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Abstract

We describe Miranda, a massively parallel spectral/compact solver for variable-
density incompressible flow, including viscosity and species diffusivity effects. Mi-
randa utilizes FFTs and band-diagonal matrix solvers to compute spatial derivatives
to at least 10th-order accuracy. We have successfully ported this communication-
intensive application to BlueGene/L and have explored both direct block parallel and
transpose-based parallelization strategies for its implicit solvers. We have discovered
a mapping strategy which results in virtually perfect scaling of the transpose method
up to 65,536 processors of the BlueGene/L machine. Sustained global communication
rates in Miranda typically run at 85% of the theoretical peak speed of the BlueGene/L
torus network, while sustained communication plus computation speeds reach 2.76
TeraFLOPS. This effort represents the first time that a high-order variable-density in-
compressible flow solver with species diffusion has demonstrated sustained performance
in the TeraFLOPS range.
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1 Introduction

It is well known that low-order accurate solutions to the compressible Euler equations on
parallel computers require only nearest neighbor communication and thus are easily paral-
lelized (Cohen et al., 2002). Solutions to the variable-density incompressible Navier-Stokes
equations, however, are much more difficult to obtain on parallel computers due to their
elliptic nature. Additionally, the inclusion of variable-density and diffusion effects further
complicates the equations, making parallel simulations much more difficult, compared to the
single fluid case. For a single fluid in a periodic box, it is natural to solve the equations
in Fourier space, where FFTs only need to be performed on the nonlinear term (Yokokawa
et al., 2002). For the variable density case, with species diffusion and species-dependent
viscosities, the equations contain variable coefficient fluxes as well as triple products; hence,
the advantages of living in Fourier space are lost and many more terms appear, all of which
require transforming.

If the flow is turbulent, i.e., possesses a wide range of length scales, then spectral and/or
Padé (compact) methods are highly desirable, since they can accurately represent a broad
range of wavenumbers (Lele, 1992). Spectral and compact methods involve implicit deriva-
tives, thus further complicating the parallelization strategy. In this paper we demonstrate a
scalable and efficient method for achieving high-order accurate solutions for variable-density
viscous incompressible turbulence and compare our strategy to various alternatives. In par-
ticular, we consider incompressible Rayleigh-Taylor instability (RTI), since it exhibits all of
the above-mentioned difficulties.

RTI is the baroclinic generation of vorticity at a perturbed interface subject to accel-
eration in a direction opposite the mean density gradient (Rayleigh, 1883; Taylor, 1950).
The resulting interpenetration and mixing of materials has far-reaching consequences in
many natural and man-made flows, ranging from supernovae to Inertial Confinement Fusion
(ICF). In supernovae, the rate of growth of the mixing region is thought to be a controlling
factor in the rate of formation of heavy elements. In ICF, accurate prediction of the depth
of interpenetration of the fluids is crucial in designing capsules to maintain shell integrity.

We have investigated various parallelization strategies for computing RTI flows on the
BlueGene/L (BGL) system. In particular, we have ported the Miranda code (Cook et al.,
2004) to this machine and have performed a series of scaling studies to determine the optimal
approach to simulating RTI on tens of thousands of processors. In Section 2, the governing
equations and solution techniques employed by Miranda are laid out. Simulation results
on BGL are presented in Section 3. Section 4 contains a description of the BGL hardware
and a discussion of key features which impact the scalability and performance of Miranda’s
algorithms. In Section 5, two parallelization strategies are compared, a direct block parallel
matrix solution method and a transpose method. In Section 6, we attempt to optimize the
transpose method on the BGL torus network. Section 7 contains scaling and performance
data for Miranda using the transpose method. Finally, conclusions are presented in Section 8.
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2 Miranda Code Description

Miranda solves the following equations for flows comprised of two incompressible miscible
fluids in an accelerated Cartesian frame of reference:
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where ρ is density, ui = (u, v, w) is velocity, p is pressure, D is diffusivity, µ is viscosity
and gi = (0, 0,−g) is acceleration. Spatial derivatives are computed in the code with the
following 10th-order compact scheme
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where j is a grid index along a line with N points in the i direction, and ∆i is the grid
spacing in that direction.

