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TENSOR STRUCTURES ARISING FROM AFFINE LIE ALGEBRAS. II 

D. KAZHDAN AND G. LUSZTIG 

INTRODUCTION 

In Part I of this paper we studied a category &" of representations of an 
affine Lie algebra with central charge K - h (where K E C - Q>o) and we de-
fined a tensor product functor which associates to several objects-of &K another 
object of &K' Here we will establish the commutativity isomorphism and the 
associativity isomorphism for this tensor product functor. 

The numbering of sections will continue that of Part L 
In §9 we consider certain modules of coinvariants and prove some finiteness 

results for them. (The idea to consider such spaces of coinvariants has been 
used in the case of &K in the work of Beilinson and Feigin cited in the in-
troduction to Part L) In §§1O-12 we introduce integrable connections on these 
modules of coinvariants; these should be regarded as generalizations of the 
Knizhnik-Zamolodchikov equations. In § 14 we establish the commutativity 
isomorphisms, and in §§15-18 we establish the associativity isomorphisms. 

We are very indebted to A. Beilinson for many useful discussions. The idea 
to use formal schemes in the definition of the associativity isomorphism was 
suggested to us by him; the definition of the diagona,l modules (see 16.10), which 
plays a crucial role in the proof, is due to A. Beilinson. 

We also thank Lepowsky and Huang for useful discussions. 
We have benefited from reading Deligne's manuscript [De], which contains 

a discussion of the connection between tensor categories and local systems on 
the moduli space of stable marked curves of genus O. 

CONTENTS 

9. Finiteness of coinvariants 
10. Vector fields 
11. Sugawara operators and coinvariants 
12. Connections 
13. Tensor product and coinvariants 
14. Commutativity isomorphism 
15. Degeneration of quadrics (I) 
16. Degeneration of quadrics (II) 
17. Degeneration of quadrics and connections 
Received by the editors October 5, 1992. 
1991 Mathematics Subject Classification. Primary 20G99. 
Both authors are supported in part by the National Science Foundation. 

949 

© 1993 American Mathematical Society 
0894-0347/93 $1.00 + $.25 per page 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



9S0 D. KAZHDAN AND G. LUSZTIG 

18. The associativity isomorphism 
Appendix: Induced modules 

9. FINITENESS OF COINVARIANTS 

To n objects in &" and to n distinct points of pi with given charts, one 
can associate a finite-dimensional vector space, using coinvariants in the usual 
tensor product with respect to an action of the Lie algebra g with coefficients 
regular functions on pi minus the given points. When the n points and the 
charts are allowed to vary in all possible ways, we thus obtain a vector bundle 
over the space of parameters. 

9.1. We shall denote H = PGL2(C). Any element y E H, represented by a 
matrix (~:), defines an automorphism z ....... y(z) = ;::~ of the projective line 
pi = C u {co}. 

We fix a finite set S with lSI ~ 2 . 
We consider the commutative diagram 

r' ------+ H S x pi 

1 1 
r ------+ H S 

where r is the the affine open subset of H S consisting of all (ys) such that 
ys(O) (s E S) are lSI distinct points of pi, r' is the affine open subset of 
H S x pi consisting of all «ys), z) such that z and ys(O) (s E S) are lSI + 1 
distinct points of pi , the horizontal maps are the obvious open imbeddings, 
and the vertical maps are given by «Ys)' z) ....... (ys) . 

9.2. Consider the free action of H on H S given by 

y: (yS)SES ...... (yYS)SES) 

and the free action of H on H S x pi given by 

y: «ys), z) ....... «yys), y(z». 

The open subsets r, r' of HS, H S X pi are H-stable; hence, by restric-
tion we have free actions of H on r, r'. The orbit spaces form again a 
commutative diagram 

1 
H\r ------+ 

We denote r = H\r and r' = H\r'. Then r is an affine open subset of 
H\Hs and r' is an affine open subset of H\(Hs x pi). 
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TENSOR STRUCTURES ARISING FROM AFFINE LIE ALGEBRAS. II 951 

9.3. Generally, for any complex algebraic variety X, we shall denote by qX] 
the C-algebra of all regular functions X --+ C . 

Let A = C~] , A' = qr/]. The surjective map r' --+ r in the diagram 
in 9.2 induces an imbedding of algebras A c A' ; we shall thus regard A as a 
subalgebra of A' . 
9.4. Let s E S and let f E A'. We consider u E r; we represent it by a 
point it = (Yt)tES in r (so that u is the H-orbit of it). Then z ....... (it, Ys(z)) 
is a well-defined regular function from a nonempty Zariski open set in pi to 
r' (independent of the choice of it). The composition of this function with 
f: r' --+ C is then a rational function pi --+ pi . The power series expansion 
of this rational function at 0 is denoted Ln P n ,s (u)€ n E C( (€)) . 

Then u ....... Pn s(u) is an element Pn s of A. It satisfies Pn s = 0 for n « o. 
We set' , , 

sf = LPn,s€n E A«€)). 
n 

Then f ....... sf is a homomorphism of A-algebras A' --+ A«€)) . 

9.5. For any s E S, we define a function Is E A' by the following requirement: 
the value of Is at the H-orbit of «Yt\ES' z) E r' is equal to 

(a) 

From the definition we have 
(b) sis = € -I and sis, E A[[€]] for s' =I- s. 
Lemma 9.6. The functions 

(a) (s E S; k '? 1) and 1 

form a basis of A' as an A-module. 

Let f E A'. For any s E S we can write sf = Ln<O as, n €n + gs where 
gs E A[[€]] and as,n E A are zero for n« O. Let r = Ln<o;sas,nls-n E A'. 

Since sis = €-I and s'ls E A[[€]] Vs' =I- s, we have 

s' : s'#s n<O 
Thus the function f -r when restricted to any fibre of r' --+ r (a projective 

line with some missing points) has no poles at those missing points and hence 
is constant. It follows that f - rEA. This shows that the functions (a) span 
A' as an A-module. 

We show that they are linearly independent. 
Assume that ao + Ls Ln::>O as, nfs = 0 in A' where ao' as, n E A and all but 

finitely many of them are zero. Our assumption implies for any s: 
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952 D. KAZHDAN AND G. LUSZTIG 

where f.ls E A[[f]] (see 9.5(b)). It follows that as n = 0 for all s and all n > O. 
Introducing this in our assumption we get also Qo = O. The lemma is proved. 
9.7. Assume that we are given a commutative C-algebra B and a homomor-
phism of C-algebras A -+ B . 

Tensoring the map A' -+ A((f)) (f 1--+ sf) with B over A we obtain a 
homomorphism of B-algebras B' -+ B 0 A A((f)), where B' = B 0 A A'. Com-
posing it with the obvious B-algebra homomorphism B 0 A A( (f)) -+ B( (f)) , we 
obtain a B-algebra homomorphism B' -+ B((f)) which will be denoted again 
by f 1--+ sf. These maps form together a B-algebra homomorphism 
(a) B' -+ B((f))S. 

Recall that fs E A' is defined in 9.5. We shall denote the element 10 fs E B' 
again by fs. 
Lemma 9.S. We have an exact sequence of B-modules 

(a) 0 --+ B ~ B' EB B[[f]]S ~ B((f))S -+ 0 

where a has as components the obvious homomorphisms and a ' has as sec-
ond component the obvious imbedding and its first component is minus the map 
9.7(a). 

Consider an element IfI = (lfIs)sES E B((f))S. We have IfIs = EnPs,nfn 
where Ps, nEB is zero for n «0 (s E S). We write IfIs = 1fI; + 1fI;' where 

I ~ n d /I B[[]] IfIs = L..Jn<oPs nf an IfIs E f. 

Let f = ES'ES En<ops' ,nfs-;n E B' . For any s E S, we have 

sf = L LPs' ,n((fs, ))-n E B((f)). 
s'ES n<O 

The terms with s' =1= s are in B[[f]] (see 9.5(b)); the remaining terms contribute 
En<oPs,nfn = 1fI;. Thus Cf) - IfI E B[[f]]S. This shows that the map a' is 
surjective. 

It is clear that a' a = 0 . 
Now let f E B' be such that sf E B[[f]] for all s. Using Lemma 9.6 (or its 

consequence over B) we can write uniquely f = bo + Es En>o bs, nfsn in B' 
where bo' bs, nEB and all but finitely many of them are zero. 

Our assumption implies for any s that bo + E >0 b f -n E B[[ f]]. It follows n s,n 
that bs,n = 0 for all s and all n > O. Thus, we have f = bo E B. The lemma 
is proved. 
9.9. Let Ll = A' 0 g. We shall regard Ll as an A-Lie algebra with 

[f c , ( c' ] = f ([ c , c' ] 
for all f, I E A' and all c, c' E g. (We write fc instead of f 0 c.) 

We have a natural homomorphism of A-Lie algebras 

(a) 

given by fc 1--+ ESESosCfc). 
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The fact that (a) is a Lie algebra homomorphism follows from the residue 
theorem for differential forms on pi . 

Let Il.B be the B-Lie algebra B ® All. = B' ® g. 
Tensoring (a) with B we obtain a B-Lie algebra homomorphism Il.B -+ 

B ® A~. Composing this with the obvious B-Lie algebra homomorphism B ® A 

~ -+ ~ ,we obtain a homomorphism of B-Lie algebras 

(b) 

9.10. Tensoring the exact sequence 9.8(a) with 111 we deduce that we have an 
exact sequence of B-modules 

(a) 

where 0 has as components the obvious Lie algebra homomorphisms and 0' 

has as second component the obvious imbedding and its first component is 
minus the map 9.9(b). In particular, Il.B is identified under 9.9(b) with a Lie 
subalgebra of ~ . 

9.11. Assume that for each s E S we are given a smooth gB-module V~ with 
central charge K - h . 

Let Y = ®SES V~ (tensor product over B). We regard Y as a ~-module 
as in 1.13 and, via 9.9(b), as a Il.B-module. We want to study the B-module of 
coinvariants YA = Y/Il.BY. 

B 

Proposition 9.12. Assume that for each s E S there exists Ns ~ 1 such that 
V~(Ns) generates V~ as a iB-module. Then 

(a) Y is the sum of Il.BY and of the image of ®SES V~(Ns) in Y. 
(b) Ifwe assume in addition that Vs(Ns ) is a finitely generated B-module. 

then the B-module of coin variants YA is finitely generated. 
B 

Clearly (b) follows from (a). We now prove (a). We have 

V~ = L Q!V~(Ns) for all s E S. 
t~O 

It is then enough to verify the following statement. 
For any fs ~ 0, any es E Q! ' and any Ys E V~(Ns) (s E S) we have 

s 

(a) ®(esYs) E ® Vs(Ns) + Il.BY. 
sES sES 

We will prove (a) by induction on f = ESES f s • 
For f = 0, (a) is trivial. Hence, we may assume that fs ~ 1 for at least one 

s. We fix such an s. 
We may assume that es = (f-IC)e; for some e; E Q! -I and some c E g. 

s 
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954 D. KAZHDAN AND G. LUSZTIG 

Let w = ®s'(C:s'Ys') and let w' = ®s' : s'#(C:s'Ys') ® (C:;ys). By the definition 
of the dB-module structure on Y we have 

(fsc)(w /) = W + I)c:;)ys) ® (e l fsc)c:s/ s) ® ( ® (C:s,ys,)). 
Sl i's s'i's, Sl 

If Sl #- s, we have Sl fs E B[[€]]; hence, 

(see 1.S(c)). 
Using the induction hypothesis, it follows that 

(c) W'(Sl) E ® Vs,(Ns') +dBY. 
s' 

From (c) and (b) we see that w E ®S'ES Vs,(Ns') + dBY and the induction 
step is established. 

9.13. The module of coinvariants Y/dBY behaves in a very simple way under 
base change. Namely, if B -+ Bl is a homomorphism of B into another 
commutative C-algebra Bl with 1, then we can form the t -module Y1 = 

I 

Bl ®B Y analogous to Y and the B1-module of coinvariants Y1/dB Y1. We 
I 

have a natural isomorphism of B1-modules 

(a) Bl ®B (Y/dBy) ~ Yt!dBI Y1· 

Indeed, we have an exact sequence of B-modules 

(b) 

Its tensor product with Bl over B is again an exact sequence, and it maps 
naturally to the exact sequence analogous to (b): 

d® Y1 - Y1 - Bl ®B (Y/dBy) - 0 

d®Y1-Y1 -

This clearly implies (a). 

1 
-0 

9.14. Assume now that, for each s, we have ~ = B ® ~ where ~ is the 
generalized Weyl module in ~K corresponding to the nil-module ~ of q€]®g. 
We shall show that in this case, the space of coinvariants Y/1 = Y / dB Y is 

B 
particularly simple. 

Proposition 9.15. In the setup above, the canonical homomorphism 

(a) 
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induced on coinvariants by the obvious inclusion 

is an isomorphism. Moreover, we have 

(B® (~A;))g =B® (( ~A;)J. 
The last assertion is obvious. We now prove the first assertion. We will 

assume in the proof that B is a finitely generated C-algebra. (Using 9.13, one 
can reduce the general case to the case where B = A , which is certainly a finitely 
generated C-algebra.) 

We can regard A; as a g+ -module with 1 acting as multiplication by K-

h. Then (g, C[t-1]t-1 ®g, g+ ,A;) form a split induction datum (see A.l), 
and with the notation of A.l we have ~ = A;b. It follows easily that 
(g~, (B[t-1]t-1 ® g)s , (g~)+ , B ® (®sA;)) is a split induction datum and 
Y = B ® (®~) = (B ® (®sA;))b . This is clearly a smooth g~-module; hence, 
it extends naturally to a t-module. From the definition of a split induction 
datum, it then follows that (t, (B[t-1]t-1 ® g)s, (t)+ , B ® (®sA;) is a 
split induction datum with Y = B ® (®~) = (B ® (®sA;))b. (Note that the 
(g~t -module B ® (®sA;) extends naturally to a (tt -module.) 

In particular, using A.2, we have that 

Y = U(g:!) ®U(~)+) (B ® ( ®A;) ) 
s 

as ~-modules. 
We denote h = t. We consider its sub-Lie algebras h+ = (i!t , hi = dB' 

and h' + = B ® g. From 9.10 it follows that h = hi + h+ and h'+ = hi n h+ . 
Using now A.7(a), we see that (a) is surjective. 

Assume that the proposition is known whenever B is a finite-dimensional 
commutative C-algebra. We shall deduce the general case from this as follows. 
We only have to show that (a) is injective. Let y be an element in the kernel of 
(a). If we tensor (a) over B with any finite-dimensional quotient algebra Bl of 
B, we obtain the map analogous to (a), for Bl instead of B. (We use the fact 
that coinvariants behave well under base change; see 9.14.) By our assumption 
this new map is injective. Since the image of y in (Bl ® (®sA;))g is in the 
kernel of the map (a) (for B1), it follows that this image is zero. We now use 
the following known statement: if E is a finite-dimensional vector space over 
C and y E B®E has zero image in Bl ®E for any finite-dimensional quotient 
algebra Bl of B, then y = o. (We may assume that E = C and we use Krull's 
theorem .) 

We are therefore reduced to the case where B is finite dimensional over C. 
By 9.10, we can find a B-basis of hi = dB containing a B-basis of h'+ = B®g; 
moreover, since B is finite dimensional, we have (tt = B®(Wt ,and hence, 
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we can find a B-basis of h+ = (~t containing the B-basis of h'+ = B ® g 
considered above. These bases form together a basis of h to which A. 7 (b) is 
applicable. We thus obtain the required isomorphism (a). 

Proposition 9.16. Assume that for each s E S we have ~ = B ® ~ where ~ is 
an object in 19'". Then YjllBY is a finitely generated B-module. 

By 2.22, for each s we can find a surjective homomorphism of g-modules 
~' -+ ~,where ~' is a generalized Weyl module. Let y' be the IlB-module 
defined in terms of the ~' in the same way as Y was defined in terms of the 
~. The maps V; -+ ~ give rise to a surjective map of IlB-modules y' -+ Y , 
and this induces a surjective map of B-modules Y'jIlBY' -+ YjIlBY. By 9.15, 
Y'jIlBY' is a finitely generated B-module, hence so is YjIlBY. (Alternatively, 
we could have used 9.12 instead of 9.15.) 

9.17. Assume now that lSI ~ 3 and that we are given an element So E S; 
let S' = S - {so}. Let A -+ B = C be the algebra homomorphism given by 
evaluation at a point (YS\ES of r. Let ~ be objects of 19'" indexed by S. 
We assume that ~ = Va. Then Ile c t and YjlleY are defined as before. 

o 
(Here, Y = ®SES ~.) 

Replacing now S by S' , (YS)SES by (YS)SES' ,and (~)SES by (~)SES' , we ob-
tain similarly a Lie subalgebra Il~ c t' and a space of coinvariants y' j Il~ y' . 
(Here, y' = ®SES' ~ .) 

We have Y = Va ® y' , and the natural imbedding C = ~ c V~ gives by 
tensoring with 1 y' an imbedding y' = C ® y' c V~ ® y' = Y . 

Proposition 9.1S. The imbedding y' c Y described above satisfies ~y' c lle Y 
and induces an isomorphism on coinvariants: Y~ ~ Y Ac . 

Let h = t. Let h + be the Lie subalgebra of h consisting of all elements 
(.;S) such that ';S E g+ . Let h' = Ilc, regarded as a Lie subalgebra of h. Let 

o 
h'+ = Il~, regarded naturally as a Lie subalgebra of h'. It is clear from the 
definitions that h'+ = h' n h+ . From 9.1O(a) it follows that h = h' + h+ . 

We shall regard y' as an h + -module as follows. Let .; E g. If s 1= So ' then 
c5se acts on y' as in the i' -module structure. If s = So ' so that .; = .;' + dl 
with .;' E C( (f.» ® g and dEC, then c5s'; acts on y' as multiplication by 
d(1e - h). It follows easily from the definitions that U(h) ®U(b+) y' = Y. We 
may apply Proposition A. 7 (b) to these Lie algebras and to the h + -module y'; 
the proposition follows. 

10. VECTOR FIELDS 

In this section we study the vector fields on the manifold r (as in 9.2). 

