.33 (13.62) 53.24 (10.00) 52.57 (10.78) 16.48 (6.90) 17.43 (6.81) 61.33 (10.76) 49.33 (7.51)

4 (8) 86.76 (9.27) 84.19 (10.55) 84.76 (10.46) 76.95 (9.87) 77.33 (10.47) 79.05 (11.00) 44.10 (3.57) 48.57 (4.67) 78.48 (10.28) 67.71 (7.84)

5a (10) 83.52 (10.69) 73.05 (11.69) 83.52 (12.39) 75.62 (11.43) 38.67 (8.33) 38.29 (9.74) 18.38 (6.87) 18.48 (6.96) 79.62 (12.47) 70.57 (8.38)

5b (18) 93.24 (4.81) 80.00 (8.69) 94.10 (4.79) 79.81 (8.35) 47.43 (10.14) 53.43 (9.68) 20.19 (7.47) 23.71 (6.51) 86.10 (7.83) 83.62 (7.62)

5c (26) 93.81 (4.79) 76.19 (7.35) 91.43 (4.80) 72.95 (6.98) 72.57 (10.51) 71.81 (11.91) 50.38 (9.94) 56.10 (8.49) 90.57 (6.78) 88.86 (6.76)

5d (34) 95.81 (3.77) 74.29 (9.55) 92.48 (4.80) 67.52 (9.41) 81.52 (10.15) 67.14 (10.99) 58.38 (8.52) 63.52 (9.39) 91.81 (6.34) 91.71 (6.29)

5e (42) 94.76 (5.36) 70.00 (10.54) 90.10 (7.01) 64.10 (8.73) 91.62 (6.49) 69.52 (9.92) 76.29 (8.57) 63.62 (10.37) 92.48 (5.54) 94.95 (4.67)

6a (11) 89.24 (7.81) 80.95 (11.73) 89.33 (7.92) 81.33 (10.87) 48.76 (10.24) 48.67 (10.05) 20.10 (9.61) 20.19 (9.79) 85.81 (9.10) 79.14 (7.57)

6b (19) 94.10 (4.79) 83.90 (8.22) 95.33 (4.52) 83.05 (7.53) 54.38 (12.03) 61.81 (8.45) 22.00 (7.61) 27.90 (6.62) 89.81 (5.91) 88.19 (7.53)

6c (27) 95.62 (3.63) 79.43 (6.64) 92.86 (4.00) 76.00 (8.20) 74.48 (10.98) 76.10 (12.28) 51.43 (9.80) 58.86 (10.30) 93.14 (6.07) 91.14 (6.37)

6d (35) 96.48 (3.73) 75.14 (9.13) 94.29 (4.33) 70.38 (8.76) 84.19 (8.99) 68.67 (11.77) 61.43 (8.02) 65.33 (9.77) 92.76 (6.09) 92.57 (5.41)

6e (43) 95.52 (4.91) 71.05 (11.35) 91.24 (6.67) 65.24 (10.09) 93.24 (5.77) 70.10 (9.14) 78.10 (7.86) 64.57 (10.11) 92.76 (5.49) 95.52 (4.29)

7a (8) 78.76 (9.30) 73.24 (11.03) 79.52 (9.96) 73.24 (9.81) 38.86 (9.01) 39.24 (8.84) 25.71 (6.20) 25.81 (6.14) 70.95 (12.74) 63.43 (10.88)

7b (16) 92.19 (5.80) 77.81 (8.24) 91.71 (5.93) 77.52 (7.74) 46.29 (10.26) 50.10 (7.99) 20.67 (6.70) 21.90 (5.82) 83.62 (9.84) 84.29 (7.02)

7c (24) 92.10 (5.86) 75.43 (5.35) 87.14 (5.92) 71.90 (8.41) 69.62 (9.01) 65.71 (11.42) 48.86 (9.15) 53.14 (8.35) 86.10 (7.62) 86.29 (7.47)

7d (32) 93.05 (4.94) 72.29 (9.49) 90.48 (5.86) 65.24 (9.16) 78.67 (8.88) 62.29 (11.15) 53.05 (9.51) 57.81 (8.76) 89.14 (7.14) 89.43 (6.50)

7e (40) 93.05 (5.77) 68.86 (11.27) 88.29 (6.34) 61.90 (12.35) 84.95 (7.36) 68.86 (9.01) 72.67 (8.00) 60.67 (9.75) 89.71 (6.44) 92.95 (5.39)

Mean 88.86 % 75.31 % 87.50 % 72.18 % 66.63 % 61.84 % 42.11 % 42.96 % 83.92 % 80.33 %

We refer to this method as the separate dictionary approach.
The dictionaries are composed of the covariance de-

scriptors from the training images. This is compared to
the recognition performance using geodesic KNN and
geodesic SVM.

