Terahertz laser spectroscopy of the water dimer intermolecular vibrations. I. $\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$

L. B. Braly, J. D. Cruzan, ${ }^{\text {a) }}$ K. Liu, ${ }^{\text {b) }}$ R. S. Fellers, ${ }^{\text {c) }}$ and R. J. Saykally ${ }^{\text {d) }}$
Department of Chemistry, University of California, Berkeley, California 94720

(Received 24 January 2000; accepted 6 March 2000)

Abstract

Terahertz laser VRT spectra of the water dimer consisting of 731 transitions measured with an average precision of 2 MHz and involving four $\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$ intermolecular vibrations (one previously published) have been measured between 65 and $104 \mathrm{~cm}^{-1}$. The precisely determined energy level patterns differ both qualitatively and quantitatively from the predictions of several dimer potentials tested, and reveal an ordering of the intermolecular vibrations which differs dramatically from that predicted by standard normal mode analysis. Strong coupling is indicated between the low barrier tunneling motions and the intermolecular vibrations as well as among different vibrations. Particularly, the $83 \mathrm{~cm}^{-1}$ (acceptor wag) and $90 \mathrm{~cm}^{-1}\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$ (acceptor twist) vibrations interact through a Coriolis perturbation. These spectra provide the basis for our recent determination of the water pair potential. The corresponding data set for $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ is presented in an accompanying paper. © 2000 American Institute of Physics. [S0021-9606(00)00721-2]

I. INTRODUCTION

Recent work has shown that it is possible, in principle, to quantitatively determine the force field for liquid water and ice through the detailed study of small water clusers. ${ }^{1-3}$ Analysis of the interaction energies of these clusters indicates that the major component is the pair potential, accounting for perhaps 70% of the binding energy. ${ }^{4}$ Moreover, the principal constituent of the three-body, as well as the much smaller four- and higher-body terms is induction (polarization), which is already contained in the pair potential if the low-order multipole moments and polarizability are properly included. The pair potential thus accounts for most ($>90 \%$) of the cohesive energy of liquid and solid water, with the remainder due mostly to the three-body exchange forces. It is therefore necessary to begin with a rigorously accurate pair potential in order to properly describe liquid water and ice. Despite great effort, this crucial step eluded previous researchers.

The water pair potential can be accessed experimentally through indirect inversion of the infrared and terahertz VRT spectra of the water dimer, as has been accomplished for simpler cases such as $\mathrm{Ar}-\mathrm{H}_{2} \mathrm{O},{ }^{5} \mathrm{Ar}-\mathrm{NH}_{3},{ }^{6}$ and $(\mathrm{HCl})_{2},{ }^{7}$ and $\left(\mathrm{NH}_{3}\right)_{2} .{ }^{8}$ The intermolecular vibrations of such complexes sensitivily sample both the repulsive wall and the attractive well of an intermolecular potential surface (IPS), and the associated hydrogen bond rearrangement tunneling splittings rigorously constrain the detailed topology. While the computational effort required to extract the detailed IPS for a sixdimensional system like the water dimer is formidable, this has recently been accomplished. ${ }^{3}$ In this and the accompany-

[^0]ing paper, we present the results from our measurement and analysis of extensive terahertz VRT spectra of $\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$ and $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ that provided the basis for our recent determination of the IPS. ${ }^{3}$

A. Hydrogen bond rearrangement tunneling in the water dimer

It is apparent from microwave and infrared studies that the water dimer is a highly nonrigid, near prolate top molecule (Fig. 1) that undergoes several simultaneous tunneling motions within the molecular framework. ${ }^{9,10}$ These motions lead to a complicated VRT spectrum. This is now a familiar behavior of weakly bound systems, as observed in a number of hydrogen bonded dimers including $(\mathrm{HCl})_{2}$ (Ref. 7) and $\left(\mathrm{NH}_{3}\right)_{2} \cdot{ }^{11}$ In order to describe the VRT spectra, of such molecules, it is first essential to identify the permutationinversion (PI) group and to classify the molecular energy levels. Dyke used the G_{16} group for the water dimer to successfully interpret his microwave spectra in a 1977 paper. ${ }^{10}$ The following description is derived from the cumulative work of Dyke, ${ }^{9,12}$ Hougen, ${ }^{13}$ Coudert and Hougen, ${ }^{14}$ and Pugliano et al. ${ }^{15,16}$

There are 16 equivalent structures of the water dimer that can be generated without breaking chemical bonds. Permutation of identical nuclei gives rise to eight equivalent structures. Inversion of these structures through the center of mass generates eight more configurations. The dimer tunnels along low-energy barrier pathways on the six-dimensional intermolecular potential energy surface (IPS) to access the different structures. If the equilibrium structure contains a plane of symmetry, as the available evidence strongly supports, then there are only eight unique minima on the six dimensional (6D) IPS.

The corresponding PI symmetry group $\left(G_{16}\right)$, is used to explain the resulting splittings in the revibrational energy levels. G_{16} is isomorphic with the $D_{4 h}(M)$ point group and

FIG. 1. The vibrationally averaged water dimer structure. $R_{\mathrm{O}-\mathrm{O}}=2.94 \AA$, $\theta_{a}=41^{\circ}, \phi_{d}=58^{\circ}, \phi_{a}=90^{\circ}, \phi_{d}=0^{\circ}$, and $\chi=180^{\circ}$. Structure calculated using DQMC on VRT(ASP-W) (Ref. 1).
is consistent with the observed VRT dynamics. The water dimer samples the eight distinct minima on the 6D IPS by tunneling via three low energy barrier pathways. ${ }^{17,18}$ In the correlation diagram in Fig. 2, energy levels for $J=0, K_{a}$ $=0$ and $J=1, K_{a}=0$ of the semirigid framework are labeled by vibrational symmetry A^{\prime} and $A^{\prime \prime}$, respectively, corresponding to the C_{s} subgroup.

1. Acceptor switching (AS)

The acceptor switching (AS) rearrangement pathway (Fig. 3) has the lowest energy barrier, estimated to be 130 cm^{-1} on the IPS of Coker and Watts ${ }^{14}$ and $157 \mathrm{~cm}^{-1}$ on the VRT(ASP-W) potential of Fellers et al. ${ }^{3}$ This motion allows exchanges of the protons in the water molecule acting as the H -bond acceptor. The tunneling pathway beings with a flip of the acceptor monomer followed by a rotation of the donor monomer about its $\mathrm{O}-\mathrm{H}$ bond. A 180° rotation of the complex about the $\mathrm{O}-\mathrm{O}$ bond completes the pathway and returns the dimer to a permutationally distinct equivalent version. While the actual pathway includes three separate rotations within the dimer, the net effect is a C_{2} rotation of the acceptor about its symmetry axis. Each rovibrational energy level of the semirigid water dimer is split into two by this tunneling motion. When this motion is included, the symmetry group becomes $C_{2 v}(M)$, and the resulting energy levels are labeled A_{1} / B_{1} and A_{2} / B_{2} as shown in Fig. 2.

2. Interchange (I)

The next most feasible tunneling motion is labeled as interchange (I), in which the roles of the individual donor and acceptor water molecules are exchanged. The effect is to split each of the $C_{2 v}(M)$ energy levels into three but by a much smaller degree than for acceptor switching tunneling. The VRT states are now labeled in the $G_{16}\left[D_{4 h}(M)\right]$ molecular symmetry group as $A_{1}^{+} / E_{1}^{+} / B_{1}^{+}$and $A_{2}^{-} / E_{2}^{-} / B_{2}^{-}$for $J=0 K_{a}=0$. The $E(\pm)$ states are doubly degenerate. These two tunneling motions resolve all possible degeneracies in the water dimer eigenstates.

There are two possible pathways which produce this net effect, with the lowest barrier associated with the geared interchange $[I(g)]$ motion shown in Fig. 3. This motion begins

FIG. 2. Correlation diagram for the VRT levels of the water dimer in G_{16}. The bold print represents the three tunneling splittings or shift. The letters which are not in boldface are symmetry levels labeled using the G_{16} molecular symmetry group.
with a rotation of the acceptor monomer about its C_{2} symmetry axis and a rotation of the donor in the θ_{d} angle to form the trans- transition state structure shown in Fig. 3. The pathway continues with rotation of the θ_{a} so that now the acceptor is the donor and a rotation of the donor about its C_{2} axis such that it becomes the acceptor. The pathway is completed when the complex undergoes 180° end-over-end rotation. Recent calculations on the VRT(ASP-W) potential energy surface show that this pathway has a barrier of $207 \mathrm{~cm}^{-1}$ (Ref. 3) compared to the calculations by Coudert and Hougen ${ }^{14}$ on the potential of Coker and Watts which estimates this barrier to be $800 \mathrm{~cm}^{-1}$.

Coudert and Hougen ${ }^{17}$ later identified the antigeared interchange $[I(a g)]$ pathway as contributing significantly in their fit of the available $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ data at the time to their local internal axis method (IAM) model. In this model, the effect of this tunneling manifests itself as a difference in the Interchange splitting of the A_{1} / B_{1} states and the A_{2} / B_{2} states. In the ground state, $K_{a}^{\prime \prime}=0$ energy levels, the total I of the A_{1} / B_{1} states is

$$
I=I(g)+I(a g)=22.6 \mathrm{GHz}
$$

and in the A_{2} / B_{2} states, it is

$$
I=I(g)-I(a g)=19.5 \mathrm{GHz}
$$

Interchange Tunneling, barrier $-207 \mathrm{~cm}^{-1}$ trans-, $400-500 \mathrm{~cm}^{-1}$ cis-transition state.

Bifurcation Tunneling, barrier $\sim 394 \mathrm{~cm} .^{-1}$

FIG. 3. The three tunneling pathways. These pathways (Ref. 18) have the lowest barriers. The interchange pathway includes the geared and antigeared versions of the tunneling motion with the geared motion having the lower barrier. Reported barrier heights are for VRT(ASP-W) (Ref. 1).

In their analysis, Coudert and Hougan determined that $I(g)$ is 21 GHz and $I(a g)$ is 1.6 GHz such that $I(a g)$ makes up $<5 \%$ of the total interchange splitting in the ground state. No antigeared pathway was found on VRT(ASP-W). However, three slightly different cis-transition states were identified on VRT(ASP-W) also having geared pathways. These barrier heights in the range of $400-500 \mathrm{~cm}^{-1}$, slightly higher than that of the trans-transition state. ${ }^{3}$

3. Bifurcation (B)

The final rearrangement identified is Bifurcation tunneling (B) wherein the H -bond donor permutes its protons (Fig. 3). The barrier to this motion is estimated to be about 1000 cm^{-1} in Ref. 14 and $394 \mathrm{~cm}^{-1}$ by VRT(ASP-W). ${ }^{3}$ The result is a small shift of the rovibrational energy levels, but no further splitting occurs since all degeneracies are already resolved by the acceptor switching and interchange. The donor monomer moves into a "bifurcated'" hydrogen bond transition state wherein each of its protons shares one half of the hydrogen bond. ${ }^{18}$ The net effect is a C_{2} rotation of the donor about its symmetry axis.

The projection of the molecular electric dipole moment along an axis fixed in space is invariant to permutation of identical nuclei changes sign under E^{*}. Therefore, this operator transforms like A_{1}^{-}in G_{16}. This leads to the overall selection rules $\quad A_{1}^{+} \leftrightarrow A_{1}^{-}, \quad B_{1}^{+} \leftrightarrow B_{1}^{-}, \quad A_{2}^{+} \leftrightarrow A_{2}^{-}$, $B_{2}^{+} \leftrightarrow B_{2}^{-}, \quad E^{+} \leftrightarrow E^{-}$(Ref. 10).

The fully deuterated dimer has 81 spin functions. The total wave function must be symmetric for bosons in the

FIG. 4. The six normal mode intermolecular vibrations of the water dimer. These were determined and labeled in Ref. 19.
cases of both even and odd permutations of nuclei. The wave functions transform like A_{1}^{+}or A_{1}^{-}in G_{16}. The nuclear spin weights are A_{1}^{+} / A_{1}^{-}(Ref. 21), B_{1}^{+} / B_{1}^{-}(Ref. 15), A_{2}^{+} / A_{2}^{-} (Ref. 3), B_{2}^{+} / B_{2}^{-}(Ref. 6), E^{+} / E^{-}(Ref. 18).

There are no missing transitions in the $\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$ spectra. The intensity of a transition will follow the nuclear spin weights if the linewidth is greater than the hyperfine splittings. This is the case for infrared and far infrared spectroscopies, but microwave spectroscopy has the capacity to resolve the hyperfine splittings.

B. The intermolecular vibrations

A normal mode analysis was performed by Reimer and Watts ${ }^{19}$ on their RWK2 ${ }^{20}$ IPS. There are 12 normal modes for the water dimer; six correspond to intramolecular vibrations and six correspond to intermolecular vibrations. These six intermolecular modes are shown and labeled in Fig. 4 according to the Reimer and Watts scheme. The Reimer and Watts harmonic vibrational frequencies for $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ are given in Table I along with the anharmonic intermolecular vibrational frequencies determined from VRT(ASP-W) ${ }^{1}$ for both $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ and $\left(\mathrm{D}_{2} \mathrm{O}\right)_{2} .{ }^{2}$ It is well known that the actual intermolecular vibrations in very floppy hydrogen bonded clusters often occur at frequencies as low as half of the calculated harmonic values, and that the atomic motions are not as simple as those shown. They are more likely to be linear combinations of the normal modes. However, when discussing these vibrations, these normal vibration labels will be used and connections to them made whenever possible.

TABLE I. Predictions for the six intermolecular vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$.

Vibration	Harmonic approx. ${ }^{\text {a }}$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$	$\begin{aligned} & \text { VRT(ASP-W)II } \\ & \left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \end{aligned}$	$\begin{aligned} & \text { VRT(ASP-W)II } \\ & \left(\mathrm{D}_{2} \mathrm{O}\right)_{2} \end{aligned}$
H -bond torsion	141	90	69
Acceptor twist	147	119	78
Acceptor wag	155	105	80
$\mathrm{O}-\mathrm{O}$ stretch	185	150	135
In-plane bend	342	142	115
Out-of-plane bend	632	na	na

${ }^{\text {a }}$ Harmonic approximation using RWK2 (Ref. 19).
${ }^{\mathrm{b}}$ Results from the VRT(ASP-W)II (Ref. 3).

The lowest energy normal mode is the donor torsion $\left(\nu_{12}\right)$. This mode involves only the donor molecule with its free hydrogen rotating about the donor $\mathrm{O}-\mathrm{H}$ bond (or the donor monomer symmetry axis, ϕ_{d}). It is labeled with $A^{\prime \prime}$ symmetry, because the motion is out of the plane of symmetry, as opposed to A^{\prime} vibrations for which the motion is in the plane of symmetry.

The next two lowest vibrations are close in energy: the acceptor twist (ν_{11}) and the acceptor wag (ν_{8}). The acceptor twist ($A^{\prime \prime}$) allows the acceptor monomer to rotate about its C_{2} axis by ϕ_{a}. The acceptor wag (A^{\prime}) involves rotation of the acceptor monomer in the θ_{a} coordinate. In other words, the motion is through the angle that is created between the acceptor C_{2} axis and the molecular center-of-mass coordinate or the hydrogen bond.

The A^{\prime} in-plane donor bend $\left(\nu_{6}\right)$ involves motion of the donor monomer C_{2} axis with respect to the hydrogen bond, or θ_{d}. It is similar to the acceptor wag except that it directly strains the hydrogen bond, thus making it higher in energy. The out-of-plane donor bend $\left(\nu_{10}\right)$ is an $A^{\prime \prime}$ vibration which is characterized by a rotation about the dihedral angle (χ) that is measured between the C_{2} axes of the monomers. This motion also strains the hydrogen bond and is similarly expected to occur at relatively high frequency.

