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Abstract

Previous work has demonstrated that the image variations ofmany ob-
jects (human faces in particular) under variable lighting can be effec-
tively modeled by low dimensional linear spaces. The typical linear sub-
space learning algorithms include Principal Component Analysis (PCA),
Linear Discriminant Analysis (LDA), and Locality Preserving Projec-
tion (LPP). All of these methods consider ann1 × n2 image as a high
dimensional vector inRn1×n2 , while an image represented in the plane
is intrinsically a matrix. In this paper, we propose a new algorithm called
Tensor Subspace Analysis (TSA). TSA considers an image as the sec-
ond order tensor inRn1 ⊗ Rn2 , whereRn1 andRn2 are two vector
spaces. The relationship between the column vectors of the image ma-
trix and that between the row vectors can be naturally characterized by
TSA. TSA detects the intrinsic local geometrical structureof the tensor
space by learning a lower dimensional tensor subspace. We compare our
proposed approach with PCA, LDA and LPP methods on two standard
databases. Experimental results demonstrate that TSA achieves better
recognition rate, while being much more efficient.

1 Introduction

There is currently a great deal of interest in appearance-based approaches to face recogni-
tion [1], [5], [8]. When using appearance-based approaches,we usually represent an image
of sizen1 × n2 pixels by a vector inRn1×n2 . Throughout this paper, we denote byface
space the set of all the face images. The face space is generally a low dimensional mani-
fold embedded in the ambient space [6], [7], [10]. The typical linear algorithms for learning
such a face manifold for recognition include Principal Component Analysis (PCA), Linear
Discriminant Analysis (LDA) and Locality Preserving Projection (LPP) [4].

Most of previous works on statistical image analysis represent an image by avector in
high-dimensional space. However, an image is intrinsically a matrix, or the second or-
der tensor. The relationship between the rows vectors of thematrix and that between the
column vectors might be important for finding a projection, especially when the number
of training samples is small. Recently, multilinear algebra, the algebra of higher-order
tensors, was applied for analyzing the multifactor structure of image ensembles [9], [11],
[12]. Vasilescu and Terzopoulos have proposed a novel face representation algorithm called
Tensorface [9]. Tensorface represents the set of face images by a higher-order tensor and



extends Singular Value Decomposition (SVD) to higher-order tensor data. In this way, the
multiple factors related to expression, illumination and pose can be separated from different
dimensions of the tensor.

In this paper, we propose a new algorithm for image (human faces in particular) represen-
tation based on the considerations of multilinear algebra and differential geometry. We call
it Tensor Subspace Analysis (TSA). For an image of sizen1 × n2, it is represented as the
second order tensor (or, matrix) in the tensor spaceRn1 ⊗Rn2 . On the other hand, the face
space is generally a submanifold embedded inRn1 ⊗ Rn2 . Given some images sampled
from the face manifold, we can build an adjacency graph to model the local geometrical
structure of the manifold. TSA finds a projection that respects this graph structure. The
obtained tensor subspace provides an optimal linear approximation to the face manifold
in the sense of local isometry. Vasilescu shows how to extendSVD(PCA) to higher order
tensor data. We extend Laplacian based idea to tensor data.

It is worthwhile to highlight several aspects of the proposed approach here:

1. While traditional linear dimensionality reduction algorithms like PCA, LDA and
LPP find a map fromR

n to R
l (l < n), TSA finds a map fromRn1 ⊗ Rn2 to

Rl1 ⊗Rl2 (l1 < n1, l2 < n2). This leads to structured dimensionality reduction.

2. TSA can be performed in either supervised, unsupervised,or semi-supervised
manner. When label information is available, it can be easilyincorporated into
the graph structure. Also, by preserving neighborhood structure, TSA is less sen-
sitive to noise and outliers.

3. The computation of TSA is very simple. It can be obtained bysolving two eigen-
vector problems. The matrices in the eigen-problems are of sizen1×n1 orn2×n2,
which are much smaller than the matrices of sizen × n (n = n1 × n2) in PCA,
LDA and LPP. Therefore, TSA is much more computationally efficient in time
and storage. There are few parameters that are independently estimated, so per-
formance in small data sets is very good.

