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Terahertz Antenna Phase Shifters Using

Integrally-Gated Graphene Transmission-Lines
Pai-Yen Chen, StudentMember, IEEE, Christos Argyropoulos, Member, IEEE, and Andrea Alù, SeniorMember, IEEE

Abstract—We propose the concept and design of terahertz
(THz) phase shifters for phased antenna arrays based on in-
tegrally-gated graphene parallel-plate waveguides (GPPWGs).
We show that an active transmission-line may be realized by
combining GPPWGs with double-gate electrodes, in which the
applied gate voltage can control the guiding properties of the
gated sections. This may enable the realization of THz electronic
switches and tunable loaded-lines for sub mm-wave antenna
systems. Based on these active components, we theoretically and
numerically demonstrate several digital and analog phase shifter
designs for THz frequencies, with a wide range of phase shifts
and small return loss, insertion loss and phase error. The pro-
posed graphene-based phase shifters show significant advantages
over other available technology in this frequency range, as they
combine the low-loss and compact-size features of GPPWGs with
electrically-programmable phase tuning. We envision that these
electronic phase shifters may pave the way to viable phased-arrays
and beamforming networks for THz communications systems, as
well as for high-speed, low-RC-delay, inter/intra-chip communi-
cations.

Index Terms—Beam steering, beamforming, graphene, phase
shifters, phased-array antennas, terahertz.

I. INTRODUCTION

S EVERAL essential components of microwave antenna

systems for telecommunication and radar applications,

like phase discriminators, beamforming networks, power di-

viders, power amplifiers and phased-array antennas are based

on electronic phase shifters [1]–[10]. These elements provide

the necessary control to electronically steer and reconfigure

the radiated beam through phase manipulation of the indi-

vidual antenna elements, without the necessity of physically

repositioning the whole antenna array. A larger number of ra-

diating elements increases the array directivity, but also makes

the beamforming network more complex. By reciprocity, a

receiving antenna array may be able to select the incoming

desired direction of radiation by properly phasing the signals

received from each antenna element [1]–[10].

These concepts are well established at radio-frequencies

(RF) and microwaves, for which solid-state phase shifters

based on PIN diodes or field-effect transistor (FET) switches
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[10], [11] are widely used. These devices have advantages

compared to conventional mechanical or ferrite phase shifters

in terms of compact size, integrability with planar circuitry, and

high switching speed [10], [11]. However, directly transferring

RF phased-arrays to sub mm-wave, THz antenna systems

(0.1 THz–10 THz) is very challenging. At these frequencies,

conventional active devices, providing electronic control of

phase and amplitude, do not offer reliable switching ability

[11]. Sandwiched nematic liquid crystals [12] and electri-

cally-driven THz metamaterials [13] have been proposed to

realize THz phase shifters or modulators, but they usually

require large areas and are difficult to be integrated with planar

circuits or on-chip systems. Metamaterial modulators [13]

are complicated by the fact that both amplitude and phase,

which are strongly frequency dependent, are simultaneously

modulated, i.e., the signal amplitude varies with the phase

shift. Liquid-crystal-based phase shifters require a high driving

potential, up to 125 V, to generate large phase shifts [12].

At the same time, the development of THz antenna tech-

nology has seen recent progress, since it may offer greater

communication bandwidths and may introduce many exciting

applications, such as sensing explosives and biochemical

agents, high-resolution through-wall imaging and time-do-

main spectroscopy [14], [15]. Short-range communications

using THz carrier waves [14], [15] also show great com-

mercial potential. Scenarios of interest include on-chip in-

tegration of phased-array systems for signal processing or

“wireless-on-chip” [6], [16], without the necessity of wired

interconnections, leading to substantial improvement in band-

width, power saving and reliability [6]. Antenna arrays are

anticipated to be indispensible components in future sub

mm-wave, high-speed wireless communication systems, since

their directional radiation properties may lead to less power

waste when point-to-point communication is needed.