The $A^{\prime} \mathrm{O}-\mathrm{O}$ stretch $\left(\nu_{7}\right)$, or hydrogen bond stretch, is the last of the intermolecular vibrations described here. As the name suggests it is the vibration along the center-of-mass coordinate or hydrogen bond. It is expected to have a weak spectrum due to the small change in the dipole moment. Analysis of the ground state centrifugal distortion constants predicts this vibration to occur near $150 \mathrm{~cm}^{-1} .^{12,14}$

II. EXPERIMENT

Terahertz laser spectroscopy is a direct absorption technique characterized by high sensitivity (ca. 1×10^{-6} minimum detectable fractional absorption) and high resolution (ca. 1×10^{-6} or 1 MHz) and currently operates in the frequency range $1-4.5 \mathrm{THz}\left(30-150 \mathrm{~cm}^{-1}\right)$. This technique is used to directly probe and characterize the weak bonds of van der Waals and hydrogen-bonded clusters and has been used in studies of water clusters as large as the hexamer. ${ }^{21-24}$ The first study of the water dimer with this approach was reported by Busarow et al. in 1989. ${ }^{25}$

TABLE II. Terahertz laser list.

Freq./GHz	Freq./cm ${ }^{-1}$	Gas
1626.6026	54.2576	$\mathrm{CH}_{2} \mathrm{~F}_{2}$
1838.8393	61.3371	$\mathrm{CH}_{3} \mathrm{OH}$
1891.2743	63.0861	$\mathrm{CH}_{2} \mathrm{~F}_{2}$
1987.7989	66.3058	$\mathrm{CH}_{2} \mathrm{DOH}$
2058.1418	68.6522	$\mathrm{CH}_{3} \mathrm{OD}$
2216.2634	73.9266	$\mathrm{CH}_{2} \mathrm{~F}_{2}$
2252.0541	75.1204	$\mathrm{CH}_{2} \mathrm{DOH}$
2409.2932	80.3654	$\mathrm{CH}_{2} \mathrm{~F}_{2}$
2447.9685	81.6554	$\mathrm{CD}_{3} \mathrm{OH}$
2522.7815	84.1509	$\mathrm{CH}_{3} \mathrm{OH}$
2546.495	84.9419	$\mathrm{CH}_{2} \mathrm{~F}_{2}$
2633.8991	87.8574	${ }^{13} \mathrm{CH}_{3} \mathrm{OH}$
2714.7151	90.5531	${ }^{13} \mathrm{CH}_{3} \mathrm{OH}$
2742.946	91.4948	$\mathrm{CH}_{2} \mathrm{~F}_{2}$
2907.0889	96.97	$\mathrm{CH}_{3} \mathrm{OD}$
3105.9368	103.6029	$\mathrm{CH}_{3} \mathrm{OH}$
3239.4614	108.0568	$\mathrm{CH}_{3} \mathrm{OH}$
3356.8304	111.9718	$\mathrm{CH}_{3} \mathrm{OD}$
3494.4413	116.562	${ }^{13} \mathrm{CH}_{3} \mathrm{OH}$
3690.7231	123.1093	$\mathrm{~N}_{2} \mathrm{H}_{2}$

The Berkeley terahertz spectrometers have been described in detail elsewhere ${ }^{26-28}$ and are similar to the instrument originally built in 1985 but with several modifications introduced in recent years to increase the spectral range and the concentration of large (>3) water clusters. ${ }^{29-31}$ The water dimer is easily observed under these new conditions. What follows is a brief overview of the spectrometer and pulsed slit jet source with specifics on the far infrared laser gases (Table II) used to obtain the water dimer data discussed here.

The output from a line tunable CO_{2} laser (operating power of $70-150 \mathrm{~W}$) is used to longitudinally pump a line tunable far infrared (FIR) laser. The fixed frequency far in-

FIG. 5. $83 \mathrm{~cm}^{-1}\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$ stick spectrum, acceptor wag $\left(\nu_{8}\right)$. Three hundred sixty-three a - and c-type transitions with $K_{a}=0 \rightarrow 0,0 \rightarrow 1,1 \rightarrow 0$, and $1 \rightarrow 1$ observed. Maximum signal-to-noise for a-type $\sim 50: 1$ and for c-type $\sim 100: 1$, linewidth $\sim 2 \mathrm{MHz}$.

TABLE III. $83 \mathrm{~cm}^{-1}\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$ band, acceptor wag $\left(\nu_{8}\right)$ transition frequencies (MHz). Residuals (observed-calculated) are in italics.

Transition		A_{1}^{+}, B_{1}^{-}	Obs-Calc		E^{+}, E^{-}	Obs-Calc		B_{1}^{+}, A_{1}^{-}	Obs-Calc
$K_{a}=0 \rightarrow 0$ a-type transitions									
$8_{08} \leftarrow 9_{09}$				E^{-}	2377482.7	-1.8			
$7_{07} \leftarrow 8_{08}$				E^{+}	2388845.2	-2.9	B_{1}^{+}	2386140.1	-1.0
$6_{06} \leftarrow 7_{07}$				E^{-}	2400163.8	-0.7	A_{1}^{-}	2397484.1	-0.3
$5_{05} \leftarrow 6_{06}$	A_{1}^{+}	2413992.7	0.2	E^{+}	2411430.4	2.9	B_{1}^{+}	2408772.0	0.6
$4_{04} \leftarrow 5_{05}$	B_{1}^{-}	2425178.7	-0.5	E^{-}	2422632.1	-0.2	A_{1}^{-}	2419997.1	-0.4
$3_{03} \leftarrow 44_{04}$				E^{+}	2433776.6	2.2	B_{1}^{+}	2431158.9	1.5
$2_{02} \leftarrow 3_{03}$				E^{-}	2444850.3	-0.2	A_{1}^{-}	2442245.4	-2.1
$1_{01} \leftarrow 2_{02}$	A_{1}^{+}	2458372.1	0.7	E^{+}	2455859.9	2.0	B_{1}^{+}	2453263.2	-1.3
$0_{00} \leftarrow 1_{01}$				E^{-}	2466794.7	0.2	A_{1}^{-}	2464203.9	-2.0
$1_{01} \leftarrow 0_{00}$	A_{1}^{+}	2490963.6	-2.0	E^{+}	2488450.9	0.4	B_{1}^{+}	2485863.8	7.8
$2_{02} \leftarrow 1_{01}$	B_{1}^{-}	2501652.4	0.3	E^{-}	2499167.7	-1.1	A_{1}^{-}	2496564.9	1.2
$3_{03} \leftarrow 2_{02}$	A_{1}^{+}	2512350.3	1.0	E^{+}	2509814.7	0.7	B_{1}^{+}	2507194.0	0.0
$4_{04} \leftarrow 3_{03}$	B_{1}^{-}	2522941.4	3.4	E^{-}	2520381.1	-6.1	A_{1}^{-}	2517748.7	0.4
$5_{05} \leftarrow 44_{04}$	A_{1}^{+}	2533456.3	-3.1	E^{+}	2530892.3	2.5	B_{1}^{+}	2528230.3	1.4
$6_{06} \leftarrow 5_{05}$	B_{1}^{-}	2543915.3	0.0	E^{-}	2541327.1	3.2	A_{1}^{+}	2538641.2	2.7
$7_{07} \leftarrow 6_{06}$	A_{1}^{+}	2554306.4	-1.6	E^{+}	2552693.8	1.4	B_{1}^{+}	2548979.7	-0.9
$8_{08} \leftarrow 7_{07}$	B_{1}^{-}	2564641.6	1.2	E^{-}	2561999.5	0.5	A_{1}^{-}	2559258.3	-0.8
$9_{09} \leftarrow 8_{08}$	A_{1}^{+}	2574916.0	0.1	E^{+}	2572250.5	2.3	B_{1}^{+}	2569479.7	1.4
$10_{010} \leftarrow 9_{09}$				E^{-}	2582444.6	-1.0	A_{1}^{-}	2579642.3	-0.4
Transition		A_{2}^{+}, B_{2}^{-}	Obs-Calc		E^{+}, E^{-}	Obs-Calc		B_{2}^{+}, A_{2}^{-}	Obs-Calc
$9_{09} \leftarrow 10_{010}$	B_{2}^{-}	2364286.6	-2.0	E^{-}	2366644.0	-7.6			
$8_{08} \leftarrow 9_{09}$	A_{2}^{+}	2375573.0	-1.3	E^{+}	2377935.1	-1.8			
$7_{07} \leftarrow 8_{08}$	2	2386814.9	-1.1	E^{-}	2389174.8	-4.9			
$6_{06} \leftarrow 7_{07}$	${ }_{2}^{+}$	2398012.9	-0.3				B_{2}^{+}	2402467.3	0.5
$5_{05} \leftarrow 6_{06}$	B_{2}^{-}	2409166.3	1.2	E^{-}	2411533.2	1.5	A_{2}^{-}	2413615.7	0.7
$4_{04} \leftarrow 5_{05}$	A_{2}^{+}	2420271.2	-0.1	E^{+}	2422638.4	-0.1	B_{2}^{+}	2424710.1	-5.3
$3_{03} \leftarrow 4{ }_{04}$	B_{2}^{-}	2431329.6	-0.1	E^{-}	2433696.6	-1.5	A_{2}^{-}	2435765.0	-3.7
$2_{02} \leftarrow 3_{03}$	A_{2}^{+}	2442338.6	-2.3	E^{+}	2444710.9	0.2			
$1_{01} \leftarrow 2_{02}$	B_{2}^{-}	2453305.7	1.7	E^{-}	2455673.1	-2.0	A_{2}^{-}	2457735.4	0.5
$0_{00} \leftarrow 1_{01}$				E^{+}	2466590.3	0.3	B_{2}^{+}	2468646.8	-0.7
$1_{01} \leftarrow 0_{00}$	B_{2}^{-}	2485897.2	1.2	E^{-}	2488267.3	-0.5	A_{2}^{-}	2490329.5	0.7
$2_{02} \leftarrow 1_{01}$	A_{2}^{+}	2496658.2	0.2	E^{+}	2499030.1	1.1	B_{2}^{+}	2501097.1	1.6
$3_{03} \leftarrow 2_{02}$	B_{2}^{-}	2507368.4	0.7	E^{-}	2509738.4	0.7	A_{2}^{-}	2511812.7	1.6
$4_{04} \leftarrow 3_{03}$	A_{2}^{+}	2518022.9	-1.5	E^{+}	2520390.6	-2.8	B_{2}^{+}	2522475.6	1.7
$5_{05} \leftarrow 4_{04}$	B_{2}^{-}	2528628.4	1.2	E^{-}	2530996.8	0.9	A_{2}^{-}	2533081.3	-0.6
$6_{06} \leftarrow 5_{05}$	A_{2}^{+}	2539173.3	1.6	E^{+}	2541542.0	4.1	B_{2}^{+}	2543636.2	1.3
$7_{07} \leftarrow 6_{06}$	B_{2}^{-}	2549663.1	1.4	E^{-}	2552025.9	1.1	A_{2}^{-}	2554135.1	0.5
$8_{08} \leftarrow 7_{07}$	A_{2}^{+}	2560094.0	-0.3	E^{+}	2562456.9	3.3	B_{2}^{+}	2564573.7	-4.6
$9_{09} \leftarrow 8_{08}$	B_{2}^{-}	2570467.5	-1.1	E^{-}	2572826.9	3.6	A_{2}^{-}	2574962.9	-2.1
$10_{010} \leftarrow 9_{09}$	A_{2}^{+}	2580785.9	2.3	E^{+}	2583135.7	2.3	B_{2}^{+}	2585296.4	2.8
Transition		A_{1}^{+}, B_{1}^{-}	Obs-Calc		E^{+}, E^{-}	Obs-Calc		B_{1}^{+}, A_{1}^{-}	Obs-Calc
				-	-type transition				
$4_{13} \leftarrow 5_{14}$	B_{1}^{-}	2356464.8	0.8	E^{-}	2349744.1	0.2			
$3_{12} \leftarrow 4_{13}$	A_{1}^{+}	2367399.4	0.9	E^{+}	2360644.3	2.0	B_{1}^{+}	2354484.6	0.1
$2_{11} \leftarrow 3_{12}$	B_{1}^{-}	2378321.8	0.4	E^{-}	2371539.1	2.1	A_{1}^{-}	2365352.3	1.1
$1_{10} \leftarrow 2_{11}$	A_{1}^{+}	2389226.1	-5.6	E^{+}	2382429.7	0.2			
$1_{10} \leftarrow 1_{11}$	A_{1}^{+}	2411026.6	-2.3				B_{1}^{+}	2398020.5	-2.9
$2_{11} \leftarrow 2_{12}$	B_{1}^{-}	2411066.4	1.6				A_{1}^{-}	2398094.0	-0.3
$3_{12} \leftarrow 3_{13}$	A_{1}^{+}	2411120.6	1.9				B_{1}^{+}	2398202.6	1.7
$4_{13} \leftarrow 4_{14}$	B_{1}^{-}	2411193.6	2.9				A_{1}^{-}	2398345.7	2.6
$2_{11} \leftarrow 1_{10}$	B_{1}^{-}	2432731.2	1.4	E^{-}	2425944.1	-0.4	A_{1}^{-}	2419758.8	0.6
$3_{12} \leftarrow 2_{11}$	A_{1}^{+}	2443565.2	0.7	E^{+}	2436810.3	3.5	B_{1}^{+}	2430649.2	4.1
$4_{13} \leftarrow 3_{12}$	B_{1}^{-}	2454383.8	1.9	E^{-}	2447663.8	4.7	A_{1}^{-}	2441536.1	3.8
$5_{14} \leftarrow 4_{13}$	A_{1}^{+}	2465184.1	2.8	E^{+}	2458502.0	2.6	B_{1}^{+}	2452419.7	0.3
$6_{15} \leftarrow 5_{14}$	B_{1}^{-}	2475956.8	-5.1	E^{-}	2469328.6	3.4			
$7_{16} \leftarrow 6_{15}$				E^{+}	2480132.1	-1.8			
$3_{13} \leftarrow 4_{14}$	B_{1}^{-}	2367392.5	-3.1	E^{-}	2360644.3	3.2		2354452.9	-4.0
$2_{12} \leftarrow 3_{13}$	A_{1}^{+}	2378350.6	-2.4					2365368.9	-3.8
$1_{11} \leftarrow 2_{12}$				E^{-}	2382471.7	-0.2		2376262.7	-4.3

TABLE III. (Continued.)

