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We derive and implement a new way of solving coupled cluster equations with lower computational

scaling. Our method is based on the decomposition of both amplitudes and two electron integrals, using

a combination of tensor hypercontraction and canonical polyadic decomposition. While the original

theory scales as O(N6) with respect to the number of basis functions, we demonstrate numerically

that we achieve sub-millihartree difference from the original theory with O(N4) scaling. This is

accomplished by solving directly for the factors that decompose the cluster operator. The proposed

scheme is quite general and can be easily extended to other many-body methods. Published by AIP

Publishing. https://doi.org/10.1063/1.4996988

I. INTRODUCTION

Many basic building blocks of quantum theories are ten-

sors. Examples include the one- and two-electron integrals

defining the Hamiltonian or the cluster operators of coupled

cluster (CC) theory, which instead define the wave function.

Unfortunately, algebraic manipulations with tensors have a

significant numerical cost, which tends to grow exponentially

with the dimension d of the tensors and often makes these

manipulations the computational bottleneck of the theories.

The cost of tensor manipulations can be significantly

reduced by some form of tensor decomposition in which a

d-dimensional tensor is expressed in terms of lower dimen-

sional objects. For example, the resolution of identity (RI, see

Ref. 1 and references therein) can be used to decompose the

two-electron integrals. More recently, the tensor hypercontrac-

tion2–7 (THC) scheme of Hohenstein, Parrish, and Martı́nez

has been introduced. There, a fourth-order tensor is repre-

sented by a contraction of five factor matrices, some of which

can be the same if one wants to enforce symmetries of the

original tensor. Related to THC is the canonical polyadic

decomposition8,9 (CPD), which as we will explain later can

be regarded as its building block.

These tensor decompositions have been used in various

ways to introduce low-scaling versions of conventional elec-

tronic structure methods. Tensor hypercontraction has been

applied by Hohenstein and Kokkila10 to the CC2 method,

where it was used to represent electron interaction potential.

Shenvi et al. did the same in their reduced density matrix

algorithm.11 Benedict et al. used polyadic decomposition of

amplitudes and electron interaction integrals in the coupled

cluster doubles and full configuration interaction methods.12,13

While working on this manuscript we also learned about the

recent work of Hummel et al.,14 who showed that by using the

THC of the electron interaction in the context of the distin-

guishable cluster doubles or linearized coupled cluster singles

and doubles methods, one can achieve a reduction of the com-

putational cost from O(N6) to O(N5), where N is the number

of basis functions.

Here we apply tensor decompositions based on THC

to coupled cluster with single and double (CCSD) excita-

tions.15,16 The cost of the original CCSD scales as O(N6),

but by using tensor decomposition, we can reduce the cost

to scale as O(N4). In most previous applications, THC was

used to decompose the electron repulsion integrals, and grids

in real space were employed to build the decomposition. We

show how to build the THC algebraically for the full fourth-

order tensor in O(N5) cost, or O(N4) cost if the resolution of

identity17 is employed, and compare different ways of doing

so. We also explain how to optimize all factors of the THC

in O(N4) cost when solving iterative equations with decom-

posed tensors, such as in the CCSD method. By optimizing

all factors of the THC, our implementation achieves the same

∼0.5 mhartree accuracy as the previous work4 which used

THC but with ranks which are roughly half as large. However,

we should emphasize that our method is general and is not

limited to THC; rather, it can be used with any suitable tensor

decomposition.

We note that there are even more efficient techniques for

approximate CC methods in the weakly correlated regime,

namely, the linear scaling (O(N)) CC methods.18,19 These

methods tend to be based on the locality of both the electron

interaction integrals and the cluster amplitudes.20 If either of

these assumptions fails (as might happen in strongly corre-

lated problems, for example, which couple electrons at large

distances), linear scaling methods are likely to see a corre-

sponding decrease in performance. Of course coupled cluster

theory is not ideally suited to the description of strong correla-

tion anyway, so this is not too significant a drawback. The goal

of this work, however, is not only to derive a lower-scaling CC

approach but also to present a framework for applying tensor

decompositions to other CC-like theories21–23 which are not

limited to weakly correlated problems.

For completeness, we should note the existence of other

coupled cluster-like techniques built on Jastrow Hilbert space

approaches where the equivalent of the CC excitation operator

is built from occupation number operators in variational quan-

tum Monte Carlo24 and similarity transform approaches.25,26
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In these cases, the tensor factorization occurs naturally and can

be determined by simply inspecting the numerical amplitude

values of the correlator.

II. NOTATION AND TERMINOLOGY

Throughout this work, we will use notation and diagrams

which are common in the literature of tensor decomposi-

tions but which may be unfamiliar to the quantum chemistry

community. A short review of our diagrammatic notation is

available in the Appendix; we summarize our notation and

terminology here.

One of the most basic properties of a tensor T is its order,

which is just its dimensionality and corresponds to the number

of indices in its basis representation. Thus, a four-index object

(if a tensor) corresponds with a fourth-order tensor. We some-

times refer to a first-order tensor as a vector and a second-order

tensor as a matrix. Generically we denote matrices and tensors

by capital letters and vectors by boldface lowercase letters.

The rank of a tensor is the dimension of the auxiliary

indices used in a particular tensor decomposition. As there are

a great variety of tensor decompositions, the rank of a high-

order tensor is not defined as strictly as in the case of matrices

and may consist of one number or a set of numbers; for our

purposes, if the tensor has more than one rank, it is convenient

to require all its ranks to be equal. Different definitions of the

tensor rank have significantly different properties; for more

information, consult the review of Kolda and Bader.27 It should

be clear from the context what dimensions are meant in each

particular case in the text.

The Frobenius norm of a tensor T is denoted as ||T || and

is given by

‖T ‖ =

√

∑

pqrs...

Tpqrs... T ∗pqrs..., (1)

where the superscript ∗ denotes complex conjugation; thus, it

is simply the square root of the sum of the norm squares of

tensor’s entries.

We will require a few kinds of tensor product in this work.

The Kronecker product is written as ⊗ and is defined via

C = A ⊗ B⇔ Crp,sq = Ap,q · Br,s. (2)

It is also convenient to introduce a column-wise Kronecker

product known as the Khatri-Rao28 product; this is denoted by

⊙ and is defined as

D = A ⊙ B ⇔ Dqp,α = Ap,α · Bq,α. (3)

In the foregoing and throughout this manuscript, indices p,

q, r, s, . . . correspond to general orbital labels and Greek letters

α, β, γ, . . . denote indices of the CPD, THC, and singular

value decompositions. We follow the traditional notation that

the indices i, j, k, l, . . . represent occupied orbitals specifically,

while a, b, c, d, . . . represent virtual orbitals. We also use

composite indices such as pq which are defined as

pq ≡ p + dim({p}) · (q − 1). (4)

Curly braces {} denote sets and dim() means the number of

elements in the set.