In general, there are multiple design criteria for RF phase

shifters, such as frequency of operation , bandwidth, total

phase variation , insertion loss, return loss, switching speed,

matching, accuracy, resolution and power consumption [8], [9].

Depending on the specifications and importance of each param-

eter, various types of RF and microwave phase shifters are cur-

rently used. Three general types of phase shifters are consid-

ered: switched-line, loaded-line, and reflection-type [8]–[10]. In

this paper, we introduce graphene-based antenna technology to

realize integrated, electronically controllable phase shifters op-

erating at THz frequencies, to be integrated in sub mm-wave

phased antenna arrays. We believe that this technology may be

directly applied to broadband communications, sensing and in-

formation processing.

0018-926X/$31.00 © 2012 IEEE
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Graphene is an attractive material in terms of its electronic

properties, and the interest around its applications has gained

momentum in recent times. Graphene monolayers have been

shown to support ultraconfined surface-plasmon polariton

(SPP) waves at THz frequencies, with moderate loss and strong

field localization and confinement [17]–[20]. These properties

have been proposed to realize flatland transformation optics

composed of a one-atom-thick surface [17], as well as focusing

lenses [17], cloaking devices [21] and tunable terahertz meta-

materials [22]. In addition, a graphene atomic monolayer can

support very high electron (hole) concentrations, due to its

large tunability in terms of chemical potential (Fermi energy)

[eV]. Strong attention has been focused on the dramatic

change in the complex-valued surface conductivity of graphene

[S] (under an notation adopted

throughout this paper) associated to an externally applied bias.

This change can be achieved by adjusting to a large degree its

chemical potential [17]–[24], either chemically by varying the

doping profile [20], [25], or electrically by biasing external

electrostatic field [22], [26] or magnetostatic field via the Hall

effect [20]. As a result of the rapid progress in the growth of

wafer-scale graphene using chemical vapor deposition (CVD)

and lithographic patterning, large-area graphene nanostructured

arrays have been successfully demonstrated by several groups

[22], [27]. Graphene’s superior electronic and optical properties

have raised remarkable interest in high-speed electronics (i.e.,

graphene-FETs [26]–[28]) and photonic devices (i.e., THz

oscillators and low noise sensors [29]). The regime in which

graphene’s properties are more attractive is located at the

transition between electric and photonic sources, in the THz,

sub mm-wave range [14], [15].

In this work, we propose and analyze several designs in which

graphene may solve the challenge of realizing phase shifters

for THz antenna arrays. We consider the propagation properties

of subwavelength parallel-plate waveguides (PPWGs) formed

by a pair of graphene monolayers with deeply subwavelength

transverse dimension [Fig. 1(b)] [19]. This graphene PPWG

(GPPWG) supports a dominant quasi-TEMmode with no cutoff

frequency, similar to metal-insulator-metal (MIM) plasmonic

waveguides [Fig. 1(a)] [30]–[32]. Rather strikingly, the guided

fields remain confined inside the gap between two one-atom-

thick graphene monolayers. We apply this geometry to realize

novel phase shifter designs, demonstrating that a GPPWG sec-

tion integrated with double-gate (DG) electrodes may enable

THz switches and tunable loaded lines, key components to build

analog and/or digital phase shifters for antenna applications.

II. PROPAGATION CHARACTERISTICS OF A GPPWG

Graphene is a two-dimensional (2-D) gapless semiconductor

composed of a planar atomic layer of carbon atoms [26], with

massless and linear energy dispersion near the , points

of the Brillouin zone and a Fermi velocity .

Its surface conductivity may be modeled using the well-known

Kubo formula [18]–[20], [23], [24]. In the low THz region,

below the interband transition threshold ( is the

reduced Planck’s constant), the electronic intraband transition

dominates, the direct interband transition is negligible and

Fig. 1. Schematic diagram of (a) a plasmonic PPWG consisting of a MIM het-
erostructure (gold-air-gold) and (b) a GPPWG. (c) (FoM) for the
gold PPWG with , varying the frequency and the gold thickness

. (d)–(f) FoM, propagation length, and characteristic impedance normalized
to free space for the GPPWGs with , varying frequency and chem-
ical potential .

