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Terahertz refractive index‑based 
morphological dilation for breast 
carcinoma delineation
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Ullrich Pfeiffer2, Thomas Zimmer1, Jean‑Paul Guillet1 & Patrick Mounaix1* 

This paper reports investigations led on the combination of the refractive index and morphological 
dilation to enhance performances towards breast tumour margin delineation during conserving 
surgeries. The refractive index map of invasive ductal and lobular carcinomas were constructed 
from an inverse electromagnetic problem. Morphological dilation combined with refractive index 
thresholding was conducted to classify the tissue regions as malignant or benign. A histology routine 
was conducted to evaluate the performances of various dilation geometries associated with different 
thresholds. It was found that the combination of a wide structuring element and high refractive index 
was improving the correctness of tissue classification in comparison to other configurations or without 
dilation. The method reports a sensitivity of around 80% and a specificity of 82% for the best case. 
These results indicate that combining the fundamental optical properties of tissues denoted by their 
refractive index with morphological dilation may open routes to define supporting procedures during 
breast‑conserving surgeries.

Terahertz imaging and spectroscopy have rapidly spread to di�erent application areas thanks to the continued 
development of e�cient emitters and detectors between 0.1 and 7-THz1. �e biomedical �eld is one domain of 
study that could bene�t from terahertz wave  properties2,3. Radiations at terahertz frequencies have been shown 
to be non-ionizing and non-hazardous for biological tissues at the power commonly employed to inspect the 
super-cellular  level4. Besides, terahertz radiations are notably sensitive to the presence of polar molecules such 
as the most abundant component of the body:  water5. Hence, di�erent medical topics have been assessed with 
terahertz imaging and spectroscopy to look for alternative and complementary methods to the existing ones. 
�ese investigations cover a broad range of possible surgical and clinical  applications6–8. Among them, cancer 
diagnosis remains the most widely investigated topic throughout the literature, covering  blood9,10,  brain11–13, 
 colorectal14,15,  gastric16,17,  liver6,  lung18,  oral19,  skin20,21 and breast  cancer22–26.

Investigations, conducted on breast cancer, mainly aim to develop supporting procedures for breast-conserv-
ative surgeries through breast tumour margin delineation. �e success of breast-conserving surgeries is dictated 
by the accuracy of delineating the concentric margins of excised breast volumes. Although there is no clear 
description of what ideal margins are, it is recommended that no cancer cells remain adjacent to any inked edge/
surface of the  specimen27. Conserving surgeries are usually followed by postoperative radiation management to 
eradicate microscopic remains of  disease28. Margin cleanliness is assessed via biopsy examinations during which 
excised volumes are subsequently �xed into formalin solution, embedded into para�n, sliced in micrometric 
sections and immersed into di�erent alcohol and biological stain baths. Usually, hematoxylin and eosin stains 
are used. �e reason for that is that hematoxylin stains cell nuclei blue and eosin stains both the cytoplasm and 
the extracellular matrix pink. �e stain draws the global layout of a tissue structure so that a pathologist judges 
the cleanliness of the  margin29. Overall, two extreme cases of margin delineation can be observed: (1) positive 
margins—malignant cells are located at the edge of the excised volume; (2) negative margins—an absence of 
tumor cells at the edge or the distance of abnormal cells from the edge is at least more than 1-mm. Following 
histopathologic inspection, up to 20% of excised breast samples are reported to exhibit positive  margins30. 
Reasons behind tumor edge delineation failure are o�en presence of in situ carcinoma at close proximity to the 
surgical margin, discontinuous tumor spread from the original surgery site, or inappropriate presurgical tumor 
localization and inappropriate excision during  surgery31. A positive margin inevitably leads to a second surgery 
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to favor low recurrence risk and to attain more widely clear surgical margins. In return, a second surgery con-
comitantly increases the morbidity rate.

