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TERAHERTZ-DRIVEN NONLINEAR ELECTRICAL 
TRANSPORT IN SEMICONDUCTOR NANOSTRUCTURES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

C Zhang 

Department zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEngzneerzng Physzcs, Unzverszty of Wollongong, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
New South Wales 2522, Australia 

ABSTRACT 

In this work? we used t.he quant,um tzansport. equat.ion and density matrix fornialism t,o 
ca1culat.e t,he frequency dependent electrical current of a t,wo-dimensional elect.ron gas di- 
rectly driven by an int,ense t.erahertz laser. It. is found that. due t,o increased elect,ron-photon 
coupling, t,he elect,ron-impurit,y scat,t,ering decreases rapidly wit,h the electric field. 

1. INTRODUCTION 

Terahert,z (THz) radiat,ion has been applied to experimental investigat,ion of nonlinear trans- 
port and optical propert,ies in electron gases such as low dimensional semiconductor systems. 
Int,erest,ing new phenomena have been found in recent, years, including resonant, absorption[l], 
photon enhanced hot-electron effect[2,3], THz phot.on-induced impact, ionizat,ion[4], LO- 
phonon bot,tleneck effect,[5], THz photon assist,ed tunneling[6]; THz cyclotron resonance[;], 
T H z  switching effects in tunneling diode[8-10]. Despite t,he rapid development, of terahertz 
phenomena, a theoretical formalism describing the quantum t.ransport in strongly coupled 
elect.ron-photon @ems is lacking. In this paper, me present a t,heoret,ical invest,igation of 
the elect.rica1 current directly driven hy the intense THz radiation field in the presence of 
electron-impurity scattering. %'e calculat,e t,he density matrix of t,he electron-photon syst.em 
to the second order of impurity potential. The t,otal current consists of contribut,ions of suc- 
cessively electron-photon side bands. The strong nonlinear dependence of the real part. of t,he 
current, on the laser field indicates that as the electron-photon coupling becomes stronger, 
t.he electron-impurity scattering decreases rapidly. 

2. FORMALISM OF NONLINEAR ELECTRICAL CURRENT 

Our model system is a t.wo dimensional electron gas under an intense laser radiation. n'e 
choose t,he laser field t,o be along the x-direct.ion, E(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Eo cos(wt)e,, where Eo and w are 
t,he a m p h d e  and frequency of the laser field. For t,he not,at,ional convenience, both fL  and 
the speed of light' c have been set, t,o unit,y. We shall also neglect t,he effect, of the magnetic 
field component of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlaser field since it is smaller than t,he electrical field component by 
t,he factor of c. Let. us choose t,he vect,or potential for the laser field to be in the form 
A = ( E o / w )  sin(wt)e,. The  time-dependent Schrodinger equat.ion for a single electron is 
given as: 

The time-dependent wavefunction can be writt,en as, 

$k(r, t )  = exp(-i2y,wt) exp(iy&.(l -cos(wt)))  exp(iyl sin(2wt)) exp(-&t) exp(ik . r). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 )  
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(eEo)/m*w2 and y1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(eEa)*/(8m*w3). The effect, of electrical field is included 
in t,his wavefunction exact,ly. These wavefunct.ions satisfy t,he orthonormal condit,ion and can 
be used as t.he basis for const.ruct.ing t.he quant,um field operator, 

* ( r , t )  = C a k $ k ( r ; t ) ,  Qt(r , t )  = x d $ c ( r : t ) >  (3) 
k k 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&ak) is t.he creat.ion (annihilat.ion) operat.or for t,he elect.ronic stat,e with monient.um 
k. These field operators satisfy the equal t,ime commutat,ioii relat,ion, {*t(r; t ) ,  G(r', t ) }  = 
b(r - r'). The field operators can also be mrit.ten in t,erms of eigenfunctions of a free elect." 

where b k ( t )  = ak exp(-i2ylwt) exp(iy,k,(l - cos(wt) ) )  exp(iyl sin(2wt)). 
We now calculate the electrical current of syst.em driven by the t,eraliert,z laser due to 

elect,ron-random-impuritg scatt,ering. The Hamilt,onian of the system, in t,he second quantized 
Iiotat,ion, can be writ.ten as, H = Ha + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHe, + Hel.  Here Ha is the Hamiltonian of a non- 
int.eracting many-electron sgst.em, 

(5) 
1 

Ha = - 
2" [p + eA]'bL(t)b,(t), 

He, is t,he e1ect)ron-electron interaction[ll], 

1 1 
He, = - r /bb~+4(t )b~r-q(t )bp, ( t )bp(t )  = j '/saL+q(t)ak-q(t).P~(t)ap(t), (6) 

where Vi = 2ae2/q is t,he Fourier transform of electron-electron int,eraction in t,wo dimensions. 
H,I is the interact,ion between the elect,rons and random impurit,ies, 

P.P'.9 P,P'14 

where me assumed that impurit.ies are singly charged. Ri is t,he poskion of ith impurit,y. The 
total average 2D current, density of the system is defined as, 

