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Abstract. Sparse representation of signals has been the focus of much
research in the recent years. A vast majority of existing algorithms deal
with vectors, and higher–order data like images are usually vectorized
before processing. However, the structure of the data may be lost in the
process, leading to poor representation and overall performance degrada-
tion. In this paper we propose a novel approach for sparse representation
of positive definite matrices, where vectorization would have destroyed
the inherent structure of the data. The sparse decomposition of a positive
definite matrix is formulated as a convex optimization problem, which
falls under the category of determinant maximization (MAXDET) prob-
lems [1], for which efficient interior point algorithms exist. Experimental
results are shown with simulated examples as well as in real–world com-
puter vision applications, demonstrating the suitability of the new model.
This forms the first step toward extending the cornucopia of sparsity-
based algorithms to positive definite matrices.

Keywords: Positive definite matrices, region covariances, sparse cod-
ing, MAXDET optimization.

1 Introduction

In the past decade there has been a deluge of research on sparse representations
of signals [2,3,4] and recovery of such sparse signals from noisy and/or under-
sampled observations [5,6]. Much of the work has been associated with vector-
valued data, and higher–order signals like images (2-D, 3-D, or higher) have
been dealt with primarily by vectorizing them and applying the aforementioned
vector methods. See [7] for a review of a few examples of sparse representation
in computer vision and pattern recognition applications. However, more recently
some researchers have realized the advantages of maintaining the higher–order
data in their original form [8] to preserve some inherent ordering, which may be
lost upon vectorization.

One such data type consists of n × n symmetric positive semi-definite ma-
trices (Sn

+). The kernel matrix in many popular ‘kernelized’ machine learning
algorithms [9] belongs to this class. In medical imaging, the revolutionary new
field of Diffusion Tensor Imaging (DTI) represents each voxel in a 3-D brain scan
as a 3 × 3 positive definite matrix, called the diffusion tensor, whose principal
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eigenvector gives the direction of water diffusion in that region. More recently
in the image processing and computer vision community, a new feature known
as the region covariance descriptor has emerged [10,11], which represents an im-
age region by the covariance of n-dimensional feature vectors at each pixel in
that region. This is currently being used in conjunction with machine learning
algorithms for human detection and tracking, object recognition, texture classi-
fication, query-based retrieval of image regions, and much more [12].

In this paper we propose a novel approach for sparse representation of positive
definite matrices, named tensor sparse coding1. The sparse decomposition of a
positive definite matrix in terms of a given dictionary is formulated as a convex
optimization problem, which belongs to the class of MAXDET problems [1] and
for which efficient interior point methods are available. We believe that this ex-
tension of sparse coding techniques to the space of positive definite matrices will
benefit the development of sparsity-related algorithms tailored to these problem
domains as well. This forms the first step toward extending the cornucopia of
sparsity-based algorithms to this new class of data points, and all algorithms
that primarily use the sparse coding stage follow readily from our approach.

The rest of the paper is organized as follows: In the remainder of this section,
we provide a brief description about region covariances, and related work on
these descriptors. Section 2 describes the problem statement, and our tensor
sparse coding approach is explained in Sect. 3. Experiments on both synthetic
and actual datasets are shown in Sect. 4, wrapping up with our conclusions and
future research directions in Sect. 5.

1.1 Region Covariance Descriptors

Region covariances were introduced by Tuzel et al. [10] as a novel region de-
scriptor for object detection and classification. Given an image I, let φ define
a mapping function that extracts an n-dimensional feature vector zi from each
pixel i ∈ I, such that

φ(I, xi, yi) = zi , (1)

where zi ∈ Rn, and (xi, yi) is the location of the ith pixel. A given image region
R is represented by the n×n covariance matrix CR of the feature vectors {zi}|R|

i=1

of the pixels in region R. Thus the region covariance descriptor is given by

CR =
1

|R| − 1

|R|∑

i=1

(zi − μR) (zi − μR)T , (2)

where, μR is the mean vector,

μR =
1
|R|

|R|∑

i=1

zi . (3)

1 From the ‘tensor’ in ‘diffusion tensor’ [13].
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The feature vector z usually consists of color information (in some preferred
color–space, usually RGB) and information about the first and higher order
spatial derivatives of the image intensity, depending on the application intended.