Since the inverse of a positive definite matrix is also
positive definite, we repeat the same experiment with
the inverse covariances (or precision matrices). Since the
geodesic distance between two matrices A and B is
identical to that between A−1 and B−1,

Dgeo (A,B) = Dgeo

(
A−1, B−1

)
,

the KNN and SVM classifiers do not differ in perfor-
mance between covariance and precision matrices.

Further, we show the recognition performance when
the upper cone constraint is relaxed (“1-cone”) and
compare it to the case where it is retained (“2-cone”).

The mean classification accuracy over 35 trials is pre-
sented in Table 3 for each covariance feature mode. The
best performance is obtained when using feature set
6d - the (x, y) location, image intensity, and 4 octaves
of Gabor filter responses. Approaches based on vector
sparse coding show an inferior performance compared
to those based on tensor sparse coding, and are omitted
here due to lack of space.

7.3 Texture Classification
In this section we present experimental results on texture
classification with the Brodatz dataset [56]. We use the
training images from the dataset which form the five
5-class, two 10-class, two 16-class, and three 2-class
texture mosaics. Each texture class corresponds to one
training image of 256×256 pixels, which is broken down
into non-overlapping blocks of 32 × 32 pixels. A 5 × 5
covariance descriptor is then computed from each of
these blocks, using the grayscale intensities and absolute
values of the first- and second-order spatial derivatives,
{I, |Ix|, |Iy|, |Ixx|, |Iyy|}.

There are 64 covariance descriptors from each texture
class, of which 8 descriptors from each class are chosen
for training, and the remaining are used for testing. The
classification results are averaged over 20 random train-
test splits, and are shown in Table 4.

Similar to the previous section, we also repeat the
same experiments with the inverse covariances descrip-
tors, and by relaxing the extra cone constraint. The best
sparse coding-based approach performs competitively
with the baseline KNN and SVM approaches.

Note that the KNN and SVM approaches have had
their respective parameters optimized for best perfor-
mance through cross-validation. Their accuracy varies
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.

TABLE 4
Mean classification accuracy for the Brodatz mosaic dataset. Results are averaged are over 20 trials, and standard deviations are

provided in parenthesis.

Mode Covariances Precisions Geo-KNN Geo-SVM

(n) Separate (%) Combined (%) Separate (%) Combined (%) (%) (%)

1-cone 2-cone 1-cone 2-cone 1-cone 2-cone 1-cone 2-cone K = 1 σ = 0.6

1 (5) 99.43 (0.63) 99.00 (0.62) 99.29 (0.41) 98.79 (0.74) 99.41 (0.62) 99.45 (0.47) 99.18 (0.41) 98.84 (0.54) 98.88 (0.63) 99.14 (0.72)

2 (5) 93.13 (2.75) 91.66 (2.97) 86.09 (2.36) 84.89 (2.31) 93.20 (2.61) 92.32 (2.87) 87.98 (2.47) 86.86 (2.50) 92.00 (2.27) 91.04 (2.31)

3 (5) 89.25 (2.47) 87.95 (2.55) 81.93 (2.59) 80.00 (3.04) 89.32 (2.20) 87.86 (2.89) 82.54 (2.87) 82.11 (2.61) 87.21 (2.19) 88.79 (2.19)

4 (5) 85.36 (3.28) 84.05 (3.14) 83.41 (2.59) 82.05 (2.55) 85.64 (2.84) 84.05 (2.82) 83.66 (1.97) 82.39 (2.57) 92.55 (1.47) 94.79 (1.38)

5 (5) 86.52 (1.83) 84.21 (2.48) 76.91 (3.26) 74.39 (3.38) 87.02 (1.50) 86.93 (1.99) 75.34 (2.51) 73.89 (2.61) 92.84 (1.48) 94.55 (0.98)

6 (16) 85.59 (1.02) 84.19 (0.84) 80.02 (1.15) 78.90 (1.05) 85.56 (1.08) 84.50 (1.36) 79.47 (0.97) 78.33 (1.11) 83.91 (0.98) 82.04 (1.98)

7 (16) 78.95 (1.52) 76.57 (1.30) 70.11 (0.99) 68.47 (1.35) 79.15 (1.35) 77.58 (1.67) 71.73 (1.32) 70.08 (1.47) 76.57 (1.34) 80.18 (1.07)