10.1. A vector field on a smooth affine variety X over C is an element of the 
Lie algebra Der C[X] of derivations of the C-algebra C[X] (notation of 9.3). 
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10.2. We have C[GL2(C)] = C[gll' g12' g21 ' g22' (gllg22 - gI2 g21)-I] 

where gij are the entries of a matrix (:~: :~~) . 
Recall that H = PGL2(C). Let Ao = C[H]. We will identify Ao with the 

subalgebra of the coordinate algebra C[ G L2 (C)) consisting of invariants for the 
C* action given by gij r-t A.gij for all A. E C* . 

For i, j E {I, 2} we consider the vector field f}ij = glio /0 glj + 
g2i%g2j on GL2(C). 

We then have 
O f}ij - f}3-i , j 

g3-i,3-i g3-i, i = ~~~----~~----
o gij gIl g22 - gl2g21 

While the vector fields 0/0 gij do not preserve the subalgebra Ao ' the vector 
fields f}ij do and can therefore be regarded as vector fields on H. We use 
the following notation for these vector fields on H: f}ij = (-I)i-lf}i_j or 
equivalently 

f}12 = f) 
-I' 

f} 21 - -f} 
- I' 

Note that f}1' f}o' f} _I form an Ao-basis of the Ao-module Der Ao and a 
C-basis of the Lie subalgebra of Der Ao consisting of derivations of Ao which 
commute with the automorphisms of Ao defined by the various left translations 
in H. 

10.3. Let cp: H x pI --+ pI be the map cp(y, z) = y(z). To cp we may apply 
the vector field f}k with respect to the variable y or the vector field :z with 
respect to the variable z. A simple computation shows that 

(a) 

for k = -1 , 0, 1 . 
Let S and let 

1 1 

1 
be as in 9.1,9.2. Recall the notation A = C[~], A' = C[~']. We define also 

- ,I -, '";]{ -,H I 
A = C[~], A = C[~ ]. We have A C A and A = A c A = A . 

10.4. Given k E {I, 0, -I} and s E S, let f}k s be the vector field on H S 

which is f}k in the s-direction and is zero in th~ directions s' for all s' -:f. s. 
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Since r is an open subset of H S , we may regard Ok s as a vector field on 
r. 

It is easy to check that 

[°0 ,s' 0_ 1, s'] = d ss' ° -I ,s ' [ ° 0 ,s' ° I , s'] = -d ss' ° I ,s ' 
[Ol,s' O-I,s'] = 2dss'Oo,s' 

Hence the C-subspace 9'0 of Der A spanned by the elements Ok ,s for 
k E {I, 0, -I} and s E S is a Lie subalgebra. 

10.5. Let 9'1 be the set of all derivations of the algebra A which commute 
with the H-action on A. It is clear that 9'1 is a Lie subalgebra and an A-
submodule of Der A and that any derivation in 9'1 maps the subalgebra A 
into itself, so that we have a natural Lie algebra homomorphism 9'1 -+ Der A . 

Lemma 10.6. (a) The vector fields {Ok,slk E {I, 0, -I}, s E S} form a C-basis 
of 9'0' an A-basis of the A-module Der A and an A-basis of the A-module 
9'1' 

(b) The Lie algebra homomorphism 9'1 -+ Der(A) considered above is sur-
jective. 

The proof is standard. 
10.7. From the previous lemma we see that Ok s E 9'1; hence, it may be re-
garded as a derivation of the algebra A. 

The vector field Oks on H S may be regarded as a vector field on H S x pi 
(zero in the direction ~f pi), and this restricts to a vector field on the open set 
r' or to a derivation of A'; it is clear that this maps the subalgebra A' of A' 
into itself and hence defines a derivation of A' denoted again Ok ,s : A' -+ A' . 

Lemma 10.8. Let f E A' , and let s, s' E S. Write 

s' (Ok ,sf) = L qn,s,€n 
n n 

where Pn,s" qn,s' EA. (See 9.4.) Then 

qn ,s' + dss' (n - k)Pn_k ,s' = Ok )Pn ,s') 

for all n. (Here Ok,sfEA' and 0k)Pn,s,)EA are defined as in 10.7.) 

We regard f as a function on the open subset r' of H S x pl. Applying tz 
to f, regarded as a function of its last argument Z E pi , we obtain an element 
U in the quotient field of qr'] = A' . 

By definition, we have power series expansions at y = 0 

(a) f((y t ) , Ys,(y» = LPn,s'yn , 
n 

(b) (Ok,sf)((Yt ) , Ys,(y» = Lqn,s'yn. 
n 
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We apply the operator ty to (a); we obtain 

8f 8¢ '" n-I 8z «Yt ) , Ys'(Y)) 8y (Ys" y) = L..t npn,s'Y 
n 

(c) 

where ¢(Y, y) = y(y) . 
Recall from 10.3(a) that 0k(¢) = /+1 ~. Hence, if we apply the operator 

Ok to (a) (with respect to the s-coordinate Ys ), the left-hand side becomes 

8f k+18¢ 
(Ok ,J)( (Y t ) , Ys' (y)) + t5ss' 8 z «Yt ) , Ys' (y))y 8y (Ys' , y) 

while the right-hand side becomes Ln Ok ,s(Pn,s' )yn . From the equality of these 
two expressions, we see using (b) and (c) that 

We now compare the coefficient of yn in the two sides of the last equality. The 
lemma follows. 
Lemma 10.9. For any s E Sand k = 1,0, -1, we have 

I'I-k 
°k,sls=Js 

where Is E A' is as in 9.5. Moreover, 0k,sls, = 0 for s f= s'. 

We apply the previous lemma with f = Is,. By 9.5(b), we have Pn s' 
t5 n , -I and hence Ok, s (P n , s) = O. By the previous lemma, we have q n', s' + 
t5ss,(n-k)t5n_k , -I = 0; hence, qn ,s' = t5ss,t5n- k , -I . In other words, s' (Ok ,sis,) = 
t5ss,f.k- l • We have also s' (t5ss'Is~-k) = t5ss,f.k- 1 . Thus, s' (Ok,sls, - t5ss'Is~-k) = 0 
so that Ok, sis, - t5ss' fs~ -k = 0, as required. 

10.10. Let s f= s' in S. According to 9.5(b), we can write 

s'ls = Iss' + mss'f. + ... E AUf.]] , sis, = Is,s + ms'sf. + ... E A[[f.]] 

where Iss" mss' , Is's' ms' s are well defined elements of A. Let kss' E A' be 
defined by the equality 
(a) 

Clearly, we must have 
(b) 

From the definitions we have 
s -I -I I I k , = f. (f, + m , f. + ... ) - I ,f. - ,(, + m , f. + ... ) ss s s s s s s ss s s s s . 

This shows that skss' E AUf.]] and that the coefficient of f.o is mss' -lss,ls's. 
Since kss' is symmetric in s, s' , we have also that s' kss' E AUf.]] and the 
coefficient of f.o is ms's -lss,ls's. 
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If s" E S is different from s, s' , then sIt Is, sIt Is, E A[[€n and hence sIt kss' E 
A[[€n· 

Thus the function kss' when restricted to any fibre of r' -+ r (a projective 
line with some missing points) has no poles at those missing points and hence 
is constant. It follows that 

(c) kss' EA. 

We then have s kss' = kss' and similarly s' kss' = kss' . By the argument above, 
we then have kss' = mss' - Iss' Is's and kss' = ms's - Iss'ls's' In particular, we 
have 

(d) 

Using the definitions, we can write 

s' /. = c€ + d s /., = c' € + d' 
s a€ + b ' s a' € + b' 

where (a b) (a' b') 
cdc'd' = (~~) (equality of matrices over A) and b, b' are 

invertible in A. 
A simple computation shows that 

I -I 
ss' = db , I, =d'b,-I 

s s ' 
k - b- I - 'b,-I ss' - -c - -c , 

In particular, 

b' -I mss' = (b ) . 

(e) m ss' is an invertible element of A. 

Lemma 10.11. Let s =I s' in S. 
(a) We have 

(JI,s(kss') = -Is's' 

(Jljlss') = 1, 
(JI,s(ls,s) = 0, 

(Jo,s(kss') = kss' , 

(Jo,s(lss') = Iss' , 
(Jo,s(ls's) = 0, 

(JI,s(mss') = 0, (Jo,s(mss') = mss" 

(b) If s" E S is distinct from s, s' , then 

(J_I,s(kss') = kss,lss" 
2 

(J -I ,s (Iss') = Iss' , 
(J -I,s (Is' s) = Iss' Is' s + kss' , 

(J_I,s(mss') = 2lss,mss" 

(Jj,s,,(kss') = (Jj,S" (/ss') = (Jj,s,,(ls's) = (Jj,S" (mss') = O. 
Applying the derivation (Jj,S to 10.1O(a) (for j E {I, 0, -I}) and using 

10.9, we see that 

(c) l-j Is, = (Jj,s(lss')Is, + (Jj,s(ls's)1s + Is'slsl-j + (Jj,s(kss')' 

Recall that (Jj,s(A) c A and that the powers of Is and those of Is, are 
linearly independent over A (see 9.6). Hence if j = 1, from (a) we deduce the 
values of (J I ,s applied to kss" Iss' , Is's' 
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If j = 0, we replace in (c) fsls' by the expression 1O.10(a); using again the 
linear independence in 9.6, we deduce the values of eo,s applied to kss' , Iss' , 
Is's· 

If j = -1 , we replace in (c) fs2 fs' by the expression 

2 2 
Iss' fs' + Iss,ls'sfs' + Is'sfs + kss' fs + Iss' kss' , 

which follows by applying twice 1O.10(a). Using again the linear independence 
in 9.6, we deduce the values of O-I,s applied to kss' , Iss" Is's. 

Introducing these values in the identity 

OJ ,s(mss') = OJ ,s(kss') + OJ ,s(lss' )Is's + Iss' OJ ,s(ls's) 

which follows from 

(d) 

we obtain the values of OJ ,s(mss'). This proves (a). 
We now prove (b). Applying the derivation OJ,S'' to 1O.IO(a) (for j E 

{I , 0, -I}) and using 10.9, we see that 

0= OJ,S'' (lss' )fs' + OJ,S'' (ls's)fs + OJ,S'' (kss' ). 

Using again the linear independence in 9.6, we deduce that 0. s" annihilates J , 
kss' , Iss" Is's· Using now (d), we see that OJ ,s,,(mss') = O. The lemma is 
proved. 

10.12. Let ~2 be the set of all derivations in ~I which map the subalgebra 
A of A to zero. Then ~2 is a Lie subalgebra and an A-submodule of ~I ; 
moreover, the Lie algebra structure of ~2 is compatible with the A-module 
structure so that ~2 is an A-Lie algebra. 

Lemma 10.13. Let e = E j ,s aj ,SOj ,s be an element of 9 2 (here aj ,s E A). For 
any S =F Sf in S, we have 

2a_ l ,slss' + 2a_ 1 ,s'ls's + ao,s + ao,s' = O. 
Since e annihilates any element of A, it annihilates in particular the ele-

ments mss' of A. We write the condition m;)e(mss') = 0 explicitly, using the 
previous lemma; we find the desired identity. 

10.14. We fix an element So E S. Consider the isomorphism H S ~ H S given 
by (ys) 1-+ (1';) where 1'; = Ys and 1'; = y;lys for s =F so· o 0 0 

Under this isomorphism, the vector field Ok s on the second copy of H S 
, 0 

corresponds to a vector field (J k on the first copy of H S • 
It is clear that (Jk E 9 2 and that 

We have the following result. 
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Lemma 10.lS. The vector fields {uklk E {I, 0, -I}} form a (noncanonical) 
A-basis of the A-module ~2. 

The proof is immediate. 

10.16. The vector field Uk can be written as an explicit linear combination of 
the vector fields () k ,s . 

For this purpose, we write k = c - d with c, d E [1,2]. For any a, b E 
[1,2] and any s E S we consider the following function ra,b;s E A: 

a-c -I -I 
(Yt ) I--t (-1) (Yso Ys)db(Ys Yso)ac 

where the subscripts db and ac denote matrix coefficients; this is well defined. 
We have 

(a) Uk = L L ra,b;s()a-b,s· 
a, bE!1 ,2] sES 

In particular, the right-hand side of (a) belongs to 9 2 • 

10.17. Assume, for example, that S = {SI ' S2' SO}; let k = o. Then, the right-
hand side of 1O.16(a) evaluated at YS1 = (~I:) 'YS2 = (: ~I) 'Yso = (~~) 
is 

(a) 

10.18. On the other hand, if we assume that S = {SI ' so} and k = 0, then the 
right-hand side of 10. 16(a) evaluated at YS1 = (~~I) , YSo = (~n IS 

(a) 

11. SUGAWARA OPERATORS AND COINVARIANTS 

11.1. We preserve the setup of 9.1, 9.2, 9.3. 
In addition, we assume that we are given a commutative C-algebra B and a 

homomorphism of C-algebras A -+ B . 
We also assume that we are given a finite set .. with a fixed element t E ... 

Let g' = g" , and let I : g C g' be the inclusion of the t-summand. 
Moreover, we assume that for each S E S we are given a smooth g~-module 

V s with central charge K - h . 
The results in this section prepare the ground for the study of connections 

in § 12. (For that case, we should take .. with one element.) There will be a 
second application of these results in § 1 7; for that case we should take .. with 
two elements. 

11.2. Let Y = ®SES Vs (tensor product over B). Let ~o be as in 10.4, and 
let A : ~o -+ EndB(Y) {} I--t An be the unique C-linear map such that the 
following holds: for any S E S and any k E {I , 0, -I} , we have 

A =l@···@L. ®···@1 
(Jk ,s k, t 
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where Lk;t (on the s-position) represents the action of the Sugawara opera-
tor Lk on V s ' regarded as a iB-module via the natural imbedding iB C i~ 
induced by l: g -+ g' (see 1.15). 

Using the commutation formulas 10.4 for ()k,s and the commutation for-
mulas 1.14( c) for the Sugawara operators, we see that 

(a) A is a homomorphism of Lie algebras over C. 

Let 9 1,92 be as in 10.5, 10.12. 

Lemma 11.3. Let A' : 9 1 -+ EndB(Y) be the unique A-linear map whose restric-
tion to 9 0 is equal to A (see 11.2); let A" : 9 2 -+ EndB(Y) be the restriction 
of A'. Then A" is a homomorphism of A-Lie algebras. 

Let a = EiPiai and a' = EjP;a; be two elements of 9 2 ; here Pi' P; E A 
and ai' a; E 9 0 . We have 

The lemma is proved. 

11.4. Let d = A' ® g', dB = B ® A d be the Lie algebras defined in 9.9 (for 
g' instead of g). As in 9.9(b), we have a natural homomorphism of B-Lie 
algebras 

(a) 

11.5. We regard Y as a g~-module as in 1.13 and, via 11.4(a), as a dB-module. 
In the following lemma we assume given s E S, k E {I , 0, -I}, f E A' , 

and c E g'. We define c E g' to be the projection of c onto the t-summand 
of g' , see 11.1. For any a E S , we write 

a(()k,J) = Lqn,a€n 
n 

where Pn a' qn a EA. 
We define a B-linear map 6 k ,s,a : Y -+ Y by 

6 k ,s,a = 1 ® 1 ® .... ® (L()k,s(Pn,a)€nc) ® ... ® 1 ® 1 
n 
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Lemma 11.6. For any y E y, we have 

(a) AOk,Yfc)y) + L6k,s,uY = (fc)(Aok ,/) + ((()k,J)C)y. 
uES 

We may assume that y = ®s'Ys' with Ys' E V s" Using the definitions we see 
that the left-hand side of (a) is a sum of terms, one for each (J E S; the term 
corresponding to (J = s is 

the term corresponding to (J =f:. s is 

(LPn,u€n CYu ) ®Lk;tYs ® ( ,® Ys') + (L ()k,s(Pn,u)€n CYu ) ® ( ~Ys'). 
n s#s,u n siu 

The right-hand side of (a) is a sum of terms, one for each (J E S; the term 
corresponding to (J = s is 

(LPnJnC(Lk;tYs) + Lqn,s€nCYs ) ® ( ®Ys'); 
n n 1# 

the term corresponding to (J =f:. s is 

Using the identity qn,u + tSsu(n - k)Pn-k,u = ()k,s(Pn,u) (see lO.8) we can 
cancel several of the terms above; it remains to verify the following identity: 

Lk;t( LPn,s€nCYs ) + L(n - k)Pn_k,S€ncys = LPn,s€nc(Lk;tYs) 
n n n 

for all Ys E Vs' This follows from (€nc)(Lk;tYs) - Lk;t(€ncys ) = n€n+kcys' (In 
the right-hand side we have c and not c, as in 1.14(b), since L k . t acts only 
through the t-component of g~ .) , 
Lemma 11.7. For any Y E Y and any a E 9 2 , we have 

A~((fc)y) = (fc)(A~y) + (a (f)C)(y). 

We can write a = Ek,sak,s()k,s with ak,s EA. Using the previous lemma 
we see that it is enough to show that for any (J we have Ek,s ak ,s6k ,s,u(Y) = 0. 

This follows from the definition of 6 k s' since Ek s ak s()k s(Pn u) = 
a(Pn,u) = 0, by the definition of 9 2, ' " , , 

Lemma 11.8. For any a E 9 2 , the endomorphism A~ of Y maps the B-
submodule aBY into itself. Hence it induces an endomorphism (denoted again 
A~) of the B-module of coin variants y/ay. 

This follows immediately from the previous lemma. 
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Lemma 11.9. Let e E 9 2 , and let Y E Y be of the form Y = ®sYs where 
Ys E V s(l) for all s. We have A~ (y) E dBY. 

Since Ys E V.r(I) , we see from the definition of the Sugawara operators that 

1 
Lo)Ys) = 2K I:CpcpYs ' 

p 

where (cp) is a basis of g such that (cp ' cp') = ~pp" (We identify g with a 
Lie subalgebra of g' via I, see 11.1.) Hence we have Ao (y) = 0 . 

