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TENT: Technique-Embedded Note Tracking for Real-World 
Guitar Solo Recordings

Ting-Wei Su*,‡, Yuan-Ping Chen†,‡, Li Su‡ and Yi-Hsuan Yang‡

The employment of playing techniques such as string bend and vibrato in electric guitar performance makes 
it difficult to transcribe the note events using general note tracking methods. These methods analyze 
the contour of fundamental frequency computed from a given audio signal, but they do not consider the 
variation in the contour caused by the playing techniques. To address this issue, we present a model called 
technique-embedded note tracking (TENT) that uses the result of playing technique detection to inform 
note event estimation. We evaluate the proposed model on a dataset of 42 unaccompanied lead guitar 
phrases. Our experiments showed that TENT can nicely recognize complicated skills in monophonic guitar 
solos and improve the F-score of note event estimation by 14.7% compared to an existing method. For 
reproducibility, we share the Python source code of our implementation of TENT at the following GitHub 
repo: https://github.com/srviest/SoloLa.
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technique detection; expression style recognition; expressive music performance

1. Introduction
Recent years have seen an increasing number of on-line 
services such as Chordify and Riffstation for transcribing 
the chord progression of real-world guitar performance 
(de Haas et al., 2012). Although the accuracy of such chord 
transcription services is not perfect, they make it easier for 
music lovers and novice learners to comprehend and learn 
guitar music. Beside chords, transcribing the melody line 
of the lead guitar is also important for educational and 
archival purposes (e.g., to transcribe improvised music) 
(Xi et al., 2018). Similar to manual chord transcription, 
manual transcription of guitar solos demands musical 
training and is time consuming. However, compared to 
chord transcription, the transcription of solo guitar has 
received relatively less attention thus far.

A main difficulty of solo guitar transcription, compared 
to general automatic music transcription (AMT), is 
that guitar playing often involves heavy use of specific 
playing techniques or expression styles. The term playing 
technique here refers to a kind of skill played by the string-
pressing hand, usually the left hand, performed within a 
note event or during the transition between two adjacent 
note events. For example, Vibrato is a technique used 
while playing a note, whereas Slide happens between 

two note events. These playing techniques have the effect 
of modulating the pitch of the involved notes, so they may 
confuse an AMT system and create errors in tracking the 
fundamental frequency (F0), onset and offset of the note 
events. For example, a note event played with Vibrato 
may be misinterpreted as multiple consecutive note 
events. Similar errors arise for other techniques such as 
Slide and Bend.

1.1 Lead Guitar Playing Techniques
Electric guitar is characterized by the flexibility of its 
strings, facilitating the employment of various playing 
techniques. In this work, we regard playing techniques 
as skills played by the string-pressing hand to modify 
the pitched sound ringing on a string. Specifically, we 
consider the following basic techniques (see Figure 1 for 
examples):

•	 Bend: stretch a string with the string-pressing hand 
to increase the pitch of a ringing note, gradually or 
instantly.

•	 Release: loosen a ‘bended’ string to decrease the 
pitch of a ringing note; it is the opposite of Bend.

•	 Vibrato: a periodic oscillation of pitch.
•	 Hammer-on: when a note is sounded, use a finger 

of the string-pressing hand to quickly press down a 
higher fret on the same string while the first note is 
still ringing.

•	 Pull-off after playing a note, pull the fretting fin-
ger off the string to generate a lower note.
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•	 Slide: slide a finger of the string-pressing hand 
across one or more frets to reach another note. A guitar 
solo often begins/ends with a variant known as “slide 
from/into nowhere,” or Slide-in/out for short.

We do not consider plucking styles such as those discussed 
by Abeßer et al. (2010), for they are not from the string-
pressing hand and do not affect the pitch. Moreover, when 
we have to assign a class label to each time instance, we 
refer to the case with no specific playing technique (i.e., 
simply plucking the strings) as Normal hereafter. In 
this work, we treat any pitch contour created using only 
Bend, Release and Vibrato techniques as a single 
note event.

1.2 Playing Technique Detection and Note Tracking
For transcribing solo guitar recordings, the detection of 
playing techniques is needed. While a sequence of note 
events comprises a melody, playing techniques determine 
how the note events are played and accordingly influence 
the expression of the guitar performance. As shown by 
the guitar tablature in Figure 1, a complete transcription 
of a guitar performance should contain annotations 
of the playing techniques. In addition, the two tasks, 

playing technique detection (i.e., predicting the techniques 
employed while playing the notes) and note tracking (i.e., 
estimating the F0, onset and offset of note events), also 
benefit each other when they are approached together. 
For example, from the pitch contour computed for note 
tracking, we can look for the parts with large variation (i.e., 
places with obvious F0 changes) to temporally localize 
possible use of playing techniques.

On the other hand, note tracking can also be improved 
with the aid of playing technique detection. The playing 
techniques mentioned in Section 1.1 can be categorized 
into two groups by whether or not they are employed 
during a transition between note events. Those that 
are employed between two adjacent notes include 
Hammer-on, Pull-off, and Slide, and those that are 
not include Slide-in, Slide-out, Vibrato, Bend, 
and Release. The second group are those prone to being 
incorrectly split into multiple notes with different pitches 
during note tracking. Therefore, when the techniques are 
detected, we know better how each note is played and 
may therefore avoid falsely splitting a single note event 
into several notes.

To our best knowledge, playing technique detection and 
note tracking have been mostly studied separately and little 

Figure 1: From top to bottom: (a) guitar sheet music and tablature generated by Guitar Pro (https://www.guitar-pro.
com) (b) spectrogram of the example guitar phrase (c) discrete note events, pitch contour, and the intervals of 
 playing techniques. In (c), ‘B’ denotes Bend, ‘R’ stands for Release, ‘V’ for Vibrato, ‘H’ for Hammer-on, ‘P’ for 
Pull-off, and ‘S’ for Slide (see Section 1.1 for definitions). From left to right, the first ‘B’ shows a note full-bended 
from A4 to B4 gradually. The second ‘R’ is a note pre-bended to B4, i.e., bend the note without sounding it, and then 
released to A4 after playing the note. The third ‘B’ shows a half-step bend. The two ‘V’s are respectively a very subtle 
vibrato with smaller extent and a wide vibrato with larger extent. The last ‘S’ is a slide-out.

https://www.guitar-pro.com
https://www.guitar-pro.com
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has been done in the literature to jointly consider them. 
The major technical contribution of the paper therefore 
lies in the design of a note tracking model that takes 
advantage of the result of playing technique detection 
for transcribing electric guitar solo recordings. We call 
the model technique-embedded note tracking, or TENT for 
short. The output of TENT is a sequence of note events 
with estimated notation of their pitches, onsets, offsets, 
and the involved playing techniques. Such a notation 
can be later used to produce more comprehensive sheet 
music.