4. TSA explicitly takes into account the manifold structureof the image space. The
local geometrical structure is modeled by an adjacency graph.

5. This paper is primarily focused on the second order tensors (or, matrices). How-
ever, the algorithm and analysis presented here can also be applied to higher order
tensors.

2 Tensor Subspace Analysis

In this section, we introduce a new algorithm calledTensor Subspace Analysis for learning a
tensor subspace which respects the geometrical and discriminative structures of the original
data space.

2.1 Laplacian based Dimensionality Reduction

Problems of dimensionality reduction has been considered.One general approach is based
on graph Laplacian [2]. The objective function of Laplacianeigenmap is as follows:

min
f

∑

ij

(f(xi) − f(xj))
2
Sij

whereS is a similarity matrix. These optimal functions are nonlinear but may be expensive
to compute.

A class of algorithms may be optimized by restricting problem to more tractable families
of functions. One natural approach restricts to linear function giving rise to LPP [4]. In this



paper we will consider a more structured subset of linear functions that arise out of tensor
analysis. This provided greater computational benefits.

2.2 The Linear Dimensionality Reduction Problem in Tensor Space

The generic problem of linear dimensionality reduction in the second order tensor space
is the following. Given a set of data pointsX1, · · · ,Xm in Rn1 ⊗ Rn2 , find two trans-
formation matricesU of sizen1 × l1 andV of sizen2 × l2 that maps thesem points to a
set of pointsY1, · · · , Ym ∈ Rl1 ⊗ Rl2(l1 < n1, l2 < n2), such thatYi “represents”Xi,
whereYi = UT XiV . Our method is of particular applicability in the special case where
X1, · · · ,Xm ∈ M andM is a nonlinear submanifold embedded inRn1 ⊗Rn2 .

2.3 Optimal Linear Embeddings

As we described previously, the face space is probably a nonlinear submanifold embedded
in the tensor space. One hopes then to estimate geometrical and topological properties of
the submanifold from random points (“scattered data”) lying on this unknown submanifold.
In this section, we consider the particular question of finding a linear subspace approxima-
tion to the submanifold in the sense of local isometry. Our method is fundamentally based
on LPP [4].

Givenm data pointsX = {X1, · · · ,Xm} sampled from the face submanifoldM ∈ Rn1⊗
Rn1 , one can build a nearest neighbor graphG to model the local geometrical structure of
M. Let S be the weight matrix ofG. A possible definition ofS is as follows:

Sij =















e−
‖Xi−Xj‖2

t , if Xi is among thek nearest
neighbors ofXj , or Xj is among
thek nearest neighbors ofXi;

0, otherwise.

(1)

wheret is a suitable constant. The functionexp(−‖Xi − Xj‖
2/t) is the so called heat

kernel which is intimately related to the manifold structure. ‖ · ‖ is the Frobenius norm of

matrix, i.e.‖A‖ =
√

∑

i

∑

j a2

ij . When the label information is available, it can be easily

incorporated into the graph as follows:

Sij =

{

e−
‖Xi−Xj‖2

t , if Xi andXj share the same label;
0, otherwise.

(2)

Let U andV be the transformation matrices. A reasonable transformation respecting the
graph structure can be obtained by solving the following objective functions:

min
U,V

∑

ij

‖UT XiV − UT XjV ‖2Sij (3)

The objective function incurs a heavy penalty if neighboring pointsXi andXj are mapped
far apart. Therefore, minimizing it is an attempt to ensure that if Xi andXj are “close”
thenUT XiV andUT XjV are “close” as well. LetYi = UT XiV . Let D be a diagonal
matrix,Dii =

∑

j Sij . Since‖A‖2 = tr(AAT ), we see that:

1

2

∑

ij

‖UT XiV − UT XjV ‖2Sij =
1

2

∑

ij

tr
(

(Yi − Yj)(Yi − Yj)
T
)

Sij

=
1

2

∑

ij

tr
(

YiY
T
i + YjY

T
j − YiY

T
j − YjY

T
i

)

