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Abstract

TensorFlow [1] is an interface for expressing machine learn-

ing algorithms, and an implementation for executing such al-

gorithms. A computation expressed using TensorFlow can be

executed with little or no change on a wide variety of hetero-

geneous systems, ranging from mobile devices such as phones

and tablets up to large-scale distributed systems of hundreds

of machines and thousands of computational devices such as

GPU cards. The system is flexible and can be used to express

a wide variety of algorithms, including training and inference

algorithms for deep neural network models, and it has been

used for conducting research and for deploying machine learn-

ing systems into production across more than a dozen areas of

computer science and other fields, including speech recogni-

tion, computer vision, robotics, information retrieval, natural

language processing, geographic information extraction, and

computational drug discovery. This paper describes the Ten-

sorFlow interface and an implementation of that interface that

we have built at Google. The TensorFlow API and a reference

implementation were released as an open-source package under

the Apache 2.0 license in November, 2015 and are available at

www.tensorflow.org.

1 Introduction

The Google Brain project started in 2011 to explore the

use of very-large-scale deep neural networks, both for

research and for use in Google’s products. As part of

the early work in this project, we built DistBelief, our

first-generation scalable distributed training and infer-

ence system [14], and this system has served us well. We

and others at Google have performed a wide variety of re-

search using DistBelief including work on unsupervised

learning [31], language representation [35, 52], models

for image classification and object detection [16, 48],

video classification [27], speech recognition [56, 21, 20],
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sequence prediction [47], move selection for Go [34],

pedestrian detection [2], reinforcement learning [38],

and other areas [17, 5]. In addition, often in close collab-

oration with the Google Brain team, more than 50 teams

at Google and other Alphabet companies have deployed

deep neural networks using DistBelief in a wide variety

of products, including Google Search [11], our advertis-

ing products, our speech recognition systems [50, 6, 46],

Google Photos [43], Google Maps and StreetView [19],

Google Translate [18], YouTube, and many others.

Based on our experience with DistBelief and a more

complete understanding of the desirable system proper-

ties and requirements for training and using neural net-

works, we have built TensorFlow, our second-generation

system for the implementation and deployment of large-

scale machine learning models. TensorFlow takes com-

putations described using a dataflow-like model and

maps them onto a wide variety of different hardware

platforms, ranging from running inference on mobile

device platforms such as Android and iOS to modest-

sized training and inference systems using single ma-

chines containing one or many GPU cards to large-scale

training systems running on hundreds of specialized ma-

chines with thousands of GPUs. Having a single system

that can span such a broad range of platforms signifi-

cantly simplifies the real-world use of machine learning

system, as we have found that having separate systems

for large-scale training and small-scale deployment leads

to significant maintenance burdens and leaky abstrac-

tions. TensorFlow computations are expressed as stateful

dataflow graphs (described in more detail in Section 2),

and we have focused on making the system both flexible

enough for quickly experimenting with new models for

research purposes and sufficiently high performance and

robust for production training and deployment of ma-

chine learning models. For scaling neural network train-

ing to larger deployments, TensorFlow allows clients to

easily express various kinds of parallelism through repli-

cation and parallel execution of a core model dataflow

1

www.tensorflow.org


graph, with many different computational devices all col-

laborating to update a set of shared parameters or other

state. Modest changes in the description of the com-

putation allow a wide variety of different approaches

to parallelism to be achieved and tried with low effort

[14, 29, 42]. Some TensorFlow uses allow some flexibil-

ity in terms of the consistency of parameter updates, and

we can easily express and take advantage of these relaxed

synchronization requirements in some of our larger de-

ployments. Compared to DistBelief, TensorFlow’s pro-

gramming model is more flexible, its performance is sig-

nificantly better, and it supports training and using a

broader range of models on a wider variety of hetero-

geneous hardware platforms.

Dozens of our internal clients of DistBelief have al-

ready switched to TensorFlow. These clients rely on

TensorFlow for research and production, with tasks as

diverse as running inference for computer vision mod-

els on mobile phones to large-scale training of deep

neural networks with hundreds of billions of parame-

ters on hundreds of billions of example records using

many hundreds of machines [11, 47, 48, 18, 53, 41].

Although these applications have concentrated on ma-

chine learning and deep neural networks in particular,

we expect that TensorFlow’s abstractions will be useful

in a variety of other domains, including other kinds of

machine learning algorithms, and possibly other kinds

of numerical computations. We have open-sourced the

TensorFlow API and a reference implementation under

the Apache 2.0 license in November, 2015, available at

www.tensorflow.org.

The rest of this paper describes TensorFlow in more

detail. Section 2 describes the programming model and

basic concepts of the TensorFlow interface, and Section 3

describes both our single machine and distributed imple-

mentations. Section 4 describes several extensions to

the basic programming model, and Section 5 describes

several optimizations to the basic implementations. Sec-

tion 6 describes some of our experiences in using Ten-

sorFlow, Section 7 describes several programming id-

ioms we have found helpful when using TensorFlow, and

Section 9 describes several auxiliary tools we have built

around the core TensorFlow system. Sections 10 and 11

discuss future and related work, respectively, and Sec-

tion 12 offers concluding thoughts.

2 Programming Model and Basic Concepts

A TensorFlow computation is described by a directed

graph, which is composed of a set of nodes. The graph

represents a dataflow computation, with extensions for

allowing some kinds of nodes to maintain and update

persistent state and for branching and looping control

structures within the graph in a manner similar to Naiad

[36]. Clients typically construct a computational graph

using one of the supported frontend languages (C++ or

Python). An example fragment to construct and then ex-

ecute a TensorFlow graph using the Python front end is

shown in Figure 1, and the resulting computation graph

in Figure 2.

In a TensorFlow graph, each node has zero or more in-

puts and zero or more outputs, and represents the instan-

tiation of an operation. Values that flow along normal

edges in the graph (from outputs to inputs) are tensors,

arbitrary dimensionality arrays where the underlying el-

ement type is specified or inferred at graph-construction

time. Special edges, called control dependencies, can

also exist in the graph: no data flows along such edges,

but they indicate that the source node for the control de-

pendence must finish executing before the destination

node for the control dependence starts executing. Since

our model includes mutable state, control dependencies

can be used directly by clients to enforce happens before

relationships. Our implementation also sometimes in-

serts control dependencies to enforce orderings between

otherwise independent operations as a way of, for exam-

ple, controlling the peak memory usage.