Transition		A_{1}^{+}, B_{1}^{-}	Obs-Calc		E^{+}, E^{-}	Obs-Calc		B_{1}^{+}, A_{1}^{-}	Obs-Calc
$2_{12} \leftarrow 2_{11}$	A_{1}^{+}	2410795.4	-3.4						
$3_{13} \leftarrow 3_{12}$	B_{1}^{-}	2410584.0	-2.8						
$4_{14} \leftarrow 4_{13}$	A_{1}^{+}	2410301.5	-2.8						
$2_{12} \leftarrow 1_{11}$	A_{1}^{+}	2432594.2	-1.9	E^{+}	2425808.1	-3.3		2419610.4	-2.3
$3_{13} \leftarrow 2_{12}$		2443326.2	-4.0	E^{-}	2436568.1	-5.6		2430384.0	-3.1
$4_{14} \leftarrow 3_{13}$	A_{1}^{+}	2454021.7	-2.8	E^{+}	2447295.4	-8.3		2441134.3	-1.0
$5_{15} \leftarrow 4_{14}$								2451856.0	-0.4
$6_{16} \leftarrow 5_{15}$	A_{1}^{+}	2475290.5	0.0						
$7_{17} \leftarrow 6_{16}$				E^{+}	2479278.6	0.9		2473215.3	0.3
Transition		A_{2}^{+}, B_{2}^{-}	Obs-Calc		E^{+}, E^{-}	Obs-Calc		B_{2}^{+}, A_{2}^{-}	Obs-Calc
$5_{14} \leftarrow 6_{15}$				E_{2}^{-}	2475047.6	-5.0	A_{2}^{-}	2477963.4	4.7
$4_{13} \leftarrow 5_{14}$	B_{2}^{-}	2483938.5	3.4	E_{2}^{+}	2486767.3	-0.7	B_{2}^{+}	2489739.0	1.0
$3_{12} \leftarrow 4_{13}$	A_{2}^{+}	2495447.0	0.5	E_{2}^{-}	2498314.5	-1.0	A_{2}^{-}	2501336.2	0.8
$2_{11} \leftarrow 3_{12}$	B_{2}^{-}	2506804.9	4.1	E_{2}^{-}	2509696.0	-1.3	B_{2}^{+}	2512759.0	5.0
$1_{10} \leftarrow 2_{11}$				E_{2}^{-}	2520909.4	-5.5			
$1_{10} \leftarrow 1_{11}$	B_{2}^{-}	2539842.8	1.0	E_{2}^{+}	2542757.1	2.2	B_{2}^{+}	2545836.7	-0.9
$2_{11} \leftarrow 2_{12}$	A_{2}^{+}	2539647.1	-0.1	E_{2}^{-}	2542548.6	4.2	A_{2}^{-}	2545603.3	-1.4
$3_{12} \leftarrow 3_{13}$	B_{2}^{-}	2539356.9	0.1	B_{2}^{+}	2542227.1	0.6	B_{2}^{+}	2545250.5	-2.4
$4_{13} \leftarrow 4_{14}$				E_{2}^{-}	2541798.6	-0.1			
$2_{11} \leftarrow 1_{10}$				E_{2}^{+}	2564149.5	3.4	B_{2}^{+}	2567201.4	-4.3
$3_{12} \leftarrow 2_{11}$	B_{2}^{-}	2571664.8	-2.3	E_{2}^{-}	2574540.0	3.3	A_{2}^{-}	2577557.1	-4.8
$4_{13} \leftarrow 3_{12}$	A_{2}^{+}	2581925.6	2.8	E_{2}^{+}	2584757.1	1.8			
$5_{14} \leftarrow 4_{13}$				E_{2}^{-}	2594799.0	1.8	A_{2}^{-}	2597713.9	-1.4
$6_{15} \leftarrow 5_{14}$	A_{2}^{+}	2601927.0	-0.1						
$7_{16} \leftarrow 6_{15}$	B_{2}^{-}	2611660.6	-3.8						
$5_{15} \leftarrow 6_{16}$				E_{2}^{-}	2475285.6	-3.9			
$4_{14} \leftarrow 5_{15}$	A_{2}^{+}	2483958.0	1.4	E_{2}^{+}	2486959.0	-1.1			
$3_{13} \leftarrow 4_{14}$	B_{2}^{-}	2495493.2	-0.4	E_{2}^{-}	2498474.6	-3.5	B_{2}^{+}	2501553.2	-2.0
$2_{12} \leftarrow 3_{13}$	A_{2}^{+}	2506874.5	0.1	E_{2}^{+}	2509831.5	-2.1			
$1_{11} \leftarrow 2_{12}$				E_{2}^{-}	2521022.2	3.2	B_{2}^{+}	2524106.7	-2.3
$1_{11} \leftarrow 1_{10}$	A_{2}^{+}	2539683.6	0.6	E_{2}^{+}	2542621.6	1.2	A_{2}^{-}	2545711.2	1.6
$2_{12} \leftarrow 2_{11}$	B_{2}^{-}	2539184.3	-0.4	E_{2}^{-}	2542144.3	0.4			
$3_{13} \leftarrow 3_{12}$	A_{2}^{+}	2538451.4	0.5	E_{2}^{+}	2541433.6	-1.1	A_{2}^{-}	2544511.5	1.9
$4_{14} \leftarrow 4_{13}$	B_{2}^{-}	2537500.2	2.3	E_{2}^{-}	2540500.0	0.4			
$5_{15} \leftarrow 5_{14}$				E_{2}^{+}	2539348.4	1.1			
$2_{12} \leftarrow 1_{11}$	A_{2}^{+}	2561025.4	1.3	E_{2}^{+}	2563985.1	1.2	A_{2}^{-}	2567065.9	-1.6
$3_{13} \leftarrow 2_{12}$	B_{2}^{-}	2571294.9	-2.3	E_{2}^{-}	2574283.4	1.6	B_{2}^{+}	2577361.6	1.2
$4_{14} \leftarrow 3_{13}$	A_{2}^{+}	2581406.7	-1.5	E_{2}^{+}	2584415.3	4.8			
$5_{15} \leftarrow 4_{14}$				E_{2}^{-}	2594378.7	0.7			
Transition		A_{1}^{+}, B_{1}^{-}	Obs-Calc		E^{+}, E^{-}	Obs-Calc		B_{1}^{+}, A_{1}^{-}	Obs-Calc
				$0 \rightarrow$	pe transition				
$6_{15} \leftarrow 7_{07}$	B_{1}^{-}	2490379.4	-6.8	E^{-}	2483685.3	3.0			
$5_{14} \leftarrow 6_{06}$	A_{1}^{+}	2501218.0	2.5	E^{+}	2494466.8	2.1	B_{1}^{+}	2488366.0	-2.8
$4_{13} \leftarrow 5_{05}$	B_{1}^{-}	2512057.6	3.8	E^{-}	2505263.4	3.0	A_{1}^{-}	2499119.6	2.2
$3_{12} \leftarrow 4_{04}$	A_{1}^{+}	2522905.3	5.6	E^{+}	2516074.0	4.1	B_{1}^{+}	2509895.1	3.8
$2_{11} \leftarrow 3_{03}$	B_{1}^{-}	2533753.0	1.0	E^{-}	2526896.4	3.1	A_{1}^{-}	2520693.5	4.2
$1_{10} \leftarrow 2_{02}$	A_{1}^{+}	2544608.3	-1.2	E^{+}	2537733.7	3.0	B_{1}^{+}	2531509.6	-8.0
$1_{11} \leftarrow 1_{01}$	B_{1}^{-}	2566280.9	-2.2	E^{-}	2559405.6	2.2	A_{1}^{-}	2553175.9	-2.3
$2_{12} \leftarrow 2_{02}$	A_{1}^{+}	2566178.0	1.3	E^{+}	2559316.7	-0.5	B_{1}^{+}	2553097.9	-1.8
$3_{13} \leftarrow 3_{03}$	B_{1}^{-}	2566018.0	0.6	E^{-}	2559183.1	-3.8	A_{1}^{-}	2552980.9	-1.2
$4_{14} \leftarrow 4_{04}$	A_{1}^{+}	2565806.1	0.7	E^{+}	2559005.4	-6.3	B_{1}^{+}	2552825.4	-0.3
$5_{15} \leftarrow 5_{05}$	B_{1}^{-}	2565542.1	1.0	E^{-}	2558783.3	-7.0	A_{1}^{-}	2552630.8	0.1
$6_{16} \leftarrow 6_{06}$	A_{1}^{+}	2565226.6	1.6	E^{+}	2558517.4	-3.9	B_{1}^{+}	2552397.5	-0.1
$7_{17} \leftarrow 7_{07}$	B_{1}^{-}	2564859.2	1.7	E^{-}	2558212.0	8.9	A_{1}^{-}	2552123.5	-3.3
$8_{18} \leftarrow 8_{08}$	A_{1}^{+}	2564442.2	2.8	E^{+}	2557837.0	2.9	B_{1}^{+}	2551825.3	6.4
$9_{19} \leftarrow 9_{09}$	B_{1}^{-}	2563970.3	-1.0				A_{1}^{-}	2551473.5	-1.1
$10_{110} \leftarrow 10_{010}$	A_{1}^{+}	2563449.9	-4.1						
$11_{111} \leftarrow 11_{011}$	B_{1}^{-}	2562891.6	3.0						
$1_{10} \leftarrow 0_{00}$	A_{1}^{+}	2577205.1	1.4	E^{+}	2570321.3	-2.1	B_{1}^{+}	2564102.2	0.4
$2_{11} \leftarrow 1_{01}$	B_{1}^{-}	2588074.6	2.0	E^{-}	2581209.1	-2.5	A_{1}^{-}	2575010.1	4.6
$3_{12} \leftarrow 2_{02}$	A_{1}^{+}	2598946.6	4.2	E^{+}	2592107.4	-2.1	B_{1}^{+}	2585934.7	6.8
$4_{13} \leftarrow 3_{03}$	B_{1}^{-}	2609817.5	5.0	E^{-}	2603013.2	-2.2	A_{1}^{-}	2596873.3	5.0

TABLE III. (Continued.)

Transition		A_{1}^{+}, B_{1}^{-}	Obs-Calc		E^{+}, E^{-}	Obs-Calc		B_{1}^{+}, A_{1}^{-}	Obs-Calc
$5_{14} \leftarrow 4_{04}$	A_{1}^{+}	2620686.3	3.9	E^{+}	2613928.2	1.3	B_{1}^{+}	2607826.7	0.6
$6_{15} \leftarrow 5_{05}$	B_{1}^{-}	2631545.9	-5.8	E^{-}	2624842.2	0.5	A_{1}^{-}	2618790.1	-10.8
$7_{16} \leftarrow 6_{06}$				E^{+}	2635755.6	-1.7			
$8_{17} \leftarrow 7_{07}$				E^{-}	2646663.8	-6.9			
Transition		A_{2}^{+}, B_{2}^{-}	Obs-Calc		E^{+}, E^{-}	Obs-Calc		B_{2}^{+}, A_{2}^{-}	Obs-Calc
$7_{16} \leftarrow 8_{08}$							A_{2}^{-}	2538563.5	0.3
$6_{15} \leftarrow 7_{07}$	A_{2}^{+}	2544848.1	-0.1	E^{+}	2547591.8	-0.9	B_{2}^{+}	2550508.3	-1.1
$5_{14} \leftarrow 6_{06}$	B_{2}^{-}	2556500.9	0.8	E^{-}	2559299.8	-1.4	A_{2}^{-}	2562288.8	-1.8
$4_{13} \leftarrow 5_{05}$	A_{2}^{+}	2568014.4	-0.4	E^{+}	2570859.4	-3.7	B_{2}^{+}	2573907.7	-4.3
$3_{12} \leftarrow 4_{04}$	B_{2}^{-}	2579392.7	-3.2	E^{-}	2582278.1	-3.6	A_{2}^{-}	2585379.3	1.6
$2_{11} \leftarrow 3_{03}$				E^{+}	2593555.2	-4.6	B_{2}^{+}	2596690.5	-0.5
$1_{10} \leftarrow 2_{02}$	B_{2}^{-}	2601766.1	-0.7	E^{-}	2604697.8	-1.6	A_{2}^{-}	2607822.2	2.5
$1_{11} \leftarrow 1_{01}$	A_{2}^{+}			E^{+}	2626352.5	-0.2	B_{2}^{+}	2629516.8	1.7
$2_{12} \leftarrow 2_{02}$	B_{2}^{-}	2622950.4	-1.2	E^{-}	2625927.7	-0.7	A_{2}^{-}	2629086.2	2.4
$3_{13} \leftarrow 3_{03}$	A_{2}^{+}	2622295.5	-0.5	E^{+}	2625297.0	-0.3	B_{2}^{+}	2628447.3	0.7
$4_{14} \leftarrow 4_{04}$	B_{2}^{-}	2621448.2	0.9	E^{-}	2624466.3	0.5			
$5_{15} \leftarrow 5_{05}$	A_{2}^{+}	2620426.6	-0.9	E^{+}	2622238.0	0.1			
$6_{16} \leftarrow 6_{06}$				E^{-}	2620865.5	0.1			
$1_{10} \leftarrow 0_{00}$				E^{-}	2637292.5	0.4			
$2_{11} \leftarrow 1_{01}$				E^{+}	2647878.9	0.8	B_{2}^{+}	2651013.0	1.8
$3_{12} \leftarrow 2_{02}$	B_{2}^{-}	2655434.3	0.4	E^{-}	2658322.5	1.1	A_{2}^{-}	2661421.5	1.5
$4_{13} \leftarrow 3_{03}$	A_{2}^{+}	2665771.6	3.7	E^{+}	2668620.8	2.9	B_{2}^{+}	2671673.8	3.4
$5_{14} \leftarrow 4_{04}$	B_{2}^{-}	2675959.0	-1.6	E^{-}	2678769.0	5.6	A_{2}^{-}	2681759.5	2.0
$6_{15} \leftarrow 5_{05}$	A_{2}^{+}	2686003.0	-3.8	E^{+}	2688753.4	1.1	B_{2}^{+}	2691674.4	-1.0
$7_{16} \leftarrow 6_{06}$	B_{2}^{-}	2695903.6	3.2	E^{-}	2698576.2	-2.0	A_{2}^{-}	2701417.2	0.1
$8_{17} \leftarrow 7_{07}$	A_{2}^{+}	2705635.7	1.2	E^{+}	2708235.1	0.9	B_{2}^{+}	2710978.1	0.4
Transition		A_{1}^{+}, B_{1}^{-}	Obs-Calc		E^{+}, E^{-}	Obs-Calc		B_{1}^{+}, A_{1}^{-}	Obs-Calc
$K_{a}=1 \rightarrow 0$ c-type transitions									
$6_{06} \leftarrow 7_{17}$	B_{1}^{-}	2246929.2	2.2						
$5_{05} \leftarrow 6_{16}$	A_{1}^{+}	2258295.9	0.1						
$4_{04} \leftarrow 5_{15}$	B_{1}^{-}	2269589.1	-0.3						
$3_{03} \leftarrow 4_{14}$	A_{1}^{+}	2280805.4	0.1						
$2_{02} \leftarrow 3_{13}$	B_{1}^{-}	2291941.9	1.0				A_{1}^{-}	2286909.7	-1.9
$1_{01} \leftarrow 2_{12}$							B_{1}^{+}	2297979.2	-2.5
$3_{03} \leftarrow 2_{12}$	A_{1}^{+}	2356969.5	-1.9	E_{1}^{+}	2354509.5	-1.8			
$4_{04} \leftarrow 3_{13}$	B_{1}^{-}	2367506.3	-1.0	E^{-}	2365029.8	-1.1	A_{1}^{-}	2362411.1	-1.3
$5_{05} \leftarrow 4_{14}$	A_{1}^{+}	2377959.7	1.6	E^{+}	2375461.4	-0.9	B_{1}^{+}	2372819.6	-2.5
$6_{06} \leftarrow 5_{15}$				E^{-}	2385806.6	-0.8			
$7_{07} \leftarrow 6_{16}$	A_{1}^{+}	2398608.9	-2.4	E_{1}^{+}	2396068.8	-0.3			
Transition		A_{2}^{+}, B_{2}^{-}	Obs-Calc		E^{+}, E^{-}	Obs-Calc		B_{2}^{+}, A_{2}^{-}	Obs-Calc
$2_{02} \leftarrow 3_{13}$	A_{2}^{+}	2358494.6	-1.2						
$1_{01} \leftarrow 2_{12}$	B_{2}^{-}	2369536.1	-1.0						
$2_{02} \leftarrow 1_{11}$				E^{+}	2415297.9	1.2	B_{2}^{+}	2417288.6	-1.4
$3_{03} \leftarrow 2_{12}$	B_{2}^{-}	2423601.6	0.8	E^{-}	2425955.6	2.4			
$4_{04} \leftarrow 3_{13}$	A_{2}^{+}	2434181.2	2.0						
$5_{05} \leftarrow 4_{14}$	B_{2}^{-}	2444676.3	-1.5						

frared radiation is emitted from the rotational levels of small vibrationally excited molecular gases which are usually different isotopomers of methanol, $\mathrm{CH}_{2} \mathrm{~F}_{2}$, and $\mathrm{N}_{2} \mathrm{H}_{4}$.