. Unique features of ballistic transport and ultrahigh elec-

tron mobility (in excess of 20000 and weakly de-

pendent on temperature [27]) may characterize graphene as a

low-loss atomic-scale conduction surface in this band. The in-

traband electron-phonon scattering process, mainly depending

on impurities and defects, yields [18]–[20]:

(1)

where is the electron charge, is the Boltzmann’s constant

and is the electron-phonon scattering rate due to the carrier in-

traband scattering, related to plasmon losses. Here, we assume

the temperature and [17], [20] con-

sistent with the ballistic transport features of graphene, whose

mean free path was measured to be up to 500 nm at room tem-

perature and larger than 4 at lower temperatures [18]–[20],

[26]–[28]. If , (1) reduces to the Drude-like expres-

sion:

(2)

where the real part of , associated with , contributes to

energy absorption or dissipation. Fig. 1(b) illustrates the geom-

etry of a GPPWG consisting of two graphene sheets with width

much larger than separation distance . The propagation axis
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is oriented along the -axis. For waves with magnetic

field , by forcing a discontinuity on the

tangential magnetic field distribution on the graphene surface

, the complex eigenmodal prop-

agation constant can be evaluated by solving the dispersion

equation:

(3)

where and are the material permittivity inside and

outside the waveguide, respectively. When the separation

between the graphene monolayers is reduced to a subwave-

length scale , the GPPWG supports a quasi-TEM

dominant mode [19]. Under the long-wavelength approxi-

mation and

, , a

simple approximate explicit dispersion relation can be obtained:

(4)

As expected, for sufficiently large surface conductivity the

outer (cladding) permittivity plays a negligible role in tailoring

the eigenmodal propagation constant, implying that the mode

is tightly confined between the graphene layers. For simplicity,

therefore, and without loss of generality, we will assume two

suspended graphene sheets in free-space (i.e., )

with same chemical potentials. In many senses, the propagation

properties of this waveguide are analogous to the ones of an

MIM plasmonic waveguide supporting confined SPP modes.

Here, we specifically define a figure of merit (FoM) for

SPP propagation: which can

be seen as the propagation length (1/e

decay length for power) normalized by the SPP wavelength

that is inversely proportional to . Fig. 1(c) and (d) show

contour plots of FoM versus frequency for an MIM PPWG

formed by two gold (Au) plates with varying thickness ,

and a GPPWG with varying chemical potential, where the

waveguide height is fixed at in both scenarios

and . The thickness-dependent conductivity

of gold is modeled using the Fuchs-Sondheimer (FS) model

[33], [34], assuming the gold’s mean-free-path to be 20 nm,

which yields for a 10 nm gold nanofilm

and for a 300 nm bulk gold. For gold

PPWGs, the optimal guiding property is obtained when gold

plates are thicker than 100 nm, which is about the skin depth

of bulk gold. It is seen that, despite the extreme thinness of

graphene monolayers , for frequencies higher than

0.5 THz, the GPPWG exhibits a remarkably larger FoM than

conventional MIM plasmonic waveguides, i.e.,

is obtained at for graphene monolayers tuned to

. At the same frequency, a gold PPWGwith 300 nm

walls has an . A gold PPWG with wall thickness

comparable with graphene would show much poorer waveg-

uiding properties. The impressive FoM of GPPWG is mainly

attributed to its strong field localization and good propagation

Fig. 2. Schematic diagram (top) and equivalent circuit (bottom) of a digital
phase shifter based on graphene transmission lines and switches; here, THz
switches are realized combining a GPPWG with a double-gate structure.

length at THz. Fig. 1(e) shows the propagation length for a

GPPWG, as a function of the chemical potential and frequency

of operation. A good propagation length is observed, despite

coupled SPP waves inside the GPPWG are strongly confined,

with a guided wavelength much shorter than the free-space

wavelength [17], [19], i.e., is

obtained at for a GPPWG tuned to .