Operations and Kernels

An operation has a name and represents an abstract com-

putation (e.g., “matrix multiply”, or “add”). An opera-

tion can have attributes, and all attributes must be pro-

vided or inferred at graph-construction time in order to

instantiate a node to perform the operation. One com-

mon use of attributes is to make operations polymorphic

over different tensor element types (e.g., add of two ten-

sors of type float versus add of two tensors of type int32).

A kernel is a particular implementation of an operation

that can be run on a particular type of device (e.g., CPU

or GPU). A TensorFlow binary defines the sets of opera-

tions and kernels available via a registration mechanism,

and this set can be extended by linking in additional op-

eration and/or kernel definitions/registrations. Table 1

shows some of the kinds of operations built into the core

TensorFlow library.

Sessions

Clients programs interact with the TensorFlow system by

creating a Session. To create a computation graph, the

Session interface supports an Extend method to augment

the current graph managed by the session with additional

nodes and edges (the initial graph when a session is cre-

ated is empty). The other primary operation supported
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import tensorflow as tf

b = tf.Variable(tf.zeros([100])) # 100-d vector, init to zeroes

W = tf.Variable(tf.random_uniform([784,100],-1,1)) # 784x100 matrix w/rnd vals

x = tf.placeholder(name="x") # Placeholder for input

relu = tf.nn.relu(tf.matmul(W, x) + b) # Relu(Wx+b)

C = [...] # Cost computed as a function

# of Relu

s = tf.Session()

for step in xrange(0, 10):

input = ...construct 100-D input array ... # Create 100-d vector for input

result = s.run(C, feed_dict={x: input}) # Fetch cost, feeding x=input

print step, result

Figure 1: Example TensorFlow code fragment

W

b

x

MatMul

Add

ReLU

...

C

Figure 2: Corresponding computation graph for Figure 1

Category Examples

Element-wise mathematical operations Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal, ...

Array operations Concat, Slice, Split, Constant, Rank, Shape, Shuffle, ...

Matrix operations MatMul, MatrixInverse, MatrixDeterminant, ...

Stateful operations Variable, Assign, AssignAdd, ...

Neural-net building blocks SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool, ...

Checkpointing operations Save, Restore

Queue and synchronization operations Enqueue, Dequeue, MutexAcquire, MutexRelease, ...

Control flow operations Merge, Switch, Enter, Leave, NextIteration

Table 1: Example TensorFlow operation types

by the session interface is Run, which takes a set of out-

put names that need to be computed, as well as an op-

tional set of tensors to be fed into the graph in place of

certain outputs of nodes. Using the arguments to Run,

the TensorFlow implementation can compute the transi-

tive closure of all nodes that must be executed in order

to compute the outputs that were requested, and can then

arrange to execute the appropriate nodes in an order that

respects their dependencies (as described in more detail

in 3.1). Most of our uses of TensorFlow set up a Session

with a graph once, and then execute the full graph or a

few distinct subgraphs thousands or millions of times via

Run calls.
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Variables

In most computations a graph is executed multiple times.

Most tensors do not survive past a single execution of the

graph. However, a Variable is a special kind of opera-

tion that returns a handle to a persistent mutable tensor

that survives across executions of a graph. Handles to

these persistent mutable tensors can be passed to a hand-

ful of special operations, such as Assign and AssignAdd

(equivalent to +=) that mutate the referenced tensor. For

machine learning applications of TensorFlow, the param-

eters of the model are typically stored in tensors held in

variables, and are updated as part of the Run of the train-

ing graph for the model.

3 Implementation

The main components in a TensorFlow system are the

client, which uses the Session interface to communicate

with the master, and one or more worker processes, with

each worker process responsible for arbitrating access to

one or more computational devices (such as CPU cores

or GPU cards) and for executing graph nodes on those

devices as instructed by the master. We have both lo-

cal and distributed implementations of the TensorFlow

interface. The local implementation is used when the

client, the master, and the worker all run on a single ma-

chine in the context of a single operating system process

(possibly with multiple devices, if for example, the ma-

chine has many GPU cards installed). The distributed

implementation shares most of the code with the local

implementation, but extends it with support for an en-

vironment where the client, the master, and the workers

can all be in different processes on different machines.

In our distributed environment, these different tasks are

containers in jobs managed by a cluster scheduling sys-

tem [51]. These two different modes are illustrated in

Figure 3. Most of the rest of this section discusses is-

sues that are common to both implementations, while

Section 3.3 discusses some issues that are particular to

the distributed implementation.

Devices

Devices are the computational heart of TensorFlow. Each

worker is responsible for one or more devices, and

each device has a device type, and a name. Device

names are composed of pieces that identify the de-

vice’s type, the device’s index within the worker, and,

in our distributed setting, an identification of the job

and task of the worker (or localhost for the case where

the devices are local to the process). Example device

names are "/job:localhost/device:cpu:0" or

"/job:worker/task:17/device:gpu:3". We

have implementations of our Device interface for CPUs

and GPUs, and new device implementations for other de-

vice types can be provided via a registration mechanism.

Each device object is responsible for managing alloca-

tion and deallocation of device memory, and for arrang-

ing for the execution of any kernels that are requested by

higher levels in the TensorFlow implementation.

Tensors

A tensor in our implementation is a typed, multi-

dimensional array. We support a variety of tensor ele-

ment types, including signed and unsigned integers rang-

ing in size from 8 bits to 64 bits, IEEE float and double

types, a complex number type, and a string type (an ar-

bitrary byte array). Backing store of the appropriate size

is managed by an allocator that is specific to the device

on which the tensor resides. Tensor backing store buffers

are reference counted and are deallocated when no refer-

ences remain.

3.1 Single-Device Execution

Let’s first consider the simplest execution scenario: a sin-

gle worker process with a single device. The nodes of the

graph are executed in an order that respects the depen-

dencies between nodes. In particular, we keep track of

a count per node of the number of dependencies of that

node that have not yet been executed. Once this count

drops to zero, the node is eligible for execution and is

added to a ready queue. The ready queue is processed in

some unspecified order, delegating execution of the ker-

nel for a node to the device object. When a node has

finished executing, the counts of all nodes that depend

on the completed node are decremented.