I.s 

Moreover, Ao (y) = 1" Ep(cpcpYs) ® (®u#Yu)' 
0.5 

Applying the element cp E g (regarded as element of d) to the vector (cpYs)® 
(®u#Yu) we obtain 

(cpcpYs)® (®Yu) + ~(cpYs)®(cpYs')® ( ®,Yu). 
u#s s #s u#s , s 

Hence Aoo.s (y) is equal to - 2~ Ep Es# (cpYs) ® (cpYs') ® (®u#.s' Yu) plus an 
element of dBY. 

Next, we have Ao_l •s (y) = ~ Ep(f-1Cp)(CpYs) ® (®u#sYu)' 
Applying the element fscp Ed to the vector (cpYs) ® (®u#sYu) ' we obtain 

((f-1Cp)CpYs)® (®Yu) + ~(cpYs)®(lss'CpYs')® ( ®,Yu). 
u#s s # u#s,s 

(Here we use that, for s' i- s, we have s' fs - Iss' E fA[[f]] so that 

C'fs-1ss')cpYs=0 for YsEVs(I).) Hence Ao_I.,(Y) is equal to 

-.!.. L L Iss' (cpYs) ® (cpYs') ® ( ® Yu) 
K , , p s# u#s,s 

plus an element of dBY . 
We now write e = Ek,s ak ,/lk,s with ak,s EA. From the previous formulas 

we see that A~ (y) is equal to 

- 2~ L ~ rs,s'(cpYs) ® (cpYs') ® ( ®, Yu) 
p s#s u#s,s 

plus an element of dBY; here, the second sum is taken over unordered pairs 
s i- s' (unlike in the earlier sums) and rs,s' = 2a_ 1 jss' +2a_ 1 ,s,ls's +ao,s +ao,s" 
The last expression is zero, by 1 0.13. The lemma is proved. 

Lemma 11.10. Assume thatfor each s E S there exists Ns ~ 1 such that Vs(Ns) 
generates V s as a g~-module. Then for any e E 9 2 we have A~ N (Y) C dB Y , 
where N = TIsNs ' 
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Assume that N ~ 2 and that the lemma is already known for N replaced 
by N' with 1 ~ N' < N. Then for some s = So we have Ns ~ 2. Let V: be 

o 0 
~'f " , the KB-submodule 0 V. generated by V. (N - 1) , and let V. = V. / V. . 

·0 ·0 So ·0·0 ·0 

The induction hypothesis is applicable when ~ is replaced by ~' (resp. 
o 0 

by ~") and the other ~ are left unchanged; indeed, V: is generated by 
o 0 

V: (Ns - 1) and V; is generated by V; (1) (as g~-modules). 
o 0 0 0 

Let Yo = ®s :S#O VS (tensor products over B). Then Y = Vso Q9B Yo. We 
y " "" set = ~ Q9B Yo' Y = VS Q9B Yo· o 0 

We have an exact sequence 0 -+ V: -+ Vs -+ V; -+ o. This induces an 
000 

exact sequence 

(c) y' L Y ..!!..... y" -+ o. 
Let N" = N/Ns ' N' = (Ns - I)N". Let Y E Y. By the induction hypothe-

o 0 

sis, p(A~N" (y)) = A~N" p(y) is contained in dBY"; hence, by the surjectivity 
of p, it is contained in p(dBy). From the exactness of (c) it follows that 
A~ N" (y) is the sum of an element of dB Y and an element in the image of y' . 

This last element is annihilated by A~ N' , by the induction hypothesis. Hence 

A~N'+N" (y) is contained in A~N' (dBy) and this last set is contained in dBY, 
by 11.8. Thus, A~N(y) is contained in dBY. (Note that N = N' +N".) Thus 
the lemma holds, under our inductive assumption. 

We are therefore reduced to verifying the lemma in the special case where 
N = 1. In this case, we have that Y is the sum of dBY and of the image of 
®s V s(l) (see 9.12) and A~ is zero on the last submodule (see 11.9). It follows 
that A~(Y) = A~(dBY) and this set is contained in dBY, by 11.8. The lemma 
is proved. 

Proposition 11.11. Assume that for each s E S there exists Ns ~ 1 such that 
Vs(Ns) generates Vs as a g~-module. Then A~(Y) C dBY for any <! E 9&2. 

Since 9 2 is generated as an A-module by uk (k = 1,0, -1) (see 10.15), 
it is enough to prove the lemma in the case where <! = uk. We may regard 
A~ as B-linear maps Y/dBY -+ Y/dBY (see 11.8). These maps satisfy the 

k 
commutation relations 10.14 between the uk (see 11.3). Thus they define a 
complex representation of the Lie algebra sI2(C). In particular, for any vector 
Y E Y/dBY, the C-vector subspace P of Y/dBY spanned by the elements 

(a) 

(for various a, b, c E N) is stable under this action of SI2(C). The endomor-
phisms A~ of Y / dB Yare nilpotent (11.10) and hence only finitely many of 

k 
the elements (a) are nonzero. Thus, P is a finite-dimensional complex repre-
sentation of sI2(C) in which the three generators uk act nilpotently. As it is 
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well known, this implies that the s12(C)-action is zero on P. In particular, we 
have Au" (7) = O. Since y was arbitrary, we have A" = 0 on YjD.BY. The 

k ~ 

proposition is proved. 
Corollary 11.12. In the setup 0/10.16 and with the assumption o/the proposition, 
we have 

E Era,b;sAlJa_b)y) C D.BY 
a,bE[I,2]SES 

for all Y E Y. 

12. CONNECTIONS 

In this section we define an integrable connection on a space of coinvariants 
in a tensor product, using Sugawara operators. 
12.1. We preserve the setup of 11.1 and reinforce the assumptions there by the 
following ones: 

B = A, g' = g, and Vs = A 0 ~ where ~ are given objects of &'K. 
We may identify ~ with a subspace of Vs via Y --+ 10 y. 

12.2. We begin with some generalities on connections. 
Let .9i' be a commutative C-algebra with 1. Following Grothendieck [G, 

§20.5], we define Q~ = J jJ2 where J is the kernel of the natural algebra 
homomorphism .9i' 0 c .9i' --+ A (a0a' 1-+ aa') ; thus J is an ideal of .9i' 0 c .9i' . 

"I . c ",' " <Z' Then UN IS naturally an A-module: lor a E A and LJj a j 0 a j E J we 
("" ") '" ' " ",' "( h d r h ld set a LJj a j 0 a j = LJj aa j 0 a j = LJj a j 0 aa j t e secon equa Ity 0 s 

modulo J2). Let d : .9i' --+ Q~ be the .9i' -module homomorphism given by 
d(a) = a 0 1 - 1 0 a . 

Let M be an .9i' -module. A connection on M is, by definition, a C-linear 
1 . 

map V: M --+ QN0NM such that V(am) = d(a)0m+aV(m) for all a E.9i' 
and m EM. 

Let Der.9i' be the set of algebra derivation of .9i' . It is naturally a (left) .9i'-
module and a C-Lie algebra, with bracket given by the commutator of operators. 

From the definition, it follows that / 1-+ / d defines an isomorphism of 
.9i' -modules HomN(Q~,.9i') ~ Der.9i' . 
12.3. To a connection V on an .9i' -module M, we can associate a map 
(a) Der.9i' --+ EndcM (8 1-+ Va) 
as follows: for any 8 E Der.9i' , Va: M --+ M is defined as the composition of 
V: M --+ n~ 0 N M with 801M: Q~ 0 N M --+.9i' 0 N M = M (we regard 8 
as an element of HomN(n~,.9i'), as above). 

We have the following identities: 
(b) Va(am) = 8(a)m + aVa(m), 

(c) 

for all a, a' E .9i' , 8, a' E Der.9i' , and m EM. 
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12.4. From now on we will restrict ourselves to the case where J2I has the 
following property: 

(a) Q~ is a reflexive J21-module . 

This property is satisfied if, for example, J2I is the coordinate ring of a smooth 
affine variety over C or a regular finitely generated local C-algebra. Another 
example is the Artin algebra J2I = C[f]/(fn ) for n 2: 1. In this case, any finitely 
generated A-module is reflexive and, in particular, (a) holds (although Q~ is 
not free over J2I .) 

12.5. Under the assumption 12.4(a), Q~ can be reconstructed from Der J2I 
as Q~ = Hom.w(Der J2I ,J2I), and we see that giving a connection V on an 
J21-module M is the same as giving a C-linear map 

(a) Der J2I ---> EndcM (8 r--. Va) 

satisfying 12.3(b),(c); this last map will be also referred to as a connection. 
We say that this connection is integrable if (a) is a Lie algebra homomor-

phism (where EndcM is a Lie algebra with bracket given as commutator of 
operators). 

Lemma 12.6. Assume that either 
(a) J2I is the coordinate ring of a smooth affine variety over C, or 
(b) J2I is a regular finitely generated local C-algebra. 
Let M be a finitely generated J21-module which admits a connection V. Then 

M is a projective J21-module. 

The proof will be given in 12.13. 

12.7. We return to the setup in 12.1. The A-module Y = ®SES Vs (tensor 
product over A) is the same as A @ (®s~) (tensor products over C); it has 
an obvious connection VO , given by 

V~(fy) = 8(f)y 

for all f E A and y E ®s ~ (tensor product over C). This connection is 
integrable. 

Let VI : gl ---> EnddY) be the unique A-linear map such that 
I 0 I Va = V 1C(8) +Aa: Y ---> Y 

for any 8 E gl ; here, 1C denotes the canonical map gl ---> Der A (see 10.5) 
and A' is as in 11.3. 

Lemma 12.8. (a) For any y E Y, any f E A, and any 8 E gl' we have 
V~(fy) = fV'~(y) + ((1C8)f)y· 

(b) VI is a homomorphism of C-Lie algebras. 

(a) follows from the definitions. Using (a) we see that to prove (b) it is enough 
to show that the restriction of V I to go is a Lie algebra homomorphism. 
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Using 11.2(a) and the integrability of the connection VO, we see that it 
is enough to verify that for any 8, 8' E 9 0 we have V~Aa' = Aa, V~ as 
endomorphisms of Y. 

This follows from the definitions, since the Sugawara operators have "con-
stant" coefficients and such coefficients are annihilated by all derivations of A. 

The following result describes the commutator of this endomorphism f c 
of Y (f c E .:l, f E A', c E g) given by the .:l-module structure, with the 
endomorphism V~ 

k ,s 

Lemma 12.9. For any y E Y , we have 

(a) V! «(fc)y) = (fc)(V! y) + «Ok J)c)y. 
k ,3 k ,s ' 

We have, using the definitions, 
o 0 ~ 

V 9k ,s «(fc)y) = (fc)(V 9k ,/) + L...- 9 k ,s,uY 
uES 

where 9 k ,s,uY is as in 11.5. We add this term-by-term with the identity 

A 9k ,s«fc)y) + L:9k ,s,uY = (fC)(A9k ,/) + «Ok,sf)c)y 
uES 

(see 11.6; the element c of 11.6 is now c). The lemma follows. 

Lemma 12.10. (a) For any 8 E 9 1 , the endomorphism V! of Y maps the 
subspace .:lY into itself. Hence it induces a C-linear endomorphism (denoted 
again V!) of Y/.:lY. 

(b) If 8 E 9 2 , then the endomorphism V! of Y/.:lY is zero. 

The subspace .:lY is an A-submodule of Y; hence, it is enough to prove (a) 
in the case where 8 is of the form 0k,s. We apply 12.9(a) with y E Y, c E g, 
and f E A'. The right-hand side of that equality is in .:lY since 0k,J E A' . 
Hence so is the left-hand side; (a) follows. 

We prove (b). Let 8 E 9 2 . We have V~(a)(Y) = 0 (since n(8) = 0) and 
A~(Y) C.:lY (by 11.11). This proves (b). 

12.11. The Lie algebra homomorphism 9 1 -+ EndC<Y/.:lY) given by 8 ~ V! 
(see 12.1 O( a)) is zero on the ideal 9 2 (see 12.1 O(b)) and hence it factors through 
a Lie algebra homomorphism 

(a) 

This is an integrable connection on the A-module Y/.:lY. 

Proposition 12.12. The A-module Y/.:lY is projective, offinite rank. 

The fact that it is a finitely generated A-module follows from 9.16; the fact 
that it is projective follows from 12.6. 
12.13. ProofofLemma 12.6. If 12.6(b) holds and.9/ is as in 12.6(a), then the 
localization of M at any maximal ideal of .9/ admits an induced connection 
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and hence is projective; it follows that M itself is projective. It remains to 
prove the lemma under the assumption of 12.6(b). 

We denote by J the unique maximal ideal of .91' • We can find generators 
t 1 , ••• , td of the ideal J such that their images in J/J2 form a basis of J/J2 

as a .91' / J = C-vector space. We can find elements m1 , ••• ,mp in M such 
that their images in M / J M form a basis of M / J M as a C-vector space. Now 
the elements d(tl), ... , d(td) form a basis of n~ as an .91' -module; and hence 
there are well-defined C-linear maps V' k : M --+ M (k = 1, ... ,d) such that 
V'(m)=L,kd(tk)<8>V'k(m) for all mEM;wehave V'k(am)=okam+aV'k(m) 
for all a E .91' , m E M where Ok : .91' --+.91' is the derivation defined by 
d(a) = L,k 0k(a)d(tk) . 

Note that 0k(tk') = dkk, . It follows easily that: 

(c) If n 2:: 1 and a E In are such that 0k(a) E In for all k, then 
a E I n+1 

We will show by induction on n 2:: 1 that the following property holds: 
If a1 , ••• ap E .91' satisfy a1 m 1 + ... + apmp E In M, then 
ak E In for all k. 

Let m, a be the image of m EM, a E.9I' in M / J M , .91' / J.9I' respectively. 
We first verify (PI)' Let aI' ... , ap E.9I' be such that a1 m 1 + ... + apmp E 
J M. Then a 1m 1 + ... + apmp = 0, and hence by the linear independence of 
m 1 ' ••• ,mp we have a1 = ... = ap = 0 so that aI' ... , ap E J and (PI) is 
verified. 

Assumenowthat (Pn) holds for some n2:: l;weshowthat (Pn+l) must also 
hold. Let aI' ... ap E.9I' be such that a1 m l + ... + apmp E I n+1 M. Applying 
V'j and using V'j(Jn+l M) C In M, we see that L,k 0j(ak)mk + L,k ak V'j(mk) E 
JnM. 

From (P n) we see that ak E In for all k; hence, L,k 0j(ak)mk E In M . 
Using again (Pn) we deduce that 0j(ak) E In for all j, k. Using now (c) we 
see that ak E I n+ 1 for all k; thus, (P n+ 1) holds. The property (P n) is proved 
by induction. 

We will show that the elements m 1 , ••• , mp form a basis of M as an .91'-
module. They certainly generate M as an .91' -module, by Nakayama. It remains 
to show that given a relation a1 m 1 + ... + apmp = 0 with aI' ... , ap E.9I' we 
must have a1 = ... = ap = O. Our relation implies, by (Pn) , that ak E In for 
all n 2:: 1. Since nn In = 0, it follows that ak = 0 for all k. The lemma is 
proved. 

13. TENSOR PRODUCT AND COINV ARIANTS 

In this section we will define something like a base point for the space r of 
9.2 in the case where S has a given cyclic order. More precisely, we will define 
a contractible real submanifold of r. For our purposes, this is as good as a 
base point. It will allow us to extend the definition of (V, V') (see 2.32) to 
more than two objects of ~IC • 
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13.1. Let 8 be a finite set such that 181 = r 2:: 2 , with a given cyclic order. For 
convenience, we write its elements as 1, 2, ... , r where 1 < 2 < ... < r < 1 
is the cyclic order. 

Let P~ = R U 00 be the real projective line (a real analytic submanifold of 
pi isomorphic to a circle). We shall regard the interval (0, J) in R (where 
J E R>o) as a subset of P~. 

We define a subset ~ of PGL2(Rl as follows. 
If r = 2, ~ consists of all (Yi)iES E PGL2(R)s such that YI (0) , Y2(0) are 

distinct points of P~ and y;IY2 is in the image of 8L2(R) - PGL2(R). 
If r 2:: 3, ~ is the subset of PGL2(R)s consisting of all (Yi)iES such that 
(a) the points yi(O) E P~ are distinct when i runs through 8; they cut the 

circle P~ into r intervals and, for any i E 8, the points yi(O) , Yi+1 (0) are the 
ends of such an interval (here we regard i as an integer modulo r); 

(b) for any i E 8, the set yi((O, J» is contained in the interval with ends 
yi(O) , Yi+1 (0) (see (a», provided that J > 0 is sufficiently small. 

Condition (b) can be reformulated as follows: for any i, the isomorphism 
P~ - P~ defined by Yi should be orientation preserving, where the first P~ is 
regarded as a circle oriented by 01--+ 1 1--+ 00 1--+ 0 and the second P~ is regarded 
as a circle oriented by YI (0) 1--+ Y2(0) 1--+ ... 1--+ Y,(O) 1--+ YI (0) . 

The group PGL2(R) acts naturally on ~ by simultaneous left translation 
on each component. Let 'Y 0 be the quotient space PGL2(R)\'Y. 

Lemma 13.2. 'Y 0 is a contractible real analytic manifold. 

The case where r = 2 is left to the reader. Assume now that r 2:: 3. Let F 
be the manifold consisting of sequences PI' P2' ... ,P, of distinct points on 
P~ arranged according to the cyclic order of 8 and taken modulo the action 
of PGL2 (R). We may identify F with an open convex set in R,-3. Now ~ 
is naturally fibered over F with fibres isomorphic to a product of r copies of 
the identity component of the upper triangular subgroup of PGL2(R); hence, 
these fibres are isomorphic to R x R>o. The lemma follows. 

13.3. Assume that we are given objects J--;, ~, ... ,v, of &'K. Let 
Y = A ® (®~=I ~) where A is the coordinate algebra of 'Y (as in 9.2, 9.3). 
By 12.12, the A-module Y/ll.Y may be regarded as an algebraic vector bundle 
over 'Y with a natural integrable connection. Hence its restriction to the real 
analytic submanifold 'Y 0 is a real analytic vector bundle E with an integrable 
connection. Since 'Y 0 is contractible, the vector space .9"(E) of horizontal 
real analytic sections of E gives a trivialization of E; namely, any fibre of 
E is canonically isomorphic to .9"(E) as a vector space. (The isomorphism is 
given by restricting sections.) 