The solution is marched forward in time via the following 3rd-order variable-timestep
predictor-corrector method. For equations of the form φ̇ = F (φ), the predictor step is

φ∗ = φn + ∆tnew

[
(1 +R)F (φn)−RF (φn−1)

]
(4)

and the corrector step is

φn+1 = φ∗ + ∆tnew

[
AF (φ∗) + (B −R− 1)F (φn) + (C +R)F (φn−1)

]
, (5)

where
R = ∆tnew/(2∆told) , A = (2∆tnew + 3∆told)/[6(∆tnew + ∆told)]

B = (∆tnew + 3∆told)/(6∆told) , C = −∆t2new/[6∆told(∆tnew + ∆told)] ,

with ∆told denoting the time increment between the n− 1 and n timesteps, and ∆tnew being
the time increment between the n and n + 1 times.

The density equation (1) is integrated by straightforward application of the predictor-
corrector scheme. However, it must be advanced in conjunction with the momentum equa-
tion, which follows a pressure-projection algorithm. The pressure-projection scheme requires
the solution of a Poisson equation. With periodic boundary conditions in x and y, the Poisson
equation can be Fourier-transformed to obtain
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where ˆ̂p
′′

= ∂2ˆ̂p/∂z2 and Ω contains various space and time derivatives. Thus, with j

being the z-index of the grid, ˆ̂p
′′
j =

ˆ̂
Ωj + k2ˆ̂pj, with k2 = k2

x + k2
y. An 8th-order compact

approximation for ˆ̂p
′′
j can be written as (Lele, 1992)

βˆ̂p
′′
j−2 + αˆ̂p

′′
j−1 + ˆ̂p

′′
j + αˆ̂p

′′
j+1 + βˆ̂p

′′
j+2 = b

ˆ̂pj+2 − 2ˆ̂pj + ˆ̂pj−2

4∆z2
+ a

ˆ̂pj+1 − 2ˆ̂pj + ˆ̂pj−1

∆z2
, (6)
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(7)
which is combined with Neumann boundary conditions and solved during both the predictor
and corrector steps. Further details concerning the numerical scheme are described in Cook
et al. (2004).

3 Simulation Results on BGL

The evolution of RTI is such that, at early times, the perturbations grow in a fairly
independent fashion. Then the modes begin to couple to one another and secondary Kelvin-
Helmholtz instabilities appear. At this point, the range of scales in the mixing layer rapidly
increases, generating more mixed fluid within the layer. The large structures in the flow
continue to increase until the mixing region becomes fully turbulent. Figure 1 is a snapshot
of a RTI production run currently in progress on BGL. The simulation is running on 32,768
BGL nodes at a grid resolution of 3072× 3072× 1536 points. The job size was chosen to fit
comfortably into memory on the current machine. The computation will expand to 30723

grid points on 65,536 nodes once the second half of the machine arrives. About 56 hours of
machine time (including I/O) has been used for the job thus far. At the current resolution
and processor count, the code takes about 22 seconds to compute each timestep. Each restart
dump requires about 8 minutes to read/write and utilizes 1.05 TB of disk space.

4 BlueGene/L Architecture

BGL was developed by IBM, in partnership with the Advanced Simulation and Com-
puting program (ASC), as a massively-parallel computing system designed for research and
development in computational sciences. Its goal is to deliver TeraFLOPS-scale computing
on a routine basis to selected applications of interest to the U.S. Department of Energy’s Na-
tional Nuclear Security Agency. Its extremely high compute-density design results in a very
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Figure 1: A two-dimensional slice from a three-dimensional Rayleigh-Taylor simulation on
BGL. Light fluid (density=1) is white and heavy fluid (density=3) is black.

high cost-performance system with comparatively modest power and cooling requirements.
At this writing, BGL is the fastest computer in the world, based on the 136.8 TFLOPS
achieved on the LINPACK benchmark. The 32,768-node BGL system installed at LLNL
will double in size to 65,536 nodes in late 2005. Here we provide only a high-level descrip-
tion of the system architecture, since BGL has been extensively described elsewhere (Adiga
et al., 2003; BGL, 2005).

