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Abstract: In this article, we present a free-standing terahertz metasurface based on asymmetric
S-shaped complementary resonators under normal incidence in transmission mode configuration.
Each unit cell of the metasurface consists of two arms of mirrored S-shaped slots. We investigate
the frequency response at different geometrical asymmetry via modifying the dimensions of one
arm of the resonator. This configuration enables the excitation of asymmetric quasi-bound states in
the continuum resonance and, hence, features very good field confinement that is very important
for biosensing applications. Moreover, the performance of this configuration as a biosensor was
examined for glucose concentration levels from 54 mg/dL to 342 mg/dL. This range covers hypo-
glycemia, normal, and hyperglycemia diabetes mellitus conditions. Two sample coating scenarios
were considered, namely the top layer when the sample covers the metasurface and the top and
bottom layers when the metasurface is sandwiched between the two layers. This strategy enabled
very large resonance frequency redshifts of 236.1 and 286.6 GHz that were observed for the two
scenarios for a 342 mg/dL concentration level and a layer thickness of 20 µm. Furthermore, for the
second scenario and the same thickness, a wavelength sensitivity of 322,749 nm/RIU was found,
which represents a factor of 2.3 enhancement compared to previous studies. The suggested terahertz
metasurface biosensor in this paper could be used in the future for identifying hypoglycaemia and
hyperglycemia conditions.

Keywords: biosensing; terahertz technology; glucose sensing; metasurfaces; bound states in the
continuum

1. Introduction

One of the most important metabolic disorders is diabetes mellitus. It is considered
one of the major causes of death around the world [1–4]. The two main types of diabetes
are caused by the pancreas failing to secrete enough insulin (type 1), or when body cells
inappropriately respond to insulin (type 2) [4–6]. When fasting, the normal glucose level
should be between 70 and 120 mg/dL. However, with glucose levels that are smaller or
larger than this range, the patient is identified as having hypoglycemia and hyperglycemia,
respectively [6–10]. Failing to maintain glucose levels in the aforementioned range will
result in many consequences such as cardiovascular diseases, renal failure, and peripheral
neuropathy [3]. Hence, monitoring the glucose level is vital to avoid such complications [11].
Invasive, minimally invasive, and non-invasive devices have been engineered to measure
that [3,4,12–15]. It is important to note that the prevalence of diabetes is predicted to
increase to 700 million cases in 20 years [16], which indicates the need to develop new
sensors in order to help diabetics. Remarkably, a plethora of different techniques and
sensors have been proposed [3,12,17,18]. More specifically, optical sensors have attracted
a lot of attention and were designed at different wavelengths [4]. Recently, terahertz
(THz) technology has drawn a lot of interest as a potential technique in this regard. It
features about 4.14 meV photon energy at 1 THz, and hence it is completely safe for
users. Interestingly, within the THz band, various biomolecules have shown clear spectral
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fingerprints [19–22]. Therefore, it enables label-free sensing for different analytes and
samples [21,23–25].

Nevertheless, to realize label-free THz sensors with high sensitivity, a serious challenge
has to be addressed. It is represented by the large difference between the THz wavelength
and the analyte thickness or quantity. Hence, the electromagnetic field has to be confined
in order to increase the THz wave-sample interaction. Several engineered metasurface
structures have been suggested to achieve that [26–33]. Conventionally, a redshift of the
resonance frequency occurs as a result of dielectric environment modification when the
metasurface is coated with an unidentified sample. This shift is utilized as a metric for its
refractive index and can be used to identify the analyte type or its concentration. Some
sensors have already been proposed to measure the glucose concentration at THz frequen-
cies [34–37]. In Ref. [34], the authors investigated the optical properties of real samples
of blood at terahertz frequencies at different glucose level concentrations. Moreover, in
Ref. [35], the authors studied the frequency shift of a simple cross-shaped metasurface on
PET substrate when it is immersed in the blood samples. This configuration showed the
potential of THz metasurfaces for glucose sensing. Furthermore, the authors in Ref. [36]
utilized asymmetric split-ring resonators of thick metals on a silicon dioxide substrate, but
the achieved sensitivity is quite low. Generally speaking, various techniques have been
suggested to achieve as large a light–matter interaction as possible including bound states
in the continuum (BIC) [28,33,38,39], Fano resonance [40,41], electromagnetic-induced
transparency resonance [42–45], and some other configurations [30,33,46–52]. Among
these, Fano resonance, which is considered a quasi-BIC resonance, has been of particular
interest for many applications, such as lasing spasers [53,54], slow light devices [55–57],
and sensors [28,30,48,49,58–61]. Hence, the authors in Ref. [37] proposed a metasurface con-
sisting of a symmetric complementary split rectangular resonator under oblique THz wave
excitation. The achieved resonance frequency shift of resonance frequency at 0.506 THz was
122 GHz for a glucose concentration of 342 mg/dL for a 5 µm thick sample, which is quite
good as it can be distinguished in the measurements. Nevertheless, the question remains
open: How can the performance of such sensors be improved? It is worth mentioning that
using free-standing substrate-free metasurfaces of complementary structures using only
metal layers has shown very good performance [47,62,63].