We define 

(a) (J--;, ~, ... , Y,) = .9"(E). 

This is a finite-dimensional C-vector space. By its definition, it only depends 
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on the cyclic order of 1, 2, ... , r so that we have canonically 

(b) (~, Vi, ... , v,) = (Vi, fJ, ... , v" ~). 

For r = 2, this coincides with our earlier definition of (VI' Vi) (see 2.32) since 
( ( ~ ~I) , (~n) defines a point in r 0 . 

Next we note that, if ('Yj)jES defines a point of r 0 (with r 2: 3) , then by 
omitting 'YI we obtain a point ('Yj)jES' (where Sf = S - {I}) which belongs to 
the manifold analogous to r 0 but is defined in terms of Sf with the cyclic 
order induced from S. If we now take ~ = V~ then, using 17.18, we obtain 
a canonical isomorphism 

(c) (Vi, fJ, ... , v,) ~ (V~, Vi, fJ, ... , v,) 
for any objects Vi, fJ, ... , V, in &'" . 

13.4. Assume now that r 2: 3. Let ~, Vi, ... , V,-I be objects of &'". We 
apply to them the construction of §4 in the following special case: we take S 
as above, O={r},.={1,2, ... ,r-l}. We take [r]=S. We take C=pl 
with a system of charts 'Y = ('Yj)jES satisfying conditions (a),(b) in 13.1. 

The resulting g-module T(W)u defined in terms of these data will be denoted 
)'(~®Vi®··· ®V,-I)· According to 7.9(a), 

(a) 

Now let V, be another object of &'" . 
We want to apply 7.10 with W = ~ ® Vi ® ... ® V,-I and X = v,. The 

two vector spaces of coinvariants (T( W) ® X}g and (W ® X)r appearing there 
are the same as ()'(~®Vi®···®V,-I)' V,) and (~® Vi ® ... ® V,-I ® v,)<\; 
(coinvariants, with the notation 9.9(b)) respectively, where C is regarded as an 
A-algebra by evaluation at the point of r defined by 'Y. These vector spaces 
are finite dimensional by 2.32(d) and 9.16. Thus, 7.10 is applicable and gives 
us a canonical isomorphism between these two vector spaces: 

()'(~®Vi®··· ®V,-I)' V,} ~ (~ ® V2 ® ... ® V,-I ® v,)<\;. 

By definition, (~® Vi ® ... ® V,-I ® v,)<\; is the fibre of the vector bundle 
E (defined in 13.3) at the point of r 0 defined by 'Y. As we have seen earlier, 
that fibre is canonically isomorphic to ..9(E) = (~, Vi, ... , V,-I ' v,). We 
therefore obtain a canonical isomorphism of C-vector spaces 

()'(~®Vi®··· ®V,-I)' V,} ~ (~, Vi, ... , v,-I' v,). 
Using 2.32(c), this can be also expressed as an isomorphism 

(b) Homt9'KCy(~®Vi®···®V,_I),D(v,))~Homc«~, Vi, ... , V,-I' V,},C). 

The vector space in the right-hand side of (b) is independent of 'Y (as above), 
and hence so is the one in the left-hand side. It follows that the objects 
)' (~ ® Vi ® ... ® V,-I) E &'" are canonically isomorphic to each other (when 'Y 
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varies) so that they can be considered as a single object V; ® JS® .. . ® ~-1 E &'/C 
defined up to unique isomorphism and independent of )I. 

We can rewrite the earlier isomorphisms as follows: 

13.5. The previous discussion is applicable in particular for r = 3. In this 
case we shall take S = {I , 00, O} with the cyclic order 1 < 00 < 0 < 1 and 
<:;) = {O}, • = {I, oo}, [0] = S. 

Let C = pI with the following system of charts: 

(a) (1 -1) 
)II = 1 0 ' 

(These charts are characterized as follows: )11 takes 1, 00, 0 E p~ to 0, 1, 00 

respectively; )I 00 takes 00, 0, 1 E P ~ to 0, 1, 00 respectively; )10 takes 0, 1 , 
00 E P~ to 0, 1, 00 respectively.) This system of charts satisfies the conditions 
(a),(b) in 13.1 (thus, ~ has in this case a distinguished point). Hence in this 
case, given two objects V, V' of &'/C ' we can define V ® V' E &'/C with reference 
to this system of charts. (V, V' are indexed by 1, 00 in S respectively.) 
Specializing 13.4(c),(d) to r = 3, we obtain 

(b) (V®V', V") ~ (V, V', V"), 

(c) Homd(V, V', V"), C) ~ Homl9' (V®V', D(V")). 
K 

13.6. For any V in &'/C' we have unique isomorphisms in &'/C: 

(a) V ~ V®V~ 

such that for any V' in &'/C the induced isomorphisms (V, V') ~ (V~®V, V') 
(resp. (V, V') ~ (V®V~, V')) are obtained by the composition 

(V, V') ~ (V~, V, V') ~ (Yo ® V, V') 
(resp. by the composition 

(V, V') = (V' , V) ~ (Yo, V', V) = (V , Yo, V') ~ (V ® V~, V')); 

see 13.3(c) and 13.5(b). 

14. COMMUTATIVITY ISOMORPHISM 

In this section we will show that, given two objects V, V' of &'/C ' the ob-
jects V ® V' and V' ® V of &'/C are isomorphic. In fact, we will construct two 
isomorphisms, one for each choice of a square root of -1 in C. 
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14.1. We shall need some commutation formulas for Sugawara operators. Let 
V be an object in &'". The operator Lo : V --+ V is locally finite; hence, 
for any a E C, the exponential eaLo : V --+ V is well defined. The operator 
LI : V --+ V is locally nilpotent (it maps A V into A-I V); hence, the exponential 
ebL1 : V --+ V is well defined for any bEe. Let f(€) E C((€» and let c E g. 
The following iden~ities of endomorphisms of V follow easily from 1.14(b), 
1.14(c): 

(a) (f(€)c)eaLO = eaLo(f(ea€)c) , 

(b) bL bL ( ( € )) (f(€)c)e 1 = elf 1 _ b€ C , 

(c) 

Hence, if we set 
v'-Tn-Lo LI -LI v'-Tn-Lo V V T=e e =e e :--+ 

and 
- -v'-Tn-Lo LI -LI -v'-Tn-Lo -I V V T=e e =e e =T:--+ 

(where A is a square root of -1 in C), then 
(d) 

(f(€)C)T= T(fC ~ l)c) , (f(€)c)r = r(fC ~ l)c) , Tr = rT = 1, 

as endomorphisms of V. We have 

(e) -2 -2v'-Tn-Lo 
T =e . 

From (a),(e), we see that i and r2 commute with the g-action on V. 

14.2. Let V, V' , V" be three objects of &'" . Let 
- I II I II P,P:V(2)V(2)V --+V(2)V(2)V 

be the linear maps given by 
P(x (2) Y (2) z) = TY (2) TX (2) rz, P(x (2) Y (2) z) = ry (2) rx (2) TZ 

where T, r areas in 14.1. 
Lemma 14.3. For any vectors x, y, z in V, V', V" and any rational function 
f(€) E C[€, €-I , (1 - €-I)], we have 

Ty (2) T(f( € ~ 1 )CX) (2)rz + T(f( 1 ~ € )cY) (2)TX (2) rz + TY (2) TX (2) r(f(€)cz) 

= g ( € ~ 1 ) CTY (2) TX (2) r z + TY (2) g C ~ € ) CTX (2) r z 

+ TY (2) TX (2) g(€)c'fz 
where g(€) = f(/~_I). 
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It is enough to verify 

g(E)cr = Tg C ~ l)c = Tf(E)C, 

(a) gC~E)CT=Tg(l-E)C=Tf(E~l)c, 

g (E ~ 1 )CT = Tg(E -I)C = TfC ~ E )C. 

These identities follow from 14.1 (c) and the definition of g. 

14.4. We regard V C9 V' C9 V" and V' C9 V C9 V" as Lle-modules as in 9.11, 
where C is an A-algebra by evaluation at the point of r defined by 13.S(a). 
(Note that V, V', V" are indexed by 1, 00, 0 in the first tensor product and 
V' , V, V" are indexed by 1, 00, 0 in the second tensor product.) 

Proposition 14.5. P and P map the subspace LlcCVC9V'C9V") Of(VC9V'C9V") 
into the subspace LlcC V' C9 V C9 V") of (V' C9 V C9 V") and induce isomorphisms 
on coinvariants 

(a) (V C9 V' C9 V'\'1 ~ (V' C9 V C9 V")/1 . 
c c 

Moreover, the compositions 

(V C9 V' C9 V")/1 -.!..... (V' C9 V C9 V'\ L (V C9 V' C9 V")/1 
c c c 

(V C9 V' C9 V")/1 L (V' C9 V C9 V'\ -.!..... (V C9 V' C9 V'\ 
c c c 

are the identity maps. 

The statement about P follows immediately from the previous lemma; the 
statement about P is proved in exactly the same way. The last statement follows 
from TT = TT = 1 . 

14.6. Let V, V' be two objects of &/(. We want to define an isomorphism 
D(V'~V) ~ D(V~V') (in &/(). 

By definition, D(V~V') = T'(W) and D(V~V') = T'(W') where 
W = V C9 V', W' = V' C9 V, and T' (W), T' (W') are constructed as in §6 
in terms of the filtrations (GNW) and (GNW') of W, W'. 

We define an isomorphism P : W ~ W' by P(x C9 y) = TY C9 LX where 
T is as in 14.1. Let Z = Hom(W, C), ZN, ZOO be as in 6.2, and let Z' = 
Hom( W' , C), Z' N ,Z'oo be the analogous spaces defined in terms of W'. P 
defines an isomorphism Z' ~ Z (the transpose of P : W ~ W'); we denote 
this again by P. 

We show that p(Z'N) = ZN . Since ZN, Z'N are the annihilators of GNW , 
G N W' , it suffices to show that P : W ~ W' maps G N W onto G N W' . 

Let f(E) E EC[E , (1- E)-I] and let C E g. Then (f(E)C) may be regarded as 
an element of GI . It acts on W as f(E)C(XC9y) = f(f-;I )CXC9y+xC9f( l~f)CY 
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and on W' by f(€)c(y ® x) = f(€~1 )cy ® x + Y ® f( I~€ )cx. Let geE) = 
f(/:"'I) E €C[€ , (1 - €)-I]. Using 14.3(a), we see that 

P(f(€)c(x ® y)) = (g(€)c)(P(x ® y)). 

Applying this N times we see that P(GNW) = GNW'. Hence, p(Z'N) = ZN 
for all N ~ 1 . It follows that P(Z'OO) = ZOO . Recall from 6.3 that Z,oo, ZOO 
are naturally smooth i-modules (actually in &'" ' by 7.9(a)). Hence the operator 
"l" is well defined on Z,oo, ZOO . 

Using the definitions, we see that P: Z,oo ---+ ZOO satisfies 

(a) 

for all feE) E C[€ , €-I , (1 - €-I)] c C((€)) and all c E g and z' E Z,oo . 
The composition 

satisfies then 
Pf((f(€)c)z') = (f(€)c)Pf(z') 

for all f, c, z' as above. Hence, it is an isomorphism of g-modules. Thus, 
we have constructed an isomorphism g-modules Pf : T' (W') 9:! T' (W) or, 
equivaIently, (see 7.9) an isomorphism of g-modules 

(b) D(V' ®V) 9:! D(V®V'). 

We want to relate (b) to the isomorphism of 14.5. 
Taking the transpose of the isomorphism (V ® V', V") 9:! (V, V', V") of 

13.5, we obtain an isomorphism 

H0Inc((V, V', V"), C) 9:! Hom&, (V", D(V®V')). 
K 

Similarly, by interchanging V, V' , we have an isomorphism 

H0Inc((V' , V, V"), C) 9:! Hom&, (V", D(V' ®V)). 
K 

We consider the diagram 

HomcC(V', V, V"), C) ~ Hom&, (V", D(V'®V)) 
K 

(c) 1 1 
HomcC(V, v', v"), C) ~ Hom&, (V", D(V®V')) 

K 

where the horizontal maps are the isomorphisms above, the left vertical map 
is the transpose of P : (V, V', V") 9:! (V' , V, V") (see 14.5), and the right 
vertical map is induced by (b). 

Using the definitions, we can check that the diagram (c) is commutative. 
Taking the transpose of (b) we obtain an isomorphism 

(d) rm.v·v'",V'·V· m> .::r. ® = ® In (7". 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TENSOR STRUCTURES ARISING FROM AFFINE LIE ALGEBRAS. II 977 

Note that .9 was defined in terms of 'l' and maps derived from it (like P) ; we 
could have equally well used r, P instead of 'l' , P; we then get an isomorphism 
(e) .9: V®V' ~ V'®V in &". 
Using 14.1(d), we see that the compositions 

V®V' ~ V'®V L V®V' 

and 
V®V' ~ V'®V ~ V®V' 

are the identity. 

15. DEGENERATION OF QUADRICS (I) 

In this section we begin the construction of the associativity isomorphism for 
®, which will be completed in § 18. This involves studying the way in which 
coinvariants behave when we approach a ''boundary point" of r (for lSI = 
4). Geometrically, this involves looking at a family of nonsingular quadrics 
degenerating to the union of two lines. The main result of this section will be 
the construction of a family of maps <l>n (see 15.25(a)), one for each integer 
n ~ 1 , which relate two spaces of coinvariants: one on the degenerate quadric, 
the other on the nondegenerate ones. 
15.1. We assume that S is a finite set such that lSI = 4, with a given cyclic 
order. We shall write the elements of S as the vertices 1, 2, 3, 4 of a square 

1-2 

r 1 
4 +--- 3 

where a -+ b stands for a < b in the cyclic order. (Thus, 1 < 2 < 3 < 4 < 1.) 
We will make some constructions which involve an additional choice; namely, 

we single out the two horizontal sides of the square. (A completely similar 
discussion will apply if we single out the two vertical sides.) 

We assume given four objects 

of &" ' indexed as shown by S . 
15.2. Let 

D={tEC!t:/=l}, 
, 3 

D = {(t, p, q) E C Ipq = t, t:/= 1, p :/= 1, q:/= I}. 
The variables p, q should be regarded as being associated with the upper hor-
izontal side (12) (resp. the lower horizontal side (34) of the square in 15.1. 

Let 1t : D' -+ D be the first projection. For each tED, the fibre 1t- I (t) 
may be thought of as the quadric K t with equation pq = t in pi x pi , from 
which four distinct points have been removed, namely, 

(1, t) (00,0) 
(0,00) (t,I) 
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(indexed as shown by the elements of S) . 
This quadric is nonsingular for t i- 0 and degenerates to a union of two lines 

for t = 0; but the four special points above are always smooth points of it. 

15.3. Corresponding to each of these four points, we have a canonical isomor-
phism of pi onto the irreducible component of the quadric containing that 
point (and taking 0 to that point). This maps Z E pi to the point shown in 
the corresponding vertex of the square: 

(l~z,t(l-z)) (Z~I, z~l) 

C~I ' Z~I) (t(l - z), I~Z) 

15.4. Let 
Aoo = C[D] = C[t, (t - 1)-1], 

I I -I -I -I Aoo =C[D]=C[t,p,q,(t-l) ,(p-l) ,(q-l) ]/(pq-t). 

For any integer n :::: 1 we define An = Aoo/(tn) = C[t, (t - 1)-I]/(tn) 
C[t]/(tn) and A: = A'ao/(tn) = An(P' q, (p - 1)-/ , (q - 1)-I]/(pq - t). 

For each i E S , we have an Aoo -algebra homomorphism 

(a) 

It is defined as follows. For a fixed t, we restrict f E A'ao to 11:- 1 (t). We may 
regard this restriction as a rational function on K t and, via the correspondence 
shown in 15.3 for the i-vertex of our square, as a rational function on pl. 
We take the power series expansion of that rational function at o. That power 
series may be regarded as a power series with coefficients in Aoo ' and this is, 
by definition, if. 

The homomorphism (a) induces for any integer n:::: 1 a homomorphism 

(b) A~ -t An((E)) (f f-> if). 

15.5. Under the correspondence 

(a) f f-> If 2f 
4f 3 f 

we have, for example, 
I f.::.l. 

1-( ( 
P f-> I~( t(1 - E) 

for 1 S n S 00. 

15.6. Consider the four elements J; 1; 
fd3 

p(p _ 1)-1 
l-q 

t(1 - E) 
q f-> f.::.l. 

( 

of A: given by 

I-p 
q(q - 1)-1 

The image of 1; under 15.5(a) has the following property: its ith coordinate is 
E- 1 and its other three coordinates are in AnnE]]. 
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Lemma IS.7. The functions 

(a) f; (s E S; k ;::: 1) and 1 

form a basis of A~ as an An -module. 

It is enough to prove this for n = 00. In that case we argue just as in the 
proof of 9.6, with only one difference: in the earlier proof one step was the 
fact that a regular function on pi must be constant; we must now use the more 
general fact that a regular function on a possibly reducible, connected projective 
curve is constant. 

15.8. Let ~4 n be the Lie algebra A~ ®g with bracket [fe, Ie'] = fl[e, e'] 
for f, I E A~ and e, e' E g. 

Lemma IS.9. If 1 ~ n ~ 00 , there is a unique homomorphism of An -Lie algebras 
~4 n --+ t: such that , . 
for all f E A~ and e E g. 

Let f, I E A~ and let 

Ife 2fe 
fe 1-+ 

4 fe 3 fe 

If 2f II 21 
4 f 3 f and 4 I 31 

be their images under the map 15.5(a). It is enough to prove that the following 
element of An is zero: 

4 

(a) L~:J(il d(if )) 
i=1 

(here d is with respect to €). We may assume that n = 00 (the general case 
follows from this). We may specialize to a fixed value of t =f. 1. Then f, I 
can be regarded as functions on the (possibly singular) quadric K t which are 
regular outside the four marked smooth points of that quadric; we see that (a) 
is just the sum of residues of the differential form I d(f) on the quadric at the 
four marked points. This is zero by the residue theorem. The lemma is proved. 

