
Tensors and Their Eigenvectors
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My AMS invited address at the SIAM Annual Meeting July 11–15 in Boston discusses the
extension of eigenvectors and singular vectors from matrices to higher order tensors.

Areal 𝑛 × 𝑛-matrix usually has 𝑛 indepen-
dent eigenvectors over the complex numbers.
When the matrix is symmetric, its eigen-
vectors have real coordinates and are
orthogonal. For a rectangular matrix, one

considers pairs of singular vectors, one on the left
and one on the right. The number of these pairs is
equal to the smaller of the two matrix dimensions.

Engineers and
scientists spice
up their linear
algebra toolbox
with a pinch of

algebraic
geometry.

Eigenvectors and singu-
lar vectors are familiar
from linear algebra, where
they are taught in con-
cert with eigenvalues and
singular values. Linear al-
gebra is the foundation
of applied mathematics
and scientific computing.
Specifically, the concept
of eigenvectors and nu-
merical algorithms for
computing them became
a key technology during
the twentieth century.

However, in our day
and age of Big Data, the role of matrices is increas-
ingly often played by tensors, that is, multidimensional
arrays of numbers. Principal component analysis tells us
that eigenvectors of matrices point to directions in which
the data is most spread. One hopes to identify similar
features in higher-dimensional data. This has encouraged
engineers and scientists to spice up their linear algebra
toolbox with a pinch of algebraic geometry.

The spectral theory of tensors is the theme of the
AMS Invited Address at the SIAM Annual Meeting, held in
Boston on July 11–15, 2016. This theory was pioneered
around 2005 by Lek-Heng Lim and Liqun Qi. The aim
of our introduction is to generalize familiar notions,
such as rank, eigenvectors and singular vectors, from
matrices to tensors. Specifically, we address the following
questions. The answers are provided in Examples 5 and 10
respectively.
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Question 1. How many eigenvectors does a 3 × 3 × 3-
tensor have?

Question 2. How many triples of singular vectors does a3×3×3-tensor have?

A tensor is a 𝑑-dimensional array 𝑇 = (𝑡𝑖1𝑖2⋯𝑖𝑑). Tensors
of format 𝑛1×𝑛2×⋯×𝑛𝑑 form a space of dimension𝑛1𝑛2 ⋯𝑛𝑑. For 𝑑 = 1, 2 we get vectors and matrices. A
tensor has rank 1 if it is the outer product of 𝑑 vectors,
written 𝑇 = u⊗ v⊗⋯⊗w or, in coordinates,𝑡𝑖1𝑖2⋯𝑖𝑑 = 𝑢𝑖1𝑣𝑖2 ⋯𝑤𝑖𝑑 .
The problem of tensor decomposition concerns expressing𝑇 as a sum of rank 1 tensors, using as few summands as
possible. That minimal number of summands needed is
the rank of 𝑇.

An 𝑛×𝑛×⋯×𝑛-tensor 𝑇 = (𝑡𝑖1𝑖2⋯𝑖𝑑) is symmetric if it
is unchanged under permuting the indices. The space
Sym𝑑(ℝ𝑛) of such symmetric tensors has dimension(𝑛+𝑑−1𝑑 ). It is identified with the space of homogeneous
polynomials of degree 𝑑 in 𝑛 variables, written as

𝑇 = 𝑛∑𝑖1,…,𝑖𝑑=1 𝑡𝑖1𝑖2⋯𝑖𝑑 ⋅ 𝑥𝑖1𝑥𝑖2 ⋯𝑥𝑖𝑑 .
Example 3. A tensor 𝑇 of format 3×3×3 has 27 entries.
If 𝑇 is symmetric, then it has 10 distinct entries, one for
each coefficient of the associated cubic polynomial in
three variables. This polynomial defines a cubic curve in
the projective plane ℙ2, as indicated in Figure 1.

Symmetric tensor decomposition writes a polynomial
as a sum of powers of linear forms:

(1) 𝑇 = 𝑟∑𝑗=1𝜆𝑗v⊗𝑑𝑗 = 𝑟∑𝑗=1𝜆𝑗(𝑣1𝑗𝑥1+𝑣2𝑗𝑥2+⋯+𝑣𝑛𝑗𝑥𝑛)𝑑.
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Figure 1. A symmetric 3×3×3-tensor represents a
cubic curve (drawn by Cynthia Vinzant) in the projective
plane.
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Figure 2. The polynomial 𝑇 = 𝑥𝑦𝑧(𝑥 + 𝑦+ 𝑧) represents a symmetric 3×3×3×3-tensor.
The gradient of 𝑇 defines a map ∇𝑇 ∶ ℝ𝑛 → ℝ𝑛. A vector
v ∈ ℝ𝑛 is an eigenvector of 𝑇 if(∇𝑇)(v) = 𝜆 ⋅ v for some 𝜆 ∈ ℝ.