8 (10) 87.71 (1.65) 86.13 (2.15) 84.81 (2.20) 83.79 (2.03) 87.48 (1.48) 86.59 (1.77) 84.40 (2.04) 83.46 (2.06) 87.84 (1.48) 86.83 (3.94)

9 (10) 80.19 (1.88) 78.26 (1.69) 71.63 (1.84) 70.29 (2.84) 81.06 (1.83) 79.78 (1.97) 71.80 (2.19) 71.50 (2.15) 80.45 (2.08) 82.21 (4.01)

10 (2) 99.87 (0.32) 99.87 (0.32) 99.91 (0.27) 99.82 (0.36) 99.96 (0.19) 100.00 (0.00) 99.87 (0.32) 99.78 (0.56) 99.15 (0.82) 99.82 (0.36)

11 (2) 99.20 (1.23) 98.84 (1.41) 98.79 (1.17) 97.99 (1.46) 99.42 (1.07) 99.33 (1.26) 98.53 (1.50) 98.93 (1.40) 99.82 (0.36) 100.00 (0.00)

12 (2) 98.30 (1.49) 96.43 (2.02) 96.34 (2.49) 94.33 (2.51) 98.62 (1.48) 99.06 (0.96) 98.13 (1.54) 98.79 (1.30) 100.00 (0.00) 100.00 (0.00)

Mean 90.29 % 88.93 % 85.77 % 84.48 % 90.49 % 89.79 % 86.05 % 85.41 % 90.94 % 91.62 %

quite drastically for different parameter choices. On
the other hand, our method’s classification performance
does not vary substantially with λ. In fact, for a wide
variation in the values of λ, the final classification per-
formance does not change drastically (although the indi-
vidual coefficients of sparse coding do). While increasing
λ results in a poorer reconstruction Ŝ, we are comparing
the effect of different class dictionaries - the quality of
approximation is decreased (Dld(Ŝm, S) increases) for all
classes m = 1, . . . ,M , leading to similar classification ac-
curacies. This shows a certain robustness in our method
with respect to the choice of parameter. Figure 6 shows
how the accuracy varies with parameter choice for our
method against the geodesic SVM for texture 12.

8 RELATION BETWEEN Dgeo AND Dld

In this section we derive an interesting connection be-
tween the Riemannian geodesic distance and the Logdet
divergence.

Let λ ∼ λ(A,B) be the generalized eigenvalues of
(A,B). The Riemannian geodesic distance between A
and B is given by

Dgeo(A,B) =
∥∥∥log

(
B−1/2AB−1/2

)∥∥∥
F
.

In terms of the generalized eigenvalues, the geodesic
distance

Dgeo(A,B) = ‖log λ‖2 =

∥∥∥∥log

(
1

λ

)∥∥∥∥
2

.

The general form of a Bregman divergence for matrix
arguments is given by [57]

Dϕ(X,Y ) = ϕ(X)− ϕ(Y )− 〈∇ϕ(Y ), (X − Y )〉,
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Fig. 6. Variation in classification accuracy (texture 12) with pa-
rameter choice for tensor sparse coding and SVM approaches.
The parameter log10 Θ is varied along the x-axis, and Θ = λ for
the tensor sparse coding approach and Θ = σ for the geodesic
SVM classifier. The former approach shows a largely consistent
high performance. 1σ standard deviation bars are also shown
(Best viewed in color).

where ϕ(·) is a strictly convex function over a convex
set S, and is differentiable in relint(S) (relative inte-
rior). The last term denotes the matrix inner product
〈A,B〉 = tr(ABT ).

The Logdet divergence is derived from ϕ(X) =
− log detX and is given by:

Dld(A,B) = log detA−1 − log detB−1 − 〈−B−1, A−B〉
since ∇ (− log detX) = −X−1

= − log det
(
B−1A

)
+ tr

(
B−1A−B−1B

)
.

∴ Dld(A,B) = tr
(
B−1A

)
− log det

(
B−1A

)
− n. (18)
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The second term in the above equation can be written
in terms of λ as:

− log det
(
B−1A

)
= tr

(
log
(
B−1A

)−1)
=

n∑

i=1

log

(
1

λi

)
.

In our sparse coding formulation, we require that the
approximation Ŝ � S, the original signal. If B = S and
A = Ŝ, then A � B, or B−1A � In. Therefore, for i =
1, . . . , n,

λi ≤ 1 =⇒ 1

λi
≥ 1 =⇒ log

(
1

λi

)
≥ 0.

