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Abstract

Previous work has demonstrated that the image variatiomsaofy ob-
jects (human faces in particular) under variable lightiag de effec-
tively modeled by low dimensional linear spaces. The tyldinaar sub-
space learning algorithms include Principal Componentysisi(PCA),
Linear Discriminant Analysis (LDA), and Locality Presamgi Projec-
tion (LPP). All of these methods consider an x n, image as a high
dimensional vector ifR™**"2 while an image represented in the plane
is intrinsically a matrix. In this paper, we propose a newosltym called
Tensor Subspace Analysis (TSA). TSA considers an image as the sec-
ond order tensor iIrR™ ® R"2, whereR"™ andR"2 are two vector
spaces. The relationship between the column vectors ofhithge ma-
trix and that between the row vectors can be naturally charaed by
TSA. TSA detects the intrinsic local geometrical structofe¢he tensor
space by learning a lower dimensional tensor subspace. kvpare our
proposed approach with PCA, LDA and LPP methods on two standa
databases. Experimental results demonstrate that TSAashbetter
recognition rate, while being much more efficient.

1 Introduction

There is currently a great deal of interest in appearanseebapproaches to face recogni-
tion [1], [5], [8]. When using appearance-based approashesisually represent an image
of sizen; x noy pixels by a vector ifR™**"2. Throughout this paper, we denote tage
space the set of all the face images. The face space is generally dilnensional mani-
fold embedded in the ambient space [6€], [7], [10]. The tyldioaar algorithms for learning
such a face manifold for recognition include Principal Cam@nt Analysis (PCA), Linear
Discriminant Analysis (LDA) and Locality Preserving Proijen (LPP) [4].

Most of previous works on statistical image analysis regmesn image by aector in
high-dimensional space. However, an image is intringicalimatrix, or the second or-
der tensor. The relationship between the rows vectors offniieix and that between the
column vectors might be important for finding a projectiogpecially when the number
of training samples is small. Recently, multilinear algetthe algebra of higher-order
tensors, was applied for analyzing the multifactor streetef image ensembles [9], [11],
[12]. Vasilescu and Terzopoulos have proposed a hovel &garesentation algorithm called
Tensorface [9]. Tensorface represents the set of face sriaga higher-order tensor and



extends Singular Value Decomposition (SVD) to higher-otdasor data. In this way, the
multiple factors related to expression, illumination and@can be separated from different
dimensions of the tensor.

In this paper, we propose a new algorithm for image (humaesfat particular) represen-
tation based on the considerations of multilinear algehthdifferential geometry. We call
it Tensor Subspace Analysis (TSA). For an image of size; x ns, it is represented as the
second order tensor (or, matrix) in the tensor sgate® R"2. On the other hand, the face
space is generally a submanifold embedde®ih @ R"2. Given some images sampled
from the face manifold, we can build an adjacency graph toeghtite local geometrical
structure of the manifold. TSA finds a projection that respélis graph structure. The
obtained tensor subspace provides an optimal linear ajppation to the face manifold
in the sense of local isometry. Vasilescu shows how to ex8Wid(PCA) to higher order
tensor data. We extend Laplacian based idea to tensor data.

It is worthwhile to highlight several aspects of the propgbapproach here:

1. While traditional linear dimensionality reduction algbms like PCA, LDA and
LPP find a map fronR™ to R! (I < n), TSA finds a map fronR™ ® R" to
R @ R (11 < n1,la < ne). This leads to structured dimensionality reduction.

2. TSA can be performed in either supervised, unsupervisedemi-supervised
manner. When label information is available, it can be edsitprporated into
the graph structure. Also, by preserving neighborhoodtsire, TSA is less sen-
sitive to noise and outliers.