3.2 Multi-Device Execution

Once a system has multiple devices, there are two main

complications: deciding which device to place the com-

putation for each node in the graph, and then managing

the required communication of data across device bound-

aries implied by these placement decisions. This subsec-

tion discusses these two issues.

3.2.1 Node Placement

Given a computation graph, one of the main responsi-

bilities of the TensorFlow implementation is to map the

computation onto the set of available devices. A sim-

plified version of this algorithm is presented here. See

Section 4.3 for extensions supported by this algorithm.

One input to the placement algorithm is a cost model,

which contains estimates of the sizes (in bytes) of the
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Figure 3: Single machine and distributed system structure

input and output tensors for each graph node, along with

estimates of the computation time required for each node

when presented with its input tensors. This cost model is

either statically estimated based on heuristics associated

with different operation types, or is measured based on

an actual set of placement decisions for earlier execu-

tions of the graph.

The placement algorithm first runs a simulated execu-

tion of the graph. The simulation is described below and

ends up picking a device for each node in the graph using

greedy heuristics. The node to device placement gener-

ated by this simulation is also used as the placement for

the real execution.

The placement algorithm starts with the sources of the

computation graph, and simulates the activity on each

device in the system as it progresses. For each node that

is reached in this traversal, the set of feasible devices is

considered (a device may not be feasible if the device

does not provide a kernel that implements the particular

operation). For nodes with multiple feasible devices, the

placement algorithm uses a greedy heuristic that exam-

ines the effects on the completion time of the node of

placing the node on each possible device. This heuristic

takes into account the estimated or measured execution

time of the operation on that kind of device from the cost

model, and also includes the costs of any communica-

tion that would be introduced in order to transmit inputs

to this node from other devices to the considered device.

The device where the node’s operation would finish the

soonest is selected as the device for that operation, and

the placement process then continues onwards to make

placement decisions for other nodes in the graph, includ-

ing downstream nodes that are now ready for their own

simulated execution. Section 4.3 describes some exten-

sions that allow users to provide hints and partial con-

straints to guide the placement algorithm. The placement

algorithm is an area of ongoing development within the

system.

3.2.2 Cross-Device Communication

Once the node placement has been computed, the graph

is partitioned into a set of subgraphs, one per device. Any

cross-device edge from x to y is removed and replaced

by an edge from x to a new Send node in x’s subgraph

and an edge from a corresponding Receive node to y in

y’s subgraph. See Figure 4 for an example of this graph

transformation.

a

b c

x

y

recv

send

recv

send

a

b c

x

y

Device A

W W

Device A

Device B Device B

Figure 4: Before & after insertion of Send/Receive nodes

At runtime, the implementations of the Send and Re-

ceive nodes coordinate to transfer data across devices.

This allows us to isolate all communication inside Send

and Receive implementations, which simplifies the rest

of the runtime.

When we insert Send and Receive nodes, we canoni-

calize all users of a particular tensor on a particular de-

vice to use a single Receive node, rather than one Re-

ceive node per downstream user on a particular device.

This ensures that the data for the needed tensor is only

transmitted once between a source device → destination

device pair, and that memory for the tensor on the desti-

nation device is only allocated once, rather than multiple

times (e.g., see nodes b and c in Figure 4)

By handling communication in this manner, we also

allow the scheduling of individual nodes of the graph

on different devices to be decentralized into the work-

ers: the Send and Receive nodes impart the necessary
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synchronization between different workers and devices,

and the master only needs to issue a single Run request

per graph execution to each worker that has any nodes for

the graph, rather than being involved in the scheduling of

every node or every cross-device communication. This

makes the system much more scalable and allows much

finer-granularity node executions than if the scheduling

were forced to be done by the master.

3.3 Distributed Execution

Distributed execution of a graph is very similar to multi-

device execution. After device placement, a subgraph is

created per device. Send/Receive node pairs that com-

municate across worker processes use remote communi-

cation mechanisms such as TCP or RDMA to move data

across machine boundaries.

Fault Tolerance

Failures in a distributed execution can be detected in a

variety of places. The main ones we rely on are (a) an

error in a communication between a Send and Receive

node pair, and (b) periodic health-checks from the master

process to every worker process.

When a failure is detected, the entire graph execution

is aborted and restarted from scratch. Recall however

that Variable nodes refer to tensors that persist across ex-

ecutions of the graph. We support consistent checkpoint-

ing and recovery of this state on a restart. In partcular,

each Variable node is connected to a Save node. These

Save nodes are executed periodically, say once every N

iterations, or once every N seconds. When they execute,

the contents of the variables are written to persistent stor-

age, e.g., a distributed file system. Similarly each Vari-

able is connected to a Restore node that is only enabled

in the first iteration after a restart. See Section 4.2 for

details on how some nodes can only be enabled on some

executions of the graph.

4 Extensions

In this section we describe several more advanced fea-

tures of the basic programming model that was intro-

duced in Section 2.

4.1 Gradient Computation

Many optimization algorithms, including common ma-

chine learning training algorithms like stochastic gradi-

ent descent [45], compute the gradient of a cost function

with respect to a set of inputs. Because this is such a

W

b

x

MatMul

Add

ReLU

...

C

W

b

x

MatMul

Add

ReLU

...

C

dC/dW

dMatMul

dAdd

dReLU

...

1

dC/db

dC/dx

Figure 5: Gradients computed for graph in Figure 2

common need, TensorFlow has built-in support for au-

tomatic gradient computation. If a tensor C in a Ten-

sorFlow graph depends, perhaps through a complex sub-

graph of operations, on some set of tensors {Xk}, then

there is a built-in function that will return the tensors

{dC/dXk}. Gradient tensors are computed, like other

tensors, by extending the TensorFlow graph, using the

following procedure.