Since A = (E /w)  sin(wt)e,, 

where n is the 2D elect.ron concent.ration. The elect.rica1 field is oscillating as cos(&). There- 
fore j, is in the direction of t.he laser field but it.s phase is behind t.he phase of the electrical 
field by T .  All effects on the elect,rical current due to the laser field is contained in the current. 
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We mill use t,he density mat.rix met,hod to evaluat,e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj,. The equat.ion of mot,ion for t.he single- 
elect,ron densit,y mat.rix F(p:p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ k) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( b L ( t ) b p + k ( t ) )  is given as 

+ b(q, t )  - 
9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 1 eiq-Ri [F (p ,  p + k - q) - F(p + q, p + k)] . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(11) 

Here tp = p2/27n* is t,he kinet.ic energy of an elect.ron having nioment,um p, and n(q> t )  = 
1, F(p;p + 4). The t,ime-dependent, current, densit.y j l(t), is now given as 

We have recent,ly developed a method t,o calculat,e the densit.y matrix in a strongly coupled 
elect,ron-phot.on syst,em[ll]. Making use of t.he generating funct,ion for t.he Bessel funct,ion, 
exp[icucos(z)] = l,,zmJm(a) exp(imz) (where J,  is the Bessel function of first. kind), t.he 
der1sit.y mat,rix, the density fluctuation, the total current. can be decomposed into a sum of 
successive harmonics. We solve for t,he electron density mat,rix up t,o t.he second order in 
elect,ron-impurit,y int.eraction, Fl. The solution of t.he m-t,h order densit,y matrix, F,(") is 
given as 

(13) 
F,("') = - Vi2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf p + k  - f P  eik.Ri, 

27rD(k> m w )  tp+k - tp - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmw 

where D(q, mw) = l-V&(q> 7nw) is t,he dielect,ric funct,ion in t,he random-phase-approximation 
and Q(q, w) is t.he the polarizability for free elect.rons. The final result for the elect.ric current 
can be writ,ten as 

For isot,ropic systems, t,he electric current. is along t.lie direct,ion of polarization of the laser 
field. The real part, of t,he elect,ric current, is given as 

We now make use of the following facts: (a) The dielectric function is only dependent on 
the magnitude of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq;  (b) The Bessel functions are symmetric for even m, and ant,isymmetric 
for odd m with respect to t,he argument, qz. Therefore the integration over the direction of q 
will be nonzero for the second term in the curl brackets. The real part, of the elect,ric current 
is now written as? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARESULTS AND DISCUSSIONS 

We have numerically calculat.ed real part. of t.he current. The parameters used in our calcu- 
lation are t,hose of GaAs, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7n* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.067m0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ,  = m*e2/(h2kF) = 1.0. R = kpe&/(m'w') is the 
reduced elecbric field. 

.... ,... .... . . .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
Fig.1. Electrical current as 
a function of the reduced 
electric field R for GaAs- 
based semiconductor 
quantum wells. The solid 
line is for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw=6 THz, the 
dotted line is for w=4 THz, 
and the broken line is for 
w=2 THz. 

Fig.1 shows elect,ric field dependence of t,he real part, of t,he elect,ric current. The real part, of 
the current is a direct, measure of the absorpt,ion of THz photons by t,he electronic system. At, 
weak electric fields or high frequencies, the current, is almost linear in the elect.ric field. The 
electron-photon coupling is inversely proportional to U'. Therefore the absorption increases 
as frequency decreases. At. fixed frequency, as the laser int.ensit,y increases, the current starts 
to deviate from the linear dependence: t,he absorption coefficient j / E  st,art.s to decrease with 
t.lie field int,ensity. This behaviour is a direct. consequence of the electron-impurit.y scattering 
time being affected by electron-phot,on coupling. At low field intensit.y or weak elect,ron- 
phot,on coupling, the scattering time is independent of t'he electric field. As field intensit,y 
increases, elect,rons-photon coupling become stronger and as a consequence, t.he electron- 
impurity scat,t,ering becomes less effective. This reduced elect,ron-impurity scat,t,ering is the 
origin of t.he'reduction of the current. at. high fields. 

REFERENCES 

[l] N. G. Asmar, et al., Phys. Rev. B51, 18041 (1995) 
[2] N. G. Asmar, et al, Appl. Phys. Lett. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA68, 829 (1996) 
[3] W. Xu and C. Zhang, Phys. Rev. B55, 5259 (1997); Appl. Phgs. Lett. 68, 3305 (1996) 
[4] A. G. Markelz, N. G. Asmar, B. Brar, and E. G. Gwin, Appl. Phys. Lett. 69: 3975 (1996) 
[5] B. N. l\/lurdin,et, al.? Phys. Rev. B55 5171 (1997) 
[6] C. J. G. M. Langerak, et. al., Appl. Phys. Let,t,. 67, 3453 (1995) 
[i] T. A. Vaughan,et. al., Phys. Rev. B53 16481 (1996) 
[SI C. Zhang, Appl. Phys. Lett. 78, 418i (2001) 
[9] P. Orellana, F. Claro, and E. Anda, Phys. Rev. B62, 9959 (2000) 
[ lo] P. Orellana and F. Claro, Appl. Phys. Lett. 75, 1643 (1999) 
[ll] C. Zhang, Phys. Rev. B 66, 081105(R) (2002) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

408 