Therefore, in this paper, a terahertz metasurface consisting of an array of asymmetric S-
shaped complementary resonators is proposed. It is based on the utilization of a quasibound
state in the continuum with broken in-plane symmetry. This metasurface can be easily
fabricated using a simple optical setup with a laser beam. The unit cell of the metasurface
consists of two arms of mirrored S-shaped slots. The transmission and reflection frequency
response of this configuration was studied with different geometrical asymmetry. Moreover,
the electric field spatial distributions have been examined. More notably, to cover a wide
range of glucose levels from hypoglycemia to hypercalcemia conditions, the response to
different glucose concentrations when the top layer or top and bottom layers are discussed
for different sample thicknesses. Moreover, we examine the wavelength sensitivity of the
suggested metasurface sensor by simulating different settings with a range of the refractive
index of the sample layers.

2. Sensor Configuration and Simulation Methodology

Figure 1a,b show the Figures 2D and 3D configurations of the unit cell. Each unit cell
consists of an S-shaped complementary resonator (SCR) with two arms, one of which is a
smaller mirrored version of the other. Figure 1a illustrates the geometrical dimensions of the
SCR with the relevant dimensions: the height of the left-hand S-shaped arm of l1 = 140 µm,
the height of the right-hand S-shaped arm of l2, the slot of s = 3 µm, the gap between the
two arms of g = 4.5 µm, and periodicity of p = 200 µm. Moreover, the aluminum metallic
layer thickness is taken to be 200 nm. Furthermore, it is worth noting that the adopted
dielectric constant values have been taken from Ref. [35], which were taken originally from
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Ref. [34], by characterizing real blood samples. The values cover different frequencies of a
wide range of glucose level concentrations.
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Figure 3. (a) Transmission and (b) reflection frequency response of the S-shaped complementary
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Figure 1b depicts the glucose top and bottom layers as the metasurface can be coated
with the glucose sample or immersed in the middle of it. The simulation package Com-
puter Simulation Technology (CST) Microwave Studio [64] was utilized to carry out all
the simulations. It solves Maxwell equations in the frequency domain based on a finite
integration technique. Excitation of a plane wave was considered with periodic boundary
conditions to mimic the actual scenario. The inset of Figure 1a shows the field polarization
where the electric component is horizontally oriented. Hence, the excitation of a symmetric
dipole resonance mode is expected as the THz waves are exciting the metasurface under
normal incidence.