The transpose of a matrix M is MT , and its inverse is M☞1;

if M is singular or not square, M☞1 refers to the pseudoin-

verse29 of M. We will use sqrt() for the element-wise square

root operation

sqrt(M)pq =

√

Mpq. (5)

III. TENSOR DECOMPOSITIONS

The tensor hypercontraction decomposition can be

regarded as a combination of two well-established factoriza-

tions: a rank decomposition of a matrix such as the eigenvalue

or singular value decomposition (SVD) on the one hand and the

canonical polyadic decomposition8,9,27 of third order tensors

on the other. Thus, we first discuss these two ideas.

A. Resolution of identity and singular
value decomposition

The computation of a rank-revealing decomposition for

the electron interaction tensor is well studied and is known

as the resolution of identity (RI) or density fitting.30–33 By

introducing an auxiliary basis, the Coulomb interaction can be

written as a contraction of three tensors,

Vpqrs ≈
∑

αα′

Uα
pqDα,α′Ũ

α′

rs , (6)

where V is the Mulliken-ordered interaction, U and Ũ are

(possibly different) three index integrals, and D is a generalized

overlap.17 Diagrammatically the same expression is

(7)

As one may see, the RI has the same basic form of a singu-

lar value or an eigenvalue decomposition of the interaction

tensor. It is known that the error in the RI approximation of

the Coulomb operator decays exponentially with the auxil-

iary basis size rRI = dim({α}), and negligible errors can be

reached with the number of auxiliary basis functions scaling

as O(N).30,33

We note that for a given rank rRI, the lowest error RI

decomposition can be calculated using the singular value

decomposition of the matrix Vpq ,rs and taking D, U, and Ũ to be

the singular values and left and right singular vectors, respec-

tively. The optimality of the factorization will then be guaran-

teed by the Eckart-Young theorem.34 Although this approach

is not generally used for practical calculations due to its com-

putational cost, which scales as O(N4 · rRI), we employed it in

some of our test calculations. We also note that a popular prac-

tical option in the case of two electron integrals is the use of

the Cholesky decomposition,1,35,36 but this method is limited

to symmetric tensors only.

We have said that V is the Mulliken-ordered interac-

tion tensor. The restriction to Mulliken ordering is important

because the order of indices in the original tensor Vpq ,rs cru-

cially influences the size of the rank rRI for a fixed approxi-

mation error. Indeed, while the SVD of the Mulliken-ordered

electron interaction Vpq ,rs yields O(N) non-zero singular val-

ues, the matrix Vpr ,qs formed from a Dirac-ordered interaction
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tensor has O(N2) non-zero singular values. This explains why

there is no practical RI-like approximation for Dirac-ordered

two-electron integrals (or, equivalently, the exchange contri-

bution in the context of the Hartree-Fock method). This is a

natural consequence of the form of the electron interaction

operator.

The RI decomposition itself can readily lead to reduced

scaling of some quantum chemistry algorithms. If the contrac-

tions of the electron interaction involve mostly indices p, q and

r, s but not cross combinations between them (e.g., contrac-

tions where one tensor has indices pq and rs while another has

indices pr and qs), then a reduction of cost can be achieved,

such as in the RI-MP2 approach.20,37,38 When these cross com-

binations occur, however, one needs to search for additional

structure in the operator tensors. The latter can be achieved by

the canonical polyadic decomposition.

B. Canonical polyadic decomposition

A polyad is a rank one tensor expressible, for example, by

Xijk... = ai bj ck . . . (8)

or more abstractly as a series of Kronecker products

X = · · · ⊗ c ⊗ b ⊗ a. (9)

Note that we multiply factors in inverse order; this is simply

to preserve a consistent column-major indexing of tensors.

A polyadic decomposition of a tensor is thus a decompo-

sition as a sum of polyads9

Tpqr... =

∑

α

aαp bαq cαr . . . (10)

or, more abstractly,

T =
∑

α

· · · ⊗ cα ⊗ bα ⊗ aα. (11)

The canonical polyadic decomposition is the polyadic decom-

position of lowest rank. It may be seen as one of the gen-

eralizations of SVD to third and higher order tensors, and

for dimensions greater than 2, the CPD is unique under mild

conditions.39,40

As can be seen from the definition of Eq. (11), some matrix

factorizations (for example, QR or LU factorizations) can be

thought of as a CPD of matrices. In dimensions greater than

2, however, no closed form algorithm to extract the CPD is

known, and one must rely on iterative optimization techniques

to approximate the CPD.41 Substantial effort has been made

by the mathematical community to develop approaches for

doing so. Typical algorithms are the alternating least squares42

(ALS), gradient descent by means of, for example, the method

of Broyden, Fletcher, Goldfarb, and Shanno (BFGS), and non-

linear least squares (NLS) methods.41 We refer the reader to the

corresponding reviews27,43 for further details. We have used

the Tensorlab44 program by Lathauwer et al. for calculating

the CPD in this work.

The polyadic decomposition can be expressed more con-

veniently through the Khatri-Rao product. If the vectors a, b,

and c of Eq. (11) are stacked together as columns of matrices

A ={a}, B ={b}, and C ={c}, then the polyadic decomposition

can be written as

Tpqr = ((B ⊙ A) · CT )pqr , (12)

which diagrammatically is

(13)

C. Tensor hypercontraction

The THC is a factorization of fourth-order tensors and can

be seen as a combination of a singular value decomposition and

a canonical polyadic decomposition. The THC approximation

can be written as

Vpqrs =

∑

αβ

W1
p,αW2

q,αXα,βW3
r,βW4

s,β

= ((W2 ⊙ W1) · X · (W4 ⊙ W3)T )pqrs. (14)

The THC can be viewed as a further approximation over RI,

which is clear from the following diagram:

(15)

The sizes of the auxiliary indices α and β are the ranks

of the decomposition. In all subsequent expressions, rTHC

= dim({α}) = dim({β}) for simplicity, although there is no

fundamental restriction that dim({α}) = dim({β}). Using the

analogy with density fitting, several authors3,14 have specu-

lated that the optimal rank of THC scales as rTHC = O(N) in

the case of the electron interaction tensor. We confirm this

numerically in Sec. IV.

D. Algorithms for tensor hypercontraction

1. Composite method

The diagram in Eq. (15) suggests one possible way to

calculate the THC of an order-4 tensor as a combination of the

singular value and canonical polyadic decompositions. The

following diagram depicts the procedure we call THC-CPD:

(16)

First, one can reshape the original tensor V with dimensions

I1 × I2 × I3 × I4 into a matrix of shape I1I2 × I3I4 and apply a

truncated SVD of rank rSVD to it. We chose to multiply square

roots of singular values into left and right singular vectors.