3. The computation of TSA is very simple. It can be obtaineddlying two eigen-
vector problems. The matrices in the eigen-problems are@hig xn, Or ng xna,
which are much smaller than the matrices of size n (n = n; x ns) in PCA,
LDA and LPP. Therefore, TSA is much more computationallycedfit in time
and storage. There are few parameters that are indepenéstithated, so per-
formance in small data sets is very good.

4. TSA explicitly takes into account the manifold structofeéhe image space. The
local geometrical structure is modeled by an adjacencyigrap

5. This paper is primarily focused on the second order tan@osr matrices). How-
ever, the algorithm and analysis presented here can algupliecto higher order
tensors.

2 Tensor Subspace Analysis

In this section, we introduce a new algorithm calledsor Subspace Analysisfor learning a
tensor subspace which respects the geometrical and disatine structures of the original
data space.

2.1 Laplacian based Dimensionality Reduction

Problems of dimensionality reduction has been considédee. general approach is based
on graph Laplacian [2]. The objective function of Laplace&genmap is as follows:

. 2
min} _ (f(%i) = £(x;))" S5
ij
whereS is a similarity matrix. These optimal functions are nonéinbut may be expensive
to compute.

A class of algorithms may be optimized by restricting probl® more tractable families
of functions. One natural approach restricts to linear fiemagiving rise to LPP [4]. In this



paper we will consider a more structured subset of lineactfans that arise out of tensor
analysis. This provided greater computational benefits.

2.2 Thelinear Dimensionality Reduction Problem in Tensor Space

The generic problem of linear dimensionality reductionhie second order tensor space
is the following. Given a set of data poinfs;, - - - , X,,, in R™ ® R"2, find two trans-
formation matriced’ of sizen; x I, andV of sizens x [5 that maps thesen points to a
set of pointsy;, - -+ ,Y,, € Rl @ Ri2(I; < ny,la < ns), such thaty; “represents’X;,
whereY; = UT X,;V. Our method is of particular applicability in the speciabeavhere
Xy, -, X, € M andM is a nonlinear submanifold embeddedifi* @ R™z2.

2.3 Optimal Linear Embeddings

As we described previously, the face space is probably amearl submanifold embedded
in the tensor space. One hopes then to estimate geometnitabpological properties of
the submanifold from random points (“scattered data”)dydm this unknown submanifold.
In this section, we consider the particular question of figdh linear subspace approxima-
tion to the submanifold in the sense of local isometry. Outhoeé is fundamentally based
on LPP [4].

Givenm data pointst = {X,,--- , X,,,} sampled from the face submanifold € R"
R™, one can build a nearest neighbor grgpto model the local geometrical structure of
M. Let S be the weight matrix of;. A possible definition of5' is as follows:

X =x502

e”— ¢, if X;isamong thé nearest
Sij = neighbors ofX;, or X; is among (1)
the k nearest neighbors of;;
0, otherwise.

wheret is a suitable constant. The functierp(—||X; — X;||?/t) is the so called heat
kernel which is intimately related to the manifold struetuf - || is the Frobenius norm of

matrix, i.e.[[All = />, >~; aj;. When the label information is available, it can be easily
incorporated into the graph as follows:

X5 — X112 .
Sy = e , if X; andX; share the same label; )
! 0, otherwise.

Let U andV be the transformation matrices. A reasonable transfoaoma#specting the
graph structure can be obtained by solving the followingeotiye functions:

]%12 UT X, v —UTX;V|?S;; 3)

ij

The objective function incurs a heavy penalty if neighbgrints.X; and.X; are mapped
far apart. Therefore, minimizing it is an attempt to ensinat if X; and X; are “close”
thenUT X;V andUT X,V are “close” as well. Let; = U”X;V. Let D be a diagonal
matrix, Di; = 3, Sij. Since||A[|* = tr(AAT), we see that:

1 1
3 2 IUTXV = UTXVIPS; = 5 Yt (Vi = Y)) (Vi — Y)T) 85
ij ©j
= L T Y Y YY) Sy
ij