Eigenvectors of tensors arise naturally in optimization.
Consider the problem of maximizing a polynomial func-
tion 𝑇 over the unit sphere in ℝ𝑛. If 𝜆 denotes a Lagrange
multiplier, then one sees that the eigenvectors of 𝑇 are
the critical points of this optimization problem.

Algebraic geometers find it convenient to replace the
unit sphere in ℝ𝑛 by the projective space ℙ𝑛−1. The
gradient map is then a rational map from this projective
space to itself: ∇𝑇 ∶ ℙ𝑛−1

99K ℙ𝑛−1.
The eigenvectors of 𝑇 are fixed points (𝜆 ≠ 0) and base
points (𝜆 = 0) of ∇𝑇. Thus the spectral theory of tensors
is closely related to the study of dynamical systems onℙ𝑛−1.

In the matrix case (𝑑 = 2), the linear map ∇𝑇 is the
gradient of the quadratic form

𝑇 = 𝑛∑𝑖=1
𝑛∑𝑗=1 𝑡𝑖𝑗𝑥𝑖𝑥𝑗.

By the Spectral Theorem, 𝑇 has a real decomposition (1)
with 𝑑 = 2. Here 𝑟 is the rank, the 𝜆𝑗 are the eigenvalues
of 𝑇, and the eigenvectors v𝑗 = (𝑣1𝑗, 𝑣2𝑗,… ,𝑣𝑛𝑗) are
orthonormal. We can compute this by power iteration,
namely, by applying ∇𝑇 until a fixed point is reached.

For 𝑑 ≥ 3, one can still use the power iteration to
compute eigenvectors of𝑇. However, the eigenvectors are
usually not the vectors v𝑖 in the low-rank decomposition
(1). One exception arises when the symmetric tensor is
odeco, or orthogonally decomposable [4]. This means that𝑇 has the form (1), where 𝑟 = 𝑛 and {v1,v2,… ,v𝑟} is
an orthogonal basis of ℝ𝑛. These basis vectors are the
attractors of the dynamical system ∇𝑇, provided 𝜆𝑗 > 0.
Theorem 4 ([2]). The number of complex eigenvectors of
a general tensor 𝑇 ∈ Sym𝑑(ℝ𝑛) is

(𝑑 − 1)𝑛 − 1𝑑− 2 = 𝑛−1∑𝑖=0(𝑑 − 1)𝑖.

Example 5. Let 𝑛 = 𝑑 = 3. The Fermat cubic 𝑇 = 𝑥3 +𝑦3 +𝑧3 is an odeco tensor. Its gradient map squares each
coordinate: ∇𝑇 ∶ ℙ2

99K ℙ2, (𝑥 ∶ 𝑦 ∶ 𝑧) ↦ (𝑥2 ∶ 𝑦2 ∶ 𝑧2).
This dynamical system has seven fixed points, of which
only the first three are attractors:

(1 ∶ 0 ∶ 0), (0 ∶ 1 ∶ 0), (0 ∶ 0 ∶ 1),(1 ∶ 1 ∶ 0), (1 ∶ 0 ∶ 1), (0 ∶ 1 ∶ 1), (1 ∶ 1 ∶ 1).
We conclude that 𝑇 has seven eigenvectors, and the same
holds for 3 × 3× 3-tensors in general.

It is not known whether all eigenvectors can be real.
This holds for 𝑛 = 3 by [1, Theorem 6.1]. Namely, if 𝑇 is a
product of linear forms defining 𝑑 lines in ℙ2, then the (𝑑2)
vertices of the line arrangement are base points of ∇𝑇,
and each of the (𝑑2) + 1 regions contains one fixed point.
This accounts for all 1 + (𝑑−1) + (𝑑−1)2 eigenvectors,
which are therefore real.

Example 6. Let 𝑑 = 4 and fix the product of linear forms𝑇 = 𝑥𝑦𝑧(𝑥 + 𝑦+ 𝑧). Its curve in ℙ2 is an arrangement of
four lines, as shown in Figure 2. This quartic represents a
symmetric 3×3×3×3-tensor. All 13 = 6+7 eigenvectors
of this tensor are real. The 6 vertices of the arrangement
are the base points of ∇𝑇. Each of the 7 regions contains
one fixed point.