Although covariance matrices can be positive semi–definite in general, the
covariance descriptors themselves are regularized by adding a small constant
multiple of the identity matrix, making them strictly positive definite. Thus, the
region covariance descriptors belong to Sn

++, the space of n×n positive definite
matrices which forms a connected Riemannian manifold. Given two covariance
matrices Ci and Cj , the Riemannian distance metric dgeo(Ci, Cj) gives the length
of the geodesic connecting these two points on this manifold. This is given by [13],

dgeo(Ci, Cj) =
∥∥∥log

(
C

−1/2
i CjC

−1/2
i

)∥∥∥
F

, (4)

where log(·) represents the matrix logarithm and ‖ · ‖F is the Frobenius norm.
Many existing classification algorithms for region covariances use the geodesic
distance in a K-nearest-neighbor framework. The geodesic distance can also be
used with a modified K-means algorithm for clustering.

Methods for fast computation of region covariances using integral images [11]
enable the use of these compact features for many practical applications that
demand real–time performance. For texture characterization, spatial derivatives
are suitable features [10], whereas for face recognition, region covariances are
constructed from outputs of a bank of Gabor filters [14]. Hu et al. [15] use
covariance descriptors for probabilistic tracking using particle filtering. Palaio
and Batista [16] also perform multi–object tracking using region covariances
and particle filters. In [17], Paisitkriangkrai et al. boost the covariance features
to improve the classification accuracy. In [12], Tuzel et al. use LogitBoost on
the covariance descriptors for pedestrian detection. Sivalingam et al. [18] learn a
modified distance metric over the manifold from pairwise constraints, for semi-
supervised clustering.

2 Problem Statement

We begin with a known dictionary consisting of k n×n positive definite matrices
A = {Ai}k

i=1, where each Ai ∈ Sn
++ is referred to as a dictionary atom. Given

a positive definite matrix S, our goal is to represent the new matrix as a linear
combination of the dictionary atoms, i.e.,

S = x1A1 + x2A2 + . . . + xkAk =
k∑

i=1

xiAi , (5)

where x = (x1, x2, . . . , xk)T is the vector of coefficients.
Since only a non-negative linear combination of positive definite matrices

is guaranteed to yield a positive definite matrix, we impose a non-negativity
constraint on the coefficient vector x, x ∈ Rk

+.
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It is to be noted that the given matrix S need not always be exactly repre-
sentable as a sparse non-negative linear combination of the dictionary atoms.
Hence, we will aim to find the best approximation Ŝ to S, by minimizing the
residual approximation error in some sense. Clearly, we require the approxima-
tion Ŝ to be positive definite,

Ŝ � 0 =⇒ x1A1 + x2A2 + . . . + xkAk � 0 . (6)

Although this would be ensured by construction, due to the non-negativity of
x and the strictly positive definite dictionary atoms, we leave this constraint in
for reasons explained later in the discussion.

We further require that the representation be sparse, i.e., S is to be repre-
sented by a sparse linear combination of the dictionary atoms. To this effect, we
impose a constraint on the �0 “pseudo-norm” of x,

‖x‖0 ≤ T , (7)

where T is a pre-defined parameter, denoting the maximum number of non-zero
elements of x.

3 Approach

3.1 The LogDet Divergence

If X−1 and Y −1 are the covariance matrices of two multivariate Gaussians PX

and PY with the same (or zero) mean, then the KL-divergence between the two
distributions [19] is given by,

KL (PY ‖PX) =
1
2
Dld(Y −1, X−1) =

1
2
Dld(X, Y ) , (8)

where Dld(·) is the LogDet (or Burg matrix) divergence [20], given by,

Dld(X, Y ) = tr
(
XY −1

) − log det
(
XY −1

) − n . (9)

Here n is the dimension of the matrices X and Y , and tr(·) denotes the trace of
the matrix. Note that, in general, the divergence is asymmetric, i.e., Dld(X, Y ) �=
Dld(Y, X).