1.3 Challenges and Proposed Solutions
Localizing and recognizing techniques of lead guitar in 
music audio is the first challenge of this work. As Figure 1 
illustrates, guitar techniques appear at arbitrary times, 
pitches, and phases, with various durations. We first need 
to localize candidate regions (i.e., time intervals) of playing 
techniques, and then recognize (or classify) the technique 
employed in each candidate region.

Since the main effect of playing techniques is pitch 
modulation, we propose to localize them not from the 
audio waveform itself, but from the estimated contour 
of F0, or pitch contour (see Figure 1(c) for an example). 
Research on automatic melody extraction has received 
great attention over the years, with easily accessible 
implementations of state-of-the-art algorithms (Salamon 
and Gómez, 2012). While notes that are played without 
any playing technique (i.e., simply plucking the strings) 
may correspond to horizontal regions in the pitch contour, 
the use of different techniques would lead to different 
patterns in the contour. We devised different methods to 
localize and recognize different playing techniques. For 
regions in a pitch contour that have mild pitch modulation 
within a short duration, we compute spectral features 
from the localized regions and then employ a pre-trained 
convolutional neural network (CNN) (LeCun et al., 1998) 
to determine whether or not those are playing techniques, 
and what kind of techniques they are.

We remark that our model associates playing techniques 
with temporal regions in the pitch contour, not with 
individual note events. This is important because a playing 
technique may not be used throughout the note event 
(e.g., employed only in the beginning of the note), and 
because some playing techniques are used in between two 
note events. Moreover, if multiple playing techniques are 
employed one after another while playing a note (e.g., for 
the last note event in Figure 1, there is a Vibrato in the 
beginning and a Slide-out at the end), our model can 
likely detect them all. As a result, the proposed model can 
generate symbolic notation which is designed for electric 
guitar solo and can be labeled on sheet music.

Another strength of such a pitch contour-based approach 
is that our model would be less sensitive to variation in 
tone colors (i.e., timbre) created by the use of sound effects 
such as distortion (Dattorro, 1997; Stein, 2010; Fohl and 
Meisel, 2012).

The second challenge is to properly leverage the result 
of playing technique detection (which involves both 
localization and recognition) to improve the result of note 

tracking. Instead of inventing a whole new note tracking 
algorithm from scratch, we propose to use an existing 
note tracking algorithm that is designed for general music 
(Mauch et al., 2015) to obtain an initial estimate first, and 
then use the result of playing technique detection in a 
post-processing stage to refine the result of note tracking. 
For example, for a note event played with Bend, the initial 
result of note tracking may falsely split it into two note 
events. We can correct this by merging the two note events 
and setting the F0 of the merged note event according to 
the F0 of the first note. In this way, we benefit from the 
cumulative efforts in the research community for general 
note tracking, and at the same time take into account the 
specialties of guitar music for guitar solo transcription.

1.4 Organization of the Paper
The remainder of this paper is organized as follows. 
Section 2 reviews related work on melody extraction, note 
tracking and guitar playing technique detection. Section 3 
presents the details of the proposed TENT model. Section 
4 describes the experimental setting we use to evaluate 
the proposed model and Section 5 discusses the results. 
Finally, Section 6 concludes the paper.

2. Related Work
2.1 Melody Extraction
Melody extraction has many different applications (Salamon 
et al., 2014), and for this paper, the extracted pitch contour 
provides essential information about the playing techniques 
being used.

Previous work tried to extract melody from different 
aspect. Peeters’ temporal and spectral representation 
method (2006) performs F0 estimation by finding peaks 
in the dot product of a spectral representation, such as the 
spectrum of Discrete Fourier Transform, and a temporal 
representation, such as the real cepstrum, along the 
frequency axis. The idea is to exploit the inverse octave 
errors seen in the spectral and temporal representation of 
periodic signals. pYIN (Mauch and Dixon, 2014) performs 
F0 estimation directly in the time domain. It calculates 
the difference between the audio waveform and a time-
shifted version. If the signal is periodic, we find a local 
minimum when the amount of shift is equal to the period. 
After finding several frequency (period) candidates at each 
temporal moment, and given a probability distribution of 
these frequencies, pYIN then uses a pre-defined Hidden 
Markov Model (HMM) to calculate the most likely pitch 
contour. It is based on its predecessor, YIN (de Cheveigné 
and Kawahara, 2002), which only finds one frequency in 
each time frame and uses it as the final estimation.

Melodia (Salamon and Gómez, 2012) extracts several 
frequency peaks at each temporal moment and computes 
their saliency by summing up the energy of the partials. 
It tracks all possible pitch contours according to the 
salience function. Then, it distinguishes between melodic 
contours and non-melodic contours based on heuristics 
such as the contour’s average pitch height and its salience, 
the amount of deviation in the contour’s pitch trajectory, 
and whether the contour contains vibrato or not. The final 
F0 trajectory is obtained by filtering out the non-melodic 
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contours. Some other extensions of Melodia include 
changing the heuristic algorithm of melody selection into 
a generative classification model (Salamon et al., 2012) or 
a data-driven discriminative model (Bittner et al., 2015).

While most of the methods mentioned above make 
use of digital signal processing, recent work also tried to 
estimate the fundamental frequency directly from the raw 
waveform by means of deep learning techniques such as 
deep convolutional neural networks (Kim et al., 2018).