3. Results and Discussion

Figure 2 displays the maps of the transmission and reflection amplitude spectral
response for the proposed metasurface for a sweep of the S-shape right-hand arm l2
dimension between 120 µm and 140 µm with a step of 1 µm. When l2 = l1 = 140 µm, the
structure is completely symmetric and hence only the dipole resonance is excited. It is
featured by a broad response with a peak in the transmission amplitude and a dip in the
reflection amplitude as shown in Figure 2a,b, respectively. The spectral response of this
symmetric configuration is also presented by the dotted red lines in Figure 3. The dipole
resonance frequency dip in the reflection amplitude is excited at 0.484 THz and is symmetric
with a very broad spectral response. This case also corresponds to the symmetry-protected
BIC situation. Once the dimension l2 is decreased, the structure becomes asymmetric, and
a small amplitude asymmetric resonance is excited that becomes visible in Figure 2 when
l2= 135 µm. The symmetry breaking allows the radiation of an asymmetric resonance
mode into the far field. This asymmetric mode is also called Fano-like resonance, which
is a special case of BIC called quasi-BIC [38]. Moreover, the peak in the transmission
amplitude is blue-shifted gradually as well as the dip in the reflection amplitude as a result
of modifying the electrical length of the two arms of the resonator. Further decreasing l2
leads to broadening of the asymmetric resonance and its spectral bandwidth. Hence, its
quality (Q-) factor, which is defined as the ratio of resonance frequency to the bandwidth,
is decreased. A small Q-factor is correlated with low field confinement and, hence, less
field–sample interaction. In order to investigate the performance of this metasurface for
biosensing, a value of l2 = 130 µm was selected as indicated by the dotted white lines
shown in Figure 2a,b. The exact transmission and reflection spectral response for this
configuration is shown in Figure 3 as solid blue lines with very clear asymmetric resonance.
The asymmetric resonance dip in the reflection response is excited at 0.446 THz as shown
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in Figure 3b. This configuration was adopted for all the analyses discussed below. It
represents a trade-off between the amplitude of the resonance and its sharpness in order to
facilitate reliable measurements for a practical dynamic range of the THz spectrometers
that are available and the measurable scan time window.

To get an understanding of the resonance excitation, additional simulations to visualize
the electromagnetic fields were carried out for both symmetric and asymmetric resonance
frequencies as shown in Figure 4 when l2 = 130 µm. It presents the spatial distributions
of electric (E) and magnetic (H) fields at the surface of the structure for the Fano-like
asymmetric resonance and symmetric dipole resonance modes. It is evident that the electric
and magnetic fields complement each other when it comes to the excitation location. For
instance, the E-field displayed in Figure 4a is confined and maximum in the vertical slots
as well as the horizontal middle slot of the left arm for the asymmetric mode. However,
the H-field is shown in Figure 4c, and it is confined and maximum in the upper and lower
horizontal slots of the left arm. Similar observations can be made for the symmetric mode
shown in Figure 4b,d for the electric and magnetic fields, respectively. However, it is
evident that both arms are excited in the latter case, and the excitation is higher in the right
arm compared to the left one as this arm represents a smaller electrical length and is hence
related to the higher frequency of the dipole resonance mode compared to the asymmetric
resonance mode. Visualizing the fields not only helps in understanding the behavior of the
resonator but also helps in using less analyte to coat some locations only where the field is
highly confined. This way, the THz wave–sample interaction is optimized, and hence the
achieved sensitivity can be as good as covering the whole structure, but with much less
sample material [25].
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Next, we examine the performance of this metasurface as a biosensor for different
glucose samples with various glucose concentration levels covering hypoglycemia, nor-
mal, and hyperglycemia conditions from 54 to 342 mg/dL. As the sample with each
concentration level has a unique dielectric constant value, the dielectric environment of
the metasurface will be modified and this leads to a redshift in the resonance frequency.
Two scenarios have been considered, namely (i) when the glucose sample is applied as
a top layer of the metasurface and (ii) when the metasurface is immersed in the glucose
sample, i.e., sandwiched between the top and bottom layers of the glucose sample as shown
in Figure 1b. In both scenarios, the sample thickness of each layer was swept from 2 to
20 µm. Therefore, it is expected that there will be a minimum and maximum redshift in
the resonance frequency when sample thickness = 2 µm for a glucose concentration level
of 54 mg/dL and sample thickness of 20 µm for the concentration level of 342 mg/dL,
respectively. The results of the two scenarios are presented in Figure 5a,b, respectively. It is
observed that even with a sample thickness of 2 µm and a concentration of 54 mg/dL, there
is a significant redshift of 110.6 GHz as shown in Figure 5a. Moreover, the corresponding
redshift with 20 µm sample thickness and a concentration of 342 mg/dL is 236.1 GHz.
This shows the potential of this sensor to measure a small amount of glucose sample with
small concentration levels in the hypoglycemia range. The latter is deemed to be a serious
condition for diabetic people [65]. Increasing the thickness of the sample and hence the
amount of the sample as presented in Figure 5a leads to an increase in the redshift of the
asymmetric resonance mode. More importantly, different concentration levels such as 111.6,
268.2, and 342 mg/dL show a distinct frequency shift and hence can be discerned from
each other quite easily.