Note that this produces matrices UL and UR of identical norm.

Next, the left and right matrices of shapes I1I2 × rSVD and

I3I4 × rSVD are reshaped into third-order tensors of shapes

I1 × I2 × rSVD and I3 × I4 × rSVD, respectively. The CPD

of rank rCPD is calculated for each of those tensors separately

with any algorithm of choice, with each algorithm limited to

nit iterations. Finally, those factors of the CPD which do not

have external indices can be merged into a single factor X.
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Algorithm 1. Computing the THC using CPD.

1: function thc-cpd(V, rSVD, rCPD)

2: I1, I2, I3, I4 ← size(V )

3: V ← reshape(V, I1 · I2, I3 · I4)

4: U, D, Ũ← svd(V, rSVD) ⊲ O(N4 rSVD)

5: UL ← UL · sqrt(D) ⊲O(N2 r2
SVD

)

6: UR ←Ũ · sqrt(D†)

7: W1, W2, W5 ←cpd(UL , rCPD) ⊲ O(N2 rSVD rCPD nit)

8: W3, W4, W6 ←cpd(UR, rCPD)

9: X ← W5 ·W6T
⊲ O(r2

CPD
· rSVD)

return W1, W2, W3, W4, X

10: end function

Algorithm 1 summarizes the composite method we

employ, along with the computational scaling of its steps for a

tensor of size N × N × N × N, where we used cpd() to denote

a CPD method of choice.

A similar scheme was employed by Hohenstein et al. in

their initial work on THC.2 The only difference in our appli-

cation is the choice of more efficient optimization methods to

solve for CPD factors in steps 7 and 8 and the use of partial

SVD in step 4.

The scaling of this algorithm is dominated by the truncated

SVD in step 4. If the optimal rank of the SVD is of order O(N),

the algorithm is of O(N5) cost if rSVD = O(N) and O(N6) in

the worst case. The SVD can be avoided if substitute singular

vectors are available for the tensor V. In the case of the electron

interaction, such substitutes are given by the 3-index integrals

coming from the RI approximation. The auxiliary dimension

rRI is of O(N).

A faster Algorithm 2 based on the RI approximation can

be formulated as follows. We start with third-order tensors U,

Ũ of shapes I1 × I2 × rRI and I3 × I4 × rRI, respectively,

and an overlap matrix D of shape rRI × rRI. A matrix root

D
1
2 of D is calculated using the SVD or eigenvalue decom-

position. This matrix is then multiplied into order-3 tensors

U and Ũ, which yields left and right third-order tensors UL

and UR. If the size of the RI basis is large and UL equals UR,

as in the case of 3-index integrals, an optional compression

step can be applied (Algorithm 3): the auxiliary dimension

of UL and UR is reduced by a truncated SVD of rank rSVD.

Algorithm 2. Computing the THC using CPD and RI.

1: function thc-cpd-ri(U, Ũ, D, rSVD, rCPD)

2: QΛQ̃←svd(D) ⊲O(r3
RI

)

3: D
1
2 ← Q · sqrt(Λ)

4: UL ← U · D
1
2 ⊲ O(N2 r2

RI
)

5: UR ← Ũ · D
1
2

†

6: if UR = UL then

7: UR ← compress(UR, rSVD) ⊲ Optional

8: UL ← compress(UL , rSVD) ⊲ O(N2 rRI rSVD)

9: end if

10: W1, W2, W5 ←cpd(UL , rCPD) ⊲ O(N2 rSVD rCPD nit)

11: W3, W4, W6 ←cpd(UR, rCPD)

12: X ← W5 ·W6T
⊲ O(r2

CPD
· rSVD)

return W1, W2, W3, W4, X

13: end function

Algorithm 3. Compressing the RI basis.

1: function COMPRESS (U, rCPD)

2: I1, I2, I3 ← size(U)

3: U ←reshape(U, I1 · I2, I3)

4: QAQ̃←svd(U, rSVD) ⊲ O(I1 I2 I3 rSVD)

5: U ← QA ⊲O(I1 I2 r2
SVD

)

6: U ← reshape(U, I1, I2, rSVD)

7: return U

8: end function

Finally, a CPD of rank rCPD is calculated for the left and right

parts, and the resulting factors with no external indices are

merged into a single factor X. The resulting algorithm is listed

below.

The overall scaling of Algorithm 2 may be dominated

either by the O(N2 r2
RI

) cost of the SVD and matrix multipli-

cations or by the O(N2 rSVD rCPD nit) cost of the iterative

algorithm of the CPD. In practical calculations, we found that

the latter contribution, despite scaling mildly with the system

size N and optimal ranks rCPD and rSVD, is always domi-

nant because of the large number of iterations required by the

CPD algorithm. This motivated us to look for an equivalent

algorithm to build the THC decomposition directly.

2. Direct method

We follow Sorber et al.41 to build a simple alternating

least squares algorithm for the THC. We begin by introduc-

ing the approximation of a fourth-order tensor V by its THC

decomposition Ṽ , which we recall is

Ṽijkl =

∑

αβ

W1
p,αW2

q,αXα,βW3
r,βW4

s,β , (17a)

= [(W2 ⊙ W1) · X · (W4 ⊙ W3)T ]ijkl. (17b)

Then we can define an error tensor

∆V = V − Ṽ , (18)

whose Frobenius norm is just

f = ‖∆V ‖
2
=

∑

pqrs

(

V ∗pqrs − Ṽ ∗pqrs

) (

Vpqrs − Ṽpqrs

)

. (19)

Diagrammatically, this is

(20)

Clearly, the best possible THC approximation to V will corre-

spond to a minimum of the cost function f. We note that f is a

real-valued analytic function, and hence
∂f

∂W
= (

∂f

∂W∗
)∗, where

W ∈{W1, W2, W3, W4, X}.
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In order to minimize the cost function, we proceed with

the calculation of its gradient, which can be easily done using

diagram 20. The partial derivative of f with respect to W1 is

(21)

and the full gradient of f can be found in the supplementary

material. Noting that
∂f

∂W
is linear in W*, we contract all factors

around W* into an environment matrix A, as seen in diagram

22, and set the derivative to zero,

(22)

We end up with a problem

A ·W∗ = B. (23)

The solution to Eq. (23) can be obtained by taking the inverse

of A (or a pseudoinverse, if A is a rank-deficient matrix). The

final expression for W1∗ is given diagrammatically as

(24)

As made clear by the diagram, if both ranks of the THC decom-

position are rTHC, then the construction of the environment

matrix A scales as O(r3
THC

), as does computing its general-

ized inverse. If each of the dimensions of V equals N, then the

cost of calculating W1∗ scales as O(N4 rTHC). Updates for the

rest of the terms in the THC decomposition can be calculated

similarly.