2.2 Note Tracking
Note tracking has been viewed as one of the most 
fundamental yet challenging tasks in the music information 
retrieval (MIR) community (Benetos et al., 2013). This 
problem has been mostly approached by incorporating 
the features for onset and offset detection, or by state-
space modeling on the attack-decay-sustain-release (ADSR) 
curve and silence/non-silence behaviors. For the feature-
based approach, Chang and Lee (2014) considered using 
the spectral correntropy, which is relevant to onset and 
offset events of a music signal. For the state-space model 
approach, Mauch et al. (2015); Cheng et al. (2015); Yang 
et al. (2017) utilized the hidden Markov model (HMM) to 
model the transition of note-level dynamics. Besides these 
approaches, side information other than onset, offset and 
F0 has also been utilized to enhance the accuracy of note 
tracking. For example, based on the observation that note 
onsets are correlated with beats, Nishikimi et al. (2016); 
Dzhambazov et al. (2017) utilized beat information to solve 
the note tracking problem. Playing techniques represent 
another source of important side information, but to our 
best knowledge, nothing has been done to leverage them 
for note tracking.

2.3 Playing Technique Detection
Unlike F0 estimation or chord recognition, research on 
playing technique detection is still in its early stages. 
The focus of much existing work is on playing technique 
recognition (classification) only, using audio recordings 
of pre-segmented individual notes. Abeßer et al. (2010) 
compiled a dataset of around 4,300 single bass guitar 
notes to investigate the classification of 5 plucking styles, 
techniques made by the plucking hand, and 5 expression 
styles, techniques made by the string-pressing hand. They 
extracted features motivated by the playing techniques. 
For example, their features include parameters that 
characterize the shape of a note’s harmonic frequencies 
through time to better identify muted plucking style, 
spectral crest factor to detect dead-notes, and spectral 
centroid to discriminate different kinds of finger 
slapping. After reducing the dimensionality by a feature 
selection technique and a feature space transformation 
method, they evaluated the extracted and reduced 
features on several classifiers such as support vector 
machines (SVM).

Different from Abeßer et al. (2010), Reboursière et 
al. (2012) further discriminated whether a technique is 
played by the plucking hand or the string-pressing hand. 
First, their system observed the energy slope several 
milliseconds before the onset to distinguish the hand 

by which a note is played. Then, 4 techniques from the 
string-pressing hand were classified by measuring the 
pitch time derivative within a note, and 2 techniques 
from the plucking hand were identified by comparing 
the characteristics of the attack to pre-defined thresholds. 
Overall, it classified 6 playing techniques from 1,416 
samples of single guitar notes.

Su et al. (2014) recorded 11,928 single electric guitar 
notes and investigated features extracted from the 
cepstrum and phase derivatives to classify 7 playing 
techniques using an SVM. Follow-up research has 
managed to improve the accuracy of playing technique 
recognition for the same dataset using Gaussian 
hierarchical latent Dirichlet allocation (Chen et al., 2017) 
and a variational auto-encoder with a Gaussian process 
(Chen et al., 2018). It is, however, not clear how these 
methods can detect playing techniques in a real-world 
guitar solo track, due to the lack of a playing technique 
localization module.

One exception is the work presented by Kehling et al. 
(2014), which considered playing technique detection in 
12 phrases of guitar solos. They proposed to use onset and 
offset detection first to identify each note event in a guitar 
solo track. The statistical values (e.g. minimum, maximum, 
mean, or median) of frame-level spectral features over 
the duration of each note event were then extracted 
and fed to a pre-trained classifier for playing technique 
recognition. Using a multi-class SVM, they obtained 83% 
average accuracy in recognizing the following 6 classes: 
Normal, Bend, Slide, Vibrato, Harmonics, and 
Dead notes. Lower recall rates were found for Slide, 
Vibrato, and Bend: they were 50.9%, 66.7%, and 
71.3%, respectively.

The work by Kehling et al. (2014) represents an important 
step forward in playing technique detection, but we note 
that their approach has a few limitations. First, using the 
whole note event as a fundamental unit in classification 
cannot deal with techniques that are concerned with the 
transition between successive notes, such as Hammer-on 
and Pull-off, which are widely used in guitar playing. 
Second, extracting features from the whole note may 
include information irrelevant to techniques that appear 
only in a small portion of the note event. Third, existing 
techniques for onset and offset detection may not be 
robust to timbre variations commonly seen in guitar 
performance. We attempt to address these limitations by 
using the pitch contour for localization, and by associating 
playing techniques with temporal regions in the pitch 
contour, not with individual note events.

This work is extended from Chen et al. (2015), which 
focuses only on playing technique detection. We propose 
new methods for playing technique localization, use 
CNN instead of SVM for playing technique recognition, 
and design methods to incorporate the result of playing 
technique detection for improving note tracking.

3. Proposed Model
Figure 2 depicts the flowchart of the proposed model, 
which consists of three stages. Firstly, we extract the pitch 
contour from the given audio track. Second, the pitch 
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contour and the audio are used to localize possible playing 
techniques and to get the initial result of note tracking. 
The candidate regions of playing techniques then go 
through a combination of rules and a CNN classifier for 
playing technique recognition. Finally, we use the result 
of playing technique detection to refine the result of note 
tracking. We call this process ‘note merging’ in Figure 2.

We can use existing methods for the first stage, but 
new methods are required for the last two. Below, we give 
details of these three stages.

3.1 Melody Extraction
We adopt and empirically compare the performance of 
the following three melody extraction methods in this 
work: Peeters’ method (Peeters, 2006), pYIN (Mauch and 
Dixon, 2014), and Melodia (Salamon and Gómez, 2012). 
For Melodia, we use the implementation provided by 
Essentia (Bogdanov et al., 2013). All of them have been 
shown effective for monophonic F0 estimation. Also, 
implementations of these methods are publicly available.

We note that melody extraction can be considered as a 
monophonic F0 detection task. However, while the output 
of standard F0 detection or note tracking usually involves 
discrete F0 expressed in semitones, the desired output for 
our task is a quasi-continuous curve in Hertz.

3.2 Playing Technique Detection
After getting the pitch contour, the next step is to 
detect the note events and their corresponding playing 
techniques from the pitch contour. This is the most 
crucial stage and the main contribution of TENT. To better 
illustrate the following processes, we show an example of 
TENT in action step-by-step in Figure 3.