= (Y Davy = sy



= (Y DaUTXVVTXTU =Y SUT X VT XTU)
% ij
= (U7 (Y DuXVVIXT =3 sy XV VIX])U)
7 1]
= tr(U" (Dy — Sv)U)
whereDy = 37, D X;VVTX] andSy = 3, S, XiVVTXT. Similarly, [|A? =
tr(AT A), so we also have

1
5 S IUTXV - U X V|28,
ij
1
= 5 tr (Vi = Y) (Vi = Y))) 8
ij

1
= 52 (Y, - YT, - YY) sy

ij
= (Y DY =Y Sy

_ tr(VT(Z DX UUTX, - S XT UUTXj)V)

= tr (V' (Dy —Su)V)
whereDy = Y, D X UUT X, andSy = > S;; XIUUT X;. Therefore, we should
simultaneously minimizer (U (Dy — Sy) U) andtr (VT (Dy — Su) V).

In addition to preserving the graph structure, we also aimatimizing the global variance
on the manifold. Recall that the variance of a random vagialdan be written as follows:

var(z) = / (z — p)%dP(z), p= / xdP(x)
M M
where M is the data manifoldy is the expected value af anddP is the probability
measure on the manifold. By spectral graph theoryd3],can be discretely estimated by
the diagonal matrixD(D;; = Zj S;;) on the sample points. Lét = UTXV denote
the random variable in the tensor subspace and supposetthpalats have a zero mean.
Thus, theweighted variance can be estimated as follows:

var(Y) = Y |YVillPDy =Y tr(Y V) Dy = > tr(VIXTUUTX,V) Dy

tr <VT (Z Dy X[ UUTXZ) V) =tr (VI DyV)
Similarly, ||Y;||? = tr(Y;Y;T), so we also have:

var(Y) =Y tr(Y;Y;")Di; = tr (UT (Z DX, VVTxT ) U) =tr (UTDyU)
A i

Finally, we get the following optimization problems:

. tr (UT (DV — Sv) U) (4)
UV tr (UTDyD)




tr (VT (DU — SU) V) (5)
tr (VT Dy V)
The above two minimization problems (4) and (5) depends oh ether, and hence can not

be solved independently. In the following subsection, wecdbe a simple computational
method to solve these two optimization problems.

min
UV

2.4 Computation

In this subsection, we discuss how to solve the optimizgiimblems (4) and (5). Itis easy
to see that the optim@&l should be the generalized eigenvector&df, — Sy, Dy ) and the
optimal V' should be the generalized eigenvector$0f; — Sy, Dyy). However, it is diffi-
cult to compute the optimdl andV simultaneously since the matricéy,, Sy, Dy, Sy
are not fixed. In this paper, we compudfeandV iteratively as follows. We first fiX/, then
V' can be computed by solving the following generalized eigeter problem:

(Dy — Sy)v = ADyv (6)

OnceV is obtained,U can be updated by solving the following generalized eigetore
problem:

(Dy — Sy)u= ADyu (7)
Thus, the optimal/ andV can be obtained by iteratively computing the generalizgdrei
vectors of (6) and (7). In our experimentsis initially set to the identity matrix. It is easy
to show that the matrice®y, Dy, Dy — Sy, andDy — Sy are all symmetric and positive
semi-definite.

3 Experimental Results

In this section, several experiments are carried out to shewvefficiency and effectiveness
of our proposed algorithm for face recognition. We companeadgorithm with the Eigen-
face (PCA) [8], Fisherface (LDA) [1], and Laplacianface @H5] methods, three of the
most popular linear methods for face recognition.