Further, there exists a bijection between regular exponential families and a
large class of Bregman divergences, called regular Bregman divergences [21]. For
example, the squared-error loss function which is minimized in vector sparse cod-
ing methods comes from the squared Euclidean distance, which is the Bregman
divergence corresponding to the multivariate Gaussian distribution. Thus, the
minimization of a squared error objective function corresponds to the assump-
tion of Gaussian noise. The Wishart distribution [22], which is a distribution
over n× n positive definite matrices, with positive definite parameter matrix Θ
and degrees of freedom p ≥ n, is given by

Pr(X |Θ, p) =
|X |(p−n−1)/2 exp

(− 1
2 tr(Θ−1X)

)

2pn/2|Θ|p/2Γn(p/2)
, (10)
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where | · | is the determinant. The Bregman divergence corresponding to the
Wishart distribution is the LogDet divergence Dld(X, Θ) [23]. If we assume that
the positive definite matrix is drawn from a Wishart distribution, we can mini-
mize the LogDet divergence between the matrix and its approximation. Further,
the LogDet divergence (9) is convex in X (but not in Y ) and hence is a perfect
candidate for our problem formulation.

3.2 Formulation

Motivated by the above-mentioned reasons, we define our optimization problem
as one which tries to minimize the LogDet divergence Dld(Ŝ, S) between the
approximation Ŝ and the given matrix S.

Dld(Ŝ, S) = tr

((
k∑

i=1

xiAi

)
S−1

)
− log det

((
k∑

i=1

xiAi

)
S−1

)
− n . (11)

For numerical stability, we ensure that the arguments are also symmetric. Since
the trace and the log det are invariant under a similarity transformation, we map
X 	→ S−1/2XS1/2, where X is the argument.

Dld(Ŝ, S) = tr

(
S−1/2

(
k∑

i=1

xiAi

)
S−1/2

)

− log det

(
S−1/2

(
k∑

i=1

xiAi

)
S−1/2

)
− n (12)

= tr

(
k∑

i=1

xiÂi

)
− log det

(
k∑

i=1

xiÂi

)
− n , (13)

where Âi = S−1/2AiS
−1/2. Therefore,

Dld(Ŝ, S) =
k∑

i=1

xi trÂi − log det

(
k∑

i=1

xiÂi

)
− n . (14)

We discard n from the objective function as it is a constant.
The best approximation Ŝ would result in an exactly positive semidefinite

residual E = S − Ŝ, so that incrementing any xi is not possible without pushing
the residual to be indefinite, i.e., leading to Ŝ��S, since subtracting even the
“smallest” positive definite matrix from a positive semidefinite matrix will make
it indefinite. Therefore, the minimum eigenvalue of the residual λmin(S − Ŝ)
should be as close to zero as possible. Hence we impose the constraint

Ŝ � S or x1Â1 + x2Â2 + . . . + xkÂk � In , (15)

where In is the n × n identity matrix. Combining with (6), we get

0 � x1Â1 + x2Â2 + . . . + xkÂk � In . (16)
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Since the constraint (7) is non-convex, a convex relaxation of this constraint
involves minimizing the �1 norm of x instead of the �0 pseudo-norm. Under
certain assumptions [24], the �1 penalty has been proven to yield the same (or
similar) results as minimizing ‖x‖0 for sparse decompositions.

Combining all the above constraints with the objective function we wish to
minimize, we have the following optimization problem:

min
x

k∑

i=1

xi trÂi − log det

(
k∑

i=1

xiÂi

)
+ λ ‖x‖1 (17)

s.t. x ≥ 0 (18)
x1Â1 + x2Â2 + . . . + xkÂk � 0 (19)
x1Â1 + x2Â2 + . . . + xkÂk � In , (20)

where λ ≥ 0 is a parameter which represents a trade–off between a sparser rep-
resentation and a closer approximation. Further, since the xi’s are non–negative,
the �1 norm simply becomes the sum of the components of x, i.e.,

‖x‖1 =
k∑

i=1

xi , (21)

yielding the optimization problem :

min
x

k∑

i=1

xi

(
trÂi + λ

)
− log det

(
k∑

i=1

xiÂi

)
(22)

s.t. x ≥ 0 (23)
x1Â1 + x2Â2 + . . . + xkÂk � 0 (24)
x1Â1 + x2Â2 + . . . + xkÂk � In . (25)