3.2.1 Sub-melodies
First, the pitch contour is segmented into several sub-
melodies at points where the differences in frequency (in 
Hertz or in semitones) between adjacent frames are higher 
than a pre-defined value. This is to ensure that each sub-
melody is a continuous curve. For example, we intend to 

segment the pitch contour shown in Figure 3(a) into 
two sub-melodies. In our implementation, we found that 
setting the threshold value to 0.5 semitones works well. 
Ideally, we expect this threshold to be 1 since a semitone 
is the pitch unit in Western music. However, it is possible 
that the pitch is shifted at the start or at the end of a note. 
Therefore, we gave a 0.5 semitone tolerance and set the 
threshold to 0.5. Moreover, we found that noises and 
errors in melody extraction would lead to overly short 
sub-melodies. To get rid of them, we discard sub-melodies 
that are shorter than 0.1 seconds. This is because a note is 
generally longer than 0.1 seconds.

Since we cut the pitch contour into sub-melodies 
using 0.5 semitones as the threshold, it is likely that 
each sub-melody corresponds to a note event, and 
accordingly, the cutting point between two sub-melodies 
corresponds to the transition between two note events. 
Playing techniques such as Hammer-on and Pull-off 
may be used during such note transitions. We consider 
cutting points with frequency difference less than 3.5 
semitones as candidates of playing technique recognition 
(i.e., to decide whether it is a Hammer-on, Pull-off, 
or Normal). We set the threshold here to 3.5 semitones 
because larger intervals during note transitions are not 
very common for these playing techniques, due to the 
limit imposed by human hand size and the tension of 
general guitar strings.

The other playing techniques may occur within the 
sub-melodies, including Slide. The use of Slide may 
not introduce sudden frequency changes larger than 0.5 
semitones, so it is possible for a sub-melody to contain 
two note events, when there is Slide in between. We 
describe next how we use the slope of the sub-melodies to 
recognize these playing techniques.

3.2.2 Patterns
A sub-melody may contain segments with positive or 
negative slope. The slopes of the segments within sub-
melodies is important, since different techniques modulate 
the pitch in different ways. For example, Slide is 

Figure 2: Flowchart of the proposed model for solo guitar transcription. The three stages are: 1. melody extraction, 2. 
playing technique detection and note tracking, and 3. note merging.
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characteristic of continuous pitch ascending or descending, 
whereas Vibrato would lead to segments with alternating 
positive and negative slopes.

We analyze the slopes of the segments within a sub-
melody in the following way for playing technique 

dete ction. First, we partition a sub-melody into several 
patterns by finding points with local maxima or minima in 
frequency, as Figure 3(b) illustrates. We discard a pattern 
if it is shorter than 0.045 seconds since those are usually 
due to noise in the pitch contour.

Figure 3: A running example of TENT in action. 3a): Cut melody into sub-melodies. The upper half shows the 
 mel-spectrogram, and the lower half is the pitch contour. The vertical dash line denotes the border of the two 
 sub-melodies. 3b): Find local extrema and calculate the slope of each pattern. The vertical arrows indicate the 
local maximum or minimum, and the intervals between two adjacent extrema are referred to as patterns. GS means 
the slope of a pattern. 3c): Get trend. The blue line represents the trend labels, with values 1, 0, or –1. 3d):  Get 
techniques by rules and a classifier. In this example, a Bend (B), a Vibrato (V), and a Slide-out (SO) are 
detected. Bend is decided by a CNN classifier, whereas Vibrato and Slide-out are recognized by rules. 3e): 
Get the  initial estimate of note tracking. The pink highlights are the estimated note events before merging. 3f): 
Merge note events. The adjusted red highlights are the final note events.
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3.2.3 Trend Labels
After obtaining the patterns, we calculate the slope for each 
pattern by dividing the absolute difference in frequency 
of the two end points by the length of the pattern. Then, 
each time point of a pattern is assigned with one of the 
following three trend labels: ascending (+1), descending 
(–1), or none (0). If the difference in frequency between a 
point and the next point is positive (negative) and if the 
absolute value of the difference is larger than α times the 
slope of that pattern, we label the time point as ascending 
(descending). The slope parameter α is a pre-defined value 
within [0,1]. We will evaluate its effect in Section 5.2.

3.2.4 Segments
The result of the trend analysis mentioned above is a 
sequence of trend labels, as Figure 3(c) illustrates. We 
can then divide a sub-melody into a number of segments 
at time points where the trend label changes. The regions 
with non-zero trends are called segments. In this way, we 
ensure that all the time points within a segment share 
the same trend label. For example, the first sub-melody in 
Figure 3 would have four segments with labels 0, +1, 0, 
–1, respectively.

The core idea is then use segments with no trend (i.e., 
trend label 0) for predicting the F0 of the corresponding 
note events. Since there is little pitch variation for those 
segments, we may use a simple method for F0 estimation 
here to improve efficiency. On the other hand, there 
might be playing techniques in ascending and descending 
segments. We consider a segment as a candidate of playing 
technique recognition, when the difference between the 
maximal and minimal frequency values of that segment is 
larger than a parameter β

1
, which is set to 0.3 semitone. We 

refer to β
1
 as a playing technique candidate threshold and 

will also empirically evaluate its effect in the experiment 
reported in Section 5.2.

3.2.5 Rule-based Playing Technique Recognition
We design the following rules to recognize playing 
techniques with obvious features:

•	 Long Slides: A segment is a long slide when the dif-
ference in frequency between the maximum and the 
minimum of the segment is larger than a pre-defined 
value, which is empirically set to 3.5 semitones. Again, 
it is set to 3.5 because, generally, no other techniques 
can be performed in such a large range due to the phys-
ical limitation of human hand size and the tension of 
guitar strings. If the slide appears in the beginning (or 
end) of a sub-melody, it is a Slide-in (or Slide-
out). Otherwise, it is a Slide.

•	 Long Bend/Release: If the difference in frequency 
between the maximum and the minimum of the seg-
ment is smaller than 3.5 semitones but the temporal 
duration of the segment is long enough, we call it a 
long Bend or a long Release, depending on wheth-
er it is an ascending or descending segment. According 
to domain knowledge in guitar solo playing, we em-
pirically set the minimal duration to be 0.2 seconds.

•	 Vibrato: A region with more than three continuously 
and alternately ascending or descending segments 

within a sub-melody is claimed to be a Vibrato, 
as Figure 3(d) shows. It can be seen that β

1
 can also 

be interpreted as the minimal vibrato extent in our 
model, since all the Vibrato detected in this way 
will have vibrato extent larger than β

1
.