When TensorFlow needs to compute the gradient of
a tensor C with respect to some tensor I on which C
depends, it first finds the path in the computation graph
from I to C. Then it backtracks from C to I , and for
each operation on the backward path it adds a node to
the TensorFlow graph, composing the partial gradients
along the backwards path using the chain rule. The newly
added node computes the “gradient function” for the cor-
responding operation in the forward path. A gradient
function may be registered by any operation. This func-
tion takes as input not only the partial gradients com-
puted already along the backward path, but also, option-
ally, the inputs and outputs of the forward operation. Fig-
ure 5 shows gradients for a cost computed from the ex-
ample of Figure 2. Grey arrows show potential inputs
to gradient functions that are not used for the particular
operations shown. The addition needed to Figure 1 to
compute these gradients is:

[db,dW,dx] = tf.gradients(C, [b,W,x])

In general an operation may have multiple outputs, and

C may only depend on some of them. If, for example,

operation O has two outputs y1 and y2, and C only de-

pends on y2, then the first input to O’s gradient function

is set to 0 since dC/dy1 = 0.

Automatic gradient computation complicates opti-

mization, particularly of memory usage. When execut-

ing “forward” computation subgraphs, i.e., those that are

explicitly constructed by the user, a sensible heuristic

breaks ties when deciding which node to execute next by

observing the order in which the graph was constructed.
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This generally means that temporary outputs are con-

sumed soon after being constructed, so their memory can

be reused quickly. When the heuristic is ineffective, the

user can change the order of graph construction, or add

control dependencies as described in Section 5. When

gradient nodes are automatically added to the graph, the

user has less control, and the heuristics may break down.

In particular, because gradients reverse the forward com-

putation order, tensors that are used early in a graph’s

execution are frequently needed again near the end of a

gradient computation. Such tensors can hold on to a lot

of scarce GPU memory and unnecessarily limit the size

of computations. We are actively working on improve-

ments to memory management to deal better with such

cases. Options include using more sophisticated heuris-

tics to determine the order of graph execution, recom-

puting tensors instead of retaining them in memory, and

swapping out long-lived tensors from GPU memory to

more plentiful host CPU memory.

4.2 Partial Execution

Often a client wants to execute just a subgraph of the

entire execution graph. To support this, once the client

has set up a computation graph in a Session, our Run

method allows them to execute an arbitrary subgraph of

the whole graph, and to inject arbitrary data along any

edge in the graph, and to retrieve data flowing along any

edge in the graph.

Each node in the graph has a name, and each output of

a node is identified by the source node name and the out-

put port from the node, numbered from 0 (e.g., “bar:0”

refers to the 1st output of the “bar” node, while “bar:1”

refers to the 2nd output).

Two arguments to the Run call help define the exact

subgraph of the computation graph that will be executed.

First, the Run call accepts inputs, an optional mapping

of name:port names to “fed” tensors values. Second,

the Run call accepts output names, a list of output

name[:port] specifications indicating which nodes

should be executed, and, if the port portion is present in a

name, that that particular output tensor value for the node

should be returned to the client if the Run call completes

successfully.

The graph is transformed based on the values of in-

puts and outputs. Each node:port specified in inputs is

replaced with a feed node, which will pick up the pro-

vided input tensor from specially-initialized entries in a

Rendezvous object used for the Run call. Similarly, each

output name with a port is connected to a special fetch

node that arranges to save the output tensor and return it

to the client when the Run call is complete. Finally, once

the graph has been rewritten with the insertion of these

a b

c

e

d

f

a b

c

e

d

f

feed

fetch

Figure 6: Before and after graph transformation for par-

tial execution

special feed and fetch nodes, the set of nodes to execute

can be determined by starting at each of the nodes named

by any output and working backwards in the graph using

the graph dependencies to determine the full set of nodes

that must be executed in the rewritten graph in order to

compute the outputs. Figure 6 shows an original graph

on the left, and the transformed graph that results when

Run is invoked with inputs=={b} and outputs=={f:0}.

Since we only need to compute the output of node f, we

will not execute nodes d and e, since they have no con-

tribution to the output of f.

4.3 Device Constraints

TensorFlow clients can control the placement of nodes

on devices by providing partial constraints for a node

about which devices it can execute on. For ex-

ample, “only place this node on a device of type

GPU”, or “this node can be placed on any device in

/job:worker/task:17”, or “Colocate this node

with the node named variable13”. Within the con-

fines of these constraints, the placement algorithm is re-

sponsible for choosing an assignment of nodes to de-

vices that provides fast execution of the computation and

also satisfies various constraints imposed by the devices

themselves, such as limiting the total amount of memory

needed on a device in order to execute its subset of graph

nodes.

Supporting such constraints requires changes to the

placement algorithm described in Section 3.2.1. We first

compute the feasible set of devices for each node, and

then use union-find on the graph of colocation constraints

to compute the graph components that must be placed

together. For each such component, we compute the in-

tersection of the feasible device sets. The computed fea-

sible device set per node fits easily into the placement

algorithm’s simulator.

7



4.4 Control Flow

Although dataflow graphs without any explicit control

flow are quite expressive, we have observed a number of

cases where supporting conditionals and loops can lead

to more concise and efficient representations of machine

learning algorithms.

Much as in the dataflow-machine approach described

by Arvind [3], we introduce a small set of primitive con-

trol flow operators into TensorFlow and generalize Ten-

sorFlow to handle cyclic dataflow graphs. The Switch

and Merge operators allow us to skip the execution of

an entire subgraph based on the value of a boolean ten-

sor. The Enter, Leave, and NextIteration operators allow

us to express iteration. High-level programming con-

structs such as if-conditionals and while-loops can be

easily compiled into dataflow graphs with these control

flow operators.

The TensorFlow runtime implements a notion of tags

and frames conceptually similar to the MIT Tagged-

Token machine [4]. Each iteration of a loop is uniquely

identified by a tag, and its execution state is represented

by a frame. An input can enter an iteration whenever it

becomes available; thus, multiple iterations can be exe-

cuted concurrently.

TensorFlow uses a distributed coordination mecha-

nism to execute graphs with control flow. In general, a

loop can contain nodes that are assigned to many dif-

ferent devices. Therefore, managing the state of a loop

becomes a problem of distributed termination detection.