Two face databases were used. The first one is the PIE (Plaseiniation, and Experience)
database from CMU, and the second one is the ORL databasdl| the @&xperiments,
preprocessing to locate the faces was applied. Originaj@®avere normalized (in scale
and orientation) such that the two eyes were aligned at time gesition. Then, the facial
areas were cropped into the final images for matching. Tlees$igach cropped image in all
the experiments i32 x 32 pixels, with 256 gray levels per pixel. No further prepraieg is
done. For the Eigenface, Fisherface, and Laplacianfackadst the image is represented
as a 1024-dimensional vector, while in our algorithm thegma represented as(a2 x
32)-dimensional matrix, or the second order tensor. The neaedghbor classifier is used
for classification for its simplicity.

In short, the recognition process has three steps. Firstaleelate the face subspace from
the training set of face images; then the new face image tddmified is projected into
d-dimensional subspace (PCA, LDA, and LPP)(drx d)-dimensional tensor subspace
(TSA); finally, the new face image is identified by nearesghbor classifier. In our TSA
algorithm, the number of iterations is taken to be 3.

3.1 Experimentson PIE Database

The CMU PIE face database contains 68 subjects with 41,288 flaages as a whole. The
face images were captured by 13 synchronized cameras arasB&g| under varying pose,
illumination and expression. We choose the five near frgmaks (C05, C07, C09, C27,
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Table 1: Performance comparison on PIE database

Method 5 Train 10 Train
error [ dim | time(s) [ error | dim | time(s)
Baseline 69.9% | 1024 - 55.7% | 1024 -
Eigenfaces | 69.9% | 338 | 0.907 | 55.7% | 654 | 5.297
Fisherfaces | 31.5% | 67 1.843 | 22.4% | 67 9.609
Laplacianfaces 30.8% | 67 2.375 | 21.1% | 134 | 11.516

TSA 27.9% | 117 | 0594 | 16.9% | 137 | 2.063
20 Train 30 Train
Method error | dim | time(s) [ error | dim | time(s)

Baseline 38.2% | 1024 - 27.9% | 1024 -
Eigenfaces | 38.1% | 889 | 14.328 | 27.9% | 990 | 15.453
Fisherfaces | 15.4% | 67 | 35.828 | 7.77% | 67 | 38.406

Laplacianfaces 14.1% | 146 | 39.172 | 7.13% | 131 | 47.610
TSA 9.64% | 13? 7125 | 6.88% | 12° | 15.688

C29) and use all the images under different illuminatiords expressions, thus we get 170
images for each individual. For each individudk= 5, 10,20, 30) images are randomly
selected for training and the rest are used for testing.

The training set is utilized to learn the subspace reprasientof the face manifold by using
Eigenface, Fisherface, Laplacianface and our algorithhe {€sting images are projected
into the face subspace in which recognition is then perfdrrirer each giveih, we average
the results over 20 random splits. It would be important ttertbat the Laplacianface
algorithm and our algorithm share the same graph structudefined in Egn. (2).

Figure 1 shows the plots of error rate versus dimensionaditiyiction for the Eigenface,
Fisherface, Laplacianface, TSA and baseline methods hedrdseline method, the recog-
nition is simply performed in the original 1024-dimensibimaage space without any di-
mensionality reduction. Note that, the upper bound of tmeedisionality of Fisherface is
¢ — 1 wherec is the number of individuals. For our TSA algorithm, we onhpw its per-
formance in théd x d)-dimensional tensor subspace, say, 1, 4, 9, etc. As can hethee
performance of the Eigenface, Fisherface, Laplaciantaoe, TSA algorithms varies with
the number of dimensions. We show the best results obtaiyndiden in Table 1 and the
corresponding face subspaces are called optimal face atdb$pr each method.

It is found that our method outperforms the other four methaith different numbers

of training samples (5, 10, 20, 30) per individual. The Efigee method performs the
worst. It does not obtain any improvement over the baseliathad. The Fisherface and
Laplacianface methods perform comparatively to each eHudimensions of the optimal
subspaces are also given in Table 1.