The far infrared light is directed into a Martin-Puplett polarizing diplexer consisting of two wire mesh polarizers and a Michelson interferometer. The diplexer used to free space couple the fixed FIR light onto an antenna contacting a Ga:As Schottky barrier diode as well as to separate the reradiated sidebands from the unmixed FIR carrier. Four different diodes were used in the collection of these data (1T12,

1T13, 1T15, and 1T24) purchased from Crowe's laboratory at the University of Virginia. Sidebands are generated by mixing the output from a Hewlett-Packard microwave generator with the fixed frequency FIR in the diode. The microwaves are tunable from 2 to 24 GHz and can be doubled and tripled to increase coverage to 60 GHz . This produces sidebands that are equal to the FIR frequency plus and minus the microwave frequency, giving a scanning window of 120 GHz with a 4 GHz gap around the fixed FIR frequency.

After exiting the diplexer, the tunable radiation is then

TABLE IV. $83 \mathrm{~cm}^{-1}\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$ band, acceptor wag fitted constants $(\mathrm{MHz}), 1 \sigma$ uncertainties in italics.

${ }^{\text {a }}$ Constants not fit.
passed through a wire mesh Fabry-Perot etalon to filter the sidebands from the laser carrier radiation and directed into a vacuum chamber pumped by an $1345 \mathrm{l} / \mathrm{s}$ roots blower backed by two mechanical pumps. The sidebands enter the vacuum chamber through a hole in one of two mirrors that form a Herriot cell. The sidebands intersect the molecular beam at 90° making $18-22$ passes (ca. 2 m path length) and exiting through the same hole.

The transmitted light is then focused onto a detector, and the signal is sent to a lock-in amplifier which demodulates the FM signal using a $2 f$ detection scheme. Two detectors were available for use in these experiments. Both use a $\mathrm{Ga}: \mathrm{Ge}$ photoconductor chip, one is mechanically stressed and covers the frequency range $50-110 \mathrm{~cm}^{-1}$, whereas the
unstressed chip covers the frequency range $110-150 \mathrm{~cm}^{-1}$.
The sensitivity of the experiment is typically 10^{-6} minimum fractional absorption. The Doppler limited linewidth is about 2 MHz . The accuracy of the line measurement is about 5 MHz and is limited by both the laser drift and noise.

The clusters are produced by bubbling argon or helium with a backing pressure of $10-15$ psi through $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{D}_{2} \mathrm{O}$. Clustering is enhanced by using a 4 pulsed slit jet as described in Refs. 29 and 30, and are typically cooled to a rotational temperature of $\sim 5 \mathrm{~K}$. The background pressure in the chamber is $30-34 \mathrm{mTorr}$ (Ar) or 300 mTorr (He). Spectra of the four intermolecular vibrations studied here are shown in Figs. 3, 5, 7, and 10.

III. SPECTRAL ANALYSIS

The spectra are fit to a prolate top Hamiltonian with perturbations to account for the slight asymmetry. The energy level expression ${ }^{32}$ is

$$
\begin{align*}
E\left(J, K_{a}\right)= & v_{0}+(B+C) / 2\left[J(J+1)-K_{a}^{2}\right] \\
& -D_{j}\left[J(J+1)-K_{a}^{2}\right]^{2}+(-1)^{J+K_{a}+K_{c}} \\
& \times\left\{(B-C) / 4[J(J+1)]-d_{j}\left[J(J+1)-K_{a}^{2}\right]^{2}\right\} . \tag{1}
\end{align*}
$$

The band origin is $v_{0}(B+C) / 2$ is the averaged rotational constant for the complex, and D_{j} is a centrifugal distortion constant. $(B-C) / 4$ accounts for the slight asymmetry of the complex and d_{j} is the asymmetry distortion constant. The asymmetry perturbation breaks the parity degeneracy of the prolate top energy level expression for $\left|K_{a}\right|>0$, shifting one component up and one down. J is a good quantum number and K_{a} is nearly a good quantum number in this expression, with J being the total angular momentum quantum number of the complex. K_{a} is the projection of J onto the body-fixed axis. The energy levels can be labeled using the near-prolate scheme that correlates K_{a} and K_{c}, so for $J=1,\left|K_{a}\right|=1$ there are two energy levels labeled 1_{10} and 1_{11} with the latter being the lowest in energy.

The two components of the acceptor switching splitting refer to the multiplets of three energy levels labeled either $A_{1} / E / B_{1}$ or $A_{2} / E / B_{2}$ (Fig. 2). Energy levels labeled $A_{1} / E / B_{1}$ are called the " 1 's'" with E being labeled E_{1} when it occurs in the multiplet with A_{1} and B_{1}. Energy levels corresponding to $A_{2} / E / B_{2}$ are called the ' 2 's'" with E labeled E_{2} when it occurs as part of the multiplet with A_{2} and B_{2}. Each tunneling component is fit separately, although, when possible the three components associated with a particular multiplet of the " 1 's" or ' 2 's" are fit together to estimate the interchange (I) tunneling splitting and the bifurcation (B) shift in the following manner. For $J=0, K_{a}=0$ the expressions used are

$$
\begin{align*}
& E\left(A_{1}^{+} / A_{2}^{-}\right)=E\left(J=0, K_{a}=0\right)-I / 2, \tag{2}\\
& E\left(E_{1}^{+} / E_{2}^{-}\right)=E\left(J=0, K_{a}=0\right)+2 B, \tag{3}\\
& E\left(B_{1}^{+} / B_{2}^{-}\right)=E\left(J=0, K_{a}=0\right)+I / 2, \tag{4}
\end{align*}
$$

where $E(J=0, K a=0)$ is from Eq. (1).
Each triplet is fit to a band origin wherein the center of the ground state $K_{a}=0$ triplet is assumed equal to 0 . Therefore the difference of the observed band origins for the triplets is the change in the acceptor switching splitting between the two states under investigation. In general transitions between multiplets of different labelings, 1 or 2 , are forbidden, and it is not possible to directly measure the acceptor switching splitting. However, the selection rules as they are defined do not forbid transitions between the different E states, but these transitions have not yet been observed and are expected to be very weak. Paul et al. ${ }^{33}$ were able to simultaneously fit the acceptor switching splitting of the ground state and the excited vibrational state acceptor antisymmetric stretch measured in IR cavity ringdown spectroscopy experiments in $\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$, to a cosine function. Using this model the acceptor

FIG. 6. $83 \mathrm{~cm}^{-1}\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$, acceptor wag $\left(\nu_{8}\right)$ energy level diagram. $Q(1)$ transitions with $J^{\prime \prime}=1$ and $R(0)$ transitions with $J^{\prime \prime}=0$ are shown.
switching splitting in $K_{a}^{\prime \prime}=0$ was found to be $53 \mathrm{GHz}(\pm 1$ $\mathrm{GHz})$. For $\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$ the acceptor switching splitting can be determined in the excited vibrational states using this ground state value.

The VRT spectra are fit using a Levenberg-Marquardt nonlinear least squares fitting routine. ${ }^{34}$ The residuals for the far-infrared transitions are less than 5 MHz , ca. the absolute accuracy of the spectrometer. Microwave data for the ground state ${ }^{35,36}$ are included in the fit to constrain the rotational constants of the ground state. In most cases the residuals for these transitions are 1 MHz or less.

IV. RESULTS AND DISCUSSION

All of the intermolecular vibrations discussed below were measured with the Berkeley terahertz spectrometers. Only the $83 \mathrm{~cm}^{-1}\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$ band has been previously reported. ${ }^{15,16}$ Additional data for the $83 \mathrm{~cm}^{-1}$ band is presented here as well as for three new vibrations at $65 \mathrm{~cm}^{-1}$, $90 \mathrm{~cm}^{-1}$, and $104 \mathrm{~cm}^{-1}$. A re-examination of the ' perturbed states' of the $83 \mathrm{~cm}^{-1}$ band shows that a misassignment was made in that analysis. Corrections were made to the $83 \mathrm{~cm}^{-1}$ assignment and a new band centered at $90 \mathrm{~cm}^{-1}$ was assigned and fit.

A. The $83 \mathrm{~cm}^{-1}$ band: Acceptor wag (ν_{8}) revisited

Whereas Busarow et al. ${ }^{25}$ reported a FIR rotationtunneling spectrum of $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ in 1989, the first far infrared vibration-rotation-tunneling spectra of an intermolecular vi-

TABLE V. $65 \mathrm{~cm}^{-1}\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$ band: donor torsion $\left(\nu_{12}\right)$ transition frequencies (MHz). Residuals (observed-calculated values) in italics.

Transition		A_{1}^{+}, B_{1}^{-}	Obs-Calc		E^{+}, E^{-}	Obs-Calc		B_{1}^{+}, A_{1}^{-}	Obs-Calc
$K_{a}=0 \rightarrow 1$									
$8_{18} \leftarrow 9_{09}$				E^{-}	1938016.7	-5.8	A_{1}^{-}	1935516.6	-4.2
$7_{17} \leftarrow 8_{08}$				E^{+}	1950113.0	-1.5	B_{1}^{+}	1947601.2	-0.2
$6_{16} \leftarrow 7_{07}$	B_{1}^{-}	1964590.9	0.8	E^{-}	1962061.2	0.5	A_{1}^{-}	1959537.5	0.8
$5_{15} \leftarrow 6_{06}$	A_{1}^{+}	1976398.3	1.1	E^{+}	1973859.3	1.2	B_{1}^{+}	1971326.3	1.8
$4_{14} \leftarrow 5_{05}$	B_{1}^{-}	1988051.1	-0.2						
$3_{13} \leftarrow 4_{04}$	A_{1}^{+}	1999550.2	-0.4	E^{+}	1996998.2	1.4		1994448.3	-0.4
$2_{12} \leftarrow 3_{03}$	B_{1}^{-}	2010892.6	-0.6	E^{-}	2008333.4	-0.9	A_{1}^{-}	2005781.6	0.2
$1_{11} \leftarrow 2_{02}$	A_{1}^{+}	2022077.4	-0.5	E^{+}	2019514.2	-1.0	B_{1}^{+}	2016960.6	1.4
$1_{10} \leftarrow 1_{01}$	B_{1}^{-}	2043866.9	-0.7	E^{-}	2041303.1	-0.1	A_{1}^{-}	2038745.2	-0.7
$2_{11} \leftarrow 2_{02}$	A_{1}^{+}	2043665.3	-1.1	E^{+}	2041103.9	0.0	B_{1}^{+}	2038547.4	-0.9
$3_{12} \leftarrow 3_{03}$	B_{1}^{-}	2043364.0	-1.2	E^{-}	2040804.0	-1.4	A_{1}^{-}	2038251.0	-1.4
$4_{13} \leftarrow 4_{04}$	A_{1}^{+}	2042963.1	-1.4	E^{+}	2040406.5	-1.5	B_{1}^{+}	2037857.3	-1.5
$5_{14} \leftarrow 5_{05}$	B_{1}^{-}	2042464.5	-0.5	E^{-}	2039911.7	-0.9	A_{1}^{-}	2037367.3	-1.2
$6_{15} \leftarrow 6_{06}$	A_{1}^{+}	2041866.9	-1.0	E^{+}	2039319.2	-0.9	B_{1}^{+}	2036781.4	-1.1
$7_{16} \leftarrow 7_{07}$	B_{1}^{-}	2041174.7	0.4	E^{-}	2038631.8	0.0	A_{1}^{-}	2036101.8	-0.2
$8_{17} \leftarrow 8_{08}$	A_{1}^{+}	2040384.9	-0.6	E^{+}	2037850.3	0.6	B_{1}^{+}	2035329.2	0.5
$9_{18} \leftarrow 9_{09}$	B_{1}^{-}	2039503.4	0.2	E^{-}	2036977.3	1.2	A_{1}^{-}	2034464.4	0.1
$10_{09} \leftarrow 10_{010}$	A_{1}^{+}	2038529.2	0.1	E^{+}	2036013.7	-0.4	B_{1}^{+}	2033511.5	0.9
$11_{010} \leftarrow 11_{011}$	B_{1}^{-}	2037466.1	0.8						
$1_{11} \leftarrow 0_{00}$				E^{+}	2052107.7	-0.2	B_{1}^{+}	2049549.8	-0.9
$2_{12} \leftarrow 1_{01}$	B_{1}^{-}	2065215.1	1.3		2062652.6	0.0	A_{1}^{-}	2060098.2	0.5
$3_{13} \leftarrow 2_{02}$	A_{1}^{+}	2075594.5	1.2	E^{+}	2073038.1	1.6	B_{1}^{+}	2070487.5	2.2
$4_{14} \leftarrow 3_{03}$	B_{1}^{-}	2085812.0	1.9	E^{-}	2083260.5	1.4	A_{1}^{-}	2080711.6	-1.7
$5_{15} \leftarrow 44_{04}$	A_{1}^{+}	2095866.2	2.1	E^{+}	2093321.8	1.4	B_{1}^{+}	2090784.2	2.4
$6_{16} \leftarrow 5_{05}$	B_{1}^{-}	2105756.6	1.0	E^{-}	2103221.9	1.7	A_{1}^{-}	2100693.1	2.3
$7_{17} \leftarrow 6_{06}$	A_{1}^{+}	2115484.6	-0.1	E^{+}	2112960.2	1.3	B_{1}^{+}	2110442.1	1.2
$8_{18} \leftarrow 7_{07}$	B_{1}^{-}	2125051.0	-0.9	E^{-}	2131958.5	2.3			
$9_{19} \leftarrow 8_{08}$	A_{1}^{+}	2134456.5	-1.6						
Transition		A_{2}^{+}, B_{2}^{-}	Obs-Calc		E^{+}, E^{-}	Obs-Calc		B_{2}^{+}, A_{2}^{-}	Obs-Calc
					2007285.0	-1.7			
$6_{16} \leftarrow 7_{07}$	A_{2}^{+}	2013897.0	-0.7	E^{+}	2018165.4	-3.9			
$5_{15} \leftarrow 6_{06}$	B_{2}^{-}	2024753.1	-2.4	E^{-}	2029049.0	-2.0			
$4_{14} \leftarrow 5_{05}$	A_{2}^{+}	2035617.7	3.7	E^{+}	2039930.5	-0.8	B_{2}^{+}	2044301.8	-0.4
$3_{13} \leftarrow 4{ }_{04}$	B_{2}^{-}	2046472.1	-1.6	E^{-}	2050808.6	-0.9	A_{2}^{-}	2055199.5	0.4
$2_{12} \leftarrow 3_{03}$	A_{2}^{+}	2057334.0	-1.0	E^{+}	2061683.6	-1.7	B_{2}^{+}	2066089.6	0.5
$1_{11} \leftarrow 2_{02}$				E^{-}	2072557.6	-0.3			
$1_{10} \leftarrow 1_{01}$							B_{2}^{+}	2098662.1	-0.2
$2_{11} \leftarrow 2_{02}$	B_{2}^{-}	2089811.3	0.7	E^{-}	2094161.0	-0.2	A_{2}^{-}	2098565.9	-0.1
$3_{12} \leftarrow 3_{03}$	A_{2}^{+}	2089694.1	-0.7	E^{+}	2094029.8	-1.1	B_{2}^{+}	2098420.7	-0.6
$4_{13} \leftarrow 4_{04}$	B_{2}^{-}	2089537.6	-1.5	E^{-}	2093856.0	-0.4	A_{2}^{-}	2098228.3	0.1
$5_{14} \leftarrow 5_{05}$	A_{2}^{+}	2089341.6	-0.9	E^{+}	2093636.7	-0.7	B_{2}^{+}	2097986.6	0.2
$6_{15} \leftarrow 6_{6}$	B_{2}^{-}	2089105.0	1.4	E^{-}	2093373.0	-0.5	A_{2}^{-}	2097695.8	0.1
$7_{16} \leftarrow 7_{7}$				E^{+}	2093064.0	-0.3	B_{2}^{+}	2097355.5	-0.1
$8_{17} \leftarrow 8_{08}$				E^{-}	2092710.2	0.9			
$9_{18} \leftarrow 9_{09}$				E^{+}	2092309.1	0.6			
$10_{09} \leftarrow 10_{010}$				E^{-}	2091861.3	-0.4			
$1_{11} \leftarrow 0_{00}$	B_{2}^{-}	2100790.3	0.7	E^{-}	2105151.1	0.5			
$2_{12} \leftarrow 1_{01}$	A_{2}^{+}	2111651.6	-0.5	E^{+}	2116003.2	-0.4			
$3_{13} \leftarrow 2_{02}$				E^{-}	2126852.3	3.2			
$4_{14} \leftarrow{ }_{03}$	A_{2}^{+}	2133369.6	2.5	E^{+}	2137690.7	4.6			
$6_{16} \leftarrow 5_{05}$				E^{+}	2159334.0	5.1			
$7_{17} \leftarrow 6_{06}$				E^{-}	2170132.1	0.2			
Transition		A_{1}^{+}, B_{1}^{-}	Obs-Calc		E^{+}, E^{-}	Obs-Calc		B_{1}^{+}, A_{1}^{-}	Obs-Calc
$K_{a}=1 \rightarrow 2$									
$2_{20} \leftarrow 2_{11}$	A_{1}^{+}	2177017.3	-0.2	E^{+}	2174742.2	0.3	B_{1}^{+}	2172425.0	0.1
$3_{21} \leftarrow 3_{12}$	B_{1}^{-}	2176840.1	0.2	E^{-}	2174569.3	0.8	A_{1}^{+}	2172257.1	-0.1
$4_{22} \leftarrow 4_{13}$	A_{1}^{+}	2176602.5	-0.6	E^{+}	2174335.9	-1.6	B_{1}^{+}	2172330.4	-0.2
$5_{23} \leftarrow 5_{14}$	B_{1}^{-}	2176306.6	-0.7	E^{-}	2174404.8	-0.7	A_{1}^{-}	2171755.1	0.6
$6_{24} \leftarrow 6_{15}$	A_{1}^{+}	2175951.9	-0.5	E^{+}	2173703.4	-0.6			
$7_{25} \leftarrow 7_{16}$	B_{1}^{-}	2175536.6	-2.1				A_{1}^{-}	2171031.5	0.9
$8_{26} \leftarrow 8_{17}$	A_{1}^{+}	2175064.7	-1.5						
$2_{20} \leftarrow 1_{11}$	A_{1}^{+}	2198815.7	0.9				A_{1}^{-}	2194220.7	-0.1