A compute node of BGL is composed of 10 chips, a 700 MHz compute ASIC (Application-
Specific Integrated Circuit) plus nine DRAM main memory chips. This highly integrated
design drastically lowers power consumption and space requirements, while favoring commu-
nication and memory performance. The BGL chip is comprised of two independent PowerPC
440 cores, each capable of two floating point operations (FLOPs) per cycle (including fused
multiply-adds, yielding a theoretical peak of 4 FLOPs per cycle per CPU), several inde-
pendent network controllers, three levels of cache (including a 4 MiB L3), and memory
controllers. Though each floating point unit is capable of two operations per cycle, the oper-
ations are not independent; i.e., the second floating point pipe is usable only by 2-way SIMD
instructions or by 2-way SIMOMD (single instruction, multiple operation, multiple data)
instructions (Bachega et al., 2004). The theoretical peak of a single node is 5.6 GFLOPs,
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hence 184 TFLOPs for the current 32,768-node system. The two processors on each chip are
identical, with symmetric access to resources (but L1 cache coherence is not provided by the
440 core).

The system software supports two modes for applications to use the cores. In commu-
nication coprocessor mode there is a single MPI task per node, with one processor running
the application and offloading much of the work of message passing to the second proces-
sor. In virtual node mode, each node runs two MPI tasks, one on each processor. MPI
communications are handled by three independent special-purpose networks in BGL. Point-
to-point and all-to-all communications are handled by a three-dimensional torus, with each
node connected to its nearest neighbors via six independent bidirectional links. In addition
to the torus, BGL has two tree-topology networks to perform global operations like broad-
casts, reductions and barriers, with very low latency and high bandwidth. For example, an
MPI Barrier across 32,768 nodes is completed in under 2 microseconds. Miranda makes
extensive use of all-to-all communications on various subsets of nodes, as discussed later.
Thus, mapping the tasks onto the torus to reduce the overall communication time is one of
the major challenges in running Miranda efficiently on BGL.

The BGL system software is under active development and new versions, with improved
performance, are being installed on the system on a regular basis. Until recently, Miranda
was unable to run in virtual node mode due to severe performance problems. As of software
release level DRV202 2005, Miranda now works in virtual node mode with performance
superior to coprocessor mode. Most of the timing studies reported herein were performed
in coprocessor mode; however, the basic trends also apply to virtual node mode. Also, in
Section 7 a complete set of scaling runs and performance numbers are reported for virtual
node mode.

5 Parallelization Strategies for Band-diagonal Matrix

Solvers

5.1 Communication Requirements

A core task of the Miranda code is computing implicit derivatives, f ′, from functions, f ,
using the compact scheme. Additionally, FFTs in the horizontal directions are required for
the Poisson solve. The communications required for the matrix solvers and FFTs are similar;
hence, our discussion focuses mainly on parallelization of the compact derivatives. Compact
derivatives require solving the linear matrix problem

Af ′ = Bf . (8)

For a 10th-order first-derivative, A is a pentadiagonal matrix and B is a heptadiagonal matrix
(see Eq. 3). If all data for f in the given direction is contained on a process, the solution for
f ′ is determined directly by a band-diagonal matrix solver based on LU decomposition. If
f is distributed across some or all processors, then some communication overhead must be
paid.

6



There are basically three strategies for solving band-diagonal linear systems (or comput-
ing Fourier transforms) in parallel: direct methods, whereby data are exchanged at processor
boundaries then local solutions are obtained and joined back together; transpose methods,
whereby the data are rearranged to give each processor all of the data it needs to compute
a complete solution in serial; and iterative methods, whereby boundary data are exchanged
and an initial guess is then iterated to convergence. Our preliminary tests of an iterative
method showed it to be much more expensive than transpose or direct schemes; hence, our
discussion here focuses on the latter two methods.

5.2 Domain Decomposition

For any of the above-mentioned strategies, a three dimensional computational domain can
be broken up in any or all directions; e.g., a 3D mesh of size (nx, ny, nz) can be distributed
across a process grid of size (px, py, pz), such that each MPI process contains a block of
size (ax, ay, az) = (nx/px, ny/py, nz/pz). The left-hand side of Figure 2 portrays a typical
Miranda decomposition in which pz = 1 and the process grid is decomposed into py X-
communicator groups and px Y-communicator groups. These communicators are used to

Figure 2: Left side: A sample two dimensional domain decomposition in Miranda. Right
side: Block transfer in MPI Alltoall operation for data transposes in Miranda.

martial data across processors for computing high-order spatial derivatives. The highlighted
region on the left in Figure 2 shows a portion of the computational domain existing on a
particular X and Y communicator.