So far, di�erent research teams worldwide have reported the ability of terahertz imaging and spectroscopy to 
discriminate between healthy and malignant breast tissues. �ese studies were primarily conducted on formalin-
�xed and para�n-embedded breast  tissue32,33. Such investigations opened the route for clinical studies on freshly 
excised breast  volumes18,22,24. �e capabilities of terahertz radiation demarcation between normal and abnormal 
tissue regions were originally attributed to free-water content. Indeed, free-water molecules have been proven 
to present a speci�c permittivity step around 900-GHz5. Moreover cancer tissues are known to exhibit a greater 
free-water content than normal  tissues34. However, further studies have suggested that the origin of contrast 
could not be solely attributed to water. �at is because speci�c dielectric features exhibited by breast tissues, in the 
low terahertz frequency band, were not observed in water dielectric  pro�le35. Hence, it has been suggested that, 
speci�c functional groups play a potential  role22. Globally, the refractive index of breast cancer tissues has been 
shown to be higher than the one observed for normal tissues over the terahertz band. On the contrary, the related 
absorption coe�cient was reported as unsatisfactory parameter for  demarcation35,36. Additionally, the contrast 
level between healthy and malignant tissues depends on cancer cell density. In fact, while the resolution of any 
light-based imager remains dictated by the di�raction limit, two objects separated by a distance less than the 
wavelength cannot be distinguished. For instance, the spatial resolution of a far-�eld imaging system operating 
at 1-THz will be limited to 0.3-mm. Hence, the respective response to the external terahertz radiation stimuli of 
two biological entities, separated by a distance smaller than 0.3-mm, will have to be averaged. Considering the 
typical diameter of the eukaryotic cell is at the order of tens of microns, it can be concluded that, such a terahertz 
imager cannot manage to resolve entities at the cellular level. It has, however, been demonstrated that the use 
of computational imaging system operating in a total internal re�ection geometry could resolve features with 
a sub-wavelength lateral  resolution37. While it can be expected that high densities of cancer cells will lead to a 
well-de�ned demarcation, the dielectric response of isolated abnormal groups may be blurred by the healthy 
surrounding and ultimately leading to recognition analysis failure. Although the di�raction limit of resolution 
may complicate recognition in areas sparsely populated by cancer  cells38, it also raises delicate questions on the 
exact frontier between two well localized normal and abnormal regions. Indeed, rather than depicting a sharp 
contrast between areas, the obtained cliché may inevitably exhibit a smooth gradient from one to another area 
which is a result of class-overlapping. �at is particularly limiting when it comes to providing a pixel-by-pixel 
diagnosis based on the information collected.

�e present work proposes a new approach for the clinical classi�cation of breast tissue pixels that overcomes 
the limitations aforementioned. �e method is based on the extraction of the terahertz refractive index map of 
freshly excised samples followed by morphological dilation. A high value of the refractive index has been reported 
as a reliable measure of the presence of cancer within a  tissue22,24. Morphological dilation is a part of set-theory39 
and is commonly employed to images having characteristics of ambiguity and  vagueness40. It consists of expand-
ing a given shape contained in the input image. In biology, morphological processing was notably employed for 
counting blood cells during blood smear  test41, to isolate female  gametocyte42 or for skin cancer  segmentation43.

Operating dilation from regions exhibiting a higher refractive index should allow bypassing class-overlapping 
limitations. Such a process is referred to as terahertz refractive index-based morphological dilation and operates 
as follows: (1) the refractive index map of a freshly excised breast tissue is extracted through a speci�c objective 
function minimization; (2) a refractive index threshold is de�ned such that pixels exhibiting a refractive index 
higher than the threshold are classi�ed as malignant while others are classi�ed as benign; (3) morphological 
dilation is used to spread the malignant zones to the neighborhood.

To conduct these investigations, di�erent freshly excised breast tissues have been scanned in re�ection geom-
etry by means of a terahertz spectrometer. �e refractive index maps have been extracted. Di�erent refractive 
index thresholds and dilation shapes have been tested. �e related pixel classi�cations have been compared to 
those provided by a pathologist. Finally, the sensitivity and speci�city of each combination of threshold—dila-
tion shape have been derived.

�e paper is organized as follows: “Experimental framework” describes the experimental framework to 
acquire raw terahertz images of the freshly excised breast tissues. “Refractive index map” describes the math-
ematical background to extract the refractive index map. “Morphological dilation” de�nes the morphological 
dilation and the respective dilation shapes employed in the study. “Image registration” describes the registration 
of obtained images with respect to the pathological cliché. “Diagnosis compliance” details the evaluation of com-
pliance between the classi�cations provided respectively by the pathologist and the reported strategy. “Results” 
presents the results for di�erent samples. Finally, “Conclusions” presents the conclusions.