In the following, we apply a transmission line model (TLM)

and the transfer-matrix method [10], [30] to evaluate the

propagation characteristics of integrated waveguide circuits,

components and systems embedding GPPWG. We have ver-

ified with full-wave simulations that, due to the extreme

mode confinement, these analytical tools are very accurate

in describing the propagation properties along longitudinally

inhomogeneous sections of GPPWG. The modal characteristic

impedance may be defined as

and it is shown in Fig. 1(f), varying the graphene’s chemical

potential and operating frequency. It is found that propagation

constant and characteristic impedance of this transmission-line

may be largely tuned from relatively high (i.e., pristine or

slightly doped graphene with a small ) to low (heavily

doped or strongly biased graphene with large ), which is

arguably the most significant advantage of graphene compared

to conventional plasmonic waveguides. Having established its

remarkable guiding and tunability properties, we envision, in

the inset of Fig. 2, a GPPWG combined with a double gate

configuration, allowing electronic control and tuning of the

propagation constant and local impedance.

Typically, the chemical potential of graphene can be tuned

from to 1 eV by a modest applied bias [18]–[20]. Due

to the electron-hole symmetry in the graphene band structure,

both negative and positive signs of chemical potential provide

the same complex surface conductivity. The chemical potential

of a graphene monolayer, obtained by neglecting the quantum

capacitance (i.e., a relatively thick gate oxide), is given by:

(5)
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where is the electrostatic gate capacitance,

is the thickness of gate oxide and is the applied gate voltage

[26]. A double gate consisting of -doped polysilicon or metal

gate positioned behind the oxide (i.e., , , BN) [inset

of Fig. 2] may simultaneously tune the chemical potential and

the associated surface conductivity of top and bottom graphene

monolayers. The relationship between chemical potential and

bias is discussed in Appendix A. This enables locally varying

in real time the real part of the propagation constant (associated

with phase delay) and the characteristic impedance of the gated

segment, with tunability properties shown in Fig. 1.

An important issue to consider is how to couple THz radia-

tion in such thin GPPWGs. A variety of THz sources are cur-

rently available, including gyrotron, photomixing devices, and

quantum cascade lasers (QCL), to name a few [14], [15]. Semi-

conductor lasers, i.e., QCL based on intersubband transitions in

a multiple repeated quantum-well heterostructures, may have a

compact size and are readily integrated in chip-scale THz de-

vices and systems like the ones considered here. The QCL ge-

ometry is ideal to couple energy into the transverse mode of a

GPPWG and it appears exceptionally suitable to excite the pro-

posed chip-scale graphene phase shifters. Microwave sources

followed by multiple stages of harmonic generation can also

realize low THz sources. Recently, different groups have pro-

posed compact THz antennas using subwavelength graphene

patches [35]. An array of graphene antennas is compatible and

integrable with the graphene phase shifters proposed here, and

they may be used in the transmitter/receiver front ends to effi-

ciently couple THz radiation from and into free-space.

III. GRAPHENE-BASED PHASE SHIFTERS

In this section we show how the large FoM and tunability of

GPPWGs, described in the previous section, may allow the de-

sign of compact, low-loss and tunable transmission lines in the

THz regime. The low-loss features may also allow removing an

amplification stage in the transmit/receive (T/R) chain, thus sig-

nificantly reducing the operating power and system complexity

of the beamforming network. In the following, we investigate

integrally-gated GPPWGs to realize THz electronic switching

devices and active loaded lines for phase shifters. We propose

the practical realization of switched-lines, loaded-lines, and re-

flection-type graphene-based phase shifters [8]–[10].

A. Graphene-Based Digital Phase Shifters

Digital phase shifters (DPS) or switched-line phase shifters

are conceptually simple in design. They rely on true time delay

between two direct transmission line paths (a reference line

and a delay line [8], [9]) to provide the desired phase shift. A

simple DPS can be built using switched delay-line techniques

and single-pole double-throw (SPDT) switches [2], [8]–[10].