TensorFlow’s solution is based on graph rewriting. Dur-

ing the graph partitioning, we automatically add control

nodes to each partition. These nodes implement a small

state machine that orchestrates the start and termination

of each iteration, and decides the termination of the loop.

For each iteration, the device that owns the loop termi-

nation predicate sends a tiny control message to every

participating device.

As explained above, we often train machine learning

models by gradient descent, and represent gradient com-

putations as part of dataflow graphs. When a model

includes control-flow operations, we must account for

them in the corresponding gradient computation. For ex-

ample, the gradient computation for a model with an if-

conditional will need to know which branch of the con-

ditional was taken, then apply the gradient logic to this

branch. Similarly, the gradient computation for a model

with a while-loop will need to know how many iterations

were taken, and will also rely on the intermediate values

computed during those iterations. The basic technique is

to rewrite the graph so to memorize the values needed for

the gradient computation. We omit the somewhat intri-

cate details of this encoding.

4.5 Input Operations

Although input data can be provided to a computation via

feed nodes, another common mechanism used for train-

ing large-scale machine learning models is to have spe-

cial input operation nodes in the graph, which are typi-

cally configured with a set of filenames and which yield

a tensor containing one or more examples from the data

stored in that set of files each time they are executed.

This allows data to be read directly from the underlying

storage system into the memory of the machine that will

perform subsequent processing on the data. In configura-

tions where the client process is separate from the worker

process, if the data were fed, it typically would require an

extra network hop (from the storage system to the client

and then from the client to the worker vs. directly from

the storage system to ther worker when using an input

node).

4.6 Queues

Queues are a useful feature that we have added to Ten-

sorFlow. They allow different portions of the graph to

execute asynchronously, possibly at different candences,

and to hand off data through Enqueue and Dequeue op-

erations. Enqueue operations can block until space be-

comes available in the queue, and Dequeue operations

can block until a desired minimum number of elements

are available in the queue. One use of queues is to allow

input data to be prefetched from disk files while a previ-

ous batch of data is still being processed by the compu-

tational portion of a machine learning model. They can

also be used for other kinds of grouping, including accu-

mulating many gradients in order to compute some more

complex combination of gradients over a larger batch,

or to group different input sentences for recurrent lan-

guage models into bins of sentences that are approxi-

mately the same length, which can then be processed

more efficiently.

In addition to normal FIFO queues, we have also im-

plemented a shuffling queue, which randomly shuffles its

elements within a large in-memory buffer. This shuffling

functionality is useful for machine learning algorithms

that want to randomize the order in which they process

examples, for example.

4.7 Containers

A Container is the mechanism within TensorFlow for

managing longer-lived mutable state. The backing store

for a Variable lives in a container. The default con-

tainer is one that persists until the process terminates,

but we also allow other named containers. A container
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can be reset by clearing it of its contents entirely. Us-

ing containers, it is possible to share state even across

completely disjoint computation graphs associated with

different Sessions.

5 Optimizations

In this section, we describe some of the optimizations

in the TensorFlow implementation that improve perfor-

mance or resource usage of the system.

5.1 Common Subexpression Elimination

Since the construction of computation graphs is often

done by many different layers of abstractions in the client

code, computation graphs can easily end up with redun-

dant copies of the same computation. To handle this, we

have implemented a common subexpression pass similar

to the algorithm described by Click [12] that runs over

the computation graph and canonicalizes multiple copies

of operations with identical inputs and operation types

to just a single one of these nodes, and redirects graph

edges appropriately to reflect this canonicalization.

5.2 Controlling Data Communication and

Memory Usage

Careful scheduling of TensorFlow operations can result

in better performance of the system, in particular with

respect to data transfers and memory usage. Specifically,

scheduling can reduce the time window during which

intermediate results need to be kept in memory in be-

tween operations and hence the peak memory consump-

tion. This reduction is particularly important for GPU

devices where memory is scarce. Furthermore, orches-

trating the communication of data across devices can re-

duce contention for network resources.

While there are many opportunities for scheduling op-

timizations, here we focus on one that we found partic-

ularly necessary and effective. It concerns the schedul-

ing of Receive nodes for reading remote values. If no

precautions are taken, these nodes may start much ear-

lier than necessary, possibly all at once when execution

starts. By performing an as-soon-as-possible/as-late-as-

possible (ASAP/ALAP) calculation, of the kind common

in operations research, we analyze the critical paths of

graphs, in order to estimate when to start the Receive

nodes. We then insert control edges with the aim of de-

laying the start of these nodes until just before their re-

sults are needed.

5.3 Asynchronous Kernels

In addition to normal synchronous kernels that complete

their execution at the end of the Compute method, our

framework also supports non-blocking kernels. Such

non-blocking kernels use a slightly different interface

whereby the Compute method is passed a continuation

that should be invoked when the kernel’s execution is

complete. This is an optimization for environments

where having many active threads is relatively expensive

in terms of memory usage or other resources, and allows

us to avoid tying up an execution thread for unbounded

periods of time while waiting for I/O or other events to

occur. Examples of asynchronous kernels include the

Receive kernel, and the Enqueue and Dequeue kernels

(which might need to block if queue space is not avail-

able or if no data is available to be read, respectively).

5.4 Optimized Libraries for Kernel Imple-

mentations

We often make use of pre-existing highly-optimized nu-

merical libraries to implement kernels for some opera-

tions. For example, there are a number of optimized li-

braries for performing matrix multiplies on different de-

vices, including BLAS [15] and cuBLAS [39], or GPU

libraries for convolutional kernels for deep neural nets

such as cuda-convnet [28] and cuDNN [9]. Many of

our kernel implementations are relatively thin wrappers

around such optimized libraries.

We make fairly extensive use of the open-source Eigen

linear algebra library [25] for many of the kernel imple-

mentations in the system. As one part of the develop-

ment of TensorFlow, our team (primarily Benoit Steiner)

has extended the open source Eigen library with support

for arbitrary dimensionality tensor operations.