Concurrent with other vector sparse coding techniques, we may express this
optimization problem in an alternate form which puts a different form of con-
straint on the sparsity of x. Instead of a penalty term λ‖x‖1 in the objective
function, we may enforce the sparsity by adding the constraint ‖x‖1 ≤ T result-
ing in the following variation of the above problem:

min
x

k∑

i=1

xitrÂi − log det

(
k∑

i=1

xiÂi

)
(26)

s.t. x ≥ 0 (27)
k∑

i=1

xi ≤ T (28)

x1Â1 + x2Â2 + . . . + xkÂk � 0 (29)
x1Â1 + x2Â2 + . . . + xkÂk � In . (30)

We denote the optimization problem defined by (22)–(25) as Type I, and that
defined by (26)–(30) as Type II.
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O SŜ

Fig. 1. The feasible set consists of the region of intersection of two positive semidefinite
cones, one centered at the origin O, and the other an inverted cone centered at S. Ŝ
lies in the strict interior of this cone, and is pushed towards S by the log det term in
the objective. The linear term serves as a regularizer on the coefficients xi.

3.3 The MAXDET Problem

The above formulations of tensor sparse coding fall under a general class of op-
timization problems known as determinant maximization, or MAXDET, prob-
lems [1], of which semi-definite programming (SDP) and linear programming
(LP) are special cases. The MAXDET problem is defined as:

min
x

cT x + log detG(x)−1 (31)

s.t. G(x) � G0 + x1G1 + . . . + xkGk � 0 (32)
F (x) � F0 + x1F1 + . . . + xkFk � 0 , (33)

where x ∈ Rk, Gi ∈ Sn and Fi ∈ SN . These problems are convex, well-behaved,
and efficient interior point methods exist for solving them. Note that the G(x)
inside the log det term also explicitly appears as a constraint in the standard
form of the MAXDET problem, leading to our inclusion of the same in our
formulation.

Thus, we have formulated two variations of our tensor sparse coding problem
(Type I and II), both of which are convex and of the standard MAXDET form.
The approximation Ŝ lies inside the intersection of the two positive semidefinite
cones, one centered at the origin and the inverted positive semidefinite cone
centered at S, which forms a closed convex set (See Fig. 1). The − log det term in
the objective function pushes the approximation Ŝ toward S, motivating a better
approximation. We use CVX [25] to solve the MAXDET optimization problem.

4 Experiments

4.1 Numerical Example

Our first set of experiments were run on a synthetic data set, comprised of preci-
sion (inverse of covariance) matrices. We start with an n×n covariance matrix C
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Fig. 2. Plot of the various quantities vs. λ for n = 5, k = 60. We show Dld(Ŝ, S),
dgeo(Ŝ, S), ‖x∗‖1, as well as λmin(S− Ŝ), plotted in logarithmic scale. The λ values are
varied logarithmically. The solution vector x∗ in the unconstrained case is also shown
on the right, and is observed to be sparse even without explicitly enforcing any sparsity.

and generate sets of samples from a multivariate Gaussian distribution N (0, C).
There are O(n2) samples per set, from which we compute the inverse covariance
for each of these sets. These precision matrices forms our data set. We select k
of these matrices to form our dictionary A = {Ai}k

i=1. The sample point S to be
sparse-coded is also generated in this manner. The precision matrix of a multi-
variate Gaussian distribution follows a Wishart distribution [22], and therefore
our optimization problem is well suited to this model. The quantities we consider
to represent the performance of the reconstruction are the LogDet Divergence
Dld(Ŝ, S), the geodesic distance dgeo(Ŝ, S), the �1 norm of the optimal coefficient
vector ‖x∗‖1 and the minimum eigenvalue of the residual λmin(S − Ŝ).