Experimental framework
�e experimental protocol was assessed and approved by the ethics committee of the Bergonié Institute. Human 
tissue analysis have been conducted in view of the fundamental ethical principles as stipulated in the Helsinki 
declaration and its later revisions. Written informed consent from each patient undergoing breast surgery was 
collected, stipulating their agreement regarding the use of their tissues for research purposes.

Breast tissue samples. Following surgery, breast excisions were cut into slices of a few millimeters and 
kept into physiological serum before measurement to ensure the moisture content and delay the necrosis. A 
maximum of one hour elapsed between the end of surgery and the terahertz acquisition starting time. Once 
measurement was complete, excised tissue samples were placed in formalin-bu�ered solution. �is process ena-
bled the further histology routine to compare the diagnoses provided by the reported method and the patholo-
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gist. Biological samples analyzed using the method about to be reported were obtained from three di�erent 
patients. One sample was excised from each of these patients.

Measurement setup. Time-domain terahertz pulsed images were acquired with a TPS3000 spectrometer 
(TeraView Ltd, Cambridge, UK) operating in re�ection geometry. In such systems, terahertz pulses are gener-
ated from the activation of a GaAs photoswitch. A photoswitch consists of a discontinuous metallic antenna 
patterned onto a photoconductive layer. Ultra-fast near-infrared pulses with an energy greater than the semi-
conductor band gap are focused onto the gap between the two electrodes forming the photoswitch. �e incident 
pump laser thus propagates within the photoconductive layer and generates electron–hole pairs due to absorp-
tion. �ose photocarriers are then accelerated within the electric �eld of the biased antenna. �e acceleration 
of these charges produces a transient current that drives the metallic antenna and is eventually emitted as a 
broadband terahertz pulse. �e bandwidth directly depends on the lifetime of the carriers before recombination. 
�e carrier lifetime in the GaAs crystal is in the subpicosecond scale, hence enabling pulses with a bandwidth 
ranging from 200-GHz to 2-THz.

�e schematic of the experimental set-up is given in Fig. 1. �e route of the terahertz pulses is governed by 
two planar mirrors and a knife-edge right-angle prism mirror (KERAPM). �e terahertz pulses are focused on 
the tissue sample supported by a 2-mm thick non-birefractive C-cut sapphire substrate (see Supplementary 
Information, Supplementary Fig. 1) via a polytetra�uoroethylene (PTFE) lens. �e maximum incident angle of 
the terahertz pulses is 10◦ . Both the re�ections at the air-sapphire and sapphire-tissue interfaces are then focused 
onto a photoconductive antenna detector. �e detector is sourced from the same ultra-fast near-infrared pulses 
used for terahertz wave generation with a beam splitter. �e pulses are, however, delayed in time with a mechani-
cal delay line. �e periodic variation of the delay line length allows a time gated detection of terahertz pulses 
re�ected by the object. In order to reduce the natural absorption of terahertz pulses by water vapor molecules, 
the terahertz route is con�ned within nitrogen chamber.

Refractive index map
To extract the refractive index from a raw frequency image, a reference electric �eld has to be recorded. �e refer-
ence electric �eld Er(ω) refers to the electric �eld generated by the acquisition system. �e reference measurement 
records the electric �eld of the re�ection from a metal plate that is located where the sapphire substrate sample 
holder is aimed to be positioned for tissue imaging. From the reference electric �eld Er(ω) , the experimental 
transfer function T s(ω) , which is a measure of the disturbance experienced by the incident �eld as a result of the 
interaction with the sample, can be calculated:

with Es(ω) the sample frequency-dependent electric �eld. �e shape of transfer function T s(ω) is a function of 
the refractive index n(ω) and the extinction coe�cient κ(ω) of the sample under inspection. Es(ω) depends on 
the Fresnel’s coe�cients in transmission T(ω) and in re�ection R(ω) , and on propagation coe�cients P(ω, d):

with d being the thickness of the sapphire substrate. �e Fresnel’s coe�cients T(ω) and R(ω) , as well as propaga-
tion terms P(ω, d) relate to the refractive index n(ω) and the extinction coe�cient κ(ω) through: 