5.3 Direct Approach to Solution

The direct method for solving pentadiagonal matrices in a direction of distributed data
consists of a block parallel pentadiagonal solve (see e.g., Ivanov & Walshaw (2004)). In this
method, local (incomplete) pentadiagonal solutions are performed on each process, boundary
data is gathered across the communicator to form a global overlap solution, and then the
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overlap solution is used by each process to complete the global solution. Computing the
right-hand side of (8) requires sharing planes of boundary data with nearest neighbors; e.g.,
if B is heptadiagonal, 3 planes of data must be exchanged at each boundary with paired
MPI Sendrecv calls. The pentadiagonal A matrix on the left-hand side of (8) generates 4
planes (2 in each direction) of overlap data from the local solution. The global solution
requires all overlap data, so MPI Allgather is used to collect overlap data among processes.
Each process then computes the global overlap solution independently (for load balancing)
and completes the exact global solution. Note that the global overlap problem requires the
solution of a 4 × 4 block-tridiagonal linear matrix problem with a dimension equal to the
number of processes on the communicator (and hence is not strictly scalable). If the direction
is globally periodic, the global overlap solution involves a periodic block-tridiagonal matrix.

5.4 Transpose Approach to Solution

In the transpose method, all the data along a pencil of cells in the desired coordinate
direction must be collected onto a single process before the linear system is solved. For an
X-Y domain decomposition, Z-derivatives require no communication, since all the required
data is local to each process. For the computation of X and Y derivatives, MPI Alltoall op-
erations are used to reorganize the data, in a load-balanced manner, across all the processes
within a communicator group. Consider, for example, the computation of an X-derivative.
The data on each process can be logically decomposed into blocks of size axayaz/px. The
MPI Alltoall operation acting on this data over the X-communicator group behaves like a
data transpose operation. The jth data block from the ith process in the group is trans-
ported to the ith data block of the jth process in the group; this is illustrated by the graphic
on the right-hand side of Figure 2. Following the MPI Alltoall, local data reorganization is
performed to align the data pencils at constant stride. The derivatives are computed in par-
allel, with each processor operating on its own block of data pencils. Another MPI Alltoall

operation sends the computed derivatives back to their home processors. An incentive for
breaking up the data in X and Y , rather than Y and Z, is to minimimize the cost of the
“descrambling” operation required after the MPI Alltoall calls. With careful ordering of
the data, the descrambling operations can performed as Fortran-intrinsic transpose and
reshape calls on the first two (most contiguous) dimensions of the 3D arrays.

5.5 Comparisons

Various timings have been obtained on BGL for computing the gradient of a function,

∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
, (9)

using the 10th-order compact scheme (3). This is a common operation in Miranda, per-
formed many times per cycle. Derivatives were computed with both the direct block parallel
pentadiagonal (“BPP”) scheme and with the serial pentadiagonal solves of globally trans-
posed data (“XDP” scheme). The two methods were compared for both 2D (pz = 1) and
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3D domain decompositions. The runs were performed on the BGL hardware at LLNL in
512 through 32K node configurations, with a fixed problem size (16× 16× 2048 grid points)
per node. The timings are presented in Table 1. All computations were performed in double

2D processor layouts XDP times [s] BPP times [s]
processes data per process dx dy dz grad dx dy dz grad
16× 32× 1 16× 16× 2048 0.17 0.17 0.03 0.37 0.57 0.65 0.03 1.25
32× 32× 1 16× 16× 2048 0.23 0.17 0.03 0.43 1.05 0.65 0.03 1.73
32× 64× 1 16× 16× 2048 0.34 0.16 0.03 0.53 0.60 1.06 0.03 1.69
64× 64× 1 16× 16× 2048 0.33 0.22 0.03 0.58 3.21 1.26 0.03 4.50
128× 64× 1 16× 16× 2048 0.32 0.17 0.03 0.52 7.76 4.48 0.03 12.27
128× 128× 1 16× 16× 2048 0.32 0.22 0.03 0.57 7.72 5.69 0.03 13.44
256× 128× 1 16× 16× 2048 0.31 0.22 0.03 0.56 9.76 4.55 0.03 14.34