5.5 Lossy Compression

Some machine learning algorithms, including those typ-

ically used for training neural networks, are tolerant of

noise and reduced precision arithmetic. In a manner sim-

ilar to the DistBelief system [14], we often use lossy

compression of higher precision internal representations

when sending data between devices (sometimes within

the same machine but especially across machine bound-

aries). For example, we often insert special conversion

nodes that convert 32-bit floating point representations

into a 16-bit floating point representation (not the pro-

posed IEEE 16-bit floating point standard, but rather just

a 32-bit IEEE 794 float format, but with 16 bits less pre-

cision in the mantissa), and then convert back to a 32-

bit representation on the other side of the communica-

tion channel (by just filling in zeroes for the lost portion
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of the mantissa, since that’s less computationally expen-

sive than doing the mathematically correct probabilistic

rounding when doing this 32 → 16 → 32-bit conver-

sion).

6 Status and Experience

The TensorFlow interface and a reference implemen-

tation have been open sourced under an Apache 2.0

license, and the system is available for download at

www.tensorflow.org. The system includes detailed docu-

mentation, a number of tutorials, and a number of exam-

ples demonstrating how to use the system for a variety

of different machine learning tasks. The examples in-

clude models for classifying hand-written digits from the

MNIST dataset (the “hello world” of machine learning

algorithms) [32], classifying images from the CIFAR-

10 dataset [30], doing language modeling using a recur-

rent LSTM [22] network, training word embedding vec-

tors [35] and more.

The system includes front-ends for specifying Tensor-

Flow computations in Python and C++, and we expect

other front-ends to be added over time in response to

the desires of both internal Google users and the broader

open-source community.

We have quite a few machine learning models in our

previous DistBelief system [14] that we have migrated

over to TensorFlow. The rest of this section discusses

some lessons we have learned that are generalizable for

any such migration of machine learning models from one

system to another, and therefore may be valuable to oth-

ers.

In particular, we focus on our lessons from porting a

state-of-the-art convolutional neural network for image

recognition termed Inception [23]. This image recogni-

tion system classifies 224 × 224 pixel images into one

of 1000 labels (e.g., “cheetah”, “garbage truck”, etc.).

Such a model comprises 13.6 million learnable parame-

ters and 36,000 operations when expressed as a Tensor-

Flow graph. Running inference on a single image re-

quires 2 billion multiply-add operations.

After building all necessary mathematical operations

in TensorFlow, assembling and debugging all 36,000 op-

erations into the correct graph structure proved challeng-

ing. Validating correctness is a difficult enterprise be-

cause the system is inherently stochastic and only in-

tended to behave in a certain way in expectation — po-

tentially after hours of computation. Given these cir-

cumstances, we found the following strategies critical for

porting the Inception model to TensorFlow:

1. Build tools to gain insight into the exact number of

parameters in a given model. Such tools demon-

strated subtle flaws in a complex network architec-

ture specification. In particular we were able to

identify operations and variables instantiated incor-

rectly due to automatic broadcasting in a mathemat-

ical operation across a dimension.

2. Start small and scale up. The first convolutional

neural network that we ported from our previ-

ous system was a small network employed on the

CIFAR-10 data set [30]. Debugging such a network

elucidated subtle edge cases in individual opera-

tions (e.g., max-pooling) within the machine learn-

ing system that would have been practically indeci-

pherable in more complex models.

3. Always ensure that the objective (loss function)

matches between machine learning systems when

learning is turned off. Setting the learning rate to be

zero helped us identify unexpected behavior in how

we had randomly initialized variables in a model.

Such an error would have been difficult to identify

in a dynamic, training network.

4. Make a single machine implementation match be-

fore debugging a distributed implementation. This

strategy helped us delineate and debug discrep-

ancies in training performance between machine

learning system. In particular, we identified bugs

due to race conditions and non-atomic operations

incorrectly assumed to be atomic.

5. Guard against numerical errors. Numerical li-

braries are inconsistent in how they handle non-

finite floating point values. Convolutional neu-

ral networks are particularly susceptible to numer-

ical instability and will tend to diverge quite regu-

larly during experimentation and debugging phases.

Guarding against this behavior by checking for non-

finite floating point values allows one to detect er-

rors in real time as opposed to identifying divergent

behavior post-hoc.

6. Analyze pieces of a network and understand the

magnitude of numerical error. Running subsec-

tions of a neural network in parallel on two machine

learning systems provides a precise method to en-

sure that a numerical algorithm is identical across

two systems. Given that such algorithms run with

floating point precision, it is important to predict

and understand the magnitude of expected numer-

ical error in order to judge whether a given compo-

nent is correctly implemented (e.g., distinguishing

between “within 1e-2, great!” and “within 1e-2:

why is it so incorrect?!”).
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Figure 7: Synchronous and asynchronous data parallel training

Validating complex mathematical operations in the

presence of an inherently stochastic system is quite chal-

lenging. The strategies outlined above proved invaluable

in gaining confidence in the system and ultimately in in-

stantiating the Inception model in TensorFlow. The end

result of these efforts resulted in a 6-fold speed improve-

ment in training time versus our existing DistBelief im-

plementation of the model and such speed gains proved

indispensable in training a new class of larger-scale im-

age recognition models.

7 Common Programming Idioms

TensorFlow’s basic dataflow graph model can be used in

a variety of ways for machine learning applications. One

domain we care about is speeding up training of com-

putationally intensive neural network models on large

datasets. This section describes several techniques that

we and others have developed in order to accomplish

this, and illustrates how to use TensorFlow to realize

these various approaches.

The approaches in this subsection assume that the

model is being trained using stochastic gradient descent

(SGD) with relatively modest-sized mini-batches of 100

to 1000 examples.

Data Parallel Training

One simple technique for speeding up SGD is to paral-

lelize the computation of the gradient for a mini-batch

across mini-batch elements. For example, if we are us-

ing a mini-batch size of 1000 elements, we can use 10

replicas of the model to each compute the gradient for

100 elements, and then combine the gradients and apply

updates to the parameters synchronously, in order to be-

have exactly as if we were running the sequential SGD

algorithm with a batch size of 1000 elements. In this

case, the TensorFlow graph simply has many replicas of

the portion of the graph that does the bulk of the model

computation, and a single client thread drives the entire

training loop for this large graph. This is illustrated in

the top portion of Figure 7.