Sij

= tr
(

∑

i

DiiYiY
T
i −

∑

ij

SijYiY
T
j

)



= tr
(

∑

i

DiiU
T XiV V T XT

i U −
∑

ij

SijU
T XiV V T XT

j U
)

= tr
(

UT
(

∑

i

DiiXiV V T XT
i −

∑

ij

SijXiV V T XT
j

)

U
)

.
= tr

(

UT (DV − SV ) U
)

whereDV =
∑

i DiiXiV V T XT
i andSV =

∑

ij SijXiV V T XT
j . Similarly, ‖A‖2 =

tr(AT A), so we also have

1

2

∑

ij

‖UT XiV − UT XjV ‖2Sij

=
1

2

∑

ij

tr
(

(Yi − Yj)
T (Yi − Yj)

)

Sij

=
1

2

∑

ij

tr
(

Y T
i Yi + Y T

j Yj − Y T
i Yj − Y T

j Yi

)

Sij

= tr
(

∑

i

DiiY
T
i Yi −

∑

ij

SijY
T
i Yj

)

= tr
(

V T
(

∑

i

DiiX
T
i UUT Xi −

∑

ij

XT
i UUT Xj

)

V
)

.
= tr

(

V T (DU − SU ) V
)

whereDU =
∑

i DiiX
T
i UUT Xi andSU =

∑

ij SijX
T
i UUT Xj . Therefore, we should

simultaneously minimizetr
(

UT (DV − SV ) U
)

andtr
(

V T (DU − SU ) V
)

.

In addition to preserving the graph structure, we also aim atmaximizing the global variance
on the manifold. Recall that the variance of a random variablex can be written as follows:

var(x) =

∫

M

(x − µ)2dP (x), µ =

∫

M

xdP (x)

whereM is the data manifold,µ is the expected value ofx and dP is the probability
measure on the manifold. By spectral graph theory [3],dP can be discretely estimated by
the diagonal matrixD(Dii =

∑

j Sij) on the sample points. LetY = UT XV denote
the random variable in the tensor subspace and suppose the data points have a zero mean.
Thus, theweighted variance can be estimated as follows:

var(Y ) =
∑

i

‖Yi‖
2Dii =

∑

i

tr(Y T
i Yi)Dii =

∑

i

tr(V T XT
i UUT XiV )Dii

= tr

(

V T

(

∑

i

DiiX
T
i UUT Xi

)

V

)

= tr
(

V T DUV
)

Similarly, ‖Yi‖
2 = tr(YiY

T
i ), so we also have:

var(Y ) =
∑

i

tr(YiY
T
i )Dii = tr

(

UT

(

∑

i

DiiXiV V T XT
i

)

U

)

= tr
(

UT DV U
)

Finally, we get the following optimization problems:

min
U,V

tr
(

UT (DV − SV ) U
)

tr (UT DV U)
(4)



min
U,V

tr
(

V T (DU − SU ) V
)

tr (V T DUV )
(5)

The above two minimization problems (4) and (5) depends on each other, and hence can not
be solved independently. In the following subsection, we describe a simple computational
method to solve these two optimization problems.

2.4 Computation

In this subsection, we discuss how to solve the optimizationproblems (4) and (5). It is easy
to see that the optimalU should be the generalized eigenvectors of(DV − SV ,DV ) and the
optimalV should be the generalized eigenvectors of(DU − SU ,DU ). However, it is diffi-
cult to compute the optimalU andV simultaneously since the matricesDV , SV ,DU , SU

are not fixed. In this paper, we computeU andV iteratively as follows. We first fixU , then
V can be computed by solving the following generalized eigenvector problem:

(DU − SU )v = λDU v (6)

OnceV is obtained,U can be updated by solving the following generalized eigenvector
problem:

(DV − SV )u = λDV u (7)

Thus, the optimalU andV can be obtained by iteratively computing the generalized eigen-
vectors of (6) and (7). In our experiments,U is initially set to the identity matrix. It is easy
to show that the matricesDU ,DV ,DU −SU , andDV −SV are all symmetric and positive
semi-definite.