3D processor layouts XDP times [s] BPP times [s]
processes data per process dx dy dz grad dx dy dz grad
8× 4× 16 64× 64× 128 0.18 0.18 0.18 0.54 0.14 0.08 0.10 0.33
8× 8× 16 64× 64× 128 0.24 0.18 0.18 0.60 0.16 0.11 0.10 0.37
8× 8× 32 128× 64× 64 0.34 0.17 0.18 0.69 0.14 0.11 0.17 0.43
16× 16× 16 64× 64× 128 0.33 0.21 0.18 0.72 0.22 0.16 0.11 0.49
32× 8× 32 64× 128× 64 0.31 0.33 0.18 0.81 0.24 0.09 0.17 0.50
32× 32× 16 64× 128× 64 0.31 0.31 0.24 0.86 0.24 0.19 0.10 0.52
32× 32× 32 128× 64× 64 0.32 0.33 0.34 0.99 0.17 0.18 0.15 0.50

Table 1: Mean time per gradient operation using the transpose pentadiagonal (XDP) scheme
and the direct block parallel pentadiagonal (BPP) scheme on BGL with -O3 optimization.

(8-byte) precision with -O3 optimization. For this comparison, the machine was configured
in communication coprocessor mode (one CPU task per node). For virtual node mode (two
CPU tasks per node), timings are typically about 21% faster. The XDP scheme performs
best for two-dimensional domain decompositions, because no communication is required for
directions containing complete columns of data. The BPP method, on the other hand,
performs best for three-dimensional decompositions, because a cubic data decomposition
minimizes the surface-to-volume ratio of the grid blocks and a cubic processor distribution
reduces the cost of the global overlap solution by minimizing the number of processes on
each communicator. It is somewhat surprising that, despite the very different communica-
tion patterns, the XDP and BPP times are comparable to one another and have similar
weak scaling properties. In Section 6, we explore the possibility of reducing XDP times via
custom torus mappings.
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6 Communication Efficiency

6.1 The Mapping Problem

For the transpose method, Miranda spends 40 − 65% (depending on machine mode) of
its runtime in MPI Alltoall communication operations. Consequently, we have investigated
methods for reducing this time by employing special mappings of the Miranda processes to
the processors in the BGL torus. We have also investigated the efficiency of the current IBM
MPI Alltoall implementation by comparing it to an estimate of the minimum time required
to complete such an operation.

On BGL, MPI Alltoall communication is performed over the torus network. On this net-
work topology, communication performance is improved by packing together the processes
that communicate most frequently, in order to minimize hop distance and maximize the
number of torus links available for communication. Given that MPI Alltoall operations
perform an equal amount of communication between every pair of processes in the com-
municator group, it is desirable that these processes map to nearby processors. For two-
dimensional domain decompositions, finding a good mapping is complicated by the fact that
each process, p, belongs to two distinct communicator groups, X(p) and Y (p), such that
X(p)∩Y (p) = {p}. It is difficult to construct a mapping that will closely pack the processes
of X(p) and Y (p) for every process, p. We have experimented with various mappings that
optimize the placement of the processes in the X communicator group, leaving the processes
of the Y communicator groups to fall where they may. We are in the process of investigating
other mapping techniques, including the use of space filling curves and simulated anneal-
ing. One advantage to the maps we currently generate is that they are regular in shape
and tile the space of processors. This results in uniform communication times across all
communicator groups, thus preventing communication load imbalance.