3.2.6 Classification
As Figure 2 shows, candidates of playing technique 
recognition will firstly go through a rule-based identi-
fication module (see Section 3.2.5), followed by a CNN 
classifier. The purpose of the CNN classifier is to use 
additional timbre features to recognize playing techniques 
that cannot be identified via rules from the pitch contour, 
including (short) Bend, (short) Release, Hammer-on, 
Pull-off, and (short) Slide. We actually have to 
distinguish between six classes, since we also need to 
consider Normal.

As we suppose all the Vibrato cases would be 
recognized by the rules, we consider a segment a candidate 
input to the CNN classifier only if the difference between 
the maximal and minimal frequency values of that 
segment is larger than a slightly larger playing technique 
candidate threshold β

2
 (i.e., β

2
 > β

1
). We empirically set β

2
 

to 0.5 semitone but will also justify this choice through an 
experiment.

The candidates for technique recognition are either 
transient regions at note transitions (see Section 3.2.1) 
or segments with variable length (see Section 3.2.4). 
For simplicity, we expand or truncate the length of each 
candidate so that each of them becomes an audio slice of 
0.14 second. The length 0.14 second is chosen because we 
found empirically that it is long enough to cover the length 
of most playing techniques as well as part of their previous 
and next note events. Moreover, it is not too long to involve 
two adjacent techniques (or transitions) in a candidate.

We then extract the following three types of features 
for these audio slices and use them as input to the CNN 
classifier. The sampling rate is fixed to 44,100 samples per 
second.

•	 Log Mel-spectrogram (LMSpec): Compute the the 
power spectrogram of the audio slices by short-time 
Fourier Transform (STFT), with half-overlapping win-
dows each 512 samples in length. We then convert the 
frequency axis into the Mel scale, reducing the feature 
dimension from 256 to 128, and finally take the log 
values.

•	 Mel-frequency cepstral coefficients (MFCC): Take 
the Discrete Cosine Transform (DCT) of the log Mel-
spectrogram and use the amplitudes of the resulting 
spectrum as the features. Such MFCC features are com-
monly used in timbre-related audio processing tasks 
such as speech recognition and instrument recogni-
tion. We take the first 13 MFCCs and their  deltas and 
delta-deltas, summing up to 39 features per frame.

•	 Pitch contour features (PC): We also use values of 
the normalized pitch contour and its first derivative 
as features. We normalize the pitch contour of the 
candidates by z-score normalization, to discard pitch 
 information but retain information regarding the 
shape of pitch contour.
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LMSpec and MFCC are computed with the LibROSA library 
(McFee et al., 2015). We will compare the performance 
of different combinations of these features for playing 
technique recognition in Section 5.1.

We use a CNN to build the classifier. Instead of using 
only one classifier, we train two classifiers, one for 
segments/note transitions with ascending pitch, and 
the other for those with descending pitch. The former 
classifies Normal, Slide, Bend and Hammer-on, 
whereas the latter classifies Normal, Slide, Release 
and Pull-off. We call them the ascending type 
classifier and descending type classifier, respectively.

3.3 Note Tracking and Note Merging
Given a sub-melody and the trend labels, we can use the 
segments of the sub-melody that have no trend (we call 
such a segment a flat segment hereafter for convenience) 
to estimate the F0 of the corresponding note events. The 
onset and offset of a note event are decided according 
to the type of playing techniques employed at the two 
sides of that flat segment. For example, if there are two 
flat segments in a sub-melody and a candidate segment 
for playing technique recognition in between, we claim 
that there are two note events in the sub-melody. The 
midpoint of the offset of the first note event and the 
onset of the second note event will be assigned to the 
middle of the candidate segment between them. If there 
is a Slide-in at the beginning of this sub-melody, 
the onset of the first note event will be assigned to the 
onset of that Slide-in; otherwise, the onset will be the 
starting point of the flat segment. We do the same thing 
for offsets according to whether there is a Slide-out at 
the end of a sub-melody. An example result of this note 
tracking method is shown in Figure 3(e).

We further use the results of playing technique recogni-
tion to refine the result of the aforementioned note tracking 
method, as illustrated in Figure 3(f). Specifically, we 
embed the detected playing techniques in the previously 
estimated notes, and merge the adjacent note events with 
either Bends or Releases in between. If it is a Bend, the 
F0 of the new note event will be set to the F0 of the original 
first note event. On the other hand, if it is a Release, the 
F0 will be the same as that of the second note event. The 
merged and technique-embedded note events are the final 
output of TENT.

4. Experimental Setup
4.1 Datasets
We use a dataset collected from the CD accompanying a 
textbook written by Gill and Nolan (1997), or G&N dataset 
for short. It contains 42 unaccompanied monophonic 
electric guitar solo tracks. The timestamps of all the 
note events and the involved playing techniques were 
carefully annotated by an experienced electric guitar 
player (i.e., the second author of the paper), with the help 
of the guitar tablatures provided by the book.1 The labels 
were then checked by another electric guitar player (i.e., 
the first author of this paper) to make sure every label 
is correct. This newly annotated dataset contains 1,113 
note events, where 137 have Bend/Release, 63 have 

Slide, 70 have Hammer-on, 143 have Pull-off, 61 
have Vibrato, and the others are Normal. The length 
of the tracks ranges from 20 to 40 seconds, amounting 
to 19 minutes and 31 seconds in total. The tracks were 
recorded using a standard tuned electric guitar with either 
clean tone or distortion sound effect.

To train and evaluate the playing technique classifier, 
we extracted 1,046 0.14-second audio clips from the 42 
songs, where all audio clips contain a short period of either 
ascending or descending pitch variation. The 1,046 audio 
clips include all the techniques as well as 633 Normal 
transitions in G&N. For short, we will call this segmented 
dataset G&N-Seg. All these selected clips have obvious 
pitch variations between two adjacent note events. 
Since Normal largely outnumbers the other classes, we 
performed data augmentation for the other classes, by 
shifting their F0 by ±1 and ±2 semitones. Eventually, the 
augmented dataset has 685 Bends/Releases, 315 
Slides, 350 Hammer-ons, and 715 Pull-offs. 
Since the classifiers do not have to classify Vibrato, we 
did not put Vibrato into G&N-Seg.