This approach can also be made asynchronous, where

the TensorFlow graph has many replicas of the portion of

the graph that does the bulk of the model computation,

and each one of these replicas also applies the parame-

ter updates to the model parameters asynchronously. In

this configuration, there is one client thread for each of

the graph replicas. This is illustrated in the bottom por-

tion of Figure 7. This asynchronous approach was also

described in [14].
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Model Parallel Training

Model parallel training, where different portions of the

model computation are done on different computational

devices simultaneously for the same batch of examples,

is also easy to express in TensorFlow. Figure 8 shows

an example of a recurrent, deep LSTM model used for

sequence to sequence learning (see [47]), parallelized

across three different devices.

Concurrent Steps for Model Computation Pipelining

Another common way to get better utilization for train-

ing deep neural networks is to pipeline the computation

of the model within the same devices, by running a small

number of concurrent steps within the same set of de-

vices. This is shown in Figure 9. It is somewhat similar

to asynchronous data parallelism, except that the paral-

lelism occurs within the same device(s), rather than repli-

cating the computation graph on different devices. This

allows “filling in the gaps” where computation of a sin-

gle batch of examples might not be able to fully utilize

the full parallelism on all devices at all times during a

single step.

8 Performance

A future version of this white paper will have a compre-

hensive performance evaluation section of both the sin-

gle machine and distributed implementations.

9 Tools

This section describes some tools we have developed that

sit alongside the core TensorFlow graph execution en-

gine.

9.1 TensorBoard: Visualization of graph

structures and summary statistics

In order to help users understand the structure of their

computation graphs and also to understand the overall

behavior of machine learning models, we have built Ten-

sorBoard, a companion visualization tool for TensorFlow

that is included in the open source release.

Visualization of Computation Graphs

Many of the computation graphs for deep neural net-

works can be quite complex. For example, the computa-

tion graph for training a model similar to Google’s Incep-

tion model [48], a deep convolutional neural net that had

the best classification performance in the ImageNet 2014

contest, has over 36,000 nodes in its TensorFlow compu-

tation graph, and some deep recurrent LSTM models for

language modeling have more than 15,000 nodes.

Due to the size and topology of these graphs, naive vi-

sualization techniques often produce cluttered and over-

whelming diagrams. To help users see the underlying

organization of the graphs, the algorithms in Tensor-

Board collapse nodes into high-level blocks, highlighting

groups with identical structures. The system also sep-

arates out high-degree nodes, which often serve book-

keeping functions, into a separate area of the screen. Do-

ing so reduces visual clutter and focuses attention on the

core sections of the computation graph.

The entire visualization is interactive: users can pan,

zoom, and expand grouped nodes to drill down for de-

tails. An example of the visualization for the graph of a

deep convolutional image model is shown in Figure 10.

Visualization of Summary Data

When training machine learning models, users often

want to be able to examine the state of various aspects

of the model, and how this state changes over time. To

this end, TensorFlow supports a collection of different

Summary operations that can be inserted into the graph,
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Figure 10: TensorBoard graph visualization of a convolutional neural network model

Figure 11: TensorBoard graphical display of model summary statistics time series data

including scalar summaries (e.g., for examining overall

properties of the model, such as the value of the loss

function averaged across a collection of examples, or the

time taken to execute the computation graph), histogram-

based summaries (e.g., the distribution of weight values

in a neural network layer), or image-based summaries

(e.g., a visualization of the filter weights learned in a

convolutional neural network). Typically computation

graphs are set up so that Summary nodes are included

to monitor various interesting values, and every so often

during execution of the training graph, the set of sum-

mary nodes are also executed, in addition to the normal

set of nodes that are executed, and the client driver pro-

gram writes the summary data to a log file associated

with the model training. The TensorBoard program is

then configured to watch this log file for new summary

records, and can display this summary information and

how it changes over time (with the ability to select the

measurement of “time” to be relative wall time since

the beginning of the execution of the TensorFlow pro-

gram, absolute time, or “steps”, a numeric measure of

the number of graph executions that have occurred since

the beginning of execution of the TensorFlow program).

A screen shot of the visualization of summary values in

TensorBoard is shown in Figure 11.

9.2 Performance Tracing

We also have an internal tool called EEG (not included

in the initial open source release in November, 2015) that

we use to collect and visualize very fine-grained informa-

tion about the exact ordering and performance character-
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istics of the execution of TensorFlow graphs. This tool

works in both our single machine and distributed imple-

mentations, and is very useful for understanding the bot-

tlenecks in the computation and communication patterns

of a TensorFlow program.

Traces are collected simultaneously on each machine

in the system from a variety of sources including Linux

kernel ftrace, our own lightweight thread tracing tools

and the CUDA Profiling Tools Interface (CUPTI). With

these logs we can reconstruct the execution of a dis-

tributed training step with microsecond-level details of

every thread-switch, CUDA kernel launch and DMA op-

eration.

Traces are combined in a visualization server which

is designed to rapidly extract events in a specified

timerange and summarize at appropriate detail level for

the user-interface resolution. Any significant delays

due to communication, synchronization or DMA-related

stalls are identified and highlighted using arrows in the

visualization. Initially the UI provides an overview of the

entire trace, with only the most significant performance

artifacts highlighted. As the user progressively zooms in,

increasingly fine resolution details are rendered.

Figure 12 shows an example EEG visualization of a

model being trained on a multi-core CPU platform. The

top third of the screenshot shows TensorFlow operations

being dispatched in parallel, according to the dataflow

constraints. The bottom section of the trace shows how

most operations are decomposed into multiple work-

items which are executed concurrently in a thread pool.

The diagonal arrows on the right hand size show where

queueing delay is building up in the thread pool. Fig-

ure 13 shows another EEG visualization with compu-

tation mainly happening on the GPU. Host threads can

be seen enqueuing TensorFlow GPU operations as they

become runnable (the light blue thread pool), and back-

ground housekeeping threads can be seen in other col-

ors being migrated across processor cores. Once again,

arrows show where threads are stalled on GPU to CPU

transfers, or where ops experience significant queueing

delay.

Finally, Figure 14 shows a more detailed view which

allows us to examine how Tensorflow GPU operators

are assigned to multiple GPU streams. Whenever the

dataflow graph allows parallel execution or data trans-

fer we endeavour to expose the ordering constraints to

the GPU device using streams and stream dependency

primitives.