3 Experimental Results

In this section, several experiments are carried out to showthe efficiency and effectiveness
of our proposed algorithm for face recognition. We compare our algorithm with the Eigen-
face (PCA) [8], Fisherface (LDA) [1], and Laplacianface (LPP) [5] methods, three of the
most popular linear methods for face recognition.

Two face databases were used. The first one is the PIE (Pose, Illumination, and Experience)
database from CMU, and the second one is the ORL database. In all the experiments,
preprocessing to locate the faces was applied. Original images were normalized (in scale
and orientation) such that the two eyes were aligned at the same position. Then, the facial
areas were cropped into the final images for matching. The size of each cropped image in all
the experiments is32×32 pixels, with 256 gray levels per pixel. No further preprocessing is
done. For the Eigenface, Fisherface, and Laplacianface methods, the image is represented
as a 1024-dimensional vector, while in our algorithm the image is represented as a(32 ×
32)-dimensional matrix, or the second order tensor. The nearest neighbor classifier is used
for classification for its simplicity.

In short, the recognition process has three steps. First, wecalculate the face subspace from
the training set of face images; then the new face image to be identified is projected into
d-dimensional subspace (PCA, LDA, and LPP) or(d × d)-dimensional tensor subspace
(TSA); finally, the new face image is identified by nearest neighbor classifier. In our TSA
algorithm, the number of iterations is taken to be 3.

3.1 Experiments on PIE Database

The CMU PIE face database contains 68 subjects with 41,368 face images as a whole. The
face images were captured by 13 synchronized cameras and 21 flashes, under varying pose,
illumination and expression. We choose the five near frontalposes (C05, C07, C09, C27,
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Figure 1: Error rate vs. dimensionality reduction on PIE database

Table 1: Performance comparison on PIE database

Method 5 Train 10 Train
error dim time(s) error dim time(s)

Baseline 69.9% 1024 - 55.7% 1024 -
Eigenfaces 69.9% 338 0.907 55.7% 654 5.297

Fisherfaces 31.5% 67 1.843 22.4% 67 9.609

Laplacianfaces 30.8% 67 2.375 21.1% 134 11.516

TSA 27.9% 112 0.594 16.9% 132 2.063
20 Train 30 Train

Method error dim time(s) error dim time(s)
Baseline 38.2% 1024 - 27.9% 1024 -

Eigenfaces 38.1% 889 14.328 27.9% 990 15.453

Fisherfaces 15.4% 67 35.828 7.77% 67 38.406

Laplacianfaces 14.1% 146 39.172 7.13% 131 47.610

TSA 9.64% 132 7.125 6.88% 122 15.688

C29) and use all the images under different illuminations and expressions, thus we get 170
images for each individual. For each individual,l(= 5, 10, 20, 30) images are randomly
selected for training and the rest are used for testing.

The training set is utilized to learn the subspace representation of the face manifold by using
Eigenface, Fisherface, Laplacianface and our algorithm. The testing images are projected
into the face subspace in which recognition is then performed. For each givenl, we average
the results over 20 random splits. It would be important to note that the Laplacianface
algorithm and our algorithm share the same graph structure as defined in Eqn. (2).

Figure 1 shows the plots of error rate versus dimensionalityreduction for the Eigenface,
Fisherface, Laplacianface, TSA and baseline methods. For the baseline method, the recog-
nition is simply performed in the original 1024-dimensional image space without any di-
mensionality reduction. Note that, the upper bound of the dimensionality of Fisherface is
c − 1 wherec is the number of individuals. For our TSA algorithm, we only show its per-
formance in the(d × d)-dimensional tensor subspace, say, 1, 4, 9, etc. As can be seen, the
performance of the Eigenface, Fisherface, Laplacianface,and TSA algorithms varies with
the number of dimensions. We show the best results obtained by them in Table 1 and the
corresponding face subspaces are called optimal face subspace for each method.