Please note that we do not distinguish between Bend 
and Release in G&N-Seg and consider them the same 
class. Yet, we can easily distinguish between the two 
classes for technique detection for G&N, using the trend 
type of the segments.

4.2 Evaluation Metrics
Since the number of samples is very limited, we performed 
stratified five-fold cross-validation in our experiments. To 
do this, the 42 songs of G&N are separated into 5 folds 
in a way that the number of each technique inside every 
fold is close to one another fold. Therefore, this five-fold 
structure can be applied to experiments of both playing 
technique classification and note tracking.

For evaluating the accuracy of the playing technique 
classifiers, we trained ten different models with the same 
set of hyperparameters on the G&N-Seg dataset and 
reported the average evaluation result. We recorded the 
precision, recall, and F-score, the harmonic mean of the 
first two. In this part, the dataset is composed of only 
note transitions, so there is no need for playing technique 
localization.

In the second part, the G&N dataset is used to evaluate 
the result of note tracking and playing technique detection 
both also in terms of their precision, recall, and F-score. 
First, we tuned the parameters of TENT, α, β

1
, and β

2
. For 

note tracking, we used the evaluation function from mir_
eval (Raffel et al., 2014), considering the correctness of 
F0 and onset for each note event. For playing technique 
detection, we require that both the type of technique and 
the onset are correct. An onset estimate is considered 
correct if it is within 0.1 seconds of the ground-truth time 
marks.

We note that the default threshold used by mir_eval 
in onset evaluation is 0.05 seconds, but we found this value 
is too small to cope with the ambiguity created by the use 
of longer-duration playing techniques, such as Bend or 
Slide, between two note events. In this situation, the offset 
of the first note and the onset of the second note depend 
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on how we define the way to split the notes. If the playing 
technique is 0.12 seconds long, then splitting them at the 
beginning of the playing technique will have 0.12-second 
difference than splitting at the end, causing the onset 
and offset of the notes to be very different. Therefore, we 
chose a larger but still endurable tolerance range. Also to 
overcome this problem, two notes are split at the center of 
the playing techniques in our implementation.

After parameter tuning, the best set of parameters is 
compared with the note tracking function of Tony (Mauch 
et al., 2015), given the same F0 contours, in three different 
conditions: considering the correctness of onset only, the 
correctness of both onset and F0 (i.e., ‘onset+F0’), and the 
correctness of onset, F0 and offset (i.e., ‘onset+F0+offset’). 
An offset estimate is considered correct if its distance 
from the corresponding ground-truth time mark is less 
than 0.05 seconds, or 20% of the duration of the note 
event (whichever is larger).

4.3 Implementation Details of the Classifier
For the classifier for playing technique recognition 
mentioned in Section 3.2.6, we tested both CNNs and the 
simpler multi-layer perceptrons (MLP; a.k.a. DNN) with 
different numbers of layers. Table 1 shows the architecture 
of the four models we implemented: CNN2, CNN3, MLP4 
and MLP7, where the last number represents the number 
of convolutional layers (for CNN) or the number of fully-
connected layers (for MLP). We tried adding more layers 
but found doing so does not improve the recognition 
accuracy, possibly because the dataset is not that large.

As mentioned at the end of Section 3.2.6, we have two 
classifiers, the ascending and descending type classifiers. 
We use the same network architecture for both.

The input of the classifiers is a tensor of [batch size, 
number of features, number of frames]. For CNNs, we 
used 1D convolutions (along the time axis) instead of 
2D convolutions. While 2D convolutions analyze the 
input data as a chunk and convolve on both spectral and 
temporal dimensions, the 1D convolutions might better 
capture frequency and timbral information in each time 
frame, as has been shown in previous work on music 
and sound classification (Liu and Yang, 2016; Chou et al., 
2018). The activation function for all but the last layer is 
the rectified linear unit (ReLU), and that of the last layer 
is softmax. All convolutional and fully-connected layers 
have 0.5 dropout rate. We use cross-entropy as the cost 
function.

We note that all the four models listed in Table 1 can 
only deal with fixed-length input. That is a major reason 
why we require the input audio slice to have a fixed 
length of 0.14 seconds. Future work may discard the fully-
connected layers in the CNN to realize a so-called fully-
convolutional network (Liu and Yang, 2016) to deal with 
variable-length input.

5. Results and Discussion
Our experiments have three parts. First, we evaluated the 
accuracy of playing technique detection using different 
features and different models. Second, we performed 
sensitivity tests for some key parameters of TENT for both 
playing technique detection and note tracking. Lastly, 
we compared the performance of TENT against existing 
methods for note tracking.

5.1 Playing Technique Recognition
We firstly compared the results for different features, 
using CNN2 as the classifier. Table 2 shows that MFCC 
outperforms LMSpec. Moreover, combining the spectral 

Table 1: Architecture of the four neural network based 
classifiers we implemented and evaluated for playing 
technique recognition. Notation: ‘Conv(number of fil-
ters, filter size, stride size)’ denotes a convolutional layer 
and its hyperparameters. ‘Max-Pool(stride size)’ and 
‘MeanPool(stride size)’ are max-pooling and mean-pool-
ing layers. ‘FC(number of neurons)’ is a fully-connected 
layer. All convolutional and fully-connected layers have 
0.5 dropout rate. The total number of parameters for 
these four models are around 2.9M, 2.3M, 7.5M, and 
11M, respectively.

CNN2 CNN3 MLP4 MLP7

Conv (256,3,1) Conv (256,3,1) FC (1800) FC (1800)

MaxPool (2) MaxPool (2) FC (1800) FC (1800)

Conv (128,3,1) Conv (128,3,1) FC (900) FC (1800)

MeanPool (2) MaxPool (2) FC (900) FC (1800)

FC (1800) Conv (128,3,1) FC (4) FC (900)

FC (900) MeanPool (2) FC (900)

FC (4) FC (1800) FC (900)

FC (900) FC (4)

FC (4)

Table 2: Performance of CNN2 using different input 
features on the G&N-Seg dataset. The numbers in the 
parentheses of the latter three columns in this table, 
and Tables 3 and 4, are the standard deviation of the 
results of the five-fold cross validation.