Since the elements in the sum are all non-negative,

− log det
(
AB−1

)
=

n∑

i=1

log

(
1

λi

)
=

n∑

i=1

∣∣∣∣log

(
1

λi

)∣∣∣∣

=

∥∥∥∥log

(
1

λ

)∥∥∥∥
1

.

Plugging back into Equation (18), we have

Dld(A,B) =

∥∥∥∥log

(
1

λ

)∥∥∥∥
1

+ 〈B−1, A−B〉, (19)

which is a combination of
1) an `1-norm term of reciprocal generalized eigenval-

ues of (A,B), denoted by DL1(A,B)), and
2) the component of the difference between A and B

in the direction of the tangent of ϕ(·) = − log det(·)
evaluated at B.

When λ is very close to 1, or |1− λ| � 1, setting x =
λ−1 and using the Taylor’s approximation log(1+x) ≈ x
when |x| � 1, the geodesic distance can be rewritten as
follows:

Dgeo(A,B) = ‖log(λ)‖2 ≈ ‖λ− 1‖2
=
∥∥B−1A− In

∥∥
F

=
∥∥B−1 (A−B)

∥∥
F

D2
geo(A,B) ≈ tr

{(
B−1 (A−B)

)2}
when λ ≈ 1.

Similarly, rewriting the second term in Equation (19),
we get

Dld(A,B) =

∥∥∥∥log

(
1

λ

)∥∥∥∥
1

+ tr
{
B−1 (A−B)

}
.

It is interesting that the second term of the Logdet
divergence forms a different `1-`2 type similarity with
the approximate geodesic distance when λ ≈ 1. Thus
there is a two-fold connection between the Riemannian
geodesic distance and the Logdet divergence.

Therefore, in our framework, specifically under the
condition that Ŝ � S,

Dgeo(A,B) =

∥∥∥∥log

(
1

λ

)∥∥∥∥
2

DL1(A,B) =

∥∥∥∥log

(
1

λ

)∥∥∥∥
1

Dld(A,B) = DL1(A,B) + tr
{
B−1 (A−B)

}

D2
geo(A,B) ≈ tr

{(
B−1 (A−B)

)2}
when λ ≈ 1.

This clearly illustrates an analogy of the geodesic
distance and the Logdet divergence to the `2 and `1
distances in more than one way.

This supports the use of the Logdet divergence in
our model, and also intuitively explains the similarity
in the trend of the geodesic distance and Logdet di-
vergence across varying approximations in the sparse
coding decompositions. Further, since the `1 norm tends
to push most of the components to zero, the `1 term on
the log-reciprocal generalized eigenvalues pushes most
of the generalized eigenvalues to 1, thus giving us a
closer approximation Ŝ to S, and a semidefinite residual
E = S − Ŝ.

The three dissimilarity measures can be compared for
the simple case of 2×2 SPD matrices, as the eigenvalues
(λ1, λ2) are varied in [0, 1], the domain of our problem.
In Figure 7, we show the slice of this surface at λ1 = λ2.

0 0.5 1 1.5
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1

2

3

4

λ

D

 

 

Dgeo = ‖ log 1
λ‖2

Dld =
∑(

λ + log 1
λ − 1

)

DL1 = ‖ log 1
λ‖1

Fig. 7. Comparison of dissimilarity measures in the 2× 2 case:
Slice at λ1 = λ2 = λ. Clearly all three distance functions have
their minimum at λ1 = λ2 = 1. In terms of how ‘strong’ the
objective function is in pushing the λi’s to 1, Dld < Dgeo < DL1.

9 CONCLUSIONS AND FUTURE WORK

We have proposed a novel sparse coding technique
for positive definite matrices, which is convex and be-
longs to the standard class of MAXDET optimization
problems. The performance of the tensor sparse coding
in terms of accuracy of reconstruction, sparsity of the
decomposition, as well as variations for different input
parameters is analyzed. Results are shown not only for
synthetic data but also for data sets from real-world
computer vision applications, demonstrating the suit-
ability of our model. In classification performance, the
algorithms based on tensor sparse coding beat the state-
of-the-art methods by a reasonable margin.

This work opens the door for the many sparsity-
related algorithms to the space of positive definite ma-
trices, and many techniques that require only a sparse
coding step follow through readily from our work. Fu-
ture work involves applying the above techniques to
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areas such as Diffusion Tensor Imaging. We are currently
working on developing dictionary learning techniques
over the positive definite matrix data, so that we may
also learn a suitable dictionary in a data-driven manner,
depending on the application at hand.
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