15.10. Let Yn = An ® (®:=I V;). This is a ~ -module as in 1.13 and, hence, a 
~4,n-module, via 15.9. • 

15.11. In the case where, for each s, ~ is the generalized Weyl module cor-
responding to the nil-module ~ of C[ €] ® b g , we have an isomorphism 

(a) (An ® ( <ip~)) g ~ Yn/~4,nYn 

induced on coinvariants by the obvious inclusion Bn ® (®s~) c Yn . Here, 
l~n::;oo. 

The proof is exactly the same as that of 9.15. (It uses 15.7 instead of 9.6.) 
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15.12. Returning to the general case, we deduce from 15.11, exactly as in 9.16, 
that 

(a) If 1 :::; n :::; 00, then Yn/.:14,nYn is a finitely generated An-
module. 

15.13. We shall need a simpler version of the earlier results in this section (in 
which 4 is replaced by 2). 

Let us now assume that instead of S we are given the set c:;;> with two elements 
12, 34 corresponding to the two horizontal edges of our square and that we are 
given two objects X 12 , X34 of 8'". 

Let 
B'ao = C[t, p, q, ]/(Pq - t). 

For any integer n ~ 1 we define Bn = Boo/(tn) = C[t]/(tn) 
B'oc,/(tn) = Bn[P' q]/(Pq - t). 

For 1 :::; n :::; 00 we have a Bn-algebra homomorphism 

given by 

(a) 

B: -> Bn«€)) 67 Bn«€)) 

-I pl-+(-€ ,-t€), -I q 1-+ (-U ,-€ ). 

, 
and Bn = 

Taking tensor product with the identity map of g, we obtain a B n -linear 
map .:12,n -> (Bn l€ , €-I] ® g) 67 (Bn l€ , €-I] ® g) where 

.:12,n = (Bn[P, q]/(Pq - t)) ® g. 

Composing this with the obvious inclusion 

(B n l € , € -I] ® g) 67 (B n l € , € -I] ® g) C g~ , 
n 

we obtain a Bn-linear map 

(b) 

Now.:12 n is a Bn-Lie algebra with bracket [fc,/c'] = f/lc,c'] for 
f, / E BnlP, ql/(pq - t) and c, c' E g. 

Note that (b) is a Lie algebra homomorphism. (This can be verified directly 
or can be proved in the same way as the corresponding result for .:14 n .) 

We may regard Bn ® (X12 ® X 34 ) as a i~ -module as in 1.13 and ~s a .:12 n-
module, via (b). n ' 

Lemma 15.14. If 1 :::; n :::; 00, then the Bn-module (Bn ® (X12 ® X34))~ is 
2. n 

finitely generated. 

This can be proved as for .:14, n . 

15.15. By the right exactness of tensor products we have 

Bn®B (Boo®X12®X34)~ ~(Bn®X12®X34)~· 
(Xl 2,00 2.ft 
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15.16. We now take X I2 = ~®V;, X34 = Vj®V4 ; from 15.14 we obtain: 

(a) If 1 ~ n ~ 00, the Bn-module (Bn ® (~®V;) ® (Vj®v,.))d2 ,n is 
finitely generated. 

15.17. We consider the setup in 4.2. We start with the finite set Sf = SuO 
with S, 0 as above. (The role of ., S in 4.2 is now played by S, Sf .) 

Let [12] = {I, 2, 12} and [34] = {3, 4, 34}. We take C to be the projec-
tive curve pI U pI (disjoint union); the first pI is denoted CI2 , the second 
one is denoted C34 • We specify the following points on C: on CI2 ' we specify 
PI = 1, P 2 = 00, P I2 = 0; on C34 ' we specify P3 = 1, P4 = 00, P34 = O. We 
also specify the following system of charts: for CI2 ' we take 

· pI '" C . b 1 )11 . = 12 gIven y z 1-+ -1-' -z 
· 1",. z-1 )12 . P = CI2 gIven by z 1-+ -- , 

Z 

· pI '" C . b . )112 . = 12 gIven y z 1-+ z, 

for CI3 ' we take 

• pI '" C . b 1 )13 . = 34 gIven y z 1-+ -1 - , -z 
· 1",. z-1 )14 . P = C34 gIven by z 1-+ -- , 

Z 

)134: pI 9:! C34 given by z 1-+ z. 

15.18. The algebra R (see 4.5) is in our case 
-1 -1 -1 -1 qu,u ,(I-u) ]EBqv,v ,(I-v) ]. 

(We denote the standard coordinate functions on CI2 ' C34 by u, v.) 
Now R is mapped homomorphically , as in 4.5(a), to the algebra of formal 

power series over C in six different ways by 

(
If 2f 12f) 

f 1-+ 4 f 3 f 34 f • 

These map u, v, u(u - 1)-1, v(v - 1)-1 ERas follows: 

( 
1 €-I 

U 1-+ IO€ T V 1-+ (€~I :L 0), 
€ I-€ I': 

-1 (1':-1 1 -1': 
u(u-l) 1-+ 0 0 

~) , 

€~I ) o ' 
-1 (0 0 v(v - 1) 1-+ 1 _ I': 1 

€ 

15.19. Let r,GN be as in 4.6, 4.8, and let r B be as in 8.2. 
n 

€~I ) 

4 15.20. Let W = ®i=I V;. For 1 ~ n ~ 00, let Wn = Bn ® W. We regard W 
(resp. Wn ) as a r-module (resp. r B -module) as in 8.3. 

n 

As in 8.3, let ~ = ~ N Wn/GN»:, W = ~ N W/GNW. 
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Then W (resp. Wn) is naturally a gO -module (resp. g~ -module) (see 8.4) 
and the gO-modules T(W) = W(-oo) and T(W)# (resp~ the g~ -modules 
T(~) = ~(-oo) and T(~)#) are well defined. n 

From 8.12, we have a natural isomorphism of g~ -modules 
n 

En ® T(W)# ~ T(Wn)#. 

From 7.12, we have a natural isomorphism of gO -modules 

(r;0J?;) ® (JJ0~) ~ T(W)#. 

Tensoring here by En and composing with the previous isomorphism, we 
obtain an isomorphism of g~ -modules 

n 

En ® (r;0J?;) ® (JJ0~) ~ T(Wn)#· 

Taking coinvariants we obtain an isomorphism of En -modules 

(a) 

15.21. In our case, the action of t5'2€mC + t534€m' C' E g~ on Wn is given by 
n 

, , , 
+ «vm c')Yk+' ' (v m C')h+2' (v m C')Yk+3' ... ) 

for k ~ 0 sufficiently large. (See 4.14(a).) 

15.22. Now, if 1 ::; n < 00, we have An = En; hence, Wn = Yn is both a 
d 4 n -module and arB -module. This gives sense to the following result. 

, n 

Lemma 15.23. If N ~ 2n - 1, then GNWn C d4,nWn' 

Note that G, is spanned by the elements 

(a) uf(u)c and v/(v)c' with f(u) E C[u, (1 - u)-'], /(v) E 
C[ v , (1 - v) -'], c , C' E g . 

Let f(u) E C[u, (1 - u)-'] and let c E g. We define two En-linear maps 
T(f, c), T'(f, c): ~ ~ Wn by 

T(f, c)(ax, ®x2 ®x3 ®x4) = a 1 ~ €fC ~ € )cx, ®x2 ®x3 ®x4 

+ ax, ® € ~ 1 f( € ~ 1 )cx2 ® x3 ® x4' 

r' (f, c)(ax, ® x 2 ® X3 ® x 4) = ax, ® x2 ® (1 - €)f(t(1 - €))CX3 ® x4 

+ ax, ® x 2 ® X3 ® € ~ 1 f(t € ~ 1 )cx4 
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for all Xi E ~ and a E Bn. In the GI-module structure of Wn , we have 
uJ(u)c = T(f, c) as operators on Wn . In the .c:l4 n-module structure of Wn , 
we have pJ(P)c = T(f, c)+tT(/, c) asoperators~n Wn . (Note that pJ(P)c E 
.c:l4 n .) 

We now consider N functions I;, J;, ... , I N in C[u, (1 - U)-I] and N 
elements cI ' c2 ' ••• , cN of g. We show that 

T(I;, cl)T(J;, c2)··· T(fN' CN)~ 

(b) N~ I I 
Et 1 (IN,CN)T(fN_I'CN_I)···T(I;,CI)Wn+.c:l4,nWn. 

Indeed, the left-hand side is equal to 

((pI; (p)CI ) - tT' (I;, cl))T(J;, C2)··· T(fN' cN)Wn· 

Now T'(I;, cI) commutes with each of the operators T(Jk , ck ) since 
T'(I;, cI) acts on the last two factors in the tensor product, while T(~, ck ) 
acts on the first two factors in the tensor product. Thus, the left-hand side of 
(b) is contained in 

(pI; (P)cl)T(J;, c2)··· T(fN' CN) ~ + tT(J;, C2)··· T(fN' cN)T' (JI' CI ) Wn· 

We may assume that (b) holds for N - 1 factors; we then see that 

T(J;, c2)··· T(JN , cN)T' (I; , c1) Wn 
N-l I ~ I 

E t T (fN' CN)l (fN-I' CN_I )··· T (I; , c1)Wn + .c:l4,n Wn· 

Since (pI; (P)cl)T(J;, c2)··· T(fN' CN) ~ E .c:l4,n Wn ' we see that (b) is proved 
by induction on N. (For N = 0 there is nothing to prove.) If we take N ~ n, 
then tN = 0 on Wn ; hence, from (b) we have that 

(c) (uI; (u)c1)(UJ;(U)c2)··· (uJN(U)CN)Wn c .c:l4,n Wn. 

Similarly, for any .r; , h., ... ,1M in C[u, (1- U)-I] and c~, c~, ... , c~ of g 
we have 

(d) 

provided that M ~ n . 
We now consider a product (in U(rB )) of 2n -,1 factors of the form 

(uJ(u)c) or (vl(v)c' ) where J, I E C[U, (1 - U)-l] and c, c' E g. Any 
factor of the first kind commutes with any factor of the second kind. Hence, 
our product can be reordered so that the first n factors are all of one kind. But 
then (c) and (d) show that our product applied to ~ is contained in .c:l4,n ~ . 
This shows that G2n _1 Wn c .c:l4,n Wn . The lemma is proved. 

15.24. From the previous lemma we see that the identity map of ~ induces a 
Bn-linear map Wn/GNWn ---+ Wn/.c:l4,nWn for N ~ 2n - 1. These maps induce 
a B n -linear map 
(a) ~ Wn/GNWn ---+ Wn/.c:l4,n Wn· 

N 
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This restricts to a B n -linear map ~ ( - 00) ---+ Wn / ~4, n Wn ' which may be re-
garded as a B n -linear map 

(b) 

Now T(Wn)U is a ~2,n-module, via the imbedding ~2,n C g~n . 
We show that, for any element e E ~2 ,the image of eT(W)u under (b) is ,n n 

zero. 
We may assume that e is one of the elements pmc or qmc of ~2,n where 

mEN. (These elements span ~2 n .) It is enough to show that in the g~-
, n 

module structure of ~, the following holds: for any (YI' Y2' ... ) E Wn , the 
image of 

(c) ( )m ~ m ~ m-m -1 (u(12)1: c+u(34)t I: C)(YI'Y2' ... ) 

and of 

(d) 

under (a) is zero. 
By 15.21, the image of (c) is equal to (_l)m times (umC)Yk + (tmv-mc)Yk 

mod ~4,nWn for sufficiently large k; the image of (d) is equal to (_l)m times 
(tmu-mc)Yk + (Vmc)Yk mod ~4 n Wn for sufficiently large k. It remains to ob-
serve that the ~4 n -module structure of Wn is related to the r B -module struc-

, n 

ture on Wn by (pmc)y = (umc)y + (tmv-mc)y and (qmc)y = (tmu-mc)y + 
(vmc)y for all y E ~. These formulas follow from the definitions (the first of 
them has been also used in 15.23). 

15.25. We now see that the Bn -linear map 15.24(b) induces by passage to a 
quotient space, a Bn-linear map 

(a) 

(Recall that 1 ~ n < 00 .) 

15.26. For any integer n 2': 1 we have an obvious surjective C-algebra ho-
momorphism Bn+1 ---+ Bn' If M is any Bn+l-module, we have an obvious 
homomorphism of Bn+l-modules. 

(a) 

induced by Bn+1 ---+ Bn . 
If M is one of the Bn+l-modules 

(Bn+1 ® (VI0V2) ® (V30~)),l , T(Wn+I)~ , (Wn+I),l 
2,n+l 2,n+l 4,n+l 

then, by the right exactness of tensor products, Bn ® B M is respectively: 
n+1 
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Hence we have a diagram 

(Bn+1 ® (~®l-2) ® (J'3®~))& 

'1'.+11 
T(~+l)~ 2,n+l 

q,.+11 

2.n+l 
---+ (Bn ® (~®l-2) ® (J'3®~))& 

'1'·1 

Wn+1/d4,n+1 Wn+1 ---+ ~/d4,n Wn 

2 " 

with surjective horizontal maps of the type (a) and with 'l'n' 'l'n+1 isomor-
phisms as in lS.20(a). 

Using the definitions, one checks that the diagram above is commutative. 
The following result will be proved in the next section. 

Proposition 15.27. The Bn-linear map q,n (see lS.2S(a)) is an isomorphism/or 
any integer n ~ 1 . 

16. DEGENERATION OF QUADRICS (II) 

In this section we shall prove Proposition lS.27. 

16.1. We fix an integer n ~ 1. Let t, p, q, U, v be indeterminates. Let 
Bn = C[t]/(tn) . 

We have homomorphisms of Bn-algebras 
-1 -1 

(a) Bn[P' q]/(Pq - t) -+ Bn[u, U, ] EB Bn[v ,v ], 

(b) 

given by 
-1 -1 (c) P t-+ (u, tv ) , q t-+ (tu ,v). 

(Note that the map (b) could not be defined without the condition tn = 0 .) 
Let T be the subalgebra (without 1) Bn[u-1] EBBn[V-1]V-1 of Bn[u, u-1] EB 

Bn[v, v-1]. 

Lemma 16.2. (a) The homomorphism 16.1(a) is injective; its image is a Bn-
submodule 0/ Bn[u, u-1] EB Bn[v, v-1], complementary to T. 

(b) The homomorphism 16.1(b) is injective; its image is a Bn-submodule 0/ 
Bn((u)) EB Bn((v)) , complementary to T. 

Let M be the Bn-submodule of Bn[P' q] consisting of all the polynomials 

(c) L bk,IPkql with bk,1 E Bn' 
k,/EN: kl=O 

The restriction to M of the canonical homomorphism 

Bn[P' q] -+ Bn[P' q]/(Pq - t) 
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is clearly an isomorphism 
(d) M ~ Bn[P' q]/(pq - t). 

Assume that the image of a polynomial (c) in M under the composition 
-I -I 

M -.. Bn[P' q]/(pq - t) -.. Bn[u, u ] EB Bn[v, v ] 
-I -I 

-.. (Bn[u, u ] EB Bn[v, v ])/T 
(e) 

is zero. Then 
Lak,ouk = 0 and Lao"v' = 0 
k?,1 I?,O 

hence, ak , 0 = ao, I = 0 for all k, I. Thus the composition (e) is injective. 
Using (d), it follows that the map 16.1(a) is injective and its image has zero 
intersection with T. 

Now any element of the form (uk, 0) is the sum of an element in the image 
of 16.1(a) and one in T. (When k$.O it is in T;when k>O it is the sum 
of the image of pk and of (0, _lv-k ) E T.) 

Similarly, any element of the form (0, vi) is the sum of an element in the 
image of 16.1(a) and one in T. (When 1<0 it is in T; when I ~ 0 it is the 
sum of the image of q' and of (-lu- I , 0) E T.) 

This completes the proof of (a). The proof of (b) is entirely similar. 
16.3. The previous proof shows also that 
(a) Bn[P' q]/(pq - t) is a free Bn-module . 

A basis is given by the elements pk(k > 0), ql(l> 0), and 1. 

16.4. We have a commutative diagram of algebra homomorphisms: 

Bn[P' q]/(pq - t) ------+ Bn[u, u- I ] EB Bn[v, V-I] 

1 1 
where the horizorital maps are the imbeddings from the previous lemma and 
the vertical maps are the obvious ones. Since the right vertical map is clearly 
an imbedding, the same must hold for the left vertical map. Hence all algebras 
in the diagram are naturally subalgebras of B n ( u)) EB B n « v)) . 

Lemma 16.5. We have 
-I -I 

(Bn[[P, q]]/(pq - t)) n (Bn[u, u ] EB Bn[v, v ]) = Bn[P' q]/(pq - t) 

(intersection inside B n « u)) EB B n « v))) . 

Let x be an element in the intersection. Since x E B n [u, U -I] EB B n [v , V -I ] , 
we can write x = XI +X2 with XI E T and x 2 E Bn[P' q]/(pq-t) (see 16.2(a)). 

Since X E Bn[[P, q]]/(pq - t), we have x - x 2 E Bn[[P, q]]/(pq - t). On the 
other hand, x - x 2 E T and T has zero intersection with Bn[[P, q]]/(pq - t) . 
It follows that x - x 2 = O. Thus, x E Bn[P' q]/(pq - t). The lemma is proved. 
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16.6. The elements p - 1, q - 1 of Bn[P' q1/(pq - t) are not zero divisors 
since they are invertible in the larger algebra Bn[[P, q]]/(Pq - t). They gen-
erate a multiplicatively closed subset of Bn[P' q]/(Pq - t); we consider the 
corresponding ring of fractions 

~=Bn[P,q][( -1)-1 ( -1)-1]. 
(pq - t) p , q 

It contains Bn[[P, q]]/(Pq - t) as a subalgebra. 
By exactness of localization, from the commutative diagram of imbeddings 

in 16.4, we obtain the following commutative diagram of imbeddings: 

~ --+ (Bn[u,u-I]EBBn[v,v-I])®~ 

1 1 
or, equivalently, the following commutative diagram of imbeddings: 

BRIP, q) [1 1] I I I I --+ Bn[u, u- ,(u-1)- ]EBBn[v, v- ,(v -1)-] 
(pq-t) p - 1 ' q - 1 

1 1 
Here we have used the following fact: the subalgebra of Bn«u» EB Bn«v» 
generated by Bn[u, u- I ] EB Bn[v, V-I] and by 

(p - 1)-1 = «u - 1)-1,0) + (0, (tV-I - 1)-1), 

(q - 1)-1 = (0, (v - 1)-1) + «tu -I - 1)-1 ,0), 

coincides with Bn[u, u- I , (u - 1)-1] EB Bn{v, V-I, (v - 1)-1]. 
This follows immediately from the fact that 

-I -I -I -I -I -I 
(tu -1) EBn[u,u] and (tv -1) EBn[v,v ] 

(we use tn = 0) . 
Lemma 16.7. We have 

(Bn[[P, q]]/(pq - t» n (Bn[u, u- 1 , (u - 1)-1] EBBn[v, V-I, (v - 1)-1]) 

(a) = ~~~ ~)][(p - 1)-1, (q - 1)-1]. 