By using two SPDT switches, the transmission-line is switched

over from one segment to the other, varying the corresponding

phase shift [2], [8]–[10]. Fig. 2 shows an example of a 4-bit DPS

realized using a cascade of four 1-bit phase shifters (16 switches

and 8 different transmission-line segments) with dis-

crete phase states. For instance, when the switches G1 and G2

are in their ON-state and the switches G3 and G4 are in their

OFF-state, the wave will propagate in the delay line . By

switching the signal between and , it is possible to realize

an increase in the phase shift , where is

the difference between the physical length of the delay and refer-

ence lines. By using the proper combination of ON/OFF-states,

one can in principle implement any discrete number of phase

states between 0 and 360 .

Electronic switches are widely used in conventional antenna

systems for time-multiplexing, time-division multiple access,

pulse modulation and channel switch in receiver or transmit/

receive (T/R) modules. In practical high-frequency DPS de-

signs, the most crucial issue consists in realizing stable and

high-speed switches that can replace conventional RF diodes

or FETs. Graphene active transmission lines may offer a robust

approach to translate such switching devices at THz. The main

idea is to integrate a GPPWG with a double gate, as shown in

the top panel of Fig. 2. By controlling , we may vary the

chemical potential of the gated graphene segment, affecting the

phase velocity, characteristic impedance, propagation constant

and associated phase shift along each gated GPPWG segment

[as observed in Fig. 1(f)]. We can use this property to tune the

transmission characteristics through the gated section with an

external bias.

We consider two designs to realize graphene-based THz

switches in order to achieve the desired voltage-controlled

switching operation. As a first design, by using chemical

doping, we tailor the chemical potential of the ungated

graphene sections to be much larger than the gated line in the

unbiased state, producing significant impedance mismatch and

large reflection at the interface between gated and ungated

sections. This scenario corresponds to the OFF-state of the

switch. Since the chemical potential may be largely tuned by

applying a gate voltage, it is possible to pass from OFF to

ON-state by properly biasing the gated section, effectively

lowering its impedance until matching the outer line.

Consider, for instance, a GPPWG made of doped graphene

with . In the gated section, graphene monolayers

with low chemical potential are considered to

realize switches operating at /1.2/2.5 THz. The gate

length is assumed to be one quarter of the guided wavelength of

the gated line, with values ,

, and .

These lengths are much shorter than the free-space wavelength,

thanks to the large value of associated with SPP prop-

agation, providing a significant benefit for device scaling and

compatibility with on-chip technology. Fig. 3(a) shows the re-

flection coefficient versus gated chemical potential for this THz

switch at the different design frequencies. It is observed that in

the OFF-state, without any applied bias , the re-

flection is extremely high. However, when the gated sections are

biased to , complete transmission is obtained. This

operation is rather independent of the frequency of operation in

the considered range of frequencies. Fig. 3(b) shows the corre-

sponding bandwidth of operation for different values of chem-

ical potential, confirming the large operational bandwidth of this

device.

As an alternative design, we consider graphene switches

based on Fabry-Perot tunneling. Here, we assume the chemical

potential of the ungated and gated sections to be
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Fig. 3. (a) Magnitude of the reflection coefficient versus chemical potential for
THz switches as in Fig. 2. Here, heavily-doped and low-doped graphene sec-
tions are used for the ungated and gated sections, respectively. The ON-state is
realized by impedance matching the gated and ungated transmission-line seg-
ments. (b) Magnitude of the reflection coefficient versus frequency, varying the
chemical potential in the gated section.

and , respectively. The ON-state is now achieved

by biasing the gate to . In this case, we exploit the

wavelength dispersion of the SPP mode and design the gate

length to be half of the guided wavelength for . The

gate lengths are at ,

at and at . Fig. 4(a)

shows the corresponding reflection coefficient versus chemical

potential of the gated sections. In the OFF-state, without bias,

very high reflection is obtained, but when the gated sections are

biased to , complete transmission is achieved, due

to the drastic change in that yields to . Fig. 4(b) shows

that the reflection of this switch is more sensitive to the level

of chemical potential compared to the previous nonresonant

design. This design may be however more interesting for

narrow-band filtering and sensing applications.