(1)T
s(ω) =

E
s(ω)

Er(ω)
,

(2)Es(ω) ∝ Tair−sapphire(ω) × Rsapphire−tissue(ω) × Tsapphire−air(ω) × P2sapphire(ω, d),

(3a)Ta−b(ω) =
2n̂a

n̂a + n̂b
,

Figure 1.  Schematic of the acquisition system. Drawn on SolidWorks 2020 SP3, www. solid works. com.

http://www.solidworks.com
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 where a and b are the indices of the respective medium, n̂ is the complex refractive index defined as 
n̂ = n(ω) − jκ(ω) and c is the light velocity in vacuum. Although the extinction coe�cient κ(ω) is involved 
in the calculation of the transfer function T s(ω) , no signi�cant di�erences have been reported in the literature 
between normal and abnormal tissue  extinction22,35. Hence, solely the refractive index is further considered as 
a possible intrinsic parameter for demarcation.

Map extraction. �e extraction of the complex refractive index n̂(ω) at each pixel from the experimental 
transfer function T s(ω) can be performed by solving an inverse electromagnetic problem. Inverse electromag-
netic problems usually minimize a speci�c convex objective function. �is function denotes the discrepancies 
between the experimental waveform Es(ω) and the waveforms Ecx(ω) successively computed from a set of candi-
date parameters, where the x-index refers to the xth-candidate tested. �e candidate waveforms Ecx(ω) are com-
puted as stipulated  in44. �e corresponding transfer functions Tc

x(ω) are calculated in the same way as described 
by (1). �e measures of discrepancies δMx(ω) between the experimental transfer function T s(ω) and the com-
puted transfer functions Tc

x(ω) are de�ned as:

�e natural logarithmic ratio is favored here instead of standard di�erence as it is more penalizing. Finally, the 
objective function χ(ω) to be minimized is de�ned as:

�e minimization of the transfer function is subject to the following set of candidate parameters:

It was stated before that the sample is maintained by the sapphire substrate. Instead of extracting the properties 
of the sapphire substrate for each pixel, the properties were extracted upstream, in absence of a sample, and fol-
lowing the same minimization process. �e sapphire properties are provided in Supplementary Information, see 
Supplementary Fig. 2. Finally, applying the above process to each electric �eld stored in each pixel of the sample 
image allows to construct the refractive index map.

Once the refractive index map is obtained, it is converted to a binary map that shows areas that are consid-
ered malignant or benign. To do so, a threshold among the refractive index vector has to be set. Depending on 
the de�ned value for the threshold, one may progressively increase or decrease the extent of areas classi�ed as 
malignant, since pixels with a refractive index higher than the threshold are classi�ed as cancerous. A schematic 
of the process is given in Fig. 2.

Operating frequency. Although the refractive index is o�en referred to as optical constant, its pro�le var-
ies as a function of the frequency. Previous studies have reported the terahertz frequency dependent refractive 
index values of abnormal and normal breast  tissues36. Overall, the global di�erence between these values was 
shown to be the highest between 300- and 700-GHz, roughly. Hence, rather than investigating the entire band, 
the classi�cation was operated at 550-GHz, as a good trade-o� between signal-to-noise ratio (SNR) and higher 
frequency spatial  resolution45. However, naively classifying pixels via the refractive index exhibited at 550-GHz 

(3b)Ra−b(ω) =
n̂a − n̂b

n̂a + n̂b
,

(3c)Pa(ω, d) = e−j ωd
c n̂a ,

(4)δMx(ω) = ln

(

|T s(ω)|

|Tc
x(ω)|

)

.

(5)χ(ω) = δM(ω) × δM(ω).