This follows from the corresponding equality in Lemma 16.5, using exactness 
of localization. 
Lemma 16.8. We have a direct sum decomposition (as Bn-modules): 

-I -I -I -I 
Bn[u,u ,(u-l) ]EBBn[v,v ,(v-I)] 

= Bn[P' q] [( _ 1)-1 ( _ 1)-1] ffi T (pq _ t) p , q 'J7 • 
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We have 
-I -I -I -I -I -I 

TCBn[u,u ]EBBn[v,v ]CBn[u,u ,(u-l) ]EBBn[v,v ,(v-I)] 

and 
B[p,q] _I -I -I -I -I -I 
~q_t)[(p-l) ,(q-l) ]cBn[u,u ,(u-l) ]EBBn[v,v ,(v-I) ] 

(see 16.6) and hence 

Bn[p,q][(p_l)-I (q-l)-I]+T 
(pq - t) , 

-I -I -I -I 
cBn[u,u ,(u-l) ]EBBn[v,v ,(v-I)]. 

Now 

~n[P' q}[(P _ 1)-1, (q -1)-1] n T c (Bn[[P, q]]/(pq - t)) n T = 0 
pq - t 

(see 16.2(b)). 
Let x E Bn[u, u- I , (u-1)-I]EBBn[v, V-I, (v _1)-1]. By 16.2(b), we can 

write x = XI + x2 with XI E T and x2 E Bn[[P, q]]/(pq - t). 
Since 

-I -I -I -I T c Bn[u, u ,(u - 1) ] EB Bn[v, v ,(v - 1) ], 
we have X - XI E Bn[u, u- I , (u - 1)-1] EB Bn[v, V-I, (v - 1)-1]. Thus, x2 
belongs to the intersection 

Bn[[P, q]] -I -I -I -I 
( ) n(Bn[u, u ,(u-l) ]EBBn[v, v ,(v -1) ]) pq - t 

which, by 16.7, is equal to ~;~-.:~l[(p - 1)-1, (q - 1)-1]. Thus, we have 
X E ~~-.:~l[(p - 1)-1, (q - 1)-1] + T and the lemma is proved. 

16.9. Let C? = {12, 34}, as in §15. There is a unique homomorphism of Bn-Lie 
algebras 

Bn[P' q]/(pq - t) 0 g --t g~ 
n 

such that 
(a) pmCf-+(€mc,tm€-m c ) and qmCf-+(tm€-mC,€mc ) 

for all m 2: 0 and c E g. This can be checked directly or can be deduced from 
15.13(b). 

By 16.2(a), this homomorphism is injective, so it identifies ~;~-.:~l 0 g with 
a Lie subalgebra Po of g~ . Let P = Po + B n 1 ; this is actually a direct sum 
and is a Bn-Lie subalgebranof g~ . 

The formulas (c) extend by coittinuity to a Bn-Lie algebra homomorphism 

Bn[[P, q]]/(pq - t) 0 g --t g~ . 
n 

By 16.2(b), this is injective, so it identifies Bn[[P, q]]/(pq - t) 0 g with a Lie 
subalgebra Po of g~n . Let P = Po + B n 1 ; this is actually a direct sum and is a 
Bn-Lie subalgebra of g~ . 

n 
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16.10. The diagonal module. The following g~ -module has been defined by 
A. Beilinson (private communication): " 

(a) 

here, Bn is regarded as a P-module in which Po acts as zero and 1 acts as 
multiplication by K - h . 

We call Xn the diagonal module. 

16.11. Let Q betheLiesubalgebra (Bn[u-I]EBBn[v-l]v-I)®g ofg~. From 
16.2(a), we see that we have a direct sum decomposition g~ = P ~ Q (as 
Bn-modules). " 

Using A.2(a) (which is applicable, since the Lie algebras involved are free 
over Bn; see 16.3) we see that (g~ , Q, P, Bn) is a split induction datum and 
that Xn may be identified with U(Q) with the unique g~ -module structure 
such that Q acts by left multiplication and " 

po· 1 = 0, (bl)1 = (K - h)bl for all b E Bn. 

(Here 1 is the unit element of U(Q).) 
By the lemma below, this g~ -module is smooth. Hence it extends naturally 

to a i~ -module. Hence there" is a (unique) g~ -module structure on U(Q) 
such th~t Q acts by left multiplication and n 

Po·l=O, 

This shows that 

(bl)1 = (K - h)bl for all b E Bn. 

(a) (g~ , Q, P, Bn) is a split induction datum. 
n 

By A.2(b), we therefore have 

(b) 

We have the following result. 

Lemma 16.12. We have Xn = Xn(oo). 

For any c1 ' ••• , cr E g we have 
r r -I -I-I 

(UCI )(UC2)··· (ucr)(l) = (-1) t (v cr)··· (v c2)(v cl)(l). 

This follows immediately by induction on r using the identity 

(uc)(l) = -t(v-1c)(1) 

which holds for any c E g since 0 = (pc)(l) = (uc)(l) + (tv-1c)(1). Similarly 
we have 
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for any C~ , ... , C; E g. Since tn = 0, it follows that 

(uc i )(uc2 ) ••. (uc,)( vc~)( vc;) ... (vc;)( 1) 

= (vc~)(vc;) ... (vc;)(uc I )(UC2 )··· (uc,)(I) 

is zero if at least one of the inequalities r ~ n, s ~ n holds. This condition is 
certainly satisfied if r + s ~ 2n - 1 . 

Thus, we have 1 E Xn(2n - 1); hence, 1 E Xn(oo). Now 1 generates Xn as 
a g~ -module; on the other hand, Xn(oo) is a g~ -submodule of X n . It follows 
that ·Xn(oo) = Xn . • 

16.13. In the setup of §15, we consider the Bn-Lie algebra h = g~ and its Lie 
subalgebras h+ = P, h- = Q. • 

Let 
I -I -I -I -I h =(Bn[u,u ,(u-l) ]EBBn[v,v ,(v-I) D®gEBBnl=rBn , 

h/+ = Bn[P' q][(p _ 1)-1 ( _I)-I] ® EBB 1. (pq _ t) , q g n 

We have natural imbeddings of Bn-modules h/+ C h' C h induced by the 
maps in the diagram in 16.6 and taking 1 to 1. In this way, h/+ and h' 
become Lie subalgebras of h. 

Let h/- = Q. We have h = h- EB h+, h' = h/- EB h/+ as Bn-modules. (See 
16.2(b), 16.8(a).) 

Hence we may apply Proposition A.5 to these Lie algebras, to the h + -module 
Bn (as in 16.10), and, to the h'-module Wn = Bn ® (®:=I V;). Note that the 
hypothesis of A.5 that (h, h- , h+, V) is a split induction datum is satisfied by 
16.11(a). From A.5, we see that the Bn-linear map 

(a) (Wn)h'+ -+ (Wn ®B Xn)r 
• Bn 

induced on coinvariants by the imbedding Wn -+ Wn ®B Xn given by w 1--+ 
n 

w ® 1 , is an isomorphism. 
Next we consider the diagram 

h/+ ~rB 
• 

1 1 
d 4 n 

--s 
~ gB. , 

where the upper horizontal map is the imbedding h/+ C h' considered above, 
the lower horizontal map is defined by the formulas in 15.9, the left vertical 
map is the obvious surjection taking 1 to 0, and the right vertical map is given 
by the formulas in 15.18. 

It is easy to check that this diagram is commutative. Hence, to take coinvari-
ants for the restriction of the tB -module W to h' via the north-east route 

n n 
(on which 1 acts as zero) is the same as to take coinvariants for the restriction 
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of Wn to A4 ,n as we did in §15. Hence from the isomorphism (a) we obtain 
the following result. 

Lemma 16.14. The Bn-linear map 

(~)a --+ (Wn 0 B Xn)r 
4, n n Bn 

induced on coin variants by the imbedding ~ --+ Wn 0 B Xn given by w ....... w 0 1 
is an isomorphism. n 

16.15. In the setup of §15, we consider the B -Lie algebra h = gBO and its Lie n n 

subalgebras h+ = P, h- = Q. 
Let 

, -1 -1 _0 
h =(Bn[u,u ]E\7Bn[v,v ])0gE\7Bnl=gB' 

n 

h'+ = Bn(P' q]/(pq - t) 0 g E\7 Bn1. 

We have natural imbeddings of Bn-modules h'+ Ch' C h induced by the maps 
in the diagram in 16.4 and taking 1 to 1. In this way, h'+ and h' become 
sub-Lie algebras of h. 

Let h'- = Q. We have h = h- E\7 h+, h' = h'- E\7 h/+ as A-modules. (See 
16.2.) 

Hence we may apply Proposition A.5 to these Lie algebras, to the h + -module 
Bn (as in 16.10), and to the h'-module T(Wn). Note that the hypothesis of 
A.5 that (h, h - , h + , V) is a split induction datum is satisfied. 

From A.5, we see that the Bn-linear map 

(a) 

induced on coinvariants by the imbedding T(Wn) --+ T(Wn) 0 B Xn given by 
n 

w ....... w 0 1 is an isomorphism. 
Next, we consider the diagram 

h'+ -0 
---:---+ g Bn 

1 1 
A2 ,n 

-0 
---:---+ g B n 

where the upper horizontal map is the imbedding h/+ C h' considered above, 
the lower horizontal map is defined by the formulas in 15.13, the left vertical 
map is the obvious surjection taking 1 to 0, and the right vertical map is given 
by U. 

A direct check shows that this diagram is commutative. It follows that we 
may replace in (a) T(Wn)h'+ by T(Wn)~2,n (as in §15) and obtain the following 
result. 
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Lemma 16.16. The Bn-linear map 

p 
T(~)~ -+ (T(Wn) ®B Xn)go 

2,r! n Bn 

induced on coinvariants by the imbedding T(Wn) -+ T(Wn) ®B Xn given by 
w 1-+ W ® 1 is an isomorphism. • 
16.17. Proof of Proposition 15.27. Consider the Bn-linear map 

(a) (T(~) ®B. Xn)lj. -+ (~®B. Xn)r 

defined as in 8.5. 

By 16.16, the left-hand side of (a) is isomorphic to T(Wn)~ (of§15), which 
2 •• 

is finitely generated by 15.16(a) and 15.20(a). 
By 16.14, the right-hand side of (a) is isomorphic to (Wn)~ (of §15), which 

4 •• 

is finitely generated by 15.12. 
Since any finitely generated Bn-module is reflexive, both sides of (a) are 

reflexive Bn-modules. Therefore, 8.14 is applicable and shows that (a) is an 
isomorphism. (Recall that Xn is smooth.) 

Composing the isomorphism (a) with the isomorphisms 16.16, 16.14, we 
obtain an isomorphism (T(Wn»~ ~ (Wn)~ . It is easy to verify that this 

2, n 4. n 
coincides with the map cl>n given in 15.25(a). 

Hence, that map is an isomorphism and the proposition is proved. 

17. DEGENERATION OF QUADRICS AND CONNECTIONS 

The main result of this section is Theorem 17.29, which is a form of the 
associativity isomorphism at the level of coinvariants. 

17.1. We preserve the set-up of §15. 
Let t = {t E qt i' 0, I} and t' = {(t, p, q) E C31pq = t; t i' 0, 1; p i' 

l;qi'I}. 
Let t E t. Let Yi : pI ~ K t be the isomorphism defined in 15.3. If 

i i' j, then Yj\ is an automorphism of pI and, hence, is an element of 
PGL2 (C). For any io E S, we may consider the element of PGL2 (C)4 whose 
ith component is y;IYi. The image of this quadruple in PGL2(C)\PGL2(C)4 

o 
is clearly independent of the choice of io. Thus we obtain a map to -+ 

PGL2(C)\PGL2(C)4; its image is clearly contained in the open subset r (see 
9.2) so that we have obtained a morphism v : t -+ r. 

We can write it explicitly as follows (we choose io = 2 in the previous 
definition; as we have seen, this choice is irrelevant): 

(a) 
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This can be inserted in a cartesian diagram 

C' ---+ r ' 

1 1 
c~r 

whose right side is as in 9.2. The left vertical map is (t, p, q) ~ t. 
The lower horizontal map is l/ . The top horizontal map is 

(t, p, q) ~ (l/(t) , (1 - p)-I). In order for this map to be well defined, we 
should check that the four matrices in (a) take 0 to four distinct points on 
pi which are also distinct from (1 - p)-I. (In our case these four points are 

(7 (1_~)-1 ) .) 

17.2. Let 
A' = qc'] = A ®A A' . 

00 00 

The commutative diagram in 17.1 gives a commutative diagram of algebra 
homomorphisms 

A ---+ A 
(a) 1 1 

A' ---+ A' 
(recall that A' = qr'] and A = q£:J) . 

Using the definitions, we see that we have the following commutative diagram 

A' ---+ A((€))s 

(b) 1 1 
A' ---+ A((€))s 

where the vertical maps are induced by the morphisms in (a), the upper hori-
zontal map is defined in 9.4, and the lower horizontal map is induced by the 
upper one. 

Under the natural algebra homomorphisms A:x, c A and A' --+ A' , the 
function!; E A:x, (see 15.6) and the function!; E A' (see 9.5) is mapped to 
the same function in A' , denoted again !;. 

Lemma 17.3. The junctions 

(a) f~ (iES;k~I)andi 

form a basis of A' as an A-module, of A:x, as an Aoo -module, and of A' as an 
A-module. 

For A' and A:x" this has been proved in 9.6, 15.7. The proof for A' is 
identical. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



994 D. KAZHDAN AND G. LUSZTIG 

17.4. From the previous lemma we deduce that 

(a) 

17.5. Consider the Lie algebra A4 = A' ® g. 
The Aoo -Lie algebra homomorphism d 4 , 00 

A-Lie algebra homomorphism 

(a) 

(see 15.9) induces an 

Let Y = A ® A Y 00. By 1.13, Y is naturally a ~-module and hence, via 
00 

(a), a A4-module. 
By the right exactness of tensor products, we have 

(b) 

17.6. Recall that Y = A ® (®j~) is a d-module (see 9.11). We have Y = 
A ® A Y. From 17.4 we see that A4 = A ® Ad, and the A4-module structure 
on Y is obtained from the d-module structure on Y by extension of scalars. 
Using again the right exactness of tensor products, we see that 

(a) 

From this and 12.12, we deduce that 

(b) Y j A4 Y is a finitely generated, projective A -module. 

17.7. Since the A-module YjdY has a natural connection (see 12.11), there 
is, by a general construction, an induced connection on the A-module A ® A 
(YjdY) . 

We shall make explicit this connection in our case. It suffices to describe the 
operator Va/at in this induced connection, for the vector field it on C. (This 
vector field gives a basis of the tangent space of C at each point.) 

Note that C is a smooth, closed subvariety of r, via v (see 17.1(a)). 
We regard %t as a section of the tangent bundle of r defined on the sub-

manifold v( C). We extend it to a global section of this tangent bundle; this is 
a vector field D on r. 

Let y E YjdY and let a EA. By definition, 

V%t(ay) = (aajat)y + aD(Y)lc. 

This is well defined (independent of the choice of D) and defines a connection 
on the A-module A ® A (YjdY). 

17.8. In our case, we can take D to be defined by the following vector field on 
GL2(C)s: 

a a a ---+--+--a a a' 
g21;3 g22;3 g21;4 
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where gab' i is the ab-matrix entry on the ith copy of G L2 (C). Recall from 
10.2 that ' 

where d is the determinant. It follows that D has the same restriction to 1/( C) 
as the vector field 

Let us now define a C-linear map f'? : ®i ~ ---- ®i ~ by 

f'?(Y 1 0 Y2 0 Y3 0 Y4) = Y1 0 Y2 0 (Lo - L_ 1)(Y3) 0 Y4 
+ Y1 0 Y2 0 Y3 0 (Lo - L 1)(y4) 

for all Yi E ~ . 
We deduce the following result: 

Lemma 17.9. The induced connection V' on Y /A4 Y can be characterized as 
follows. The operator V't8/8t : Y /A4Y ---- Y /A4Y makes the diagram 

®i~ 
Jr 

®i~ -----+ 

1 1 
Y/A4Y ",8/8, Y/A4Y -----+ 

commutative. (Here the vertical maps are given by the composition of the obvious 
maps ®i ~ ---- A 0 (®i ~) ---- Y /A4 Y. Note that the image of a vertical map 
generates Y/A4 Y as an A-module.) 

17.10. Let L = Yoo/~4,ooYoo and let vii = Y/~4Y' 
We know that L is a finitely generated module over the principal ideal do-

main Aoo' Let r(L) be its torsion module. Then r(L) is finite dimensional 
over C and L /r(L) is free of finite rank over Aoo' Now vii = A 0 Aoo L 
is a projective A-module. It follows that r(L) is supported at 0 (i.e., it is 
annihilated by a power of t) and that the natural map 

(a) 

(induced by the obvious imbedding Aoo c A) has kernel precisely equal to 
r(L) . 

Note that the C-linear map V't8/8t : vii ---- vii (see 17.9) leaves stable the 
image of the map (a). 

This follows from the fact that the commutative diagram in 17.9 can be 
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naturally extended to a commutative diagram 

®J~ 
Je' 

®J~ ----> 

1 1 
(b) L/r(L) L/r(L) 

1 1 
L "/iJ/at L ----> 

in which ®i ~ -> L Ir(L) is the obvious map (whose image generates 
L /r(L) as an Aoo-module). 