TABLE V. (Continued.)

Transition		A_{1}^{+}, B_{1}^{-}	Obs-Calc		E^{+}, E^{-}	Obs-Calc		B_{1}^{+}, A_{1}^{-}	Obs-Calc
$3_{21} \leftarrow 2_{12}$				E^{+}	2207310.1	-1.5	B_{1}^{+}	2204997.8	-0.5
$5_{23} \leftarrow 4{ }_{14}$	B_{1}^{-}	2231033.7	-0.4	E^{+}	2228775.9	0.9			
$6_{24} \leftarrow 5_{15}$	A_{1}^{+}	2241716.3	1.5	E^{-}	2239464.4	-0.3	A_{1}^{+}	2237176.3	0.1
$7_{25} \leftarrow 6_{16}$	B_{1}^{-}	2252368.2	3.4	E^{+}	2250128.2	2.6			
$8_{26} \leftarrow 7_{17}$				E^{-}	2260756.1	-1.2			
$2_{21} \leftarrow 2_{12}$	B_{1}^{-}	2177116.3	0.0	E^{-}	2174841.8	0.9	A_{1}^{-}	2172522.7	-0.8
$3_{22} \leftarrow 3_{13}$	A_{1}^{+}	2177035.6	-0.4	E^{+}	2174765.4	0.5	B_{1}^{+}	2172452.6	-0.3
$4_{23} \leftarrow 4_{14}$	B_{1}^{-}	2176925.8	-1.2	E^{-}	2174663.1	1.3	A_{1}^{-}	2172357.2	0.4
$5_{24} \leftarrow 5_{15}$	A_{1}^{+}	2176787.1	-0.2	E^{+}	2174530.8	1.1	B_{1}^{+}	2172233.4	-0.3
$6_{25} \leftarrow 6_{16}$	B_{1}^{-}	2176613.3	-1.6	E^{-}	2174365.0	-1.6	A_{1}^{-}	2172080.6	-0.7
$7_{26} \leftarrow 7_{17}$	A_{1}^{+}	2176406.5	-0.5	E^{+}	2174168.7	-1.4	B_{1}^{+}	2171895.8	-1.4
$8_{27} \leftarrow 8_{18}$							A_{1}^{-}	2171678.7	0.3
$2_{21} \leftarrow 1_{10}$	B_{1}^{-}	2198782.0	0.8				A_{1}^{-}	2194187.3	0.0
$3_{22} \leftarrow 2_{11}$	A_{1}^{+}	2209481.9	0.1	E^{+}	2207208.3	-1.5	B_{1}^{+}	2204898.4	1.4
$5_{24} \leftarrow 4_{13}$	A_{1}^{+}	2230687.0	-0.4	E^{+}	2228428.5	1.3	B_{1}^{+}	2226132.1	-0.9
$6_{25} \leftarrow 5_{14}$	B_{1}^{-}	2241188.2	1.5	E^{-}	2238933.1	-1.6	A_{1}^{-}	2236648.4	0.1
$7_{26} \leftarrow 6_{15}$	A_{1}^{+}	2251614.5	1.8	E^{+}	2249372.3	2.0	B_{1}^{+}	2247098.1	0.2
$8_{27} \leftarrow 7_{16}$				E^{-}	2259730.5	0.2	A_{1}^{-}	2257473.4	-0.5
Transition		A_{1}^{+}, B_{1}^{-}	Obs-Calc		E^{+}, E^{-}	Obs-Calc		B_{1}^{+}, A_{1}^{-}	Obs-Calc
$K_{a}=1 \rightarrow 0$									
$6_{06} \leftarrow 7_{17}$	A_{1}^{+}	2035433.3	2.6				B_{1}^{+}	2024788.5	-1.3
$5_{05} \leftarrow 6_{16}$	B_{1}^{-}	2045923.3	-0.5						
$4_{04} \leftarrow 5_{15}$	A_{1}^{+}	2056473.4	-1.3	E^{+}	2051059.8	-0.5	B_{1}^{+}	2045690.9	-0.7
$3_{03} \leftarrow 4_{14}$	B_{1}^{-}	2067083.5	-1.0	E^{-}	2061641.8	-2.0	A_{1}^{-}	2056247.6	-1.8
$2_{02} \leftarrow 3_{13}$	A_{1}^{+}	2077752.9	-1.1	E^{+}	2072293.0	-0.8	B_{1}^{+}	2066878.4	-1.3
$1_{01} \leftarrow 2_{12}$	B_{1}^{-}	2088483.4	-0.3	E^{-}	2083009.8	-0.7	A_{1}^{-}	2077582.3	-0.7
$0_{00} \leftarrow 1_{11}$	A_{1}^{+}	2099273.4	0.0	E^{+}	2093792.5	-1.2			
$1_{01} \leftarrow 1_{10}$	B_{1}^{-}	2110148.2	-0.5	E^{-}	2104675.5	0.6	A_{1}^{-}	2099246.6	-0.2
$2_{02} \leftarrow 2_{11}$	A_{1}^{+}	2110198.7	-1.2	E^{+}	2104738.3	-0.3	B_{1}^{+}	2099324.0	0.2
$3_{03} \leftarrow 3_{12}$	B_{1}^{-}	2110273.9	-1.7	E^{-}	2104833.7	0.4	A_{1}^{-}	2099437.5	-0.6
$4_{04} \leftarrow 4_{13}$	A_{1}^{+}	2110373.8	-1.0	E^{+}	2104959.0	1.2	B_{1}^{+}	2099587.2	-1.4
$5_{05} \leftarrow 5_{14}$	B_{1}^{-}	2110494.4	-1.3	E^{-}	2105111.8	0.9	A_{1}^{-}	2099772.7	-0.8
$6_{06} \leftarrow 6_{15}$	A_{1}^{+}	2110636.2	-0.1	E^{+}	2105291.0	0.3	B_{1}^{+}	2099990.0	-0.7
$7_{07} \leftarrow 7_{16}$				E^{-}	2105495.1	0.0	A_{1}^{-}	2100238.3	0.7
$8_{08} \leftarrow 8_{17}$				E^{+}	2105721.4	-0.4	B_{1}^{+}	2100513.2	1.9
$9_{09} \leftarrow 9_{18}$				E^{-}	2105966.8	-1.0			
$10_{010} \leftarrow 10_{19}$				E^{+}	2106231.0	1.0			
$2_{02} \leftarrow 1_{11}$	A_{1}^{+}	2132002.0	4.9						
$3_{03} \leftarrow 2_{12}$				E^{-}	2137579.8	3.5	A_{1}^{-}	2132184.8	5.6
$4_{04} \leftarrow 3_{13}$	A_{1}^{+}	2154098.9	3.9						
$5_{05} \leftarrow 4_{14}$							A_{1}^{-}	2154500.0	4.3
$6_{06} \leftarrow 5_{15}$	A_{1}^{+}	2176397.9	-0.9	E^{+}	2171050.3	-1.1			
$7_{07} \leftarrow 6_{16}$	B_{1}^{-}	2187619.9	-0.5	E^{-}	2182320.8	2.1	A_{1}^{-}	2177053.7	-2.2
$8_{08} \leftarrow 7_{17}$				E^{+}	2193632.6	-2.6	B_{1}^{+}	2188417.7	-0.9
$9_{09} \leftarrow 8_{18}$				E^{-}	2204997.8	0.5			
Transition		A_{2}^{-}, B_{2}^{+}	Obs-Calc		E_{2}^{-}, E_{2}^{+}	Obs-Calc		B_{2}^{-}, A_{2}^{+}	Obs-Calc
$6_{06} \leftarrow 7_{17}$	A_{2}^{-}	1569793.9	2.1	E_{2}^{-}	1573266.5	-0.5			
$5_{05} \leftarrow 6_{16}$	B_{2}^{+}	1580762.7	-4.0	E_{2}^{+}	1584254.1	-6.5			
$3_{03} \leftarrow 4_{14}$	B_{2}^{+}	1602645.2	-4.0	E_{2}^{+}	1606166.9	-6.8	A_{2}^{+}	1609692.7	1.7
$2_{02} \leftarrow 3_{13}$	A_{2}^{-}	1613558.6	3.1	E_{2}^{-}	1617096.4	5.6	B_{2}^{-}	1620618.8	-0.2
$1_{01} \leftarrow 2_{12}$				E_{2}^{+}	1627980.5	0.2	A_{2}^{+}	1631515.4	-0.2
$0_{00} \leftarrow 1_{11}$	A_{2}^{-}	1635293.0	-1.2	E_{2}^{-}	1638840.1	-0.8	B_{2}^{-}	1642380.4	0.5
$1_{01} \leftarrow 1_{10}$	B_{2}^{+}	1646037.2	-1.6	E_{2}^{+}	1649578.5	-3.1	A_{2}^{+}	1653115.4	-2.1
$2_{02} \leftarrow 2_{11}$	A_{2}^{-}	1645864.9	-1.5	E_{2}^{-}	1649399.1	-1.8	B_{2}^{-}	1652928.1	-2.2
$3_{03} \leftarrow 3_{12}$	B_{2}^{+}	1645609.3	1.8	E_{2}^{+}	1649130.3	0.2	A_{2}^{+}	1652647.3	-2.0
$4_{04} \leftarrow 4_{13}$	A_{2}^{-}	1645265.2	2.9	E_{2}^{-}	1648771.1	1.9	B_{2}^{-}	1652273.1	-1.3
$5_{05} \leftarrow 5_{14}$	B_{2}^{+}	1644827.5	-2.9	E_{2}^{+}	1648321.5	3.0	A_{2}^{+}	1651804.7	-0.7
$6_{06} \leftarrow 6_{15}$	A_{2}^{-}	1644312.5	0.8	E_{2}^{-}	1647780.4	2.2	B_{2}^{-}	1651242.3	0.3
$7_{07} \leftarrow 7_{16}$	B_{2}^{+}	1643704.8	-1.6	E_{2}^{+}	1647148.3	-0.2	A_{2}^{+}	1650584.3	0.5
$8_{08} \leftarrow 8_{17}$	A_{2}^{-}	1643014.8	1.9				B_{2}^{-}	1649830.3	-0.2
$9_{09} \leftarrow 9_{18}$	B_{2}^{+}	1642231.8	-0.5						
$2_{02} \leftarrow 1_{11}$				E_{2}^{-}	1671243.1	2.0	B_{2}^{-}	1674775.3	4.2
$3_{03} \leftarrow 2_{12}$	B_{2}^{+}	1678458.0	4.8	E_{2}^{+}	1681982.2	4.7	A_{2}^{+}	1685499.7	1.8

bration for $\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$ were reported by Pugliano et al. ${ }^{15}$ in 1992. Additional data on that band were published in 1993. ${ }^{16}$ Three hundred sixty-three parallel a-type and perpendicular c-type transitions originating from the ground state $K_{a}^{\prime \prime}=0$ levels and terminating in the $K_{a}^{\prime}=0$ and 1 levels of an intermolecular vibration were observed and analyzed. This vibration was determined to be of A^{\prime} symmetry and was assigned to the acceptor wag $\left(\nu_{8}\right)$. A K_{a} dependence in the acceptor switching splitting and the donor-acceptor interchange tunneling splitting were observed and the A rotational constant for the state was found to be 122.9 GHz very similar to that of the ground state $(125.5 \mathrm{GHz}){ }^{36}$ Finally, it was proposed that the $K_{a}^{\prime}=1$ levels associated with the ' 2 's" were perturbed by the $K_{a}^{\prime}=0$ levels of an unidentified vibration. Reexamination of this region and a revised analysis have revealed a different explanation. Below is a review of the findings from the previous work, additional data corresponding to transitions for $K_{a}^{\prime \prime}=1 \rightarrow K_{a}^{\prime}=0$ and 1 and an explanation of the misassignment made regarding the perturbed states. All of the observed VRT spectra for this vibration are shown in Fig. 5, the measured frequencies are listed in Table III. The fitted constants are given in Table IV and the resultant energy level diagram that is the final product of the experiment and analysis is shown in Fig. 6.