As we have discussed, TSA can be implemented very efficieiilg show the running
time in seconds for each method in Table 1. As can be seen, §8Aich faster than the
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Figure 2: Error rate vs. dimensionality reduction on ORLathaise

Table 2: Performance comparison on ORL database

Method 2 Train 3 Train
error dim time error dim time
Baseline 30.2% | 1024 - 22.4% | 1024 -
Eigenfaces | 30.2% | 79 38.13 | 22.3% | 113 | 85.16
Fisherfaces | 25.2% | 23 60.32 | 13.1% | 39 119.69
Laplacianfaces 22.2% | 39 62.65 | 12.5% | 39 136.25

TSA 20.0% | 10° 65.00 | 10.7% | 11° | 135.93
4 Train 5 Train
Method error dim time error dim time

Baseline 16.0% | 1024 - 11.7% | 1024 -
Eigenfaces | 15.9% | 122 | 141.72| 11.6% | 182 | 224.69
Fisherfaces | 9.17% | 39 | 212.82| 6.55% | 39 | 355.63

Laplacianfaces 8.54% | 39 | 248.90| 5.45% | 40 | 410.78
TSA 7.12% | 10° | 201.40 | 475% | 10 | 302.97

Eigenface, Fisherface and Laplacianface methods. Alllf@ithms were implemented in
Matlab 6.5 and run on a Intel P4 2.566GHz PC with 1GB memory.

3.2 Experimentson ORL Database

The ORL (Olivetti Research Laboratory) face database id irsthis test. It consists of a
total of 400 face images, of a total of 40 people (10 samplep@eson). The images were
captured at different times and have different variatiorduding expressions (open or
closed eyes, smiling or non-smiling) and facial detailaggks or no glasses). The images
were taken with a tolerance for some tilting and rotationhef face up to 20 degrees. For
each individual/(= 2,3, 4,5) images are randomly selected for training and the rest are
used for testing.

The experimental design is the same as that in the last didise&or each giver, we
average the results over 20 random splits. Figure 3.2 shusvplobts of error rate versus
dimensionality reduction for the Eigenface, Fisherfacaplacianface, TSA and baseline
methods. Note that, the presentation of the performandeeof A algorithm is different
from that in the last subsection. Here, for a givkme show its performance in tti€ x d)-
dimensional tensor subspace. The reason is for better amopasince the Eigenface and
Laplacianface methods start to converge after 70 dimeasiod there is no need to show
their performance after that. The best result obtained éenaptimal subspace and the
running time (millisecond) of computing the eigenvectars éach method are shown in
Table 2.

As can be seen, our TSA algorithm performed the best in alcttses. The Fisherface
and Laplacianface methods performed comparatively to athaud, while the Eigenface
method performed poorly.



4 Conclusions and Future Work

Tensor based face analysis (representation and recagnigiantroduced in this paper in
order to detect the underlying nonlinear face manifoldcitre in the manner of tensor
subspace learning. The manifold structure is approximayethe adjacency graph com-
puted from the data points. The optimal tensor subspacectsg the graph structure is
then obtained by solving an optimization problem. We ca#fi Tlensor Subspace Analysis
method.

Most of traditional appearance based face recognition oastfi.e. Eigenface, Fisherface,
and Laplacianface) consider an image as a vector in highrdiioeal space. Such repre-
sentation ignores the spacial relationships between #&dsiin the image. In our work, an
image is naturally represented as a matrix, or the secoret tedsor. Tensor representation
makes our algorithm much more computationally efficienntR&€A, LDA, and LPP. Ex-
perimental results on PIE and ORL databases demonstragffitiency and effectiveness
of our method.

TSA is linear. Therefore, if the face manifold is highly nimar, it may fail to discover
the intrinsic geometrical structure. It remains uncleawho generalize our algorithm
to nonlinear case. Also, in our algorithm, the adjacencylgra induced from the local
geometry and class information. Different graph structdead to different projections. It
remains unclear how to define the optimal graph structurkdrsense of discrimination.
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