(6)min
n(ω),κ(ω)

χ(ω), subject to

{

n ∈ [1.5; 3],with �n = 1.10−2

κ ∈ [0; 1],with �κ = 1.10−3

}

Figure 2.  �resholding principle applied to the refractive index map. (a) Schematic refractive index map; (b) 
binary refractive index map with a threshold set at 2.4; (c) binary refractive index map with a threshold set at 
2.1; (d) binary refractive index map with a threshold set at 1.8.
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may hardly be relevant. In particular, the refractive index extracted at the edges of malignant regions with low 
density may present values close to the ones of healthy tissues. �erefore, morphological dilation is introduced 
to overcome this limitation.

Morphological dilation
Prior to dilation, the refractive index map is converted to a binary image as it was described in the previous 
section. �e dilation can therefore be referred to as binary dilation. �e dilation consists of a shi�-invariant 
addition, denoted “ ⊕ ”, within the meaning of  Minkowski46. Mathematically, let’s de�ne P as an ensemble that 
contains the pixels (x, y) of the tissue imaged. �e binary dilation ∂�(P) of P by a shape � ∈ Z

2 - also referred 
to as a structuring element, is given by:

where � ∈ � produces the translation from P to ∂�(P) . Supposing the matrix P and the structuring element � 
as represented in Fig. 3, the matrix ∂�(P) is obtained by superimposing the center of � aligned with each pixel 
in P that has a value of 1.

In the present work, three di�erent structuring elements have been considered to dilate the binary refractive 
index map. �ey are referred to as �1 , �2 and �3 classi�ers. �eir spatial properties are exposed in Fig. 4. �ese 
speci�c geometries allow the classi�ers to act in the close vicinity of a starting pixel and with the same impact 
in all directions.

�erefore, depending on the classi�er considered, a pixel may be attributed to the malignant group if at least 
one of the component � of the structuring element �n—where n ∈ N

∗—reports a pixel whose refractive index 
is higher than the de�ned refractive index threshold. Alternatively, the structuring elements can be seen as the 
area of in�uence of a cancerous pixel. Consequently pixels with a refractive index lower than the threshold but 
situated in such an area of in�uence, are turned into malignant pixels. It is however important to note that the 
process is constrained to a unique dilation and therefore, newly classi�ed malignant pixels cannot, in turn, 
exercise a zone of in�uence.

In order to carry out the dilation and the registration steps that follow, it is essential to preserve the mor-
phology of the imaged sample. To do this, the dilation procedure must be carried out with respect to the initial 
contour of the sample generated from a standard contouring algorithm, thus preventing the appearance of 
cancerous pixels outside the original surface of the sample. A schematic of the dilation process operated on a 
binary refractive index map is given in Fig. 5.

Image registration
�e classi�cation images provided by the reported method and the ones given by the pathologist do not share 
the same coordinate system. Image registration is the process of migrating di�erent images into one common 
coordinate  system47. �erefore, image registration is necessary to enable the comparison between the data sets. 

(7)∂�(P) = P ⊕ � =
{

x + �, y + �|� ∈ �
}

,

Figure 3.  Morphological dilation operated with a cross structuring element � on the matrix P.

Figure 4.  Geometry of the three di�erent classi�ers �1 , �2 , �3.
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E�ectively, the spatial resolution of the optical microscope used to acquire pathology clichés is far greater than 
the one of the employed terahertz imager. Additionally, the orientation of the tissue sample in the terahertz 
image and in the clinical image are expected to be di�erent, as they are not acquired with the same angle. A 
simple pixel-by-pixel comparison is therefore not possible as it stands. Prior to comparison, images have to be 
resized and reorientated. �e registration process is feature-based and solely involves image contours to avoid 
unintentional human bias. �e di�erent steps that are followed to register the images with respect to each other 
are herea�er described.

Contouring. Contour lines, also called isolines, can be calculated by interpolating the value of the scalar �eld 
found at each pointel of each pixel. An in�nite number of isolines can however be delineated. �e choice of the 
contour to de�ne the spatial extent of the sample in the image remains therefore subjective. For each sample, the 
isoline that suited the visualized tissue area best was determined by carefully comparing the terahertz image and 
the di�erent contour levels.

Resizing. As the resolution of the images is di�erent, it is necessary to resize the histology pictures. To do 
so, a bicubic interpolation is operated onto pathology images. Contrary to the previous interpolation, where it 
is based on the four nearest pixels, bicubic interpolation takes into account a neighborhood of sixteen pixels. 
�erefore, bicubic interpolation provides a smoother histology slide than simple bilinear interpolation.