1. K_{a} dependence of tunneling splittings

Only a small (ca. 320 MHz) increase in the acceptor switching splitting is observed for $K_{a}^{\prime}=0$ energy levels relative to the ground state, but there is an increase of about 67 GHz for this splitting in the $K_{a}^{\prime}=1$ states relative to the ground state $K_{a}^{\prime \prime}=0$ and is $\sim 103 \mathrm{GHz}$ larger than the ground state $K_{a}^{\prime \prime}=1$ splitting. Recalling the IR cavity ringdown spectroscopy results of Paul et al. ${ }^{33}$ which provide the first determination of the ground state acceptor switching splitting of 53 GHz for $K_{a}^{\prime \prime}=0$, we see that the acceptor switching splitting for this vibration in $K_{a}^{\prime}=1$ has more than doubled. It was also observed that the $K_{a}^{\prime}=0$ states had the same ordering as the ground state, but the $K_{a}^{\prime}=1$ did not. For $K_{a}^{\prime}=1$, the " 1 's" ' are lower than the " 2 's," i.e., there is an inversion about the acceptor switching splitting. This is the opposite of what is found in the ground state $K_{a}^{\prime \prime}=1$.

This large change in the acceptor switching splitting of $K_{a}^{\prime}=1$ is attributed to the coupling of the acceptor '"wagging', vibrational motion to the acceptor switching pathway. ${ }^{15}$ Examination of the proposed tunneling pathway shows a flip of the acceptor monomer. This motion is very similar to the acceptor wag vibrational coordinate involving θ_{a}. Although it is unlikely that the vibrational motion is so simply described by this normal mode, a component of the vibration similar to this normal mode probably couples directly to the acceptor switching pathway.

It has also been proposed that the acceptor switching pathway is altered in the excited state. ${ }^{15}$ Note that the end result of acceptor switching is the same as if the acceptor monomer is allowed to rotate 180° about its symmetry axis. In this scenario it is not necessary to rotate the overall complex to return to a symmetrically equivalent structure and the K_{a} dependence on the ordering is thus removed, viz. the ordering of the levels would be retained from $K_{a}^{\prime}=0$ to K_{a}^{\prime}

FIG. 7. $65 \mathrm{~cm}^{-1}\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$ stick spectrum, donor torsion $\left(\nu_{12}\right)$. Two hundred forty b-type transitions only with $K_{a}=0 \rightarrow 1, K_{a}=1 \rightarrow 0, K_{a}=1 \rightarrow 2$. Maximum signal-to-noise $\sim 100: 1$, linewidth $\sim 2 \mathrm{MHz}$.
$=1$. This would explain the observed energy level ordering. In either case, the high barrier approximation that underlies the local IAM 14,17 treatment of the water dimer does not hold.

Significant changes in the interchange tunneling splitting were also observed to occur upon excitation of the acceptor wag. The interchange splitting in the ground state is fairly constant over the K_{a} values and symmetry labels with a value of ca. 1 GHz . In the excited state the $K_{a}^{\prime}=0$ values are 3.3 and 3.9 GHz for the lower and upper acceptor switching splitting components, respectively. For the $K_{a}^{\prime}=1$ state the splitting is significantly increased. It is 11.9 GHz for the " 1 's'" and 5.0 GHz for the " 2 's."' While the splittings have significantly increased, the relative ordering remains intact within each fork. The result for the ' 2 's'" is different here than what was previously reported. ${ }^{15}$ The explanation for this is given below.

The geared interchange pathway alone does not explain the differences in the interchange splittings between the ' 1 's'" and ' 2 's.' If it were sufficient, the interchange splittings in each multiplet would be the same. Coudert and Hougen identified the importance of the antigeared interchange pathway in their fit of the dimer data available in 1990 using the local IAM model. ${ }^{17}$ They found that the antigeared pathway added to the interchange splitting of the " 1 's'" and subtract from the splitting of the " 2 's," i.e.,

$$
\begin{aligned}
& \text { for ' } 1 \text { 's'": } \quad I(g)+I(a g)=I \\
& \text { and for " } 2 \text { 's'": } \quad I(g)-I(a g)=I .
\end{aligned}
$$

In $K_{a}^{\prime}=0, I(g)$ is 3637 MHz and $I(a g)$ is 291 MHz leading to the observed overall interchange splittings. For $K_{a}^{\prime}=1, I(g)$ is found to be 8481 MHz and $I(a g)$ contribution is 3458 MHz . In the excited state $K_{a}^{\prime}=1$ described here, the local IAM model reveals that the antigeared motion is

TABLE VI. $65 \mathrm{~cm}^{-1}\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$ band: donor torsion $\left(\nu_{12}\right)$ fitted constants (in MHz). 1σ uncertainties in italics.

	A_{1}^{+} / B_{1}^{-}		E_{1}^{+} / E_{1}^{-}		B_{1}^{+} / A_{1}^{-}	
$K_{a}^{\prime}=0$						
$(B+C) / 2$	5460.37	0.12	5457.300	0.070	5454.24	0.151
D_{j}	0.0533	0.0016	0.0509	0.0007	0.051	0.00029
Band origin	2259943.0	1.1				
Interchange	9838.3	2.2				
Bifurcation	-50.9	1.7				
	A_{2}^{-} / B_{2}^{+}		E_{2}^{-} / E_{2}^{+}		B_{2}^{-} / A_{2}^{+}	
$(B+C) / 2$	5402.105	0.099	5400.128	0.167	5398.756	0.138
D_{j}	0.0374	0.0011	0.0365	0.0031	0.0375	0.002
Band origin	1733402.0	1.1				
Interchange	6093.3	2.1				
Bifurcation	-24.0	1.9				
Acceptor switch ${ }^{\text {a }}$	474 GHz					
Interchange (g) ${ }^{\text {a }}$	7966		Inter			

$K_{a}^{\prime}=1$								
$(B+C) / 2$	5367.765	0.0678	5367.434	0.066	5367.022			
D_{j}	0.0274	0.0007	0.0291	0.0007	0.0282			
$(B-C) / 4$	14.831	0.17	14.960	0.014	15.14			
d_{j}	0	0	0.0005	0.014				

Band origin	2046774.0	0.8
Interchange	3950.5	1.7
Bifurcation	-3.6	1.4

	A_{2}^{-} / B_{2}^{+}	E_{2}^{-} / E_{2}^{+}	B_{2}^{-} / A_{2}^{+}		
$(B+C) / 2$	5422.497	0.613	5420.102	0.179	5417.918
D_{j}	0.0465	0.014	0.0407	0.002	0.0379
$(B-C) / 4$	9.483	0.091	9.507	0.052	0.535
d_{j}	-0.0054	0.0004	0.0013	0.0005	-0.0015

Band origin	2099738.2	3.7			
Interchange	7696.9	7.5			
Bifurcation	-26.7	4.9			
Acceptor switch ${ }^{\text {a }}$	106 GHz				
Interchange (g) ${ }^{\text {a }}$	5823		Interchange ($a g)^{\text {a }}$	1873	
A rotational const. ${ }^{\text {a }}$	82 GHz				
σ (std. dev. of fit) ' 1 's',		0.99	rms error of resid. ' 1 's',		1.15
σ (std. dev. of fit) ' 2 's',		1.8	rms error of resid. ' 2 's',		1.9
Number of trans. ' 1 's',		240	number of trans. ' 2 's',		99

	A_{1}^{+} / B_{1}^{-}		E_{1}^{+} / E_{1}^{-}		B_{1}^{+} / A_{1}^{-}	
$K_{a}^{\prime}=2$						
$(B+C) / 2$	5412.665	0.11	5411.984	0.114	5411.38	0.113
D_{j}	0.0433	0.0017	0.0437	0.002	0.043	0.0018
$(B-C) / 4$	0.0095	0.0003	0.0099	0.0003	0.009	0.0003
Band origin	2351820.3	1.0				
Interchange	3520.7	2.0				
Bifurcation	-7.0	1.9				

${ }^{\text {a }}$ These constants were not fit.
more than 40% of the total interchange splitting compared with the ground state where it made up less than 5% for both $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ and $\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$ in the IAM description. The bifurcation shift changes by +39 MHz and +157 for the ' 1 's' and ' 2 's," respectively in $K_{a}^{\prime}=0$, and changes by -329 MHz and -111 MHz in $K_{a}^{\prime}=1$ for the ' 1 's'" and ' 2 's."

Pugliano et al. ${ }^{16}$ postulated that half of the $K_{a}^{\prime}=1$ ' 2 's", states were perturbed. Q-branches which were believed to
belong to this state did not fit well with the observed P - and R-branches, therefore it was hypothesized that the $K_{a}^{\prime}=0$ levels of another vibration were perturbing the levels in which the P - and R-branch transitions terminated. These levels correspond to the upper half of the asymmetry splitting. Re-examination of these subbands in light of extensive new data and a better understanding of dimer VRT dynamics reveals an entirely different explanation. A search for the K_{a}^{\prime}
$=1 \leftarrow K_{a}^{\prime \prime}=1$ transitions was performed, and the corresponding transitions were found for those terminating in the upper half of the asymmetry splitting (those previously believed to be perturbed). However, no transitions were found to terminate in the lower asymmetry component using the rotational constants determined by Pugliano et al. ${ }^{16}$ New estimates of the $K_{a}=1 \rightarrow 1$ transitions to the lower asymmetry states were made based on the upper state components. Transitions to these new lower states were then identified. Next, new predictions for the Q branches of the $K_{a}^{\prime}=1 \leftarrow K_{a}^{\prime \prime}=0$ band were made from this fit. Subsequently the correct Q branches were identified. The two halves of the asymmetry components can now be fit together. The previously misidentified Q-branches actually belong to a separate VRT band centered at $90 \mathrm{~cm}^{-1}$, and coincidentally occurred near the transitions of this vibration in the spectrum. The $90 \mathrm{~cm}^{-1}$ band is identified with the acceptor twist vibration and is discussed below.

2. K_{a} dependence of fitted constants

The energy level expressions used in this fit are not corrected for tunneling contributions to the fitted constants. It can be seen that the fitted constants actually change not only with K_{a}, but with tunneling component. There is a significant change in the $(B+C) / 2$ rotational constant between each of the forks of the acceptor switching splitting, and a smaller variation in $(B+C) / 2$ within each fork. In $K_{a}^{\prime}=0$, $(B+C) / 2$ of the ' 1 's'" has decreased by an average of 37 $\mathrm{MHz}(-0.68 \%)$ and varies by $\pm 3 \mathrm{MHz}$ within the fork. The $(B+C) / 2$ of the " 2 's'" decrease by a smaller amount (25 $\mathrm{MHz},-0.46 \%)$ and vary by $\pm 1.5 \mathrm{MHz}$. In $K_{a}^{\prime}=1,(B$ $+C) / 2$ of the " 1 's"' decreases by only $\sim 8 \mathrm{MHz}(-0.16 \%)$, but varies by $\pm 5 \mathrm{MHz}$. The ' 2 's'" decrease by 91 MHz (1.68%) and varies by $\pm 3 \mathrm{MHz}$. It has been suggested that $(B+C) / 2$ is affected by acceptor switching when the high barrier model breaks down. ${ }^{17}$

The centrifugal distortion constants $\left(D_{j}\right)$ have changed little from the ground state values for the ' 1 's.'" However, the ' 2 's"' exhibit very different values from the ground state. Two tunneling states $\left(A_{2}^{-} / B_{2}^{+}\right.$and $\left.B_{2}^{-} / A_{2}^{+}\right)$have negative D_{j} 's while the E_{2}^{-} / E_{2}^{+}states have a positive, but smaller value than the ground state. This suggests that these levels are perturbed. In fact, the $K_{a}^{\prime}=0$ ' 2 's's states of the new 90 cm^{-1} vibration are believed to be the explicit perturbers. The $K_{a}^{\prime}=1$ levels of the acceptor wag are shifted down while the $K_{a}^{\prime}=0$ levels of the acceptor twist are shifted up. This will be discussed and described in more detail below.

The asymmetry constants, $(B-C) / 4$, were observed to have greatly varying values among the tunneling components in the ground state and are strongly influenced by tunneling. ${ }^{32}$ In order to use these for structural information, it is necessary to remove the effects of tunneling. It is easy to rationalize the tunneling influence since $(B-C) / 4$ is determined by the position of the light, out-of-plane deuterium atoms. The vibrationally averaged ground state structure corresponds to an acceptor θ_{a} angle of $\sim 58^{\circ} ;(B-C) / 4$ goes to zero and then switches sign (indicating a change in the B and C axes) as θ_{a} goes to 48°. For $K_{a}^{\prime}=1$ of the " 1 's'" (B $-C) / 4$ has increased on average $6 \mathrm{MHz}(73 \%)$ from ca 8.2 MHz in the ground state $K_{a}^{\prime \prime}=1$ with only a 1 MHz variation

FIG. 8. $65 \mathrm{~cm}^{-1}\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$, donor torsion (ν_{12}) energy level diagram. $J=0$ $\rightarrow 1, K_{a}=0 \rightarrow 1, J=1 \rightarrow 1, K_{a}=1 \rightarrow 0$, and $J=1 \rightarrow 2, K_{a}=1 \rightarrow 2$ transitions are shown.
among tunneling components. For the ' 2 's'' it has increased by $4 \mathrm{MHz}(27 \%)$ from ca. 14.9 MHz in the ground state $K_{a}^{\prime \prime}=1$ but varies by $\pm 5 \mathrm{MHz}$ among tunneling components.

Finally, a new A rotation constant was determined for the ν_{8} excited state using the relationship

$$
\begin{gather*}
\left(v^{" 1}{ }^{\prime \prime}{ }_{K a^{\prime}=0}+v^{"{ }^{\prime \prime}{ }^{\prime \prime}}{ }_{K a^{\prime}=0}\right) / 2+A-B \\
=\left(v^{" 1}{ }^{\prime \prime}{ }_{K a^{\prime}=1}+v^{" 2_{2}^{\prime \prime}} K a^{\prime}=1\right) / 2, \tag{5}
\end{gather*}
$$

where B is average rotational constant and v 's are the band origins for the ' 1 's'" or " 2 's'" for each K_{a}. The value of A was determined to be 122 GHz , ca. $3.5 \mathrm{GHz}(<2.8 \%)$ decrease below the ground state value of $125.5 \mathrm{GHz} .^{36}$ This is reasonable as we do not expect A to change much in the acceptor wag vibration.

B. The $65 \mathrm{~cm}^{-1}$ band: Donor torsion (ν_{12})

Two hundred forty perpendicular, b-type transitions from $K_{a}^{\prime \prime}=0$ and 1 of the ground state to $K_{a}^{\prime}=0,1$, and 2 of the excited state have been observed near $65 \mathrm{~cm}^{-1}$. The 240 measured transitions for 15 subbands were fit to an $A^{\prime \prime}$ symmetry vibration and assigned to the donor torsion $\left(\nu_{12}\right)$. The data are listed in Table V and the stick spectrum is shown in Fig. 7. Combination differences for the ground state were used to assign the J, K_{a}, and K_{c} values of the spectra, as well as to determine the overall symmetry of the vibration. The nuclear spin statistics, which govern relative intensities, allowed the tunneling labels for each subband to be identified.

TABLE VII. $90 \mathrm{~cm}^{-1}\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$ band: acceptor twist transition frequencies (MHz). Residuals (observed-calculated values) in italics.

Transition			A_{1}^{+}, B_{1}^{-}	Obs-Calc		E^{+}, E^{-}	Obs-Calc

1. $K_{a}=0 \rightarrow 1$ subbands

All six possible VRT subbands corresponding to K_{a} $=0 \rightarrow 1$ were observed for the $65 \mathrm{~cm}^{-1}$ vibration. The presence of $Q(1)$ and the absence of $P(1)$ verify this assignment. The ' 1 's'" were fit to a band origin of 2046773.9 MHz and the ' 2 's"' to 2099738.3 MHz . All fitted parameters are in Table VI. The difference between the band origins gives the change in the acceptor switching splitting as approximately 53 GHz . Recall that the acceptor switching splitting in the ground state $K_{a}=0$ was determined to be 53 GHz , this gives an acceptor switching splitting of 106 GHz
in $K_{a}^{\prime}=1$, a factor of 2 larger than the ground state $K_{a}^{\prime}=0$ and more than five times larger than in $K_{a}^{\prime \prime}=1$. An energy level diagram for this vibration is given in Fig. 8.