10 Future Work

We have several different directions for future work. We

will continue to use TensorFlow to develop new and in-

teresting machine learning models for artificial intelli-

gence, and in the course of doing this, we may discover

ways in which we will need to extend the basic Ten-

sorFlow system. The open source community may also

come up with new and interesting directions for the Ten-

sorFlow implementation.

One extension to the basic programming model that

we are considering is a function mechanism, whereby

a user can specify an entire subgraph of a TensorFlow

computation to be a reusable component. In the imple-

mentation we have designed, these functions can become

reusable components even across different front-end lan-

guages for TensorFlow, so that a user could define a func-

tion using the Python front end, but then use that func-

tion as a basic building block from within the C++ front-

end. We are hopeful that this cross-language reusability

will bootstrap a vibrant community of machine learning

researchers publishing not just whole examples of their

research, but also small reusable components from their

work that can be reused in other contexts.

We also have a number of concrete directions to im-

prove the performance of TensorFlow. One such direc-

tion is our initial work on a just-in-time compiler that

can take a subgraph of a TensorFlow execution, perhaps

with some runtime profiling information about the typi-

cal sizes and shapes of tensors, and can generate an op-

timized routine for this subgraph. This compiler will un-

derstand the semantics of perform a number of optimiza-

tions such as loop fusion, blocking and tiling for locality,

specialization for particular shapes and sizes, etc.

We also imagine that a significant area for future work

will be in improving the placement and node scheduling

algorithms used to decide where different nodes will exe-

cute, and when they should start executing. We have cur-

rently implemented a number of heuristics in these sub-

systems, and we’d like to have the system instead learn

to make good placement decisions (perhaps using a deep

neural network, combined with a reinforcement learning

objective function).

11 Related Work

There are many other systems that are comparable in

various ways with TensorFlow. Theano [7], Torch [13],

Caffe [26], Chainer [49] and the Computational Network

Toolkit [54] are a few systems designed primarily for the

training of neural networks. Each of these systems maps

the computation onto a single machine, unlike the dis-

tributed TensorFlow implementation. Like Theano and

Chainer, TensorFlow supports symbolic differentiation,

thus making it easier to define and work with gradient-

based optimization algorithms. Like Caffe, TensorFlow

has a core written in C++, simplifying the deployment
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Figure 12: EEG visualization of multi-threaded CPU operations (x-axis is time in µs).

Figure 13: EEG visualization of Inception training showing CPU and GPU activity.

of trained models in a wide variety of production set-

tings, including memory- and computation-constrained

environments such as mobile devices.

The TensorFlow system shares some design charac-

teristics with its predecessor system, DistBelief [14],

and with later systems with similar designs like Project

Adam [10] and the Parameter Server project [33]. Like

DistBelief and Project Adam, TensorFlow allows com-

putations to be spread out across many computational de-

vices across many machines, and allows users to specify

machine learning models using relatively high-level de-

scriptions. Unlike DistBelief and Project Adam, though,

the general-purpose dataflow graph model in TensorFlow

is more flexible and more amenable to expressing a wider

variety of machine learning models and optimization al-

gorithms. It also permits a significant simplification by

allowing the expression of stateful parameter nodes as

variables, and variable update operations that are just

additional nodes in the graph; in contrast, DistBelief,

Project Adam and the Parameter Server systems all have
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Figure 14: Timeline of multi-stream GPU execution.

whole separate parameter server subsystems devoted to

communicating and updating parameter values.

The Halide system [40] for expressing image pro-

cessing pipelines uses a similar intermediate represen-

tation to the TensorFlow dataflow graph. Unlike Ten-

sorFlow, though, the Halide system actually has higher-

level knowledge of the semantics of its operations and

uses this knowledge to generate highly optimized pieces

of code that combine multiple operations, taking into ac-

count parallelism and locality. Halide runs the resulting

computations only on a single machine, and not in a dis-

tributed setting. In future work we are hoping to extend

TensorFlow with a similar cross-operation dynamic com-

pilation framework.

Like TensorFlow, several other distributed systems

have been developed for executing dataflow graphs

across a cluster. Dryad [24] and Flume [8] demon-

strate how a complex workflow can be represented as

a dataflow graph. CIEL [37] and Naiad [36] introduce

generic support for data-dependent control flow: CIEL

represents iteration as a DAG that dynamically unfolds,

whereas Naiad uses a static graph with cycles to support

lower-latency iteration. Spark [55] is optimized for com-

putations that access the same data repeatedly, using “re-

silient distributed datasets” (RDDs), which are soft-state

cached outputs of earlier computations. Dandelion [44]

executes dataflow graphs across a cluster of heteroge-

neous devices, including GPUs. TensorFlow uses a hy-

brid dataflow model that borrows elements from each

of these systems. Its dataflow scheduler, which is the

component that chooses the next node to execute, uses

the same basic algorithm as Dryad, Flume, CIEL, and

Spark. Its distributed architecture is closest to Naiad, in

that the system uses a single, optimized dataflow graph to

represent the entire computation, and caches information

about that graph on each device to minimize coordination

overhead. Like Spark and Naiad, TensorFlow works best

when there is sufficient RAM in the cluster to hold the

working set of the computation. Iteration in TensorFlow

uses a hybrid approach: multiple replicas of the same

dataflow graph may be executing at once, while sharing

the same set of variables. Replicas can share data asyn-

chronously through the variables, or use synchronization

mechanisms in the graph, such as queues, to operate syn-

chronously. TensorFlow also supports iteration within a

graph, which is a hybrid of CIEL and Naiad: for simplic-

ity, each node fires only when all of its inputs are ready

(like CIEL); but for efficiency the graph is represented as

a static, cyclic dataflow (like Naiad).

12 Conclusions

We have described TensorFlow, a flexible data flow-

based programming model, as well as single machine

and distributed implementations of this programming

model. The system is borne from real-world experience

in conducting research and deploying more than one hun-

dred machine learning projects throughout a wide range

of Google products and services. We have open sourced

a version of TensorFlow, and hope that a vibrant shared

community develops around the use of TensorFlow. We

are excited to see how others outside of Google make use

of TensorFlow in their own work.
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