A simple iterative optimization algorithm can be built as

follows. First, the THC factors W are initialized randomly.

For each factor, an update is calculated as shown on diagram

24, keeping the other factors fixed. The process is iterated until

convergence of the factors. The resulting THC-ALS algorithm

is listed below.

The calculation of the right-hand side of Eq. (23) domi-

nates in the cost of THC-ALS, scaling as O(N4 rTHC). A simple

modification is possible to reduce this cost by one order of

magnitude. If an approximation to the singular vectors of the

original tensor V is available from the beginning, as in the case

of the electron interaction, it can be used in place of V, leading

to a faster algorithm. The diagram corresponding to Eq. (23)

then becomes

(25)

The cost of the expression above scales as O(N2 rRI rTHC)

because the contraction of a fourth-order tensor V with matri-

ces W is replaced by contractions of two third-order tensors U

Algorithm 4. Alternating least squares.

1: function THC-ALS(V, rTHC, ǫ )

2: I1, I2, I3, I4 ← size(V )

3: W1, W2, W3, W4, X ←

init random(I1, I2, I3, I4, rTHC)

4: repeat

5: for all W ∈ {W1, W2, W3, W4, X} do

6: AW ← get environment(W1, W2, W3, W4, X)

7: ⊲O(r3
THC

)

8: BW ← get rhs(V, W1, W2, W3, W4, X)

9: ⊲ O(N4 rTHC) or O(N2 rSVD rTHC) with RI

10: Wnew ← A☞1B ⊲O(r3
THC

)

11: end for

12: ∆← maxW
‖Wnew−W ‖
‖W ‖

13: W ← Wnew

14: until ∆ > ǫ return W1, W2, W3, W4, X

15: end function

and Ũ. We only need to modify the function get rhs() to build

a lower scaling algorithm, which we refer to as THC-ALS-RI.

Alternating least squares algorithms are simple and often

robust45 but may take a large number of iterations to con-

verge.42 Following an analogy with CPD,41 we also imple-

mented a quasi-Newton method using limited memory BFGS

(L-BFGS) with a dogleg trust region46 for THC; this method

we refer to as THC-BFGS.

The THC-ALS and THC-BFGS, and their RI variants,

are novel direct methods to calculate the THC decomposition

based on minimization of the Frobenius norm of the error.

Composite methods such as THC-CPD(ALS) and their RI

variants have been used previously in earlier work on THC.2

We refer the reader to the supplementary material for opti-

mized expressions of the THC gradient and objective function.

Due to their complexity many of the equations we present

(especially the ones related to coupled cluster, see Sec. IV)

were generated by a computer algebra system developed in

our group,47,48 although this can be done by manipulating

diagrams as well.

3. Numerical experiments

Here we wish to compare the performance of the com-

posite methods [THC-CPD(ALS), THC-CPD(BFGS), and

THC-CPD(NLS)] and direct algorithms (THC-ALS and THC-

BFGS) for THC decomposition. Table I shows the scaling per

iteration for the various algorithms we consider (see algorithms

in the text and also Ref. 41 for further details on the scaling of

CPD, which we used in the composite methods). The scaling

is given for a full fourth-order tensor with sizes equal N in the

first part of the table and for RI-decomposed tensors with rank

rSVD in the second part. Recall that the composite methods in

the first part of the table require an initial SVD, the cost of

which scales as O(N4 rSVD); this cost is in addition to that of

the iterative steps required to converge the CPD.

To summarize the contents of Table I, let us assume that

both rSVD and rTHC are O(N), as is the case for the elec-

tron interaction tensor.3 Then all composite algorithms have

a non-iterative O(N5) step followed by iterative O(N4) steps,

while direct algorithms have O(N5) cost per iteration. If an RI

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-007743
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-007743
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-007743
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TABLE I. Computational scaling per iteration of various algorithms to con-

verge the CPD in composite methods or the THC itself in direct methods. The

top half of the table shows scaling for methods which do not use an initial RI,

while the bottom half of the table shows scaling for methods which do use an

initial RI.

Algorithm Scaling

THC-CPD(ALS) O(N3 rTHC)

THC-CPD(BFGS) O(N3 rTHC)

THC-CPD(NLS) O(N3 rTHC + r3
THC

+ N2 r2
THC

)

THC-ALS O(N4 rTHC + r3
THC

)

THC-BFGS O(N4 rTHC + r3
THC

)

THC-CPD-RI(ALS) O(N3 rTHC)

THC-CPD-RI(BFGS) O(N3 rTHC)

THC-CPD-RI(NLS) O(N3 rTHC + r3
THC

+ N2 r2
THC

)

THC-ALS-RI O(N2 rSVD rTHC + r3
THC

)

THC-BFGS-RI O(N2 rSVD rTHC + r3
THC

)

approximation is used, all algorithms have O(N4) scaling per

iteration.

To get a feeling for how these various algorithms perform

in practice, we compared the convergence speed of direct and

composite methods using the performance metrics proposed

by Dolan and Moré.49 We generated fifty sets of random THC

factors using a uniform distribution, from which we built fifty

tensors which had size 4 × 4 × 4 × 4 and THC ranks 2 and

3. We further generated fifty sets of random initial guesses

drawn from the same uniform distribution. This yielded a set

P of 2500 (tensor, initial guess) pairs for each tensor rank.

The algorithms in the first part of Table I (i.e., those algo-

rithms that do not use RI) form a set of algorithms S. For each

problem p in P, we applied each algorithm s in S. We allowed

the algorithms to run for up to 2000 iterations or until con-

verged, where our convergence criterion was ||V ☞ Ṽ || ≤ 10☞5.

The number of iterations required for an algorithm s to con-

verge a problem p we denote as tp,s. If an algorithm did not

converge a given problem, we set tp,s to∞.

For direct methods, we stopped the iterative algorithm if

||V ☞ Ṽ || ≤ 10☞7 ||V || and declared the method to have failed

if it did not meet our convergence threshold. For composite

methods, we retained singular values larger than 10☞7 in build-

ing the factors UL and UR. We declared the CPD converged if

||U ☞ Ũ || ≤ 10☞10 and stopped the iterations if ||U ☞ Ũ || ≤ 10☞14

||U ||. In all cases the threshold for the pseudoinverse was set to

10☞14. We emphasize that for both direct and composite meth-

ods, the definition of success was accurate decomposition of

V, e.g., the magnitude of absolute error had to be less than the

threshold ||V ☞ Ṽ || ≤ 10☞5.