The excited state interchange splitting is 3950 MHz for $K_{a}^{\prime}=1$ (more than three times the ground state values) for the ' 1 's" and 7697 MHz for the " 2 's'" (ca. seven times the ground state values). The interchange splittings can be dissected into the geared and antigeared components which are found to be 5824 MHz and -1874 MHz , respectively. The antigeared motion is now about 32% of the total interchange splitting compared to 5% in the ground state. The bifurcation

FIG. 9. $90 \mathrm{~cm}^{-1}\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$ stick spectrum, acceptor twist $\left(\nu_{11}\right)$. Eighty-three b-type transitions with $K_{a}=1 \rightarrow 0$ observed. Maximum signal-to-noise $\sim 50: 1$, linewidth $\sim 2 \mathrm{MHz}$. One tunneling component of the ' 2 's', is missing.
shift is approximately -3 MHz for the ' 1 's'" and -27 MHz for the " 2 's" compared to $\sim 0 \mathrm{MHz}$ for the ground state $K_{a}^{\prime \prime}=0$ values.

The rotational constants $(B+C) / 2$ for the " 1 's'" have decreased by $65 \mathrm{MHz}(-1.2 \%)$ from the ground state $K_{a}^{\prime \prime}$ $=0$. The rotational constants within the multiplet do not vary by more than 0.7 MHz . The centrifugal distortion constants $\left(D_{j}\right)$ have decreased by as much as $10 \mathrm{kHz}(28 \%)$. The
asymmetry constants, $(B-C) / 4$, are $\sim 15 \mathrm{MHz}$, almost double the ground state $K_{a}^{\prime}=1$ values, and vary with tunneling component by $\pm 0.3 \mathrm{MHz}$.

In comparison the rotational constants $(B+C) / 2$ for the ' ' 2 's'" have decreased by only $\sim 12 \mathrm{MHz}(<1 \%)$, but show a larger variation (up to 4.5 MHz) within the tunneling components of the fork. The centrifugal distortion constants $\left(D_{j}\right)$ have increased for the " 2 's" by as much as $9 \mathrm{kHz}(25 \%)$. The asymmetry constants, $(B-C) / 4$, are $\sim 9.5 \mathrm{MHz}$. A decrease of $\sim 5.5 \mathrm{MHz}(36 \%)$ from the " 2 's' of the ground state $K_{a}^{\prime \prime}=1$.

2. $K_{a}=1 \rightarrow 0$ subbands

Transitions corresponding to all six tunneling components have been observed with $K_{a}=1 \rightarrow 0$. The observed transitions were verified to be $K_{a}=1 \rightarrow 0$, by the presence of $J=1 \rightarrow 0$ transitions, the fact that the Q-branches originated from the $J, K_{a}=1, K_{c}=J-1$ levels, and that there were no transitions corresponding to Q-branches originating from the $J, K_{a}=1, K_{c}=J$ levels. The band origin for the ' 1 's'" was determined to be 2259943.0 GHz , more than 213 GHz above the $K_{a}^{\prime}=1$ levels of the same symmetry. The band origin for the ' 2 's'" is 1733402.0 MHz resulting in an acceptor switching splitting of 474 GHz , nine times the ground state $K_{a}^{\prime \prime}=0$ value.

The interchange splitting for the " 1 's'" was determined to be 9838 MHz in $K_{a}^{\prime}=0$, and for the ' 2 's,' 'it is 6093 MHz . The geared contribution is $7966 \mathrm{MHz}(81 \%)$ and the antigeared is $1872 \mathrm{MHz}(19 \%)$ of the total interchange splitting. The bifurcation shift is ca. -51 MHz for the ' 1 's,'" and the ' ' 2 's'" exhibit a bifurcation shift of -24 MHz compared to 0 MHz for $K_{a}^{\prime}=0$ states.

The rotational constants, $(B+C) / 2$, for the ' 1 's'" have increased by an average of $25 \mathrm{MHz}(0.46 \%)$ from the ground

TABLE VIII. $\left(\mathrm{D}_{2} \mathrm{O}\right)_{2} 90 \mathrm{~cm}^{-1}$ band: acceptor twist (ν_{11}) fitted constants (MHz). 1σ uncertainties in italics.

	A_{1}^{+} / B_{1}^{-}		E_{1}^{+} / E_{1}^{-}	B_{1}^{+} / A_{1}^{-}	
$(B+C) / 2$	5491.913	0.156	5491.006 0.163	5490.073	0.859
D_{j}	0.0438	0.0012	$0.0457 \quad 0.0016$	0.0527	0.0250
Band origin	2785356.7	3.4			
Interchange	12952.4	6.7			
Bifurcation	-79.8	3.5			
number of transitions		55			
σ (standard deviation of fit)		1.49	rms error of residuals	1.04	
	A_{2}^{-} / B_{2}^{+a}		E_{2}^{-} / E_{2}^{+}	$B_{2}^{-} / A_{2}^{+\mathrm{b}}$	
$(B+C) / 2$	5488			5504	
D_{j}	0.058			0.165	
Band origin	2656351				
Interchange	13286				
Bifurcation	-79				
number off transitions		30			
Acceptor switch ${ }^{\text {a }}$		76 GHz			

${ }^{\text {a }}$ This constant was not fit.
${ }^{\mathrm{b}}$ The constants for these states are assumed to be the correct symmetry. Until the third component is found this assignment is tentative.

FIG. 10. $90 \mathrm{~cm}^{-1}\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$ band, acceptor twist $\left(\nu_{11}\right)$ energy level diagram. $J=1 \rightarrow 1, K_{a}=1 \rightarrow 0$ transitions are shown.
state and varies by as much as 6 MHz between tunneling components within the fork. The centrifugal distortion constant $\left(D_{j}\right)$ has increased by $\sim 14 \mathrm{kHz}(38 \%)$.

For the ' 2 's'" the rotational constants have decreased by an average of $32 \mathrm{MHz}(0.59 \%)$. The variation among tunneling components is less than 4 MHz . The distortion constants $\left(D_{j}\right)$ are very close to the ground state values. The average is ca. 37 kHz compared to 36 kHz for $K_{a}^{\prime \prime}=0$.

An A rotational constant was calculated using Eq. (5). A was determined to be $82 \mathrm{GHz}, 43 \mathrm{GHz}(-34 \%)$ less than the ground state value using this method. An A rotational constant of 82 GHz is very unlikely. It is more likely the case that the use of Eq. (5) for determining A is not valid here, or that there is an as yet unobserved perturbation which has shifted the observed band origins. In either case, the 82 GHz value for the A rotational constant should be regarded with skepticism.

3. $K_{a}=1 \rightarrow 2$ subbands

Transitions with $K_{a}=1 \rightarrow 2$ corresponding to the " 1 's", were observed, but not for the " 2 's." The absences of $Q(1)$'s and $R(0)$'s as well as the complete absence of P-branch transitions led to these K_{a} assignments. P-branch transitions would require K_{c} to change by 2 . It was also noted that there are transitions originating from both of the asymmetry components of $K_{a}^{\prime \prime}=1$. The interchange splitting was determined to be 3520 MHz and the bifurcation shift has decreased by 7 MHz . An energy level diagram for the excited vibrational state is shown in Fig. 8. The dashed energy levels represent the relative positions where the unobserved transitions are expected to terminate.

The rotational constants $(B+C) / 2$ have decreased by an average of $20 \mathrm{MHz}(0.37 \%)$ and vary only about 1.3 MHz between tunneling components within the fork. The distortion constants $\left(D_{j}\right)$ have increased to 43 kHz from 34 kHz (24%) in the ground state $K_{a}^{\prime \prime}=2$ and show little variation

FIG. 11. Perturbation of $K_{a}^{\prime}=1 A_{2} / E_{2} / B_{2}$ levels of the acceptor wag by the $K_{a}^{\prime}=0 A_{2} / E_{2} / B_{2}$ levels of the acceptor twist in $\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$.
among the tunneling components of this fork. The asymmetry parameter, $(B-C) / 4$, is $\sim 0.009 \mathrm{MHz}$ compared to 0.002 MHz in the $K_{a}^{\prime \prime}=2$.

There are three possible $A^{\prime \prime}$ vibrations for the water dimer, the donor torsion $\left(\nu_{12}\right)$, the acceptor twist $\left(\nu_{11}\right)$, and the out-of-plane bend $\left(\nu_{10}\right)$. This $A^{\prime \prime}$ vibration was assigned to the donor torsion $\left(\nu_{12}\right)$, because the out-of-plane bend (ν_{10}) is predicted to be the highest energy intermolecular vibration and most likely out of the range of our spectrometer and the acceptor twist (ν_{11}) vibrational motion has similarities with the interchange tunneling coordinate, therefore, the interchange splitting is expected to be relatively large in this vibration in comparison to the ground state and the other excited states. The $A^{\prime \prime}$ vibration at $90 \mathrm{~cm}^{-1}$ exhibits this property and was assigned accordingly. The donor torsion is expected to have similarities with the acceptor switching and the bifurcation tunneling pathways, and it is predicted to be the lowest energy intermolecular vibration of the dimer. It mainly involves the χ angle, which is the dihedral angle between the molecular symmetry axes of the constituent monomers. It is not expected that this, or in fact, that any of the intermolecular vibrations will be very harmonic. Most likely there will be coupling of the large amplitude tunneling motions to the intermolecular vibrations, particularly those involving the same molecular coordinates. The acceptor switching splitting has doubled in $K_{a}^{\prime}=1$ of this band from $K_{a}^{\prime \prime}=0$, and $K_{a}^{\prime}=0$ is about nine times larger than $K_{a}^{\prime \prime}=0$. The interchange splittings have also increased, but it may be more useful to look at the geared and antigeared components. The geared component is more than five times larger and the antigeared component is more than 30 times larger than the ground state indicating that a significant amount of energy being put into these tunneling coordinates. The antigeared motion is relatively less hindered now, as shown by the large increase in its percentage of the total interchange

TABLE IX. $104 \mathrm{~cm}^{-1}\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$ band: in-plane bend transition frequencies (MHz). Residuals (observed-calculated) in italics.

Transition		A_{1}^{+}, B_{1}^{-}	Obs-Calc		E_{1}^{+}, E_{1}^{-}	Obs-Calc		$B_{1}^{+} A_{1}^{-}$	Obs-Calc
$K_{a}=0 \rightarrow 0$									
$7_{07} \leftarrow 8_{08}$				E_{1}^{+}	3039114.0	-0.88	B_{1}^{+}	3050423.1	-1.83
$6_{06} \leftarrow 7_{07}$	B_{1}^{-}	3037585.2	-4.52	E_{1}^{-}	3049787.7	-2.83	A_{1}^{-}	3061254.5	1.30
$5_{05} \leftarrow 6_{06}$	A_{1}^{+}	3048145.9	-2.89		3060496.2	1.25	B_{1}^{+}	3072090.6	1.28
$4_{04} \leftarrow 5_{05}$	B_{1}^{-}	3058757.4	-0.66	E_{1}^{-}	3071229.6	2.18	A_{1}^{-}	3082930.4	-2.03
$3_{03} \leftarrow 4_{04}$	A_{1}^{+}	3069418.6	0.47	E_{1}^{+}	3081986.8	-0.56	B_{1}^{+}	3093782.0	0.34
$2_{02} \leftarrow 3_{03}$	B_{1}^{-}	3080128.8	-0.56	E_{1}^{-}	3092772.8	-1.49			
$1_{01} \leftarrow 2_{02}$	A_{1}^{+}	3090890.2	-1.68				B_{1}^{+}	3115494.2	-0.79
$0_{00} \leftarrow 1_{01}$	B_{1}^{-}	3101705.6	0.14	E_{1}^{-}	3114426.0	-0.99	A_{1}^{-}	3126355.8	-1.55
$1_{01} \leftarrow 0_{00}$	A_{1}^{+}	3123483.6	0.24		3136181.6	1.24	B_{1}^{+}	3148088.5	-0.61
$2_{02} \leftarrow 1_{01}$	B_{1}^{-}	3134447.2	1.60	E_{1}^{-}	3147092.9	0.31	A_{1}^{-}	3158956.9	0.14
$3_{03} \leftarrow 2_{02}$	A_{1}^{+}	3145455.1	0.36	E_{1}^{+}	3158027.2	0.17	B_{1}^{+}	3169827.6	3.19
$4_{04} \leftarrow 3_{03}$	B_{1}^{-}	3156509.3	0.36	E_{1}^{-}	3168979.6	-2.77	A_{1}^{-}	3180693.6	2.41
$5_{05} \leftarrow 4_{04}$	A_{1}^{-}	3167609.2	3.12		3179961.6	4.41			
$6_{06} \leftarrow 5_{05}$	B_{1}^{-}	3178747.6	3.80				A_{1}^{-}	3202416.0	-2.63
$7_{07} \leftarrow 6_{06}$				E_{1}^{+}	3201958.8	-0.51	B_{1}^{+}	3213276.8	-0.71
$8_{08} \leftarrow 7_{07}$	B_{1}^{-}	3201130.8	0.00	E_{1}^{-}	3212983.5	-0.18	A_{1}^{-}	3224133.2	1.19
$9_{09} \leftarrow 8_{08}$	A_{1}^{+}	3212375.2	0.40	E_{1}^{+}	3224022.5	0.68	B_{1}^{+}	3234981.5	0.29
$10_{010} \leftarrow 9_{09}$	B_{1}^{-}	3223648.8	-0.18						

splitting. The interchange pathways involve $\theta_{a}, \phi_{a}, \theta_{d}$, and ϕ_{d}. A modified version of the vibrational motion can be envisioned in which the motion in the χ angle is coupled with a slight twisting in the acceptor ϕ_{a} angle and flip in the θ_{a} angle to compensate for the increased repulsion as the free hydrogen on the donor is rotated. This motion begins to look like the geared interchange tunneling and acceptor switching pathways.

All of the fitted rotation parameters show a dependence on K_{a} and tunneling component, indicating a contamination of these constants with tunneling effects which cannot be removed with this fitting model. The high barrier model is drastically less appropriate for these vibrationally excited states as the tops of the tunneling barriers are approached.

C. The $90 \mathrm{~cm}^{-1}$ band: Acceptor twist (ν_{11})

Eighty-three perpendicular, b-type transitions corresponding to an $A^{\prime \prime}$ vibration have been observed around 90 cm^{-1} with $K_{a}=0 \rightarrow 1$. The Q branches of the upper half of the acceptor switching splitting corresponding to the ' 1 's" were previously identified as belonging to the $83 \mathrm{~cm}^{-1}$ band with $K_{a}=0 \rightarrow 1$ and tunneling labels of ' 2 's."' They were misidentified due to their coincidental location in the spectrum. The P and R branches for each Q branch were identified using combination differences. The presence of $P(1)$'s and the fact that the Q-branches originate from the J, K_{a} $=1, K_{c}=J-1$ levels were used as verification of the K_{a} assignments. The transitions are listed in Table VII and a stick spectrum is given in Fig. 9. The fitted constants are summarized in Table VIII, and the energy level diagram can be found in Fig. 10.
$K_{a}=1 \rightarrow 0$ subbands. The band origin of the ' 1 's" is at $2785356.7 \mathrm{MHz}\left(92.8 \mathrm{~cm}^{-1}\right)$. The fitted constants in Table VII show an increase in the $(B+C) / 2$ rotational constants for these subbands to an average of 5491 MHz with a variation of $\pm 1 \mathrm{MHz}$ within the fork. The distortion constants $\left(D_{j}\right)$ have increased slightly to $46.0 \mathrm{kHz}(25 \%)$. A 12 -fold
increase in the interchange splitting to a value of 12952 MHz was determined. A smaller decrease of -79 MHz for the bifurcation shift was estimated.