Reorientation. First, the contour of the terahertz image is manually and progressively twisted to bring it 
closer to the twist angle of the pathology contour. Once the orientations approximately match, the pathology 
contour is iteratively rotated to establish the correlation between the two contour matrices at each step. Basi-
cally, it consists in determining the Pearson’s correlation  coe�cients48. �e rotation angle providing the highest 
positive correlation is selected and the terahertz image is correspondingly rotated. �e �ow chart of these three 
pre-treatments, namely contouring, resizing and reorientation for image registration is provided in Fig. 6.

Image discrepancies issues. Although one can resize and reorientate the two images with respect to each 
other, the pathology cliché and the terahertz image may not perfectly depict the same information. First, while 
terahertz imaging is performed directly on freshly excised tissues, the pathology diagnosis is established a�er 
the histology routine. Moreover, to obtain the pathology image, the excised tissue is �rst �xed in neutral bu�ered 
formalin, then dehydrated in subsequent alcohol baths with increasing concentrations, then cleared in a solvent 
before being in�ltrated and �nally embedded in para�n wax. At this stage, the processed tissue is encased in a 
para�n block that can be sliced in sections of a few microns thickness to be deposited on glass slides. �ese tis-
sue sections are depara�nized, rehydrated and subsequently stained with hematoxylin and eosin dyes. Finally, 
they are dehydrated in alcohol and cleared in a solvent before being mounted with a coverslip. �e embed-
ding, the sectioning and the desiccation alter the global structure of the tissues. �ese alterations are collectively 
referred as  artefacts49. Artefacts include loss of tissue area and details, folds and wrinkles or cracks and holes. 
�ese alterations may result in misinterpretation as they are modifying the morphological structure of tissues. 
Alternatively, these artefacts may drastically limit the evaluation of the terahertz classi�cation compliance (see 
Supplementary Information Supplementary Fig. 3, for an example based on one of the tissue reported by the pre-
sent work). However, histological slides remain the only available reference picture that allows one to examine 
the performances of classi�er under-test. Overall, there are two ways to deal with such issues: (1) correcting the 
histology slides at risk of adding arti�cial information; (2) comparing directly the terahertz image with the raw 
pathology image at risk of underestimating the e�ciency of the method. �e �rst way would require to morph 
the pathology image to correspond to the terahertz picture. Some procedures to do so were reported in the 
 literature50. However, these methods are cumbersome and the evaluation of the histological cliché reconstruc-
tion is o�en complicated since no perfect reference pathology image exists. As terahertz imaging remains a new 

Figure 5.  Schematic of a morphological dilation applied to a binary refractive index map over a tissue sample. 
(a) Binary refractive index map with a threshold set at 1.8; (b) morphological dilation applied to the binary 
refractive index map with an arbitrary classi�er �n.
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technology for breast carcinoma delineation, the second approach was favored—at risk of underestimating the 
e�ciency of the classi�ers.

Diagnosis compliance
Following the histology routine, pathology images are colored in di�erent shades of blue and pink. �e patholo-
gist draws the contour of malignant areas based on his/her expertise. From the interpretation of the pathologist, 
the images were binarized and each pixel was classi�ed either as benign or as  malignant51.

Once both diagnosis images exhibit binary information, have the same size and orientation, the compliance 
between them can be evaluated. In case of discrepancies, the pathologist classi�cation prevails over terahertz 
delineation. �e present section describes how the ability of classi�ers was evaluated with respect to the patholo-
gist one.

Performance of the classification test. As each diagnosis presents a binary information, four di�erent 
cases can be distinguished:

• True negative: both methods classify a pixel as benign;
• True positive: both methods classify a pixel as malignant;
• False positive: the terahertz method stands for a malignant pixel while histology stipulates a benign pixel;
• False negative: the terahertz method stands for a benign pixel while histology stipulates a malignant pixel.

Hence, for each refractive index threshold associated with a speci�c classi�er, one can �ll the corresponding 
confusion matrices that highlight the classi�cation procedure performances. In such error matrices, the rows 
represent the instances in the terahertz class, here the predicted class, while columns represent the actual diag-
nosis provided by histology  examination52.