Hence, there is a unique C-linear map V to/at: L -> L /r(L) which is zero 
on r(L) and is such that the following diagram is commutative. 

V 
L ~ L/r(L) 

(c) 1 1 
L " ta/at L ----> 

17.11. We can find exact sequences in &'K: 0 -> ~" -> ~' -> ~ -> 0 (for 
each i) such that each ~' is a generalized Weyl module. Let y~ = Aoo ® 
( 10. ") d ' (10. ') ~ //" "/ "d //' IC/. V an Y = A ® IC/. V . We lOrm./lt = Y ~4 Y an ./It = I I 00 00 I 1 00 ,00 00 

y' /~4 y'. By the right exactness of tensor products, we have a natural exact 
00 ,00 00 

sequence 
L" -+ L' -+ L -+ o. 

By 9.15, the Aoo-module L' is torsion free. Hence we have a commutative 
diagram with exact rows 

L" ----> L' ----> L ----> 0 

(a) 1 1 
L"/r(L") ----> L' ----> L ----> 0 

where the vertical maps are of the form Vta /at (for L" , L'). 
From this we see that there is a unique C-linear map "to/at: L -> L 

which, when added to the diagram as the third vertical map, leaves the diagram 
commutative. 

We consider the diagrams 

®i ~' Je' ®i ~' ----> 

(b) 1 1 
L' Vta /at L' ----> 
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(c) 1 1 
L~L 

with obvious vertical maps. The first diagram is commutative, by definition. 
We want to prove that the second one is also commutative. For this purpose, 
we will complete the two diagrams above to a cubic diagram in which our two 
diagrams appear as two opposite faces of the cube; namely, we have a natural 
map from each module in the first diagram to the module in the same position 
in the second diagram. In the resulting cube, five out of the six bounding 
squares form commutative diagrams. Moreover, the arrows ®i ~' -+ ®i ~ are 
surjective. This implies automatically that the sixth bounding square of the cube 
is a commutative diagram. Thus, the second diagram above is commutative. 

17.12. The map "il t8 / 8t : L -+ L satisfies the identity 

(a) "il t8 / 8t (am) = a"il t8 / 8t (m) + t(8aj8t)m 

for all a E Aoo and all mEL. 
Indeed, this follows from the analogous identity for Vt8 /8t : L' -+ L' , 

which in tum follows from the imbedding L' c.it' and the fact that "il t8 / 8t 

is a connection operator on .it, . 
Thus we have the following result. 

There is a unique C-linear map "il t8 / 8t : L -+ L , such that (a) 
is satisfied and such that the diagram 17.11 (c) is commutative. 

(The existence has been proved. The uniqueness is immediate.) 
This map can be also characterized by the fact that it is functorial in the ~ 

and that it makes the diagram 

L ~L 

(b) 1 1 
L V'B/B' . 

---+ L 
commutative. 
17.13. Let .9R be the coordinate ring of a Zariski open subset of C containing 
O. Let M be a finitely generated .9R-module. We define a connection with a 
regular singularity at 0 on M to be a C-linear map "il t8 /8t : M -+ M such 
that 

(a) "il t8 /8t (am) = a"il t8 /8t (m) + t(8aj8t)m 

for all a E.9R and all m EM. 
This concept is more general than that of a connection in the usual sense, 

since the operator "il8 / 8t is not defined on M. 
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If we are given an integer n ;::: 1 and a connection with a regular singularity 
at 0 on M, we have (using (a)): 

V t8 /8t (tn M) c tn M; 

hence, V t8 /8t induces a C-linear endomorphism of M/tnM, denoted again 
V t8 /8t • This endomorphism of M/tn M satisfies again (a) for a E 9R /(tn) = 
C[t]/(tn) and m E M/tn M. Note that t(8a/8t) is a well-defined derivation 
of the C-algebra C[t]/(tn) (in fact, it is a generator of the C[t]/(tn)-module of 
derivations of this algebra). 

To give a connection on a C[t]/(tn)-module is equivalent to giving a C-linear 
endomorphism V t8 /8t of that module whose commutator with multiplication 
by t is equal to multiplication by t. 

Hence, V t8 /8t defines a connection on the C[t]/(tn)-module M/tn M. 

17.14. We can summarize our results above as follows: the Aoo -module vi( has 
a natural connection with a regular singularity at O. 

For any integer n;::: 1, this induces a connection (in the usual sense) on the 
C[t]/(tn)-module 

This connection makes the following diagram commutative: 

®i~ 
It' 

---? ®i~ 

(a) 1 1 
~ 

Viii/at 
~ ---? 

where the vertical maps are the obvious ones. 

17.15. We shall now consider a simpler version of the results above (in which 4 
is replaced by 2). We place ourselves in the setup of 15.13. Thus, we are given 
two objects X l2 , X34 of &'" indexed by the elements of 0 = {12, 34} . 

Recall that Boo = C[t] . 

Lemma 17.16. Let V, V' : C[t] 18) X 12 18) X 34 -+ C[t] 18) X l2 18) X 34 be the C-linear 
maps defined by 

(a) 

(b) 

for a E C[t], x E X 12 , Y E X 34 . Then V, V' leave stable the subspace 
Ll2, 00 (C[t] 18) X 12 18) X 34 ) C[t] 18) X 12 18) X 34 (see 15.13) and hence induce C-linear 
maps (which actually coincide) of (C[t] 18) X 12 18) X 34 )a into itself. This map, 

2,00 
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denoted vIa/at, defines on this last C[t]-module a connection with a regular 
singularity at O. 

The connection on (C[t]®X12 ®X34)~ could be constructed by arguments 
2.00 

parallel to those in 17.7-17.14. We prefer, however, to give a more direct 
definition. 

Let x E X 12 , Y E X 34 . We have 
V((pn c)(x ® y)) 

= V((E-nC)X ®y + tnx ® (EnC)Y) 

= Lo((E-nC)X) ®y + ntnx ® (EnC)Y + tnLo(x) ® (EnC)Y 

= (E -nc)Lox ® y + n(E -n c)x ® y + ntnx ® (En C)y + tnLO(x) ® (En C)y 

= (pn c)((LO + n)x ® y), 

V((qn C)(X ® y)) 

= V(tn(E n C)X ® y + x ® (E -n C)y) 

= ntn(E n C)X ® Y + tn LO((EnC)X) ® y + LO(x) ® (E -n C)y 

= ntn(En C)X ® y + tn(En c)LOx ® y + -ntn(EnC)X ® y + LO(x) ® (E -n C)y 

= (qnc)(LOx ® y). 
Since (pnc) , (qnc) generate Ll2 ,oo as a C[t]-module, we see that V leaves 

stable the subspace Ll2 ,oo(C[t] ® X 12 ® X34 ). 
We now show that 

(c) V(x ® y) - Vi (x ® y) E Ll2 ,oo(C[t] ® X 12 0 X34 ) 

for any x E X l2 ' Y E X 34 . 
We can assume that x E X 12(N) , y E X34(N) for some N ~ 1 . Then 

1 N-l .. 

V(x ® y) = 2K ~ L I/E-J Cp)(EJ cp)x ® y, 
J=O P 

1 N-l .. 
Vi (x ® y) = 2K L L ljx ® (E -J Cp)(EJ cp)Y 

J=O p 
where cp E g are as in 1.14 and 10 = 1, Ij = 2 for j > O. 

For any p and any j ~ 0 we have 

hence, 

(pj Cp)((E j cp)x ® y) - (qj cp)(x ® (E j cp)Y 

= (E -j Cp)(E j cp)x ® y + t j (E j cp)x ® (E J cp)Y 

- ~ (E j cp)x ® (E J cp)Y - x ® (E -j Cp)(E j cp)Y 

= (E -J Cp)(E j cp)x ® Y - x ® (E -j Cp)(EJ cp)Y; 

(E -J Cp)(EJ cp)x ® Y - x ® (E -j Cp)(EJ cp)Y E Ll2 ,oo(C[t] ® X 12 ® X34 ) 
and (c) follows. The lemma is proved. 
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17.17. We shall apply the previous lemma in the case where X\2 = ~<i9Vz, 

X34 = Ji3<i9 ~ . 
We summarize our results as follows: 

The C[tJ-module L = (C[t] 0 (~<i9Vz) 0 (Ji3<i9~))L1 has a 
2,00 

natural connection with a regular singularity at O. 
For any integer n :::: 1, this induces a connection (in the usual sense) on the 

C[t]1 (tn)-module 

L n = C[t]/(tn) 0C[t) L = L Itn L = (C[t]/(tn) 0 (~<i9 Vz) 0 (Ji3<i9 V4))L1 . 
2, n 

This connection makes the following diagram commutative: 

(~<i9Vz) 0 (V3<i9V4) 
,jf' 

(V\<i9V2 ) 0 (V3<i9~) ---> 

(a) 1 1 
Ln 

'V'8/8' 
Ln ---> 

where the vertical maps are the obvious ones and Jr is the C-linear map defined 
by 

Jr(X 0 X') = X 0 LO(X') 

for all X E ~<i9Vz and x' E Ji3<i9~. 

17.18. Recall that for 1 :S n < 00 we have an isomorphism 

<l>n: T(Wn)~2 n ~ Wn1Ll4,nWn =Ln; 

see 15.27. 
By 15.20(a), we have an isomorphism 

'l'n : L n = (Bn 0 (~<i9 Vz) 0 (Ji3<i9 ~))L1 ~ T(Wn)! . 
2, n 2, n 

Combining these two isomorphisms, we get an isomorphism of Bn-modules 

(a) cf> 'l' :L ~L n n n n 
defined for 1 :S n < 00 • 

Proposition 17.19. The isomorphism cf>n'l'n in 17.18(a) is compatible with the 
connections on the Bn -modules L n ,Ln defined in 17.14, 17.17. 

The proof will be given in 17.20-17.23. The isomorphism 17.18(a) can be 
decomposed as a product of four isomorphisms, and we will analyze the com-
patibility of each of these four isomorphisms with connections. 

17.20. Under the natural isomorphism 

'l'n : L n ~ T(Wn)~ 
2, n 

the connection on the B n -module L n described in 17.17 becomes a connection 
"'V t8 /8t on the Bn-module T(Wn)! . 

2, n 
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This connection makes the following diagram commutative: 

T(W)U L O;34 T(W)U ---+ 

(a) 1 1 
T(~)i 

"ii/lifO/ 
T(~)i ---+ 

2 •• 2, • 

where the vertical maps come from 8.12 (base change C - B n) and Lo; 34 is, as 
in 1.15, the Sugawara operator Lo on T( W)# , regarded as a g-module via the 
imbedding d34 : g - t::). (This follows from the obvious fact, that under the 
natural isomorphism of g<:l-modules (V;®Vi)®(f3®J4) ~ T(W)U, the operator 
J'I' corresponds to the operator Lo; 34 .) 

17.21. Consider now, for an integer n ~ 1, the isomorphism of Bn-modules 

T(Wn)~ ~ (T(Wn) ®B Xn)iC:> 
2. n n B" 

(see 16.16). 
Via this isomorphism, the connection on the Bn-module T(Wn)i defined 

2, n . 

in 17.20 becomes a connection V t8 /8t on the Bn-module (T(Wn) ®B Xn)-c:> . 
• liB. 

From the definitions, this connection makes the following diagram commu-
tative: 

T(W)# L O;34 T(W)# ---+ 

(a) 1 1 
(T(Wn) ®B Xn)iC:> 

"ii/lifO/ 
(T(Wn) ®B Xn}gc:> ---+ 

• B. • B. 

where L O, 34 ,is as in 17.20 and the vertical maps are defined by the composition 

T(W)U - T(Wn)U - T(Wn) ®B Xn - (T(Wn) ®B Xn)"c:> 
• • IIBn 

(the first map comes from base change (8.12), the second map is w f-+ W ® 1 , 
and the third map is obvious). 

We now consider, for any w' E T(Wn )# and y E Xn , the images of the ele-
ments Lo 34(W') ® y and w' ® Lo 34(y) of T(~) ®B Xn in 
(T(~) ®B 'Xn}gc:> . (Here, Lo 34 is defined'in the same way as in 17.20.) 

n Bn ' 

These two images coincide: we apply 11.12 for the two g~ -modules T(~)U 
and Xn , for t = 34 E • = 0, (see 11.1) and S = {s,,·so}; for k = 0; 
and for the C-algebra homomorphism A - Bn which is composition of the 
homomorphism A - C (evaluation at 'Ys ,'Ys as in 10.18) with the obvious 

I 0 
homomorphism C - Bn' (The sum in 11.12 is in this case given by 10.18.) 
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Hence the commutativity of the diagram above implies the commutativity 
of the diagram 

(b) 1 1 
where the upper horizontal map is the composition 

T(W)U -> T(Wn)U ....... T(Wn) 0 B Xn 
n 

(the first map comes from base change (8.12) and the second map is W f-+ w01), 
the left vertical map is as in (a) and the right vertical map is the composition 

U I®Lo'34 U U T(Wn) 0 Bn Xn ') T(Wn) 0 Bn Xn -> (T(Wn) 0 Bn Xn)g~n' 

17.22. Consider now, for an integer n 2: 1, the isomorphism of Bn-modules 

(Wn)a ....... (Wn 0 B Xn)r 
4, n n Bn 

(see 16.14). 
Via this isomorphism, the connection on the Bn-module (Wn)a defined in 

4, n 

17.14 becomes a connection "V ta /at on the Bn-modu1e (Wn 0 B• Xn)rB • 

From the definitions, this connection makes the following diagram 'commu-
tative: 

W jf' W --> 

(a) 1 1 
(Wn 0 B Xn)r "t8/8t (Wn 0 B Xn)r --> n Bn n B. 

where the vertical maps are defined by the composition 

W ....... Wn ....... Wn 0 B Xn ....... (Wn 0 B Xn)r 
n n ~ 

(the first and third map are the obvious ones, and the second map is W f-+ W 01) . 
We now consider, for any vectors x, y, z in the g~ -modules . 

Bn 0 f't 0 f3 ' Bn 0 V; 0 ~ , Xn , 
the image of the element 

L -I ; 34 X 0 Y 0 z - L o, ; 34X 0 Y 0 z + x 0 L, ; 34Y 0 z - x 0 Lo; 34Y 0 z + x 0 Y 0 Lo; 34 z 

of Wn 0 Bn Xn in (Wn 0 Bn Xn)rB ' (Here, as in 1.15, L j ;34 are the Sug-
awara operators in the restriction nof these three modules to gB under c)34 : 
~ ~O) • 
gB ....... gB" 

n • 
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We assert that this image is zero. This follows from 11.12 applied for the 
three modules above, for t = 34 E • = <:;J (see 11.1) and S = {SI ' S2' so} , for 
k = 0, and for the C-algebra homomorphism A -+ Bn which is composition 
of the homomorphism A -+ C (evaluation at Ys ' Ys 'Ys as in 10.17) with the 

1 2 0 
obvious homomorphism C -+ B n. (The sum in 11.12 is in this case given by 
1O.17(a).) 

It follows that, for any W E W, the elements 2(w) Oland W ° Lo,34(1) 
of ~ 0 B Xn have the same image in (Wn 0 B Xn)r . 

n n Bn 

Hence the commutativity of the diagram above implies the commutativity 
of the diagram 

W ----'> ~0B Xn • 
(b) 1 1 

(Wn 0 B Xn)r 
V 'O / O' 

(Wn 0 B Xn)r ----'> 
• B. • B. 

where the upper horizontal map is W 1-+ W0 1 , the left vertical map is as before, 
and the right vertical map is the composition 

17.23. We want to show that the isomorphism of Bn-modules 

I1n : (T(Wn) 0 B Xn~ ~ (Wn 0 B Xn)r 
n Bn n Bn 

(see 16.17(a)) is compatible with the connections 'V tG / 8t on 

U 
(T(~) 0 B• Xn)~. ' (Wn 0 B• Xn)rB• 

defined in 17.21, 17.22. 
Consider the following two compositions: 

T(W)U ~ (T(~) 0 B Xn)i" ~ (T(Wn) 0 B Xn)i" ~ (~0B Xn)r ' 
n Bn n Bn n Bn 

T(W)U ~ (T(Wn) 0 B Xn)i" ~ (Wn 0 B Xn)r ~ (Wn 0 B Xn)r ' 
n Bn n Bn n Bn 

where A: T(W)U -+ (T(Wn) 0 B Xn)g" is as in 17.21(b). 
• B. 

Let W E T(W)U. We regard W as an element in the inverse limit W; thus, 
we may represent W by a sequence (WI' w2 ' w3 ' ••. ) of compatible elements 
of W. The image of W in T(Wn)U is denoted j(w); it can be represented by 
the same sequence (WI' w2 ' w3 ' ••• ) regarded now as a sequence of elements 
in Wn • By the commutative diagram 17.21(b) we have that 'V t8 / 8t (A(w)) is the 
image of jew) ° L O;34(1) in (T(Wn) 0 B• Xn)i~ . Hence, by the definition of 
I1n , we have that I1n('Vt8/8t(A(w))) is equal to the image of wk ° L O;34(1) in 
(~0B Xn)r for sufficiently large k. 

• B. 
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Again, by the definition of TIn' we have that TIn((A.(w)) is equal to the image 
wk ® 1 in (Wn ®B Xn)r for sufficiently large k. Using the commutative 

• B. 

diagram 17.22(b), it follows that Vla/al(TIn((A.(w))) is equal to the image of 
wk ® Lo. 34(1) in (Wn ®B Xn)r for sufficiently large k. 

, n Bn 

Thus, we have the equality of compositions Vla/alTInA. = TIn V t8 / alA.. 
Now the image of A. generates (T(Wn) ®B Xn)g<:> as a Bn-module. (Indeed, . ~ . 

A. is the composition of T(W)U ~ T(Wn)U with a surjective homomorphism of 
Bn-modules T(Wn)U ~ (T(Wn) ®B Xn)i<:> ,and the image of T(W)U ~ T(U:)U 

• B. 

generates T(Wn)U by 8.12.) 
Moreover, both TI~lVla/alTIn and V la /al are connections on the Bn-module 

(T(Wn) ®B Xnh<:> ; hence, their difference is a Bn-linear map. Hence, the 
• lB. 

equality 

implies the equality 
-I 

TIn Vla/alTIn - V la /al = O. 

