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Abstract:  We describe a new terahertz imaging method for high-speed image acquisition using a 
compressed sensing phase retrieval algorithm.  This technique permits image reconstruction using a limited 
and randomly chosen subset of a Fourier image. 
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With applications to homeland security, medical imaging, and quality control of packaged goods, 
commercial time-domain THz imaging systems can achieve a spatial resolution of less than 1 mm.  
However, these systems are generally limited by slow image acquisition rate [1,2].  Meanwhile, 
developments of THz imaging techniques using more sophisticated image processing approaches, such as 
the Radon transform [3,4] and interferometric imaging [5], have shown preliminary successes but face 
similar limitations in speed, resolution and/or hardware requirements.  Here we describe a new approach 
which addresses these problems by partial sampling of the amplitude image in the Fourier plane and 
reconstruction of the target based on its spatial structure.  This work is motivated by the possibility of 
reconstructing an image using many fewer measurements than are traditionally required. 

Integral to our approach is a new signal processing scheme that combines the recent theory of 
compressed sensing (CS) [7-9] with traditional phase retrieval (PR) algorithms [6].  Traditional PR 
algorithms recover the Fourier phase from modulus-only measurements of an image’s entire Fourier 
transform.  CS theory enables image recovery from a small, random subset of Fourier measurements 
(magnitude and phase).  In general, an infinite number of signals can be found that match these few 
measurements; CS uses an optimization procedure to find the “best” solution. This notion of “best” is based 
on assumptions of the objects’ spatial structure, e.g., the sparsest solution in terms of some basis.  We 
combine CS and PR to reconstruct the object with a small subset of the Fourier transform modulus.  Our 
Compressed Sensing Phase Retrieval algorithm (CSPR) iterates in a way similar to the classic Hybrid 
Input-Output (HIO) algorithm [6] in order to find the phase of the limited measurements, but in each step 
also performs a CS optimization.  The CS-scheme we use is orthogonal matching pursuit (OMP) [10]. 

Our imaging system consists of a THz transmitter, a receiver, and two lenses, one of which collimates 
the THz beam while the other focuses the beam (Fig. 1). The object mask, placed in between the two 
lenses, diffracts the THz waves. The focusing lens forms the Fourier transform of the object at its focal 
plane. The receiver, mounted on a translation stage, performs a raster scan in the focal plane, over an area 
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Fig.1. (left) THz phase-retrieval compressive imaging experimental setup. (right) A photograph of the object mask, focusing lens 
(partially occluded by the object), and the THz receiver. 



of 64×64 mm, measuring a THz waveform at every 1 mm interval.  We mount a pinhole over the receiver 
antenna so that it only samples a small area of the Fourier pattern (in our case, 1 mm in diameter), rather 
than relying on the ~6 mm receiver aperture.  The object mask is made up of copper tape on a plastic plate. 
In our experiments, our object mask has a T-shaped hole, 35 mm by height and by width. 

Figure 2 compares the traditional image formation via raster scanning and PR to a random scanning 
approach enabled by CS.  The left panel shows the raw data at one particular wavelength (λ = 2.1 mm), 
which is the modulus of the measured pattern in the Fourier plane.  A direct Fourier inversion of this 
pattern, using both amplitude and phase information, would produce a reconstruction of the object with a 
spatial resolution in each dimension given by ∆x = λf/X, where X is the length of the raster scan area (64 
mm, in this case) and f is the focal length of the focusing lens (120 mm).  Thus we obtain a resolution of ∆x 
= 3.93 mm in both dimensions, at the chosen wavelength. 

To compare traditional PR to CS, we first down-sample the original 4096 measurements to a 20×20 
grid, which is the minimum size required for an accurate reconstruction using PR.  We then reconstruct the 
object accurately with the HIO algorithm.  Then, using only 150 measurements randomly selected from the 
4096 measurements, we reconstruct the image with our CSPR algorithm.  We observe from Figure 2 that 
CSPR can reconstruct an image with fewer measurements than PR, thus decreasing the required acquisition 
time.  In addition, the CSPR image has a superior signal-to-noise (S/N), 26.5dB, with improved 
background suppression, compared to 19.6dB in PR.  However, CSPR has longer post-processing time (30 
seconds, vs. 1 second for PR) and does not always converge to the correct image.  The origins of this 
convergence issue are under investigation. 

 
Fig. 2 (left) Acquired THz data in Fourier plane (modulus of Fourier transform) at wavelength λ = 2.1mm. Red and blue colors 

indicate large and small pixel values respectively. Object reconstructed via PR (middle) with 400 measurements and CSPR (right) 
with only 150 measurements. Dark areas have small pixel values. Object reconstructed from PR/CSPR can be shifted or inverted. 

 
We believe that the advantages of CSPR over PR will become more significant when we modify the 

system to image a larger object at a higher resolution.  In particular, the fact that a randomly selected subset 
of the image data is adequate for image reconstruction is a significant advantage, because it means that a 
fixed collection of randomly generated masks can be used to collect data for any arbitrary image. 
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