Features (#Dim) Precision Recall F-score

MFCC (39) 0.771 0.752 0.759

(±0.059) (±0.058) (±0.057)

MFCC+PC (41) 0.809 0.792 0.797

(±0.054) (±0.050) (±0.050)

LMSpec (128) 0.718 0.670 0.686

(±0.044) (±0.028) (±0.032)

LMSpec+PC (130) 0.720 0.667 0.683

(±0.045) (±0.023) (±0.029)

MFCC+LMSpec (167) 0.769 0.749 0.757

(±0.035) (±0.034) (±0.034)

All (169) 0.778 0.760 0.767

(±0.040) (±0.029) (±0.033)
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representation MFCC with the pitch contour feature 
PC leads to the highest F-score 0.7972, showing that 
the two features are complementary and useful for the 
task. Therefore, we use MFCC+PC as the input features 
hereafter.

We then compared the four architectures listed in 
Table 1. Table 3 shows that CNNs perform generally 
better than MLPs as expected, since CNNs can better learn 
local spectral-temporal patterns in audio signals. The 
results of CNN2 and CNN3 are comparable, so we choose 
CNN2 as the classifier hereafter.

Table 4 and Figure 4 show the per-class result and the 
confusion matrix. Our classifier performs generally well 
for different classes, but it does not work well for Slide. 
From Figure 4 we see Slide can be easily confused 
with Bend/Release. There are two possible reasons 
for this. First, Slide is indeed acoustically similar to 
Bend/Release; even humans have to listen carefully 
to distinguish them. Second, Bend/Release are more 
often used than Slide in guitar solo, so there might be a 
class imbalance problem.

Empirically we found that the performance of note tra ck-
ing is more sensitive to errors in detecting Bend/Re lease than in detecting Slide. Therefore, the low accuracy of 

our classifier (CNN2 MFCC+PC) in detecting Slide does 
not hurt the performance of note tracking much. However, 
when the target is to create symbolic notation for guitar 
solos, future work is needed to improve the accuracy for 
Slide.

5.2 Parameter Sensitivity Test
As described in Section 3, TENT has a few parameters. 
While some of them are set according to the characteristics 
of playing techniques or musical domain knowledge, 
others can be set flexibly. Here, we varied the values of the 
three key parameters α, β

1
 and β

2
 and investigated how 

they affect the results of playing technique detection and 
note tracking. The default values we used for α, β

1
 and β

2
 

in this work were 0.05, 0.3 and 0.5, respectively. We justify 
this choice by examining the results presented in Table 5.

The slope parameter α affects the assignment of trend 
labels. When the value is close to 0 (1), a frame would 
be more (less) likely labeled with a non-zero trend (i.e., 
+1 or –1). Table 5 shows that setting α smaller leads to 
slightly better results for recognizing Hammer-on and 
Slide. However, in general the note tracking results are 
not sensitive to the value of α. This is because changing α 
only slightly changes the length of a segment, but usually 
the changes are not large enough to affect the result of 
the rule-based recognition algorithm. Furthermore, since 
we fix the length of technique classification candidates to 
0.14 seconds, a mild change in the segment length would 
not affect the results much.

The parameters β
1
 and β

2
 control how many audio slices 

would be considered as candidates for playing technique 
recognition by rules and the classifier, respectively. The 
first one, β

1
, can also be interpreted as the minimal vibrato 

extent expected by our model. Table 5 shows that setting 
β

1
 to 0.3 semitones leads to better results in detecting 

Vibrato as well as other techniques. The second one, β
2
, 

affects the detection of all other techniques. In theory, we 

Table 4: Per-class result of CNN2 MFCC+PC model.

Technique Precision Recall F-score

Bend/Release 0.714 0.829 0.767

(±0.088) (±0.108) (±0.086)

Hammer-on 0.644 0.723 0.681

(±0.331) (±0.222) (±0.281)

Normal 0.933 0.832 0.880

(±0.044) (±0.070) (±0.045)

Pull-off 0.665 0.810 0.730

(±0.089) (±0.118) (±0.074)

Slide 0.383 0.394 0.388

(±0.113) (±0.159) (±0.132)

All 0.809 0.792 0.797

(±0.054) (±0.050) (±0.050)

Figure 4: Confusion matrix of the 10 CNN2 MFCC+PC 
models, aggregated over all the evaluation runs. Each 
box shows the total classified number and the recall rate.

Table 3: Performance of different models on the G&N-Seg 
dataset using MFCC+PC as the input features.

Model Precision Recall F-score

CNN2 0.809 0.792 0.797

(±0.054) (±0.050) (±0.050)

CNN3 0.812 0.784 0.793

(±0.053) (±0.049) (±0.050)

MLP4 0.778 0.7534 0.762

(±0.057) (±0.055) (±0.053)

MLP7 0.780 0.759 0.765

(±0.053) (±0.052) (±0.049)
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can set β
2
 to 1 semitone, since all these playing techniques 

would involve at least two note events that are different 
in F0. However, due to errors in melody extraction and 
inaccuracy of human performance, setting β

2
 smaller than 

1 increases tolerance to such errors and leads to better 
results in practice. Table 5 shows that setting β

2
 smaller 

improves the accuracy of detecting Bend and Release, 
which often involve pitches that are one semitone apart, 
but setting β

2
 closer to 1 performs better for other 

techniques, in particular Slide.
From Table 5 we see that smaller α and moderate β

1
 

and β
2
 lead to better results for note tracking. Although 

setting β
2
 to 0.8 seems slightly better, we decided to set it 

to 0.5 for better technique recognition.

5.3 Note Estimation
We then evaluate the performance of TENT for note 
tracking against the note tracking function of Tony 
(Mauch et al., 2015), a widely used tool for pitch analysis 
in the MIR community. It is expected that TENT would 
perform better, since Tony is not specifically designed for 
guitar music and it does not take playing techniques into 
account. We evaluate the combination of the three melody 
extraction methods described in Section 3.1 with Tony.