Having applied each algorithm s to each problem p, we

use as a performance metric

ρs(τ) =
|{p ∈ P : tp,s ≤ 2τ ·mins∈S(tp,s)}|

|P |
. (26)

In other words, ρs(τ) is the fraction of problems that algorithm

s solved within 2τ times the best algorithm for each problem.

We would like ρs(τ) to approach one for large enough τ, indi-

cating that the algorithm converged all problems that could

be converged, and we would like ρs(τ) to grow toward one

as rapidly as possible, indicating that the algorithm converged

FIG. 1. Performance metric ρs(τ) for various THC decomposition algo-

rithms. (Top) rTHC = 2. (Bottom) rTHC = 3.

relatively quickly. Results are shown in Fig. 1 where the top

panel shows results for rank two tensors and the bottom panel

shows results for rank three tensors.

As one can see, composite methods THC-CPD outper-

form our direct THC decomposition. The difference in per-

formance is more prominent for rTHC = 3 than it is for rTHC

= 2. For example, THC-ALS converges for less than 50% of

the possible problems when rTHC = 3, compared with about

80% for rTHC = 2. We believe the poor performance of the

direct algorithm is because the THC factors are not unique (as

our numerical experimentation indicated), whereas the factors

in the CPD are unique under mild conditions.40 This non-

uniqueness results in gradient vectors which are close to zero

in certain directions, and optimization algorithms then require

many more iterations to minimize the objective function.

Overall, the best method for THC seems to be the com-

posite THC-CPD(NLS), which we recall uses a nonlinear least

squares solver for CPD.41,46 We will thus use THC-CPD(NLS)

for subsequent THC decompositions in this work.

We should note that no method was able to solve all prob-

lems in our setup, though the composite methods succeeded in

the very large majority of cases. Similar behavior for random

test factors was previously observed for CPD.41 This did not

pose a problem in our practical applications. We should also
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note that our results here should be considered with some cau-

tion, simply because metrics generated with random factors

may not be representative for the tensors encountered in quan-

tum chemistry, which generally have more structure. However,

our results most likely show the worst case behavior for the

proposed algorithms.

IV. TENSOR-STRUCTURED COUPLED CLUSTER

While the direct algorithms proposed in Sec. III D 2 were

not particularly good for the decomposition of random tensors,

we introduced them because they find new life in our tensor-

decomposed coupled cluster methods, as we discuss below.

Let us begin, however, with a quick overview of the restricted

CCSD (RCCSD) method. We define a cluster operator

T̂ = 1T̂ + 2T̂ , (27)

where the individual operators iT̂ are excitation operators

1T̂ =
∑

ai

1Ta
i Êa

i , (28a)

2T̂ =
∑

abij

2Tab
ij Êa

i Êb
j . (28b)

Here

Êa
i = â

†

a,↑
âi,↑ + â

†

a,↓
âa,↓ (29)

are spin adapted excitations or unitary group generators,16 and
iT are order 2i amplitude tensors. With these cluster operators,

we construct a similarity-transformed Hamiltonian H̄ as

H̄ = e−T̂ Ĥ eT̂ , (30)

from which the energy can be extracted as

ECCSD = 〈0|H̄ |0〉, (31)

where |0〉 is a closed shell single determinant (usually a

Hartree-Fock state). The excitation amplitudes are usually

obtained by projecting the similarity-transformed Hamilto-

nian on the left against a set of excited determinants to form

residuals which are set to zero,

1Ra
i = 〈0|â

†

i,↑
âa,↑ H̄ |0〉 = 0, (32a)

2Rab
ij = 〈0|â

†

i,↑
â
†

j,↓
âb,↓ âa,↑ H̄ |0〉 = 0. (32b)

These result in polynomial equations of the amplitude tensors

which can be transformed to the form

1Ta
i =

1Da
i

1Ga
i , (33a)

2Tab
ij =

2Dab
ij

2Gab
ij , (33b)

which can be solved by iterations until a fixed point is found.

Here, 1D and 2D are orbital energy denominator tensors built

from diagonal elements of the Fock matrix F

1Da
i =

1

Fa
a − Fa

i

, (34a)

2Dab
ij =

1

Fa
a + Fb

b
− F i

i
− F

j

j

. (34b)

The tensors 1G and 2G are built from contractions of the

amplitude tensors with the Hamiltonian.

A. Least squares coupled cluster theories

The logic used to derive the ALS algorithm for THC

decomposition can be readily applied in the coupled cluster

context. Here, we will use coupled cluster doubles (for which

one neglects 1T̂ ) as an example, with expressions for CCSD

shown in the supplementary material.

We begin by imposing the THC structure on the doubles

amplitudes. We approximate the amplitude tensor 2T with its

THC decomposition 2T̃ . The difference between original and

approximated amplitudes is

∆T =
2T − 2T̃

=
2T − (Y2 ⊙ Y1) · Z · (Y4 ⊙ Y3)T , (35)

where Y i and Z are factors in the THC decomposition of 2T.

We wish to minimize the squared norm of the error tensor ∆T ,

which is the minimization of the corresponding cost function

f T ,

fT = |∆T |
2
= (2T ∗ − 2T̃ ∗)(2T − 2T̃ ). (36)

Setting partial derivatives of f T with respect to the decompo-

sition factors to zero, we obtain a new set of equations

∂fT

∂Y
= −2T ∗

∂2T̃

∂Y
+ 2T̃ ∗

∂2T̃

∂Y
= 0, (37)

where Y ∈ {Y1, Y2, Y3, Y4, Z}. Again, as f T is real and analytic,

only one set of derivatives (either with respect to Y or Y*) is

sufficient to find its minimum.

Now we use Eq. (33b) to replace 2T* with 2D2G. The

idea is to thus minimize the difference between a decomposed

tensor 2T̃ and a solution of the CCD amplitude equations. The

resulting amplitude equations are

T̃ ∗
∂T̃

∂Y
=

2G2D
∂T̃

∂Y
. (38)

This is the analog of Eq. (23) in THC-ALS and can be solved in

the least-squares sense (i.e., with the help of the pseudoinverse)

as the left-hand side is linear in Y*. Diagrammatically, we have

(39)

Note that we have written the energy denominator 2D as an

order-8 diagonal tensor 2Daba′b′

iji′j′
, instead of an order-4 dense

tensor 2Dab
ij

as in Eq. (33b), which we do only so that we can

separate 2D from 2G in preparation for the decomposition of
2D. Indeed, these equations can be further factorized if one

employs a CPD of 2D to disentangle particle and hole indices.