It is also noted that the redshift value starts to saturate beyond a thickness of 10 µm.
Figure 5b for the top and bottom layers scenario reveals a clear improvement in the
performance as the resonance frequency shift is larger compared with the top layer scenario
shown in Figure 5a. The redshift with 20 µm sample thickness and a concentration of
342 mg/dL reaches 286.6 GHz. These results reveal an important advantage of this free-
standing sensor as it can be immersed in the sample. To implement such a scenario
experimentally, a possible configuration would require a cuvette with a thickness in the
propagation direction equal to the top and bottom layers’ thickness. Hence, the free-
standing metasurface can be placed in the middle of such a cuvette.

Next, a traditional assessment of sensing capability was performed. A sample of the
maximum thickness of 20 µm that was used in the previous analysis was considered with
a range of refractive index between 1.2 and 2.0. Figure 6 shows asymmetric resonance
frequency shift for the two scenarios: (i) top layer and (ii) top and bottom layers scenarios.
One of the metrics of design sensitivity that is routinely reported is the slope of the fitting
lines of such results, i.e., the resonance frequency shift in GHz per refractive index unit
(RIU). As this slope increases, it becomes easier to differentiate between two analytes with
close glucose concentration levels. Hence, it is always desirable to increase this slope. The
top layer scenario results are presented in Figure 6 by stars and a green fitting line with a
slope of 160 GHz/RIU, and the top and bottom layers scenario results are shown as circles
and an orange fitting line with a slope of 214 GHz/RIU. Since the latter number is much
larger than the former one, the top and bottom layer scenario has a clear advantage over
the top layer scenario.
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However, these numbers can increase or decrease if the exact resonance frequency is
larger or smaller than the one of the current design, respectively. A more comprehensive
approach is to use the wavelength sensitivity, which is conventionally calculated using the
following formula [25,48]:

S =

∣∣∣∣dλ

dn

∣∣∣∣ = ∆ f
∆n

× co

f 2
r

(1)

where ∆ f is the asymmetric resonance frequency shift, ∆n is the difference in the refractive
index, co is the speed of light in free space, and fr is the resonance frequency. Calculating
the sensitivity using this equation offers a fair assessment as the resonance frequency is
incorporated in the evaluation. The analysis revealed a very high sensitivity level of 241,308
and 322,749 nm/RIU for the design proposed in this paper for both scenarios, respectively.
Simulating the proposed design in Ref. [37] with an overlayer thickness of 20 µm revealed
a wavelength sensitivity of 140,000 nm/RIU. Hence, a factor of 2.3 enhancement was
achieved using the proposed design in this paper compared with the achieved wavelength
sensitivity in the previous study. It is worth mentioning that for a fair comparison among
different configurations and sensors, one should consider at least ten different parameters.
A detailed discussion about these parameters and their effect can be found in Ref. [37].
Nevertheless, the novelty of the proposed design in this paper is based on three aspects.
It is (i) freestanding and hence it can be easily fabricated. Moreover, (ii) it works under
normal incidence, and this enables simple measurement configuration and procedures.
Furthermore, (iii) it offers very high wavelength sensitivity. Hence, excellent performance
can be achieved with a simple fabrication process and conventional experimental setup
based on the transmission mode configuration. It is also worth mentioning that the quasi-
BIC in this study is in the geometry space, which is rather different compared to the design
in the previous study [37] that was in the momentum space.

4. Conclusions

In conclusion, a terahertz metasurface biosensor was proposed based on an asymmetric
S-shaped complementary resonator for glucose concentration level sensing. Moreover, the
design configuration is a free-standing metasurface, and hence a layer of the sample can be
applied as a top layer above the metasurface, or the metasurface can be immersed inside
the sample with a layer on the top and another one on the bottom. When the top layer of
the sample as small as 2 µm is considered with the glucose concentration level of 54 mg/dL
applied as an overlayer on the top, the resulting redshift in the resonance frequency is
110.6 GHz, which is a significant shift that can be easily identified. Moreover, increasing
the glucose concentration level to 342 mg/dL and using 20 µm thick layers, one on the top
and another one on the bottom, increased the redshift to 286.6 GHz, which is almost three
times compared with a 2 µm sample and concentration of 54 mg/dL. Furthermore, a very
high wavelength sensitivity was accomplished of more than 322,000 nm/RIU. Therefore,
this design may pave the way to building glucose concentration level biosensors that can
be easily fabricated and have high performance.
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