Effect of normalization. In vector sparse-coding and dictionary learning, the
dictionary atoms are usually normalized to have unit length. In a similar fashion,
we tried different ways to normalize the atoms in our dictionary, viz., by spectral
norm, ‖Ai‖2, Frobenius norm, ‖Ai‖F , or by trace, tr(Ai). Since all matrix norms
are equivalent, we only get a proportional change in the quality of approximation,
as is expected. Throughout the rest of this section, we adhere to normalization
by spectral norm.
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Effect of sparsity constraints. Figure 2 shows the effect of varying λ on
the quality of reconstruction, under the Type I problem. The geodesic distance
can be seen to vary in a smooth and similar fashion to the LogDet divergence,
reaffirming our choice of objective function. We also show the actual solution
vector x∗ for λ = 0, where it can be seen that even the unconstrained case results
in a sparse solution vector. This is due to the fact that we require a non-negative
coefficient vector, and it is widely noted in the vector-domain that non-negative
decompositions result in sparsity, under certain conditions [26,27,28].

4.2 Classification Experiments

We evaluate the tensor sparse coding algorithm in a classification framework,
where the training data is used as a dictionary A, and the test point S is ap-
proximated by a sparse non-negative linear combination of the dictionary atoms.
In all the following experiments, we use the Type I objective function for sparse
coding, with λ = 10−3.

The datasets used are comprised of region covariance descriptors from various
applications such as human appearance clustering, texture classification and face
recognition. The classification is performed in 4 different ways as follows:

• Geodesic KNN – K-nearest-neighbor classification with K = 5, using the
Riemannian geodesic distance.

• Kernel SVM classification – Using the multi-class SVM approach, with the
kernel matrix computed as

K(Ci, Cj) = exp

(
−d2

geo(Ci, Cj)
2σ2

)
, (34)

with σ = 1, we perform classification of the test set with the help of the
software LIBSVM [29] for the SVM classification.

• SC + WLV – In this method, the coefficient vector x is used as a weight
vector to vote for the different class labels. In other words, the label k∗ of S
is computed as

k∗ = argmax
k

∑

Ai∈Ck

xi , (35)

where Ck denotes class k. Each dictionary atom Ai votes with its own class
label, and its vote is weighted by the corresponding coefficient xi. The class
which gets the highest vote is assigned as the class label of S, hence the
name Weighted Label Voting (WLV).

• SC + REC – Another method involving sparse coding is adapted from [30],
where after the sparse coefficient vector is obtained, the positive definite
matrix is reconstructed from atoms (and corresponding coefficients) from
each class in the dictionary separately. The class which gives the minimum
residual reconstruction error (REC), in terms of the LogDet divergence, is
assigned to the new descriptor S.
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Table 1. Classification accuracy for the Cam5 dataset

Classifier Mean Accuracy (%) Std. Dev (%)

Geodesic KNN 62.76 2.59

Kernel SVM 72.59 4.94

SC + WLV 75.54 3.17

SC + REC 77.20 3.06

As mentioned earlier, much of the relevant literature on region covariances
use the geodesic KNN for classification. Also, the SVM is a powerful and pop-
ular classifier in computer vision applications. Hence our choice of these two
algorithms to compare our results. The geodesic KNN and the kernel SVM clas-
sification are performed directly on the covariance descriptors. The last two
methods involve sparse coding, and since our problem formulation is derived un-
der the LogDet divergence and corresponds to the precision matrix, we perform
the sparse coding over the inverse of the covariance descriptors.

Human Appearance Descriptors. We use a subset of the 18-class Cam5
dataset from [18], from which we choose the 16 classes which contain at least 10
data points each. From each of these 16 classes, we select 5 points for training
and 5 for testing. The dictionary A is therefore comprised of k = 80 atoms.
The descriptors are 5×5 covariances computed from the {R,G,B,Ix,Iy} features
at each pixel corresponding to the human foreground blobs. The classification
accuracy for this dataset averaged over 100 random train-test splits is shown
in Table 1. The sparse coding results provide a notable increase in accuracy
compared to the KNN or SVM techniques.