A low-rank decomposition of denominator tensors can be built

using an exponential parametrization50 (also known as Laplace

transformation)51 as, for example,

2Dab
ij =

∑

ω

Cω eAω F i
i e

Aω F
j

j e−Aω Fa
a e−Aω Fb

b (40a)

=

∑

ω

2D1
i,ω

2D2
j,ω

2D3
a,ω

2D4
b,ω . (40b)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-007743


184113-8 Schutski et al. J. Chem. Phys. 147, 184113 (2017)

We have used the parameters from Ref. 50, which provide

absolute accuracy of better than 10☞12 with ranks of order

≈15, which do not depend on the system size N.

The final form of our ALS-type coupled cluster doubles

equations is thus

(41)

The explicit form of these equations and analogous expressions

for ALS-type CCSD are shown in the supplementary material.

We chose to apply THC to 2T amplitudes ordered in the

same way as Mulliken ordered two-electron integrals, i.e.,

2Tab
ij =

∑

αβ

Y1
a,αY2

i,αZα,βY3
b,βY4

j,β . (42)

In contrast with the decomposition of the interaction tensor, we

found that this parametrization of the amplitudes does not sig-

nificantly influence the rank needed for a good approximation.

It does, however, lead to simpler intermediate quantities.

After defining proper intermediates, which we did using

our automatic algebraic system,48 the cost of these equations

has quartic scaling in rTHC and N per iteration. We provide

those fully factorized equations in the supplementary material

along with the source code for the contractions. Most of the

numerical experiments in Sec. IV B were done with a simpler

code which had O(N5) scaling because it made less sophis-

ticated use of intermediate quantities; however, the O(N4)

and O(N5) implementations differ only in the order in which

contractions were carried out.

Equation (41) and its analogs for all other factors in the

decomposition of 2T constitute what we call THC-RCCSD and

are the main result of this paper. It must be stressed that the

proposed scheme is generic and can be applied to any factor-

ization of amplitudes and the Hamiltonian. We use THC here

and leave the exploration of other possibilities for subsequent

work.

B. Test calculations

To assess the performance of our tensor-structured CCSD,

we present calculations on a variety of small-to medium-sized

molecules. All calculations used the cc-pVDZ basis from the

EMSL database,52 and the corresponding cc-pVDZ-RI was

used in the RI approximation.

For smaller systems, the THC-CPD(NLS) algorithm was

used to obtain the THC approximation to the full two-electron

integrals in the AO basis. We set the relative convergence

threshold for CPD iterations to 10☞14, as we did in our numer-

ical experiments in Sec. III. Singular values larger than 10☞12

were retained in obtaining UL and UR. The maximum number

of iterations allowed during the decomposition of the integrals

was 1000. The subsequent coupled cluster calculations were

stopped either after the energy was converged to within 10☞9

Hartree or a limit of 250 iterations was reached. Thresholds

for pseudoinverse calculations were set to 10☞14.

For larger systems, listed in Table II, THC-CPD(NLS)

was applied to RI-decomposed two-electron integrals. Other

parameters were as described above, except we decreased

TABLE II. CCSD correlation energies (Ec), errors in correlation energies (∆Ec), number of THC-RCCSD

iterations (niter ), and the norm of doubles residuals ( |2Rab
ij
|) for several small molecules.

∆Ec (mH) niter |2Rab
ij
|

System Ec (mH) NRI 1.5NRI NRI 1.5NRI NRI 1.5NRI

Acetic acid ☞666.510 ☞0.579 ☞0.453 50 31 0.041 0.033

Aniline ☞997.193 ☞1.177 ☞0.471 111 64 0.051 0.032

Diboron tetrafluoride ☞909.944 ☞0.702 ☞0.716 15 17 0.053 0.034

Benzene ☞823.101 ☞0.985 ☞0.450 111 62 0.048 0.030

Butadiene ☞581.340 ☞0.710 ☞0.274 41 42 0.041 0.025

Cyclobutane ☞621.099 ☞0.895 ☞0.290 77 50 0.039 0.028

Dimethylsulfoxide ☞661.870 0.195 ☞0.624 287 39 0.056 0.025

Furan ☞736.463 ☞0.865 ☞0.454 73 50 0.046 0.033

Isobutane ☞652.505 ☞0.876 ☞0.263 78 49 0.035 0.025

Methylformate ☞666.805 ☞0.586 ☞0.455 62 35 0.042 0.032

Methylnitrite ☞708.990 ☞0.476 ☞0.492 68 47 0.047 0.033

Phenol ☞1005.727 ☞0.887 ☞0.514 120 59 0.051 0.032

Pyridine ☞842.453 ☞1.045 ☞0.475 104 61 0.047 0.032

Pyrrole ☞727.051 ☞0.855 ☞0.407 84 52 0.045 0.032

Thiophene ☞695.593 ☞1.013 ☞0.657 97 52 0.039 0.032

Toluene ☞980.030 ☞1.270 ☞0.461

MUEa 0.820 0.466

Maxb 1.270 0.716

RMSc 0.861 0.482

aMean unsigned error.
bMaximum unsigned error.
cRoot-mean-square error.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-007743
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-007743
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FIG. 2. Frobenius norm of error in decomposed two electron integrals.

the number of iterations allowed during decomposition of the

integrals to 500.

1. Decomposition of two-electron integrals

The accuracy of the THC decomposition of the two-

electron integrals governs the accuracy of the energy in subse-

quent calculations. Thus, we first wish to check the dependence

on the error in the decomposition of two-electron integrals on

THC rank. Figure 2 plots this error in a double logarithmic

scale for three small molecules. We note that the decomposi-

tion is computationally useful if the rank rRHC is close to the

number of basis functions N. As the figure shows, the error in

the two-electron integrals decays exponentially with respect to

the THC rank. We found that this trend holds for every system

tested and depends only slightly on whether the two-electron

integrals are decomposed in the atomic orbital or molecular

orbital basis.

To see how the decomposition affects subsequent ener-

gies, we checked the error in the second-order Møller-Plesset

(MP2) correlation energy, as shown in Fig. 3. The combina-

tion of MP2 and THC was first proposed by Hohenstein et al.3

and scales as O(N4). These authors used a version of THC

with the restriction that all factors W were the same, which

we did not impose in our work. The error in the MP2 corre-

lation energy follows the trend seen in the decomposition of

the two-electron integrals. Results within 0.1 mH of the exact

FIG. 3. Absolute error in the MP2 correlation energy.

FIG. 4. Absolute error in the RCCSD correlation energy.

MP2 correlation energy are already achieved with rTHC ∼N1.2

☞ N1.4. We expect that the THC would work better for larger

and more extended systems as the two-electron integrals

become sparser, and a lower rank decomposition would corre-

spondingly become more accurate. Note that this is true even in

strongly correlated systems for which the atomic orbital basis

two-electron integrals remain sparse.