Before concluding this section, we should mention that, ac-

cording to Fig. 1(d), the ungated sections employed in these de-

signs are necessarily more lossy than the doped sections. Even

without bias, however, the line shows a rather high

at 1.5 THz, ensuring that insertion loss is reasonable, as

it has also been confirmed by our numerical results. Both pre-

sented designs may hold great potential to realize switching de-

vices in THz integrated photonic and optoelectronic circuits.

B. Graphene-Based Loaded-Line Phase Shifters

The basic principle of a loaded-line phase shifter (LLPS) can

be illustrated with the circuit in the bottom panel of Fig. 5, in

which a loaded-line produces a specific phase variation

[10]. In practical designs, insertion and return losses are in-

herently present in this design, due to reflections at the mis-

matched loaded-line. At RF and microwaves, a LLPS is usu-

Fig. 4. (a) Magnitude of the reflection coefficient versus chemical potential for
THz switches, as in Fig. 2. Here, low-doped and moderately-doped graphene
sections are used for the ungated and gated section, respectively. The ON-state
is realized based on Fabry-Perot resonant tunnelling. (b) Magnitude of the re-
flection coefficient versus frequency, varying the chemical potential in the gated
section.

Fig. 5. Schematic diagram (top) and equivalent circuit (bottom) of a graphene-
based loaded-line phase shifter, which allows a wide range of phase shift at
the price of possibly larger reflection (or return loss) compared to the design of
Fig. 2.

ally realized by loading a transmission-line with two shunt sus-

ceptances and separation length [10]. In the THz regime,

we may realize a graphene-based LLPS using the configura-

tion shown in Fig. 5, consisting of a double gate with length

. The chemical potential of the gated and ungated

lines are 0.0685 eV and 0.5 eV, respectively. By electrically

tuning the chemical potential of the gated line, we can adjust

the phase shift in real time, ideally covering a wide range of

phase shifts. Unfortunately, the bias will also affect the charac-

teristic impedance of the gated section, introducing unwanted

reflections due to impedance mismatch. Fig. 6(a)–(c) show the

S-parameters and phase shifts of the LLPS in Fig. 5 designed

to realize phase delays of 90 /180 /270 /360 at the operating

frequency . In order to achieve the desired phase

delays, the chemical potential of the gated section is biased to
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Fig. 6. (a) Magnitude of reflection and (b) transmission coefficients, (c) phase
difference between input and output ports of the graphene-based load-line phase
shifter in Fig. 5.

/0.272/0.124/0.0685 eV, respectively. Even if the

desired phase shift is indeed obtained, as verified in Fig. 6(c),

we find relatively large reflections when the amount of phase

shift is , where is an integer, i.e., for

and 270 , as the impedance of gated and ungated

lines are significantly mismatched. Impedance transformation

sections may be necessary to eliminate the reflection.

In order to solve this issue, we propose a tunable matching

network consisting of a multistage gated GPPWG. Fig. 7

shows the schematic diagram and circuit model of the dy-

namic-matching LLPS design. The gate G6, with the longest

gate length, is used to generate the desired phase shift by biasing

the graphene layers. In order to match the complex impedance

at the input of G6, we need two additional gated sections. By

properly biasing G5, zero reactance can be obtained at the input

of G5 (point in Fig. 7). We further need a transformer

to match the real part of the input impedance at point in

Fig. 7. This may be obtained by tuning , corresponding to

the gated region covered by the other four gates in Fig. 7, as a

quarter of the guided wavelength, and bias the section to have

a characteristic impedance equal to:

(6)

Fig. 7. Schematic diagram (top) and equivalent circuit (bottom) of a loaded-
line phase shifter with a dynamic matching transformer. This design can ensure
a lower reflection compared to Fig. 5.