By default, processes are mapped by MPI COMM WORLD rank order to processors in the
torus network in XYZ order. That is, if (qx, qy, qz) is the size of the BGL partition, then
the first qx processes are mapped to locations (0 : qx − 1, 0, 0), the second qx processes
are mapped to (0 : qx − 1, 1, 0), etc. Alternatively, we can specify a mapping file that
explicitly states the torus location for each process. Miranda constructs an X-Y process
grid of size px × py via the MPI Cartesian communicator constructors. The result is that
the first px processes in MPI COMM WORLD constitute the first X-communicator group. The
second px processes form the second X-communicator group, and so on. By default then,
each X-communicator group is mapped to contiguous X-direction rows of the BGL torus
network. Consider a 16K processor configuration of shape (16, 32, 32); by default, Miranda
constructs a (128, 128) process grid which maps the first X-communicator group onto the
first 8 X-direction rows of the torus at locations (0 : 15, 0 : 7, 0), the second group to
(0 : 15, 8 : 15, 0), etc. This results in the first Y-communicator group being mapped to
the locations {(0, α, 0 : 31), α = 0, 8, 16, 24} Consequently, the X-communicator groups are
packed into subregions of shape 16×8×1 whereas the Y-communicator groups are mapped to
4 Z-direction pencils of processors, each of length 32, distributed a distance of 7 hops apart in
the Y-direction. Alternatively, we could produce a mapping that packs the X-communicator
groups into a 16 × 4 × 2 block, or 8 × 4 × 4. Tightly packing the X-communicator groups
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can improve X-direction communication, but at the expense of dispersing the processes in
the Y-communicator groups.

In virtual node mode, each node contains two MPI processes, each with half the data of
a corresponding coprocessor mode calculation. When packing the X-communicator groups
onto blocks of nodes, it is important to ensure that both processes on each node belong
to the same X communicator group. Also, since each process contains half the data as in
coprocessor mode, and since both processes on a node share a common network interface,
the volume of traffic on and off the node is nearly identical to that of coprocessor mode. The
only difference is that the communication between the two processes on a node is performed
through a memory interface rather than via network packets.

6.2 MPI Alltoall Performance

We can construct a lower bound on the time required to complete an MPI Alltoall oper-
ation on a mesh or torus network provided we make the assumption that the communication
time is network bandwidth limited. The BGL torus network has six links on each node
(±X,±Y,±Z), each operating at a peak bandwidth, b, of 175 MB/sec. If we can compute
the number of messages, m, of size s that traverse the most heavily loaded link in the torus,
then the minimum time required to complete the communication operation is tmin = sm/b.
In general, it is difficult to determine the most heavily loaded link and the amount of data
that it transports because messages in the BGL torus are broken into 256 byte packets which
are adaptively routed; however, we can estimate this value.

Consider the two-dimensional mesh or torus as shown in Figure 3. The circles represent
nodes and the lines represent communication links. The dashed lines represent links in a
torus that are not present in a mesh (the Y-direction dashed links are not shown). Let

Figure 3: A two-dimensional processor mesh or torus network.

λx = 1 if the network is a mesh in the X direction and λx = 2 if it is a torus and similarly for
λy; hence, λ compensates exactly for the additional path that the torus connection provides
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between two colinear nodes. There are qx processors in the X direction and qy in the Y
direction. We consider a cut through the qyλx X-links as shown, dividing the processors into
left and right sets L and R. Let α be the number of nodes in L. The number of nodes
in R is qxqy − α thus, the number of messages sent from L to R is m(α) = α(qxqy − α).
This function has maximum α = qxqy/2, stating that the set of links that carry the maximal
message traffic are those that, if cut, would divide the network into two equal parts. The
number of messages across this set of links is: mmax = q2

xq
2
y/4. We estimate the traffic across

the maximally loaded link by taking the average of this message count across all cut links,
or mx,max = q2

xqy/(4λx). A similar argument for cuts in the X-direction yield an estimate
of the maximal message count for any Y-direction link as my,max = q2

yqx/(4λy). So, an
approximation of the minimum time required to complete an MPI Alltoall operation on
this 2D torus would be determined by the larger of these two values, or

tmin = Max
{ qx

λx

,
qy

λy

}sqxqy

4b
. (10)

The extension to three dimensions is straightforward and yields the estimate

tmin = Max
{ qx

λx

,
qy

λy

,
qz

λz

}sqxqyqz

4b
. (11)