Table 6 shows the result. We can see the importance 
of having a good pitch contour. Peeters’ algorithm gets a 
lower score, because it is more sensitive to the distortion 

or the clicking sounds in the guitar solo recordings, 
creating many false alarms. When using Tony, pYIN and 
Melodia perform comparably in terms of F-score across all 
the three scenarios. However, Melodia outperforms pYIN 
when we use TENT as the note tracking method.

Table 6 also shows that TENT greatly outperforms 
Tony across all the three scenarios as expected. For the 
‘onset+F0+offset’ scenario, the F-score is improved from 
0.5726 to 0.6879 if we replace Tony by TENT.

A closer look into the results reveals that the per-
formance gap is largely due to the note merging operation 
presented in Section 3.3. There are 145 Bend/Release 
and 72 Vibrato among the 1,113 note events of the 
G&N dataset. These three playing techniques affect almost 
20% of the notes. For such note events, a general-purpose 
method such as Tony would naturally split them into 
several note events, due to the changes in pitch caused 
by the playing techniques. Because TENT is based on a 
different definition of note events, it is free of such false 
positives, and greatly outperforms Tony in the precision 
rate, as Table 6 shows.

5.4 Example Results
We use three examples to demonstrate our results. 
Figures 5a and 5b show that TENT performs well in 
recognizing Bend, Release, and Vibrato. In these 
two examples, most of the playing techniques are correctly 

Table 5: Sensitivity test for the following three parameters of TENT: the slope parameter α, and the first and second 
playing technique candidate thresholds β

1
 and β

2
 (in semitones). We show the F-scores of playing technique recogni-

tion within the note tracking experiment and also the onset+F0 F-score for note tracking over the G&N dataset. Here, 
the default values of (α, β

1
, β

2
) are (0.5, 0.3, 0.5), although we use (0.05, 0.3, 0.5) in other experiments in the paper.

α β
1

β
2

0.05 0.5 0.95 0.1 0.3 0.5 0.3 0.5 0.8

Bend+Release 0.606 0.602 0.602 0.570 0.602 0.585 0.633 0.602 0.561

Hammer-on 0.606 0.544 0.556 0.561 0.544 0.561 0.333 0.544 0.500

Pull-off 0.577 0.578 0.526 0.527 0.578 0.570 0.527 0.578 0.574

Slide 0.414 0.355 0.362 0.327 0.355 0.333 0.021 0.355 0.491

Vibrato 0.675 0.688 0.711 0.463 0.688 0.648 0.652 0.688 0.588

Note Tracking (onset+F0) 0.859 0.858 0.856 0.835 0.858 0.851 0.834 0.858 0.862

Table 6: Performance of different methods for note tracking on the G&N dataset, in terms of precision, recall, and 
F-score. The evaluated methods are Peeters (2006), pYIN (Mauch and Dixon, 2014), Melodia (Salamon and Gómez, 
2012), the note tracking function of Tony (Mauch et al., 2015), and the proposed TENT model.

Melody 
extraction 
method

Note 
tracking 
method

Onset + F0 + Offset Onset + F0 Onset

Prec. Recall F
1

Prec. Recall F
1

Prec. Recall F
1

Peeters Tony 0.384 0.645 0.481 0.517 0.869 0.648 0.542 0.912 0.680

pYIN Tony 0.538 0.659 0.592 0.674 0.826 0.742 0.729 0.893 0.803

Melodia Tony 0.499 0.671 0.573 0.652 0.877 0.748 0.679 0.913 0.779

Peeters TENT 0.477 0.562 0.516 0.661 0.778 0.715 0.696 0.819 0.752

pYIN TENT 0.518 0.607 0.559 0.743 0.872 0.802 0.779 0.913 0.841

Melodia TENT 0.679 0.697 0.688 0.841 0.877 0.858 0.879 0.903 0.891
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predicted. But, TENT may sometimes be too sensitive to 
pitch changes. For example, we see false alarms of Bend 
and Release for the arc-shape pitch contour between 
15 and 16 seconds in Figure 5b. Moreover, TENT can not 
distinguish well between Hammer-on, Slide, Pull-
off, and Normal transitions. Figure 5c shows that 
many of these techniques are wrongly predicted. We 
found that some cases are indeed challenging, even for 
human listeners. Moreover, in Figure 5c, TENT mistakes 
the Hammer-on between the second and third notes for 
Bend and wrongly merges the two notes. These results 
show that there is still much room for improvement. For 
more examples, please see the accompanying website.

6. Conclusion and Future Work
In this paper, we have shown that note tracking and 
playing technique detection can benefit each other when 
considered jointly. We can highlight the potential areas 
of playing techniques by tracking the variation of a pitch 
contour. On the other hand, playing technique detection 
reduces the false alarms in note tracking. Moreover, as 
TENT transcribes the F0, onset, offset and all the playing 
techniques involved in playing each note, it can be used 
to generate symbolic notation for electric guitar solo. 
Also, as we have kept the computation of TENT simple, it 
is possible that such a transcription can be made in real-
time, after some more optimization.2

In TENT, we use hand-crafted rules to detect long 
playing techniques such as Slide-in, Slide-out and 
Vibrato. The candidate selection rules are also human-
defined, making TENT sensitive to errors from melody 
extraction. Moreover, we do not consider the relations 
between adjacent playing techniques while recognizing 
them, which may lead to poor fingering arrangement. 
In the future, we intend to replace the rules by machine 
learning-based methods, and to build a language model 
of playing techniques that consider the playability of 
the resulting notation. We can also replace the melody 
extraction part with a neural network that detects F0 and 
techniques together. With more labeled data (e.g., by using 
the recently-released GuitarSet (Xi et al., 2018)) and more 
advanced network architectures (e.g., fully-convolutional 
or recurrent networks (Nam et al., 2019)), it is possible 
to further improve the accuracy of playing technique 
detection. We are also interested in implementing a guitar 
solo detector so that the model may be applied directly to 
a complete piece of guitar performance.

Notes
 1 The guitar tablatures in the book labelled all of the 

techniques. Therefore, we did not have to classify the 
techniques from the audio files by ourselves.

 2 Currently, with a 2.4GHz Intel Core i5 CPU, TENT, 
with Melodia for melody extraction, only needs 
about 1.2 seconds to process a 4-minute audio file. 
The time measured here excludes the loading time 
of Python packages and pre-trained classifier model 
files since these can be done beforehand in a real-
time service.
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