It is found that our method outperforms the other four methods with different numbers
of training samples (5, 10, 20, 30) per individual. The Eigenface method performs the
worst. It does not obtain any improvement over the baseline method. The Fisherface and
Laplacianface methods perform comparatively to each each.The dimensions of the optimal
subspaces are also given in Table 1.

As we have discussed, TSA can be implemented very efficiently. We show the running
time in seconds for each method in Table 1. As can be seen, TSA is much faster than the
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Figure 2: Error rate vs. dimensionality reduction on ORL database

Table 2: Performance comparison on ORL database

Method 2 Train 3 Train
error dim time error dim time

Baseline 30.2% 1024 - 22.4% 1024 -
Eigenfaces 30.2% 79 38.13 22.3% 113 85.16
Fisherfaces 25.2% 23 60.32 13.1% 39 119.69

Laplacianfaces 22.2% 39 62.65 12.5% 39 136.25
TSA 20.0% 102 65.00 10.7% 112 135.93

4 Train 5 Train
Method error dim time error dim time
Baseline 16.0% 1024 - 11.7% 1024 -

Eigenfaces 15.9% 122 141.72 11.6% 182 224.69
Fisherfaces 9.17% 39 212.82 6.55% 39 355.63

Laplacianfaces 8.54% 39 248.90 5.45% 40 410.78
TSA 7.12% 102 201.40 4.75% 102 302.97

Eigenface, Fisherface and Laplacianface methods. All the algorithms were implemented in
Matlab 6.5 and run on a Intel P4 2.566GHz PC with 1GB memory.

3.2 Experiments on ORL Database

The ORL (Olivetti Research Laboratory) face database is used in this test. It consists of a
total of 400 face images, of a total of 40 people (10 samples per person). The images were
captured at different times and have different variations including expressions (open or
closed eyes, smiling or non-smiling) and facial details (glasses or no glasses). The images
were taken with a tolerance for some tilting and rotation of the face up to 20 degrees. For
each individual,l(= 2, 3, 4, 5) images are randomly selected for training and the rest are
used for testing.

The experimental design is the same as that in the last subsection. For each givenl, we
average the results over 20 random splits. Figure 3.2 shows the plots of error rate versus
dimensionality reduction for the Eigenface, Fisherface, Laplacianface, TSA and baseline
methods. Note that, the presentation of the performance of the TSA algorithm is different
from that in the last subsection. Here, for a givend, we show its performance in the(d×d)-
dimensional tensor subspace. The reason is for better comparison, since the Eigenface and
Laplacianface methods start to converge after 70 dimensions and there is no need to show
their performance after that. The best result obtained in the optimal subspace and the
running time (millisecond) of computing the eigenvectors for each method are shown in
Table 2.

As can be seen, our TSA algorithm performed the best in all thecases. The Fisherface
and Laplacianface methods performed comparatively to our method, while the Eigenface
method performed poorly.



4 Conclusions and Future Work

Tensor based face analysis (representation and recognition) is introduced in this paper in
order to detect the underlying nonlinear face manifold structure in the manner of tensor
subspace learning. The manifold structure is approximatedby the adjacency graph com-
puted from the data points. The optimal tensor subspace respecting the graph structure is
then obtained by solving an optimization problem. We call this Tensor Subspace Analysis
method.

Most of traditional appearance based face recognition methods (i.e. Eigenface, Fisherface,
and Laplacianface) consider an image as a vector in high dimensional space. Such repre-
sentation ignores the spacial relationships between the pixels in the image. In our work, an
image is naturally represented as a matrix, or the second order tensor. Tensor representation
makes our algorithm much more computationally efficient than PCA, LDA, and LPP. Ex-
perimental results on PIE and ORL databases demonstrate theefficiency and effectiveness
of our method.

TSA is linear. Therefore, if the face manifold is highly nonlinear, it may fail to discover
the intrinsic geometrical structure. It remains unclear how to generalize our algorithm
to nonlinear case. Also, in our algorithm, the adjacency graph is induced from the local
geometry and class information. Different graph structures lead to different projections. It
remains unclear how to define the optimal graph structure in the sense of discrimination.
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