Furthermore, we can extend this argument to MPI Alltoall operations on subcommuni-
cators within a rectangular region of shape R = (rx, ry, rz) provided the processes of the
subcommunicators are uniformly distributed within this region. We can force the region to
be minimal, in that it is the smallest rectangle that contains all processs in the communi-
cator groups and that if q ∈ R then all processes in the communicator group containing q
are also in R. Let κ be the number of communicator groups in R, then we estimate the
minimum communication time for all-to-all operations that execute simultaneously on all
communicator groups within R to be

tmin = Max
{ rx

λx

,
ry

λy

,
rz

λz

}srxryrz

4bκ
. (12)

λx = 1 if the BGL partition is a mesh in the X-direction or if rx ≤ qx/2. λx = 2 if the BGL
partition is a torus in the X-direction and rx = qx.

In order to gain a better picture of how torus mappings affect communication efficiency,
we collected timing data for Miranda runs in coprocessor mode on node partitions up to 32K.
For these runs, we constructed a collection of process maps that pack the X-communicator
groups into compact regions and timed the X and Y direction MPI Alltoall operations.
Figure 4 shows a comparison of these timings with the estimated minimum time from (12).
Each set of bars in the figure shows timings for different mappings of the X-communicator
groups for 512 through 32K nodes in coprocessor mode. For example, the 4 × 4 × 4 bar
of the 4K set indicates that the 64 processes of each X-communicator are mapped into a
4× 4× 4 block of processors. The mapping corresponding to the default process layout is at
the bottom of each set. The four segments of each bar are (from left to right): the estimated
minimum time for an X-communictor MPI Alltoall (blue), the measured X-communicator
MPI Alltoall time minus the minimum estimate (red), the estimated minimum time for
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Figure 4: MPI Alltoall communication timings for Miranda using various torus mappings
on BlueGene/L.

the Y communicator (yellow) and the measured Y-communicator MPI Alltoall time minus
the estimated minimum (green). That is, the actual measured X communicator time is the
sum of the blue and red bars and the actual Y communicator time is the sum of the yellow
and green bars. Finally, when computing the estimated minimum MPI Alltoall time via
(12), we used a peak per link bandwidth of 170MB/sec rather than 175. This conservatively
compensates for the overhead of MPI message and packet headers that are sent in addition
to the actual data payload, since MPI send-receive pingpong bandwidth is approximately 150
MB/s. The values in the right margin of the chart show the communication efficiency of the
mapping (as a percentage) with respect to the estimated minimum time. Figure 4 shows that
communication times can vary significantly depending on how the MPI tasks are mapped to
the BGL torus. Furthermore, it is clear that in the cases of 8K and 32K partitions, custom
mapping files exist that siginificantly outperform the default maps. Finally, for partitions
larger than 2K, MPI Alltoall performance exceeds 85 percent of the theoretical peak speed
of the network.
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7 Overall Performance

7.1 Scaling

We now turn to the overall performance (communication plus computation) of Miranda
using the tuned XDP scheme and simulating RTI on up to 65,536 processors of BGL.
For the scaling studies, Miranda was compiled with IBM’s xlf90 Fortran compiler (version
9.1 for BGL), with optimization flags -O3 -qalias=noaryovrlp -qmaxmem=-1 -qalign=4k

-qhot=novector -qarch=440 -qtune=440 -qessl. The scaling characteristics of Miranda
in coprocessor mode and virtual node mode are essentially identical, with virtual mode being
about 21% faster; therefore, we present only the virtual node mode results.

Weak scaling results (fixed workload per node) are shown in Fig. 5 and strong scaling
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Figure 5: Weak scaling for Miranda using 8× 16× 2048 grid points per processor.

results (fixed problem size) in Fig. 6. For the weak scaling runs, each processor contained a
8 × 16 × 2048 point grid. For the strong scaling runs, 2048 × 2048 × 512 total grid points
were used. Custom torus mappings were employed to improve performance on 16K and
64K CPU partitions. From Fig. 5, it can be seen that the transpose approach to computing
implicit derivatives yields near perfect scaling on the BGL architecture. Furthermore, the
TeraFLOPS increase linearly as the problem is scaled up. Additional evidence for linear
scaling is seen in Fig. 6, which shows near perfect speedup for a fixed problem size as more
processors are added. The timings are shown relative to 8K processors because that is the
smallest configuration on which the 2048×2048×512 point grid would fit. The better-than-
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Figure 6: Strong scaling for Miranda using a 2048× 2048× 512 point grid.

ideal speedup from 16K to 32K processors may be due to smaller message sizes or better
cache use or both.