Using the knowledge that $K_{a}=0$ ' 2 's'" are expected to be lower in energy than the $K_{a}=0$ ' 1 's' for A " vibrations, the " 2 's"' were located near 2656 GHz . At this time only two of the three tunneling components have been found and fit. It is believed that the third component has transitions lying in frequency gaps where the sensitivity of the spectrometer was too low, making a search for combination differences impossible. An initial attempt at fitting the observed data lead to the assignment of the two observed tunneling components as belonging to B_{2}^{-} / A_{2}^{+}and A_{2}^{-} / B_{2}^{+}states. Without reliable intensity measurements it is difficult if not impossible to distinguish between the three tunneling components of the ' 2 's'" because the combination differences are essentially the same with the accuracy of our measurements. If the above assignment is used, a band origin of 2656 GHz is determined, just 24 GHz above the $83 \mathrm{~cm}^{-1} K_{a}^{\prime}=1$ levels of the " 2 's." These tunneling labels were chosen because they give an estimated interchange splitting of ~ 13 GHz , close to the value of the ' 1 's.' If one of these components is chosen to belong to E_{2}^{-} / E_{2}^{+}states then the interchange splitting will be on the order of 25 GHz . Using 2656 GHz as the band origin of the ' 2 's,', an estimated acceptor switching splitting for $K_{a}^{\prime}=0$ of 76 GHz is determined. These assignments will remain tentative until the third component is found and fit. Using Eq. (2) the average band origin for the ' 1 's'" and ' 2 's'" with $K_{a}=0 \rightarrow 1$ is predicted to be near 2840 GHz .

It was mentioned previously that the $83 \mathrm{~cm}^{-1} K_{a}^{\prime}=1$ ' ' 2 's' appeared to be perturbed. It is now believed that the $K_{a}^{\prime}=0$ ' 2 's" of this $90 \mathrm{~cm}^{-1}$ band is the explicit perturber. The fitted constants, particularly the distortion constants $\left(D_{j}\right)$ appear too large for these subbands. The perturbation is

FIG. 12. $104 \mathrm{~cm}^{-1}\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$ stick spectrum, in-plane bend $\left(\nu_{6}\right)$. Forty-five a-type transitions with $K_{a}=0 \rightarrow 0$ observed. Maximum signal-to-noise $\sim 50: 1$, linewidth $\sim 2 \mathrm{MHz}$.
relatively small compared to a similar situation occurring in the ground state of the $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ which has a Coriolis interaction between $K_{a}=0$ and 1 states of the " 2 's." This is most likely due to the fact that the two vibrations are of different symmetry, but it is possible to get interactions between individual tunneling components of the same overall symmetry, same J, and with $\Delta K_{a}= \pm 1$. In this interaction the $K_{a}^{\prime}=0$ states of this excited vibration interact with the lower asymmetry component of the $K_{a}^{\prime}=1$ acceptor wag states. The result is that the $K_{a}^{\prime}=0$ levels are pushed up and the $K_{a}^{\prime}=1$ levels are pushed down (see Fig. 11). Since all three components of the ' 2 's" in the $90 \mathrm{~cm}^{-1}$ vibration have not been identified it is not possible to fit a perturbation to these states. An attempt was made at incorporating a Coriolis coupling constant between two of the states. This resulted in an estimate of a Coriolis constant of about $800-1000 \mathrm{MHz}$. If a value of 1000 MHz is used, the distortion constants in each

$104 \mathrm{~cm}^{-1}$ Band: In-Plane Bend

FIG. 13. $104 \mathrm{~cm}^{-1}\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$, in-plane bend $\left(\nu_{6}\right)$ energy level diagram. J $=0 \rightarrow 1, K_{a}=0 \rightarrow 0 a$-type transitions are shown.
state resemble those of the corresponding " 1 's" and a slightly better $(B-C) / 4$ value for the $83 \mathrm{~cm}^{-1}$ states result. This is only meant to be an estimate of the perturbation, as the exact coupling mechanism is probably not the same as the one in the ground state of $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$. A rigorous treatment of the Coriolis coupling most likely requires the use of higher order terms.

This vibration has been assigned to the $A^{\prime \prime}$, acceptor twist (ν_{11}) vibration, which is predicted to be close in energy to the acceptor wag. The acceptor twist normal mode involves a rotation of the acceptor monomer about its symmetry axis involving the acceptor ϕ_{a} angle. Imagining this motion, it can be seen that it has a component similar to both the geared and antigeared donor-acceptor interchange tunneling pathways previously described. It is also not difficult to

TABLE X. $104 \mathrm{~cm}^{-1}\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$ band: in-plane bend $\left(\nu_{6}\right)$ fitted constants $(\mathrm{MHz}) .1 \sigma$ uncertainties in italics.

A_{1}^{+} / B_{1}^{-}			E_{1}^{+} / E_{1}^{-}		B_{1}^{+} / A_{1}^{-}	
			${ }_{a}=0$			
$(B+C) / 2$	5456.993	0.218	5444.517	0.130	5433.453	0.123
D_{j}	0.0507	0.0054	0.0416	0.0015	0.0365	0.0014
Band origin	3124895.9	1.4				
Interchange	23480.7	2.8				
Bifurcation	395.5	2.5				
Number of transitions		45				
σ (standard deviation of fit)		1.3	rms errors	siduals		1.01

Vibration
FIG. 14. Summary of observed $\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$ intermolecular vibrations.
imagine that there would be a slight compensating bend of the donor θ_{d} angle which would draw the oxygen atoms closer together. Both of these ideas would explain the increases observed in the rotational constants and the interchange splitting.

D. The $104 \mathrm{~cm}^{-1}$ band: In-plane bend (ν_{6})

An A^{\prime} symmetry vibration was observed near $104 \mathrm{~cm}^{-1}$. Forty-five parallel a-type transitions were measured for the three tunneling components of the ' 1 's'" with $K_{a}^{\prime \prime}=0 \rightarrow K_{a}^{\prime}$ $=0$ but not for the " 2 's."' The data are summarized in Table IX and the stick spectrum is presented in Fig. 12. An interchange splitting of 23 GHz was determined as shown in the energy level diagram of Fig. 13.
$K_{a}=0 \rightarrow 0$. The band origin was determined to be 3124895.9 MHz . The K_{a} assignments were verified by combination differences and the absence of Q branches. From the fitted constants in Table X it is observed that the $(B+C) / 2$ rotational constants have increased for these subbands to an average of 5445 MHz (0.2%), and vary by $\pm 12 \mathrm{MHz}$ with tunneling component. This variation is much larger than those appearing in other vibrations. The centrifugal distortion constants $\left(D_{J}\right)$ have also increased. Note, however, that the constants for the B_{1}^{+} / A_{1}^{-}subband are very close to the values of the ground state.

The interchange splitting is found to be 23480 MHz (ca, 20 times larger than the ground state), by far the largest increase observed for any $\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$ vibration (see Fig. 13). The
bifurcation shift has increased by almost 400 MHz over the ground state $K_{a}^{\prime \prime}=0$ value of 0 MHz . If this vibration has a component similar to the interchange tunneling motion this would account for the large increase in the interchange splitting. The large variation in $(B+C) / 2$ may suggest it is also affected by the interchange motion, at least for this vibration.

Due to the fact that the $K_{a}^{\prime}=0$ ' ' 2 's' have not been observed, an estimate of the acceptor switching splitting cannot be made nor can the interchange splitting be dissected into its geared and anti-geared components. They are expected to be at a higher frequency since this is an A^{\prime} vibration. Continuous scanning of $\mathrm{D}_{2} \mathrm{O}$ clusters has not been performed in the frequency range of $108-137 \mathrm{~cm}^{-1}$. Future work in this frequency range should yield additional $\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$ data.

There are three possible assignments for an A^{\prime} vibration. The acceptor wag (ν_{8}) can immediately be eliminated since the $83 \mathrm{~cm}^{-1}$ band has been given that assignment. The $\mathrm{O}-\mathrm{O}$ stretch is expected to occur near $140 \mathrm{~cm}^{-1}$. The final possibility is the donor in-plane bend. While harmonic approximations predict that this vibration is much higher in energy due to the fact that it strains the hydrogen bond, coupling to another vibrational mode by the IPS would make it possible to observe this at a much lower frequency. The normal mode picture of the donor in-plane bend shows a change in the donor θ_{d} angle. A compensating change in the acceptor θ_{a} angle, which is similar to the acceptor wag vibration, would not be implausible. This would lead to a coupling between the two vibrations and lowering the energy of the donor inplane bend in a manner similar to that suggested by Loeser ${ }^{11}$ for $\left(\mathrm{NH}_{3}\right)_{2}$. The donor torsion and acceptor twist of $\left(\mathrm{NH}_{3}\right)_{2}$ are believed to be coupled. Coupling is also expected between the vibrational coordinate, the interchange coordinate and the acceptor switching coordinate.

The final piece of evidence that supports this vibrational assignment is the observation that the $(B+C) / 2$ rotational constants increase slightly from the ground state. Although the rotational constants are observed to vary with K_{a} and tunneling component, it is expected that the $(B+C) / 2$ values of the $\mathrm{O}-\mathrm{O}$ stretch will decrease from those of the ground state regardless of K_{a} and tunneling component. An increase in the separation of the heavy oxygen atoms should result in a decrease in $(B+C) / 2$. If the picture of a compensating change in the acceptor θ_{a} angle with the change is the donor θ_{d} angle is correct, a decrease in the $\mathrm{O}-\mathrm{O}$ separation would be possible due to lessened steric hindrances. This would result in a slightly increased $(B+C) / 2$ value as observed. Until additional transitions in this band are observed and the data collection near $137 \mathrm{~cm}^{-1}$ is completed, this assignment and analysis must remain tentative.

V. SUMMARY

Extensive VRT spectra characterizing four different intermolecular vibrations of $\left(\mathrm{D}_{2} \mathrm{O}\right)_{2}$ have been measured and analyzed. Corrections to the previously published vibration observed near $83 \mathrm{~cm}^{-1}$ were given along with the assignment of the perturbing vibration centered at $90 \mathrm{~cm}^{-1}$. Additionally, data on the $65 \mathrm{~cm}^{-1}$ vibration and the $104 \mathrm{~cm}^{-1}$
vibration were presented. All of these vibrations are both qualitatively and quantitatively different from the predictions of popular pair potentials and represent a significant advance in the understanding of the water dimer intermolecular dynamics. A summary energy level diagram of the measured intermolecular vibrations is given in Fig. 14. These data were used in the recent determination of the water dimer intermolecular potential energy surface by Fellers and Saykally. ${ }^{37}$
${ }^{1}$ R. S. Fellers et al., J. Chem. Phys. 110, 6306 (1999), and references therein.
${ }^{2}$ R. S. Fellers, Ph.D. thesis, University of California at Berkeley, 1998, and references therein. (http://www.cchem.berkeley.edu/~rjsgrp)
${ }^{3}$ R. S. Fellers et al., Science 284, 945 (1999).
${ }^{4}$ M. P. Hodges, A. J. Stone, and S. S. Xantheas, J. Phys. Chem. A 101, 9163 (1997).
${ }^{5}$ R. C. Cohen and R. J. Saykally, J. Chem. Phys. 98, 6007 (1993), and references therein.
${ }^{6}$ C. A. Schmuttenmaer, R. C. Cohen, and R. J. Saykally, J. Chem. Phys. 101, 146 (1994), and references therein.
${ }^{7}$ M. J. Elrod and R. J. Saykally, J. Chem. Phys. 103, 933 (1995), and references therein.
${ }^{8}$ E. H. T. Olthof, A. van der Avoird, and P. E. S. Wormer, J. Chem. Phys. 101, 8430 (1994).
${ }^{9}$ T. R. Dyke and J. S. Muenter, J. Chem. Phys. 60, 2929 (1974).
${ }^{10}$ T. R. Dyke, J. Chem. Phys. 66, 492 (1977).
${ }^{11}$ J. G. Loeser, Ph.D. thesis, University of California at Berkeley, 1995, and references therein.
${ }^{12}$ T. R. Dyke, K. M. Mack, and J. S. Muenter, J. Chem. Phys. 66, 498 (1977).
${ }^{13}$ J. T. Hougen, J. Mol. Spectrosc. 114, 395 (1985).
${ }^{14}$ L. H. Coudert and J. T. Hougen, J. Mol. Spectrosc. 130, 86 (1988).
${ }^{15}$ N. Pugliano and R. J. Saykally, J. Chem. Phys. 96, 1832 (1992).
${ }^{16}$ N. Pugliano, J. D. Cruzan, J. G. Loeser, and R. J. Saykally, J. Chem. Phys. 98, 6600 (1993).
${ }^{17}$ L. H. Coudert and J. T. Hougen, J. Mol. Spectrosc. 139, 259 (1990).
${ }^{18}$ D. J. Wales, Adv. Mol. Vib. Collision Dynamics 3, 365 (1998).
${ }^{19}$ J. R. Reimer and R. O. Watts, Chem. Phys. 85, 83 (1984).
${ }^{20}$ J. R. Reimer, R. O. Watts, and M. L. Klein, Chem. Phys. 64, 95 (1982).
${ }^{21}$ N. Pugliano and R. J. Saykally, Science 257, 1937 (1992).
${ }^{22}$ J. D. Cruzan et al., Science 271, 59 (1996).
${ }^{23}$ K. Liu, M. G. Brown, J. D. Cruzan, and R. J. Saykally, Science 271, 62 (1996).
${ }^{24}$ K. Liu et al., Nature (London) 381, 501 (1996).
${ }^{25}$ K. L. Busarow et al., J. Chem. Phys. 90, 3937 (1989).
${ }^{26}$ G. A. Blake et al., Rev. Sci. Instrum. 62, 1701 (1991).
${ }^{27}$ K. B. Laughlin, Ph.D. thesis, University of California at Berkeley, 1988.
${ }^{28}$ D. W. Steyert, Ph.D. thesis, University of California at Berkeley, 1991.
${ }^{29}$ K. Liu et al., Rev. Sci. Instrum. 67, 410 (1996).
${ }^{30}$ K. Liu, Ph.D. thesis, University of California at Berkeley, 1996.
${ }^{31}$ M. G. Brown, Ph.D. thesis, University of California at Berkeley, 1999.
${ }^{32}$ G. T. Fraser, R. D. Suenram, and L. H. Coudert, J. Chem. Phys. 90, 6077 (1989).
${ }^{33}$ J. P. Paul, R. A. Provencal, and R. J. Saykally, J. Phys. Chem. A 102, 3279 (1998).
${ }^{34}$ Numerical Recipes in FORTRAN, 2nd ed., edited by W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (Cambridge University Press, New York, 1992), p. 675.
${ }^{35}$ E. Zwart, J. J. ter Meuen, W. L. Meerts, and L. H. Coudert, J. Mol. Spectrosc. 147, 27 (1991).
${ }^{36}$ E. Meerts, J. J. ter Meulen, and W. L. Meerts, Chem. Phys. Lett. 173, 115 (1990).
${ }^{37}$ R. S. Fellers and R. J. Saykally (in preparation).

[^0]: ${ }^{\text {a) }}$ Department of Chemistry, Harvard University, Cambridge, Massachusetts.
 ${ }^{\text {b }}$ Department of Chemistry, University of Southern California, Los Angeles, California.
 ${ }^{\text {c }}$) Lawrence Livermore National Laboratory, Livermore, California.
 ${ }^{\text {d) }}$ Author to whom correspondence should be addressed.