Thus the two connections V/a/al on (T(U:) ®B Xn).g<:> and (Wn ®B Xn)r 
n Bn n 8 n 

correspond to each other under the isomorphism TIn' as asserted. 
We have therefore verified that each of the four isomorphisms of which 

17.18(a) is the composition is connection preserving. Hence the isomorphism 
17.18(a) itself is connection preserving. This completes the proof of Proposition 
17.19. 

17.24. For any finitely generated Aoo -module M with torsion module .(M) 
annihilated by a power of t, we set Mf = MI.(M). Then Mf is a finitely 
generated free A -module. We also set M = lim Mltn M. This is a finitely 

00 +-- n>1 
generated C[[t]]-module. We have an exact sequence 

(a) o ~ .(M) ~ M ~ M1 ~ o. 
Consider now the Aoo-modules L (see 17.10) and L' = Aoo ®qlJ L, 

where L is as in 17.17 and Aoo is regarded as a C[t]-algebra via the obvious 
imbedding C[t] c C[t, (t - 1)-1] = Aoo' Then L, L' are finitely generated 
Aoo -modules with torsion annihilated by a power of t. For any n 2: 1, we 
consider the isomorphism 

(b) 

given by 15.27. 
When n varies, the isomorphisms (b) are compatible with the maps in the 

standard projective system 
, , ,2, 

L ItL +- L It L +- ... 
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and with the maps in the analogous projective system for; (see 15.26). Hence 
they induce an isomorphism of q[t]]-modules 

(c) 

This restricts to an isomorphism reM) ~ r(M') and defines by passage to 
quotient an isomorphism 

(d) 

(see (a)). 
This induces for any n ~ 1 an isomorphism 

(e) 

which is compatible with the isomorphism (b). 
Let M = HomA (;'1, ;/). Then M is a finitely generated free 

module and we hav~ canonically - -- 'I I M = HomC[[tll(; ,;). 

Thus, the isomorphism (d) may be regarded as an element OJ EM. 

A -00 

17.25. Recall (17.14, 17.17) that the Aoo -module ; and the q t]-module ; 
have natural connections with regular singularities at o. Then the Aoo -module 
;' inherits from ; a connection with a regular singularity at o. The con-
nection operator 'il t8 /8t on ; (resp. ;') clearly leaves stable the torsion 
submodule and, hence, induces a connection with a regular singularity at 0 on 
the corresponding quotient ;1 (resp. ;'/). 

Let 'il t8 /8t : M --+ M be the C-linear map f 1-+ 'il t8 / 8J where 

(a) 

for all m' E ;'1. It is clear that this operator defines a connection with a 
regular singularity at 0 on M. 

This operator leaves stable the submodules tnM of M; hence, on the one 
hand, it extends naturally to an operator 'il t8 /8t : M --+ M, and, on the other 
hand, it induces a connection on the quotient qt]/(tn)-module 

n 'I n'l I n ",,1 Mit M = HomC[t]/(tn)(; It; ,; It .In ) 

for any integer n ~ 1 . 

17.26. Now the free Aoo -modules ;1, ;'1, M are spaces of sections of well-
defined algebraic vector bundles on C - {I}. The restrictions of these vector 
bundles to the real interval (-00, 1) will be regarded as real analytic vector 
bundles and will be denoted by ~n' ;:n ' Man· 

These three vector bundles have natural connections with regular singularity 
at O. 
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17.27. For any integer n ~ 1, the connection operator of the C[t]/(tn)-module 
L Itn L (resp. L ItnL = L' Itn L') leaves stable the image of TCL) Crespo 
T(L')) and, hence, induces a connection on the quotient C[t]/(tn)-module 
Lf ItnLf (resp. L'f ItnL'f). 

These connections induce a connection on the C[ t]1 (tn )-module 
,f n'f f n f n (a) HOIllc[t]/(tn)(L It L ,L It L ) = MIt M 

formally as in 17.25(a). One checks that this coincides with the connection 
defined at the end of 17.25. 

The isomorphism 17.24Ce) can be interpreted as an element OJn E MltnM 
(see (a)). 

It is clear that OJn is the image of OJ E M (see 17.24) under the canonical 
map M ~ MltnM. 

It follows from Proposition 15.27 that the connections on Lf ItnLf , 
L'f ItnL'f correspond to each other under the isomorphism 17.24(e). This 
means that OJn is annihilated by the connection operator V ta /at of MltnM. 
Since this holds for all n, it follows that OJ is annihilated by the operator V ta /at 
of M. In other words, OJ E M is a formal solution of the linear differential 
equation given by the connection V ta /at with regular singularity at 0 on the 
finitely generated free Aoo -module M. 

By the classical theory of regular singularities for linear differential equations 
(see [WD, it follows that there is a unique analytic section OJ of Man (defined 
over (-00, 1) which, on the one hand, is annihilated by the connection operator 
V ta /at on this vector bundle and, on the other hand, has power series expansion 
at 0 given by OJ. 

17.28. We may regard OJ as a morphism from L:n to ~n • By the definition 
of OJ, we see that OJ is formally (at 0) an isomorphism from L:n to ~n. 
It follows that OJ defines an analytic isomorphism from L:n to ~n on some 
interval (-a, a) where 0 < a < 1 . But L:n and ~n are flat vector bundles 
outside 0 and OJ preserves these flat structures. It follows that OJ defines an 
analytic isomorphism from L:n to ~n outside 0 and, therefore, also over 
the entire interval (-00, 1). 

In particular, OJ defines an analytic isomorphism (preserving the flat struc-
tures) from L:n to ~n over the real interval (-00,0). Hence it defines an 
isomorphism 

(a) 

between the spaces of horizontal sections of these vector bundles over 
(-00, 0). Now .?(L:n ) is canonically isomorphic (via restriction) to the fibre 
of L:n at any point of (-00, 0) (since this interval is contractible). The fibre at 
-1 is the specialization of L' for t = -lor, equivalently, the specialization 
of L for t = -1, and this is, by definition, <V;®J-S, JS®~). Thus, 

(b) .?(L:n ) = <V;®J-S, JS®~). 
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Similarly, .9'(~n) is canonically isomorphic (via restriction) to the special-
ization of vi( at any point of (-00, 0) or, equivalently (see 17.6), to the spe-
cialization of the A-module Y / flY at the point v (t) E r for any t E (-00, 0) . 
(Here, v:C-{O, 1}-r is as in 17.1, A is the coordinate algebra of r.) 

We will now verify (using the definition 17.1(a)) that v(t)· is contained in the 
subset ~ of r described in 13.1 (for r = 4) provided that t E (-00, 0). 

In the following diagram we represent the eight points of p~ given by Yj(O) , 
yj(o) where Yj are the four automorphisms of pi given in 17.1(a) and 0 > 0 
is small. (The values of y;(O) are given at the four comers of a square as in 
17.1, and the values of yj(o) are given near the value of yj(O) with the same 
i.) 

00 

-0 + 1 
(t - 1)0 + 1 

i 

0-1 ---o 

1 ~(-----

-------+) 0 

-1 

1 o 

1 
-1 

--=------:----:- - ---to+(t-l) t-l 
If t E (-:-00, 0) and 0 > 0 is sufficiently small (depending on t), the eight 
points above cut the circle in the manner shown. This shows that v(t) E ~. 
From the definition in 13.3, we see now that 

(c) 

We therefore obtain the following result. 

Theorem 17.29. The isomorphism 17.28(a)-(c) combine to give a canonical iso-
morphism 

(Vj®Jt;, fJ®~)~(Vj, Jt;, fJ, ~). 
17.30. The following generalization of the previous theorem can be proved es-
sentially along the same lines: 

Given objects Vj, Jt;, ... , v" V,+I' ... , v,+r' of &'" (where r, r' ~ 1) we 
have a canonical isomorphism of C-vector spaces 

(Vj®Jt;® ... ®v" V,+I®"'®V,+r') ~ (Vj, Jt;, ... , v,+r')' 
(For r = 1 we interpret Vj ® ... ® V, as Vj.) 

18. THE ASSOCIATIVITY ISOMORPHISM 

In this section we will complete the construction of the associativity isomor-
phism, started in § 15. 

18.1. Let Vj, Jt;, fJ, ~ be objects of &'". In the last section we have con-
structed a canonical isomorphism 

(a) 
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The same construction applied to ~, ~, V2 ' V) gives an isomorphism 

(b) (~®~, ~®fJpq~, ~, ~, V3)· 

By 13.3, (~, ~, V), ~) depends only on the cyclic order of the ~. Thus, 
we have (~, ~, V3 ' ~) = (~, ~, ~, V)) and, therefore, (a),(b) combine to 
give an isomorphism 

(c) 

18.2. Recall from 13.5 the canonical isomorphism 

( a) ( V ® V' , V") ~ (V, V', V") 

for any V, V', V" in &'K . 
Using several times (a) and the invariance of ( , ) under cyclic permutation, 

we have 

(VI®V2 , V)®~) ~ (V)®~, ~®~) ~ (V), ~, ~®~) ~ (~®~, fJ, V4 ) 

~ ((V1®V2)®V3 , V4 ), 

(~®Vl' ~®V)) ~ (~, ~, ~®V)) ~ (~, ~®V), ~) 

~ (~®(~®V)), ~). 

Combining these with l8.l(c), we obtain 

((~®~)®V), ~) ~ (~®(~®V)), ~), 

or, equivalently (see 2.32(c)), 

Hom&, ((~®~)®fJ, D(~)) ~ Hom&, (~®(~®V)), D(V4 ))· 
K K 

Since this isomorphism is functorial, it must be induced by a well-defined 
isomorphism in &'K: 
(b) 

This isomorphism, which is functorial in all arguments, is called the associativity 
isomorphism. 

ApPENDIX: INDUCED MODULES 

In arguments involving induced modules for modules over a Lie algebra, the 
Poincare-Birkhoff-Witt theorem is often used. However, when we work over a 
ring rather than a field, the Poincare-Birkhoff-Witt theorem is not always valid. 
The results of this appendix are concerned with the question of how to avoid 
using the Poincare-Birkhoff-Witt theorem in the study of induced modules. 

A.l. Let A be a commutative C-algebra. An induction datum is a triple (h, h + , 
V) where h is an A-Lie algebra, h + is an A-Lie subalgebra of h, and V is a 
h + -module. Then v = U(h) Q9U(h+) V 

is naturally a h-module, called the induced module. 
A split induction datum is a quadruple (h, h - , h +, V) where (h, h + , V) is 

an induction datum and h - is an A-Lie subalgebra of h such that h = h - EEl h + 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TENSOR STRUCTURES ARISING FROM AFFINE LIE ALGEBRAS. II 1009 

as an A-module and such that there exists an h-module structure on the A-
module U (h -) ® A V with the following property: 
(a) ~(u ® v) = (~u) ® v and '(1 ® v) = 1 ® 'v 
for all ~ E h-, 'E h+, u E U(h-) , v E V. (The h-module structure in (a) is 
necessarily unique.) We shall denote the h-module U (h -) ® A V by vb. 
Lemma A.2. (a) Assume that (h, h+ , V) is an induction datum and that h- is 
an A-Lie subalgebra of h such that h = h+ ED h- as A-modules. Assume also 
that h+ ,h"- are free as A-modules. Then (h, h- , h+ , V) is a split induction 
datum and the h-module homomorphism iT ~ Vb given by u ® v 1-+ u( 1 ® v) 
for all u E U(h) and v E V is an isomorphism. 

(b) Assume that (h, h - , h + , V) is a split induction datum (but we make no 
freeness assumptions). Then the h-module homomorphism iT ~ Vb given by 
u ® v 1-+ u(1 ® v) for all u E U(h) and v E V is an isomorphism. 

Under the hypothesis of (a), we are allowed to use the Poincare-Birkhoff-Witt 
theorem. We see that U(h) = U(h-) ®B U(h+). It follows that 

n 

- - + -V = U(h) ®U(h+) V = U(h ) ®Bn U(h ) ®U(h+) V = U(h ) ®Bn V 
and (a) follows. 

We now prove (b). 
Let X be any h-module. We have a canonical map 

b (a) Homh(V , X) ~ Homh+(V, X) 

defined by taking composition with the natural homomorphism V ~ vb, 
(v 1-+ 1 ® v). We construct a map in the opposite direction. Let f: V ~ X 
be a homomorphism of h+-modules. We define an A-linear map I: Vb ~ X-
by I«~I" '~p)v) = ~I .. '~pf(v) for any ~I' ... '~p E h- and any v E V; we 
omit the tensor product sign. It is clear that 
(b) / (~VI) = ~/ (VI) for all ~ E h - and all VI E V~ . 

We show by induction on p ~ 0 that 
(c) 1(~'«~I'''~p)v)) =~'/«~I'--~P)v) 

for any ~I' •.• , ~P E h- , any ~' E h+ ,and any v E V. This is clear for p = 0; 
hence, we may assume that p ~ 1 . 

In the following computation we write u' = ~2' - . ~P' U = ~I u'; for any 
element 1'/ E h we write 1'/ = 1'/- + 1'/+ where 1'/- E h- and 1'/+ E h+ . We have, 
using (b) and the induction hypothesis, 

/(~'(uv)) = /(~'~I(U'V)) 
= /(~I~'(U'V)) + /([~', ~I]-(U'V)) + /([~', ~d+(u'v)) 

= ~1/(~'(u'v)) + [~', ~Ir /(u'v) + [~', ~d+ /(u'v) 
= ~I~'/(U'v) + [~', ~d/(u'v) 

= ~'~I/(U'V) = ~'/(uv) 
and (c) is established. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1010 D. KAZHDAN AND G. LUSZTIG 

Thus, we have r E Homh(V" , X). It is clear that f 1-+ r is the inverse of 
the map (a). Hence (a) is an isomorphism. 

By the definition of tensor product, we have 

Homh(U(h) ®U(h+) V, X) ~ Homh+(V, X). 

Combining with the isomorphism (b) we obtain 

Homh(U(h) ®U(h+) V, X) ~ Homh(V" , X). 

Since this holds for any X, the lemma follows. 

A.3. If V is a module over an A-Lie algebra r, we set Vr = VjrV (space 
of coinvariants). An equivalent definition is Vr = A ®U(n V where A is taken 
with the zero action of r. 
A.4. Let h be an A-Lie algebra, and let h + , h - , h' , h/+ ,h/- be A-Lie subal-
gebras of h such that h = h- EEl h+, h' = h/- EEl h/+ , as A-modules and such 
that h- = h/- . 

Let V be an h + -module and let W be an h' -module. 
We assume that (h, h - , h + , V) is a split induction datum; let V" be the 

h-module defined as in A.I. 
We restrict V" to an h' -module and form the tensor product V"® A W ; this 

is an h'-module in a natural way, and hence (V"® A W)h' is defined. 
We restrict Wand V to h/+ -modules; then V ® A W is naturally a h/+-

module and hence (V ® A W)h'+ is defined. 
We have a canonical imbedding I : V -+ V" given by v -+ I ® v. Then 

I®I : V ® A W -+ V" ® A W carries h/+ (V ® A W) into h' (V" ® A W) ; hence, we 
have an induced map 

(a) 

In this set-up, we have the following result. 

Proposition A.S. The A-linear map A.4(a) is an isomorphism. 

Our assumptions imply that (h', h/- , h/+ , Vlh,+) is a split induction datum 
and that the corresponding h'-module (Vlh,+)" (see A.I) is V"lh,. Hence, if we 

1 ( + I ,+ " I 1+ I ,+ " rep ace h, h ,h, h ,V, W, V) by (h, h ,h, h ,Vlh,+, W, V Ih,) , 
our assumptions remain satisfied and the statement to be proved remains the 
same. Thus we are reduced to the case where h = h' and h + = h/+. In this 
case W is an h-module. 

Our assumption that (h, h - , h + , V) is a split induction datum implies that 
(h, h - , h +, V ® A Wlh+) is a split induction datum and that the corresponding 
h-module (V ® A Wlh+)" is V"® A W. 

Hence in the statement to be proved, V and W enter only together, through 
V ® A W. Thus there is no loss of generality if we assume also that W = A 
with the zero h-module structure. Therefore, our task is reduced to proving 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TENSOR STRUCTURES ARISING FROM AFFINE LIE ALGEBRAS. II 1011 

Vlh+ ~ Vblh. By the definition, we have Vb = U(h) ®U(h+) V as an h-module. 
It follows that 

b 
(V )h = A ®U(h) (U(h) ®U(h+) V) = A ®U(h+) V = ~+, 

as desired. 
A.6. We will need a variant of the previous proposition. Let h be an A-Lie 
algebra, and let h + , h' ,h'+ be A-Lie subalgebras of h such that h = h + + h' 
and h'+ = h + n h' . Let V be a h + -module. We form the h-module V induced 
by V (see A.I). We restrict it to a h'-module and form ~,. We restrict V to 
a h'+ -module and form ~,+. 

- '+ ,-The canonical homomorphism V -+ V carries h V to h V; hence, we 
have an induced map 

(a) 
In this setup, we have the following result. 
Proposition A.7. (a) The linear map A.6(a) is surjective. 

(b) Assume that there exist A-bases p of h, p' of h', p+ of h+ , and p'+ 
of h'+ such that p'+ = p' n p+ and p' U p+ = p. Then the linear map A.6(a) 
is an isomorphism. 

Since h = h + + h' , multiplication in U (h) defines a surjective A-linear map 
U(h') ® A U(h +) -+ U(h) . It follows that V is generated as a U(h')-module by 
the image of V -+ V. The surjectivity of A.6(a) follows. 

We prove (b). In this case, we may use the Poincare-Birkhoff-Witt theorem 
and we see that U(h') ®U(h'+) U(h+) ~ U(h). 

Hence V = U(h') ®U(h'+) V. We have 

~, = (U(h') ®U(h'+) V)h' 

The proposition is proved. 

= C ®U(h') (U(h') ®U(h'+) V) 

= C ®U(h'+) V = Vh'+' 
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