2. Restricted coupled cluster with singles and doubles

Finally, we demonstrate the behavior of the THC-

decomposed RCCSD method (THC-RCCSD), seen in Fig. 4.

We chose the rank of the THC decomposition of the ampli-

tudes and two-electron integrals to be the same. The error in

the RCCSD correlation energy has a non-monotonic depen-

dence on the THC rank but follows the same basic trends as

seen in Figs. 2 and 3. As with MP2, errors on the order of

0.1 mH are achieved with rTHC ∼ N1.2
☞ N1.4.

It is interesting to see what part of the error in energy can

be attributed to the approximation of the Hamiltonian, espe-

cially because building the decomposition of the Hamiltonian

contributed ∼95% of the total computational cost. For this

reason, we calculated the correlation energy with converged

THC-RCCSD amplitudes but exact two-electron integrals. As

Fig. 5 shows, using the exact two-electron integrals decreases

the error in energy, as one would expect, but does not remove its

FIG. 5. Absolute error in the RCCSD correlation energy with exact two-

electron integrals.
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non-monotonic dependence on the THC rank. We attribute this

behavior to the nonlinear nature of the coupled cluster equa-

tions, which can be quite sensitive to changes in the parameters

of the Hamiltonian.

3. Convergence of THC-RCCSD algorithm

Let us take a moment to discuss the convergence of

the THC-RCCSD. In this work, we used simple fixed point

iteration without any convergence acceleration to solve THC-

RCCSD equations and stopped iterating when a specified dif-

ference in energy between subsequent steps was reached. The

convergence of the resulting algorithm is highly dependent on

the rank chosen for the THC approximation. Figure 6 shows

the number of iterations required to converge the energy to 1

microhartree.

For smaller and larger THC ranks, the convergence of

THC-RCCSD is comparable or better than the regular RCCSD

if both techniques use simple fixed-point iteration. In the inter-

mediate regime, however, the algorithm may need a large

number of iterations to converge. Convergence in this regime

depends strongly on the choice of initial parameters, and

several random trials are needed to find good ones.

We rationalize this behavior by noting that THC-RCCSD

in our formulation is a combination of two iterative algorithms:

ALS and standard coupled cluster iterations. There is some

competition between these two approaches in determining the

updates of the parameters. When the THC rank is small, the

updates should be mostly determined by ALS, as the 2T ampli-

tudes are poorly approximated with any set of parameters Y.

In contrast, with larger ranks, the CC equations govern the

update because 2T is well approximated at each step. In the

intermediate regime, the update is effective neither for CC nor

for ALS.

This odd convergence behavior of our hybrid algorithms

requires further study so that we can definitely avoid it. For

the remainder of this work, we simply used relatively large

THC ranks, where THC-RCCSD performs similarly to regular

RCCSD.

In this work, we tested convergence by tracking the

coupled cluster energy. We checked that when the energy

became stationary, the coupled cluster residuals are small.

The T amplitudes also are converged, but the individual factor

FIG. 6. Number of iterations of THC-RCCSD to reach 10☞6 H difference in

energy.

matrices Yn and Z of Eq. (42) do not necessarily converge

uniquely. Presumably this is inherited from the flexibility

of the CPD. Note that, for example, if we scale one factor

by λ and another factor by 1/λ, the reconstituted tensor is

unaffected. This same freedom occurs in, for example, the

eigen decomposition, where the normalization of the eigen-

vectors is arbitrary. Additional constraints may be imposed to

remove this flexibility, and we will explore doing so in future

work.

4. Larger systems

Having seen how the THC-RCCSD method performs for

various THC decomposition ranks, we tested the method on a

set of small- and medium-sized molecules introduced in pre-

vious work on THC.4 Technical details of the calculations,

including molecular geometries and reference energies, are

provided in the supplementary material. We chose the ranks

of the THC decomposition of the amplitudes and integrals to

be similar to the number of functions NRI in the basis used

in the RI approximation. Energies, differences with respect to

regular coupled cluster, the number of CC iterations, and norm

of final residuals are presented in Table II. We used RI for all

these calculations.

Let us highlight some results in Table II. As THC-RCCSD

is an approximation to the regular CC equations, the full resid-

uals may not be zero because the number of CC equations is

usually much larger than the number of parameters of THC-

RCCSD. Interestingly, while the norm of the doubles residuals

is not negligible in THC-RCCSD, the error in the energy is

quite low. This contrasts with the conventional CC, where the

difference of energy with the final value during iterations is

proportional to the norm of the residuals. Also, we observed a

generically faster convergence of energy in THC-RCCSD for

larger ranks.

We note that our results are on par with calculations of

Hohenstein et al.,4 but similar errors are achieved with ranks

which are roughly half as large. Presumably this is because

in previous work, most of the factors in the THC decompo-

sition of the amplitudes were kept fixed (except Z), whereas

our scheme optimizes all factors, therefore providing greater

flexibility and reaching the exact decomposition quicker. It

should be noted that most of the time in our calculations was

spent on the decomposition of the Hamiltonian rather than

on the solution of approximated CC equations. Quadrature-

based methods for building THC, such as those described in

Refs. 2 and 53, may be much faster than iterative approaches

and reach the same accuracy as ALS-based THC with about

3×more factors.53 Hence we recommend a hybrid scheme for

future development of THC-based methods: one may build

the THC of the Hamiltonian with real space quadratures,

as shown in Ref. 3, and later solve for decomposed clus-

ter amplitudes as described here. Again, we emphasize that

our scheme is not limited to THC and can be applied to

many other decompositions, which is the topic of ongoing

investigation.

5. Comparison with other methods

As the use of tensor decompositions in quantum chemistry

has become more popular recently, here we aim to compare

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-007743
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our approach with existing work. Our technique extends the

approach of Hohenstein et al.,2–4 who first introduced the THC.

Our Algorithm 1, used for the two-electron integrals, is similar

to the one introduced in Ref. 2 up to implementation details.

These authors abandoned the optimization-based THC decom-

position in favor of real space quadratures, first introduced in

Ref. 3, and presented a quadrature-based O(N4) CCSD method

in Ref. 4. The method of Hohenstein et al. used fixed factors

W in the decomposition of the integrals [see Eq. (14) for the

definition of W ], and likewise amplitudes. Our contribution

extends their approach by allowing all factors in the THC

decomposition of amplitudes to be optimized. Additionally,

our scheme is not tied to a particular form of the decomposi-

tion, which should stimulate the development of other similar

methods.

Related is recent work of Hummel et al.14 Those authors

developed a symmetric ALS algorithm to decompose the elec-

tron interaction tensor in their periodic CCSD theory. Subse-

quently, they demonstrated that by using THC decomposed

interaction for a single term, it is possible to reduce the scal-

ing of distinguishable CC doubles or linearized CC theories

to O(N5) with very low approximation errors. The difference

with our approach is the use of the factorization of amplitudes

along with the factorization of integrals.