For special tensors 𝑇, two of the eigenvectors in
Theorem 4 may coincide. This corresponds to vanishing
of the eigendiscriminant, which is a big polynomial in
the coefficients 𝑡𝑖1𝑖2⋯𝑖𝑑 . In the matrix case (𝑑 = 2), it is
the discriminant of the characteristic polynomial of an𝑛×𝑛-matrix. For 3×3×3-tensors the eigendiscriminant
has degree 24. In general we have the following:

Theorem 7 ([1, Corollary 4.2]). The eigendiscriminant
is an irreducible homogeneous polynomial of degree𝑛(𝑛 − 1)(𝑑 − 1)𝑛−1 in the coefficients 𝑡𝑖1𝑖2⋯𝑖𝑑 of the tensor𝑇.

Singular value decomposition is a central notion in
linear algebra and its applications. Consider a rectangular

June/July 2016 Notices of the AMS 605



Bernd Sturmfels enjoying a spherical blackboard at
the Institute Mittag-Leffler in Djursholm, Sweden.

matrix 𝑇 = (𝑡𝑖𝑗) of format 𝑛1 ×𝑛2. The singular values 𝜎
of 𝑇 satisfy 𝑇u = 𝜎v and 𝑇𝑡v = 𝜎u,
where u and v are the corresponding singular vectors. Just
as with eigenvectors, we can associate to this a dynamical
system. Namely, we interpret thematrix as a bilinear form

𝑇 = 𝑛1∑𝑖=1
𝑛2∑𝑗=1 𝑡𝑖𝑗𝑥𝑖𝑦𝑗.

The gradient of 𝑇 defines a rational self-map of a product
of two projective spaces:∇𝑇 ∶ ℙ𝑛1−1 × ℙ𝑛2−1

99K ℙ𝑛1−1 × ℙ𝑛2−1,(u , v) ↦ (𝑇𝑡v , 𝑇u).
The fixed points of this map are the pairs of singular
vectors of 𝑇.

Consider now an arbitrary 𝑑-dimensional tensor 𝑇 inℝ𝑛1×𝑛2×⋯×𝑛𝑑 . It corresponds to a multilinear form. The
singular vector tuples of 𝑇 are the fixed points of the
gradient map∇𝑇 ∶ ℙ𝑛1−1×⋯×ℙ𝑛𝑑−1

99K ℙ𝑛1−1×⋯×ℙ𝑛𝑑−1.
Example 8. The trilinear form𝑇 = 𝑥1𝑦1𝑧1+𝑥2𝑦2𝑧2 defines
a 2×2×2-tensor. Its map ∇𝑇 is

ℙ1×ℙ1×ℙ1 → ℙ1×ℙ1×ℙ1,((𝑥1∶𝑥2),(𝑦1∶𝑦2),(𝑧1∶𝑧2)) ↦ ((𝑦1𝑧1∶𝑦2𝑧2),(𝑥1𝑧1∶𝑥2𝑧2),(𝑥1𝑦1∶𝑥2𝑦2)).
This map has no base points, but it has six fixed
points, namely ((1∶0), (1∶0), (1∶0)), ((0∶1), (0∶1), (0∶1)),((1∶1), (1∶1), (1∶1)), ((1∶1), (1∶−1), (1∶−1)), ((1∶−1),(1∶1), (1∶−1)), and ((1∶−1), (1∶−1),(1∶1)). These are the
triples of singular vectors of the given 2 × 2× 2-tensor.

Here is an explicit formula for the expected number of
singular vector tuples.

Theorem 9 (Friedland and Ottaviani [3]). For a general𝑛1×𝑛2×⋯×𝑛𝑑-tensor 𝑇, the number of singular vector
tuples (over ℂ) is the coefficient of 𝑧𝑛1−11 ⋯𝑧𝑛𝑑−1𝑑 in the poly-
nomial𝑑∏𝑖=1

(𝑧𝑖)𝑛𝑖 −𝑧𝑛𝑖𝑖𝑧𝑖 − 𝑧𝑖 where 𝑧𝑖 = 𝑧1+⋯+𝑧𝑖−1+𝑧𝑖+1+⋯+𝑧𝑑.
We conclude our excursion into the spectral theory of

tensors by answering Question 2.

Example 10. Let 𝑑 = 3 and 𝑛1=𝑛2=𝑛3=3. The generating
function in Theorem 9 equals(𝑧12+𝑧1𝑧1+𝑧21)(𝑧22+𝑧2𝑧2+𝑧22)(𝑧32+𝑧3𝑧3+𝑧23)= ⋯ + 37𝑧21𝑧22𝑧23 + ⋯.
This means that a general 3×3×3-tensor has exactly 37
triples of singular vectors. Likewise, a general 3×3×3×3-
tensor, as illustrated in Figure 2, has 997 quadruples of
singular vectors.
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Editor’s Note:
See the related “About the Cover” on page 613.
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