Fig. 8. Operation principle of the dynamically tunable quarter-wavelength
transformer in Fig. 7.

where and are the impedance of the ungated lines and

the input impedance at point , respectively.

To operate the phase shifter, we need to be able to tune the

desired phase shift , which is obtained by changing and

the corresponding bias parameters. In addition, we need to be

able to dynamically adjust the line length , which is effectively

modified when different biases are applied. This is obtained by

discretizing the —line into multiple stages, controlled by

four consecutive gates G1, G2, G3 and G4, as shown in Fig. 7.

This cascade of gates effectively forms a dynamic matching net-

work, as illustrated in Fig. 8.

Consider, for instance, an absolute phase variation

(additional 90 is caused by the signal propagation

through the —transformer). In this case, we apply equal

voltages to all four gates in the transformer section (G1, G2, G3,

G4), such that they possess the same characteristic impedance

(6), and the sum of their lengths is equal to the electric length

at the design frequency. When a phase variation

is desired, only G4 should be biased, which

provides the required characteristic impedance and electrical

length (i.e., is now the gate length of G4 only). An arbitrary

phase variation may be obtained by solving the coupled

system at the design frequency:

(7)
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TABLE I
DESIGN PARAMETERS OF A DYNAMICALLY MATCHED LLPS

Fig. 9. (a) Magnitude of reflection and (b) transmission coefficients and (c)
phase difference between input and output ports for the load-line phase shifter
shown in Fig. 8.

As an example of a practical LLPS design, we consider

, , and a chemical potential

for the ungated and gated lines of 0.5 eV and 0.0685 eV, re-

spectively. By solving (7), the optimal values of , and

, as well as of the required chemical potential in each sec-

tion, are obtained to achieve the desired phase variations

. The optimal design parameters are

found in Table I.

Fig. 9(a)–(c) show the reflection and transmission coefficients

and absolute phase shift for this LLPS design, confirming op-

timal performance at the design frequency . Very

low insertion loss and a phase error below is obtained for

all cases. The residual phase error and insertion loss are due to

graphene losses. This LLPS design with tunable matching net-

work may provide dynamic matching and it eliminates reflec-

tions due to impedance mismatch, which may be of interest in

Fig. 10. Schematic diagram (top) and equivalent circuit (bottom) of a simpli-
fied digital (3-bit) loaded-line phase shifter.

smart antenna systems, i.e., frequency division multiple access

(FDMA) devices that require tunable sub mm-wave antennas

with band-selection and dynamic matching.

For most phased-array applications, we are mostly concerned

with the relative phase shift between different ports, rather than

its absolute value. In Fig. 10, we propose a simplified LLPS de-

sign, consisting of a 3-bit phase shifter with 8 phase shift states:

0/45/90/135/225/270/315 . We assume a chemical potential of

0.05 eV for both gated and ungated graphene segments. In order

to minimize reflections, when gate voltages are applied we set

the length of each loaded section to be a multiple of half guided

wavelength. The characteristic impedance and propagation con-

stant of the ungated sections are given by The loaded

lines are characterized by , and . If

we intend to create impedance matching for all binary states,

the following requirements for the “ ”-th section need to be ful-

filled:

(8)

where is defined as the relative phase shift between the unbi-

ased and biased conditions for the -th section and the total phase

shift is . For a design with phase shifts

of 45 (bit 0), 90 (bit 1) and 180 (bit 2), the required chem-

ical potentials are (bit 0),

(bit 1), and (bit 2), and the associated op-

timal gate lengths are: , , and

. We may generate 8 different states through elec-

tronically programmable gate voltage signals in this configura-

tion. Fig. 11 shows numerical results for the corresponding S

parameters and phase shifts for this design. Very low reflection

and nearly unitary transmission are obtained, with the desired

relative phase shifts at the operating frequency .

This simplified LLPS design may facilitate the implementation

of THz phased-arrays with digital beam forming and steering

functions.