Lastly, we wish to discuss closely related studies of

Benedikt et al.12,13 These authors used CP decomposition for

both the two-electron interaction and the cluster amplitudes.

Although the idea of their CCD method is quite similar to

ours (apart from the choice of the decompositions), the actual

method of solving for the 2T amplitudes is very different.

These authors build 2T amplitudes in the CP format in the tra-

ditional way and then reduce the rank of the resulting tensor by

an iterative algorithm at each CC iteration. This, presumably,

is computationally expensive, as their CP-decomposed CCD

method was applied only to small test systems. Our scheme

can, in principle, be applied to the CP format as well but does

not have the overhead of a recompression step.

V. CONCLUSIONS

Systematically dependable quantum chemical methods

rely on solving the Schrödinger equation, but unfortunately do

so at a significant and often impractical computational cost. For

many-body methods such as coupled cluster theory, the cost

can be explained simply: the various objects of the theory are

high-order tensors which must be contracted with one another,

and the contraction of two high-order tensors is computation-

ally costly. Tensor decompositions lower the cost by writing

high-order tensors as sums of products of low-order objects

and are one of the most promising ways to apply many-body

theories to large systems.

In this work, we have shown how the combination of ten-

sor hypercontraction and canonical polyadic decomposition

allows us to solve the closed-shell CCSD equations with O(N4)

scaling by solving directly for the factors which decompose

the cluster operator [Eq. (41)]. By increasing the dimensions

of these factors (i.e., by increasing the rank), we can approach

the exact CCSD result in a more or less systematic fashion and

can achieve results within 0.1 mH of the exact CCSD answer

with ranks on the order of the size of the basis. Our alternat-

ing least squares method improves over previous studies of

THC in coupled cluster theories4,10 where fixed real-space

quadratures were used to build the decomposition of clus-

ter amplitudes and provide more accurate results for smaller

ranks. The proposed scheme, however, is general and can be

applied to any decomposition, as well as readily extended to

more sophisticated coupled cluster theories. Among other pos-

sibilities, we plan extensions to the unrestricted CC and our

own symmetry-projected CC theories.22,23,54 Lastly, we should

mention that coupled cluster methods with decomposed ampli-

tudes are much more suitable for parallelization than are the

traditional ones because the communication becomes much

cheaper. While our work along the aforementioned lines is

still in the early stages, we hope that these low-scaling coupled

cluster methods will help make large-scale CCSD calculations

essentially routine.

SUPPLEMENTARY MATERIAL

See supplementary material for the THC gradient expres-

sions, complete specification of test systems, and least squares

coupled cluster expressions.
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APPENDIX: WIRING DIAGRAMS

We have made extensive use of wiring diagrams to sim-

plify the representation and manipulation of complex tensor

expressions. This graphical notation is similar to the usual

diagrammatic notation used in many-body theory but not iden-

tical. For completeness, we here describe the basic semantics

of our diagrams.

In our notation, tensors are represented by shapes. Typ-

ically a d-order tensor is represented by a polygon with d

corners (and a second-order tensor by a circle), though we have

not followed this convention universally. Indices are denoted

by lines; a line connecting multiple tensors is to be summed

over and open lines correspond to free indices. If a particular

element of a tensor expression is required, we label the open

lines.

To be concrete, a matrix product would be represented by

(A1)

and a more general contraction of a fourth-order tensor with a

third-order tensor can be drawn as

(A2)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-007743
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Diagrams can be used to readily estimate the cost of contrac-

tions (and other operations). The cost Ω of contracting two

tensors over L indices of size {λ}L
1

to a tensor with M indices

of size {µ}M
1

scales with respect to N as

Ω = O(N
∑L

l=1
logN dim({λ}l)·

∑M
m=1

logN dim({µ }m)). (A3)

One can simply estimate the scaling of a contraction by multi-

plying the dimensions of each open line in the result together

with those of each closed line. For example, a contraction of

two third-order tensors of size N × N × N over two indices of

size N scales as O(N4),

(A4)

Other operations that can be represented pictorially are of an

outer product type. This situation corresponds to merging the

nodes together and leaving all lines in the final structure

(A5)

Note that if one reshapes the fourth-order tensor above into a

matrix with combined indices rp and sq, then the result will

coincide with the usual Kronecker product of matrices, where

we recall that the Kronecker product is

C = A ⊗ B⇔ Crp,sq = Ap,q · Br,s. (A6)

The cost of product-type operations is

Ω = O(N
∑M

m=1
logN dim({µ }m)), (A7)

where {µ}M
1

are M free indices in the resulting tensor.

For our purposes, we slightly extended the diagrammatic

notation by introducing summations over an index shared by

more than two terms. We denote such indices by branching

lines with a dot at the branching point. This dot can be inter-

preted either as an index of the summation itself or as a fully

diagonal tensor whose elements are contractions of Kronecker

deltas, e.g.,

Kp,q,r,... =

∑

α

δαp δ
α
q δ

α
r . . . . (A8)

The latter interpretation means that all contractions in the dia-

grams can be thought pairwise as in the normal case. Although

not quite standard, this extension has been used before in the

tensor network literature.55 Using our new notation, contract-

ing a canonical polyadic decomposition of a third order-tensor

back to a full tensor can be denoted as

(A9)

If the dimensions of this tensor are N × N × N and the rank

of the decomposition (the dimension of the auxiliary index α)

is N, then the cost of rebuilding the original tensor from its

decomposed form will scale as O(N4). We note that Eq. (A3)

holds in this case just the same way as with normal pairwise

contractions.

Let us also list diagrammatic representations of common

matrix operations. The Frobenius norm of a tensor, which we

recall is

‖A‖ =

√

∑

pqrs...

Apqrs... A∗pqrs... (A10)

is given diagrammatically as the square root of a tensor fully

contracted with its own conjugate,

(A11)

We have used a darker color to denote complex conjugation

here.

The column-wise Khatri-Rao product is

D = A ⊙ B ⇔ Dqp,α = Ap,α · Bq,α. (A12)

Note that A and B should have the same number of columns

to be compatible. The resulting matrix D can be reshaped to a

third-order tensor with indices p, q, and α. Diagrammatically,

the Khatri-Rao product is

(A13)

Here we used a thick line to denote a combined index qp.

Note also that the canonical polyadic decomposition can be

conveniently expressed through the Khatri-Rao product, which

is also reflected by the diagrams

(A14)

Finally, we point out that wiring diagrams provide an easy

way to calculate derivatives. A partial derivative of a tensor

network with respect to one of its component tensors is simply

the network with that tensor removed.
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