Gabor-based Region Covariances for Face Recognition. We compare the
classification performance of the SC + WLV and SC + REC methods with the
geodesic KNN for the process of face recognition. We test over a subset of the
FERET face database [31], using similar pre-processing as in Pang et al. [14].
The images from 10 subjects are taken from the grayscale FERET database,
and correspond to the two letter codes ‘ba’, ‘bd’, ‘be’, ‘bf ’, ‘bg’, ‘bj’, and ‘bk’. In
each experiment, 3 of these are taken as training images, and the remaining 4
as test images, yielding a total of

(
7
3

)
= 35 different train-test splits.

The images are convolved with Gabor filters with 8 orientations u = 0, . . . , 7,
and up to 3 scales v = 0, 1, 2. The Gabor filters are constructed with the same
parameters as explained in [14]. Let guv(x, y) denote the Gabor-filter output at
orientation u and scale v. Let vmax be the maximum scale of the Gabor filter
in a dataset. We compute 3 datasets of region covariances for each value of
vmax = 0, 1, 2, comprised of different sets of features, as follows:
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Fig. 3. Classification accuracy for 10 classes with the geodesic KNN (black), SC+WLV
(gray) and the SC + REC (white) classifiers, for the Gabor-based region covariance
datasets GRCM1, GRCM2, and GRCM3. The results are averaged over 35 trials, and
1σ standard deviation bars are shown.

• GRCM1 – { x, y, g00(x, y), . . . , g7vmax(x, y) }
• GRCM2 – { x, y, I, g00(x, y), . . . , g7vmax(x, y) }
• GRCM3 – { g00(x, y), . . . , g7vmax(x, y) }

yielding a total of 9 different datasets. For each of these 9 datasets, we average
over the 35 runs of distinct train-test splits. The classification accuracies for the
geodesic KNN and the two tensor sparse coding classification algorithms are
shown in Fig. 3. It can be seen that even with fewer feature dimensions, the
tensor sparse coding outperforms the KNN classifier significantly. The kernel
SVM performs very poorly (< 30% accuracy) on this dataset, and hence is not
shown.

Texture Classification. We now use the region covariances for texture classi-
fication, on the Brodatz dataset [32]. We use the training images in the database
used to construct the 5-texture (‘5c’, ‘5m’, ‘5v’, ‘5v2’, ‘5v3’), 10-texture (‘10’,
‘10v’) and 16-texture (‘16c’, ‘16v’) mosaics. From each image, 32 × 32 blocks
are cut out, and a 5× 5 region covariance descriptor is computed for each block
using the grayscale intensities and absolute values of the first- and second-order
spatial derivatives, {I, |Ix|, |Iy |, |Ixx|, |Iyy|}.

Each image is 256 × 256 pixels, yielding 64 data points per image. For a k-
class problem, we get 64k data points, where k = 5, 10, or 16. In each case, 5
data points from each class are used to construct the dictionary A, |A| = 5k,
and the remaining 59k points are used for testing. The classification results are
averaged over 20 random train-test splits, and are shown in Fig. 4. The sparse-
coding-based methods consistently beat the KNN classifier, and is competitive
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Fig. 4. Texture classification results on the Brodatz dataset, consisting of five 5-class,
two 10-class and two 16-class problems. The results are averaged over 20 trials, and 1σ
standard deviation bars are also shown.

with the SVM classifier. In fact, as number of classes increases, the sparse coding
methods overtake the SVM classifier.

5 Conclusions and Future Work

We have proposed a novel sparse coding technique for positive definite matrices,
which is convex and belongs to the standard class of MAXDET optimization
problems. The performance of the tensor sparse coding in terms of accuracy of
reconstruction, sparsity of the decomposition, as well as variations for different
input parameters is analyzed. Results are shown not only for synthetic data
but also for data sets from real-world computer vision applications, demonstrat-
ing the suitability of our model. In classification performance, the algorithms
based on tensor sparse coding beat the state-of-the-art methods by a reasonable
margin.

This work opens the door for the many sparsity-related algorithms to the
space of positive definite matrices, and many techniques that require only a
sparse coding step follow through readily from our work. Future work involves
applying the above techniques to areas such as Diffusion Tensor Imaging. We are
currently working on developing dictionary learning techniques over the positive
definite matrix data, so that we may also learn a suitable dictionary in a data-
driven manner, depending on the application at hand.
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