C. Graphene-Based Analog Phase Shifters

In addition to the binary phase shifts discussed above, analog

phase shifters (APS) are commonly implemented in RF systems,

for applications when the phase shift should be continuously

controlled by a bias with almost unlimited resolution [8]–[10].

To realize a graphene-based THz APS, we need to design an

electrically-adjustable reactive circuit element that may provide
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Fig. 11. (a) Magnitude of reflection and (b) transmission coefficients and (c)
phase difference between input and output ports for the load-line phase shifter
shown in Fig. 10.

analog phase shifts. In [21], we have demonstrated electronic

frequency tuning of a cloaking device at THz frequencies using

a graphene monolayer. It is possible to use the same concept

to make a variable inductor by inserting a vertically-aligned

graphene monolayer into the GPPWG, as shown in Fig. 12.

By choosing a distance from a ground plane, we

achieve a tunable inductive load , schematically indicated

in the circuit model of Fig. 12. In this design, we assume the

graphene chemical potential to be set at 0.5 eV.

Fig. 13 shows the numerical results for the phase shift as a

function of chemical potential at the operating frequency

varying the distance between G1 (switch) and G2 (IR

variable inductor). By adjusting the bias voltage at G2, the in-

ductive reactance in the equivalent circuit of Fig. 12 is tuned, in

turn analogically controlling the overall phase shift over a wide

angular range. Fig. 14 shows the phase shift versus frequency

for a graphene-based APS with . At the operating

frequency , phase shifts ranging from to

can be obtained, when the chemical potential of the

vertically-gated graphene is biased from 0.01 eV to 0.5 eV. It is

interesting that the tuning range increases for larger frequencies.

The proposed APS design may achieve moderate phase shift

Fig. 12. Schematic diagram (top) and equivalent circuit (bottom) of a reflec-
tion-type analog phase shifter.

Fig. 13. Phase difference between input and output ports for the analog phase
shifter of Fig. 12.

Fig. 14. Variation of the phase difference between input and output ports versus
the frequency for the analog phase shifter of Fig. 12, varying the chemical po-
tential of the vertically-aligned graphene monolayer.

and high resolution with fewer active components than DPS,

but at the cost of increased fabrication difficulty due to the ver-

tically-aligned graphene monolayer.

IV. CONCLUSIONS

We have proposed, here, a variety of phase shifter designs

for operation in THz phased arrays, based on double-gated

graphene parallel-plate waveguides. By using graphene-based

switches, loaded-line and/or variable inductors, three types of
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phase shifters, with wide phase shift range, have been proposed

in the THz range. Due to the strong SPP wave localization of

graphene-based waveguides, it is possible to realize low-loss,

compact on-chip switching and phase control devices. In

addition, these functions may be electronically programmed

by applying bias signals at the double gate. We believe that

the proposed phase shifters may be used in the near future in

phased-array antennas, beamforming networks, phase discrim-

inators, and vector modulators for THz communication and

sensing systems.

APPENDIX

For an electrically gated graphene sheet with oxide thick-

ness , a variation in the chemical potential is equivalent to a

voltage drop across the quantum capacitance [36], [37]:

(A1)

where the quantum capacitance , related to the difference

between the electron and hole sheet densities ( and ),

can be expressed as:

(A2)

and the conventional electrostatic capacitance is:

(A3)

Hence, (A1) may be solved self-consistently to evaluate the re-

lationship between chemical potential and gate voltage for dif-

ferent gate oxide thickness. Since the overall sheet charge den-

sity in the graphene

shows a specific dependency on , one would

expect that only its half value is used in (A1), consistent with

[37]. In general, for relative thick gate oxide, is

valid, and an explicit expression of chemical potential for mod-

erately doped graphene, i.e., , may be derived,

as (5) [20], [21], [37]). In some cases, could be larger

than , due to the finite density of states of graphene. This

occurs only when either the value of is extremely high or

the gate oxide is ultrathin (i.e., few nm). In the extreme case of

the chemical potential is almost directly respon-

sible for the applied gate voltage, i.e., .
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