7.2 Tuning and FLOPS

In performing Raleigh-Taylor instability simulations with compact derivatives, Miranda
spends significant time in the backsubstitution portion of the pentadiagonal matrix solver.
We have focused our optimization efforts on this code section to improve floating point
performance. Each processor must perform the solves on a block of independent data pencils.
The all-to-all transposes in Miranda are written to allow matrix operations to be performed
on any one of the 3 indices of an array. We choose the index for matrix operations to be the
second, or J index, with the effect that computations in the inner I loops are independent.
The BGL floating point units have single cycle throughput but latencies of 4 cycles for loads,
3 for stores and 5 for most arithmetic operations. It is therefore important to organize the
code such that multiple independent floating point operations can be issued at any point in
time. We provide this by unrolling the inner loops by a factor of 4. Beyond a factor of four,
we found that the performance did not increase, possibly due to memory bandwidth limits
or register pressure. Furthermore, we re-organized the matrix solver to provide temporary
accumulation arrays, such that memory access occurs with a constant stride of one for each
data stream. This fully engages the BGL Level 2 prefetch engine, reducing L1 cache misses.
These optimizations improved the performance of the backsolves by a factor of 2.3.
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Unfortunately, we have thus far been unable to realize any performance improvement by
utilizing the second FPU on each CPU. For Miranda, the dual FPU looks like a two-element
vector unit and the inner loops of the backsolve ought to vectorize trivially. All the arrays
are 16-byte aligned and we have explicitly told the compiler this information via “alignx”
calls, so that the requirements for quadword loads are satisfied. However, with the current
Fortran compiler, dual FPU performance is worse than if the second FPU is ignored. We
are awaiting compiler improvements, which ought to enable Miranda to make profitable use
of the second FPU.

In addition to the virtual node mode tests, we also implemented a “dual core” version
of the backsolver in coprocessor mode. This involved the use of coroutines and explicit
L1 cache management techniques to export half of the backsolve work to the FPU on the
communication coprocessor. Miranda is highly bulk-synchronous in that it is either doing
communication or computation exclusively. During the backsolves, the communication co-
processor is idle and thus available to compute half of the workload without introducing load
imbalance. Implementation of the dual core routines produced a 25% performance increase
for the backsolves alone; however, overall performance fell short of the 21% increase obtained
in virtual node mode; we have therefore abandoned this approach.

When profiling the entire code, the BGL perfcntr library reports a sustained computing
rate of 2.76 TFLOPS for Miranda running on 65,536 CPUs (in virtual node mode), with
the core of the matrix solver operating at an aggregate 15.67 TFLOPS. Although codes
with simpler physics and local differencing algorithms have achieved higher numbers, this
level of performance is unprecedented for variable-density incompressible flow using compact
differencing schemes.

8 Conclusions

The combined effects of variable density and diffusion on incompressible turbulent flows,
coupled with the need for high fidelity numerical methods, presents a challenging problem for
parallel computing on tens of thousands of processors. We have demonstrated that, contrary
to popular opinion, transpose techniques for implicit derivatives can provide excellent scal-
ing to such large numbers of processors and are highly competitive with direct block parallel
matrix decomposition schemes. After porting the Miranda code to the BGL architecture and
removing various memory and CPU bottlenecks, we have obtained nearly perfect weak scal-
ing and linear speedup of the code to 65,536 processors. By packing the data tightly in one
direction, we have reduced the communication overhead on 64K processors by 30% over the
default mapping. We have also reached data transfer rates exceeding 85% of the theoretical
peak of the network. In addition to optimizing the torus mapping for MPI Alltoall commu-
nications, efforts are currently underway to tune the packet injection rate of the messages.
Despite the substantial communication and data rearrangement requirements of the implicit
10th-order compact scheme, our initial efforts have achieved a sustained computational rate
of 2.76 TFLOPS for Miranda, simulating RTI on 65,536 processors of the BGL machine.
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