From these matrices, the e�ectiveness of the classi�cation method is assessed by creating the receiver operatic 
characteristic (ROC)  curve53 for each classi�er. �e ROC curve represents the ability of the classi�er to provide 
the correct diagnosis as the refractive index threshold varies. �e ROC curve is obtained by plotting the true posi-
tive rate (TPR) as a function of the false positive rate (FPR). �e TPR is de�ned as the number of true positives 
divided by all pixels classi�ed by the pathologist as positives: true positives and false negatives. �e FPR is de�ned 
as the number of false negatives divided by all pixels classi�ed by the pathologist as negatives: false positives and 
true negatives. It can also be thought as a plot of the sensitivity—that is equivalent to the TPR de�ned in Eq. (8), 
against the probability of false-alarm—that can be calculated as (1—speci�city) and de�ned in Eq. (9)54. �ese 
measures of performances are favored as they are not sensitive to changes in data distributions, compared to 
accuracy and to error rate. Hence, both metrics can be used with imbalanced  data55.

(8)True Positive Rate = Sensitivity =
True Positives

True Positives + False Negatives
,

Figure 6.  Flow chart of the registration procedure for predicted diagnosis evaluation.
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To complement these measures, the area under each ROC curve (AUC) is calculated as it relies on the perfor-
mance of score classi�ers for all possible classi�cation  thresholds56.

Finally, the best discrimination thresholds are selected as the ones that provide the highest sensitivity while 
preserving the healthy tissue area from false diagnosis, i.e. speci�city. It is noted that the aforementioned clas-
si�cation procedure is studied for the speci�c case of breast conserving surgery. Hence, it is essential to preserve 
the healthy area while removing the malignant zones. Ultimately, the best classi�ers are selected as the ones that 
provide the highest measure of TPR − FPR , since higher values of this function indicates more accurate results.

Results
In this section, the classi�ers are employed to evaluate their e�ectiveness on three freshly excised breast tissues. 
Two of these samples were diagnosed as invasive ductal carcinoma (IDC) and one was identi�ed as an invasive 
lobular carcinoma (ILC). �ese samples are referred to as test sample TS#1, TS#2 and TS#3.

TS#1. TS#1 is an invasive ductal carcinoma. �e pathology image with some enlightened pathology areas, 
the pathology mask, the raw terahertz image obtained at 550-GHz and the correlated refractive index map are 
presented in Fig. 7.

It can be observed that the raw terahertz image as well as the refractive index map exhibits speci�c features 
that correspond to the pathology image. Regions depicted in Fig. 7a,b. correspond to �brous tissues that are 
included in an adipose matrix. Such regions are therefore expected to globally give rise to a lower refractive index 
than the one classi�ed as malignant as depicted in Fig. 7c,d. Although such a refractive index seems overall lower 
than the refractive index of the tumour, it remains relatively close to it. �erefore, classifying only on the basis of 
the refractive index would certainly prove to be ine�cient. �e sensitivity and the speci�city of each structuring 
element classi�er for varying refractive index threshold were calculated for TS#1. �e corresponding ROC curves 
and TPR − FPR functions are given in Fig. 8.

Each �n-dependent ROC curve is located to the le� of the TPR = FPR line in Fig. 8, proving that the fraction 
of true positives is greater than the proportion of false positives. It is clear that the use of the refractive index 
alone as a classi�er ( �0 ) is shown to be less e�cient than associating the refractive index with a classi�er. Such 
a statement is not surprising as the classi�cation does not consider the neighborhood. While on ROC graph-
ics, depicted in Fig. 8, it does not seem that obvious which classi�er among �1 , �2 and �3 performs well, the 
TPR − FPR visualization indicates that the structuring element �3 in association with a high refractive index 
threshold by about 2.6 is the most e�cient rule of classi�cation. �e association provides a classi�cation with a 
sensitivity by around 80% and a speci�city of 82%. What is more, the wider the structuring element, the higher 
the refractive index has to be set for good performances. E�ectively, starting with a high refractive index makes it 
possible to identify, in a �rst instance, tissue areas densely populated with cancer cells, while a broad structuring 
element makes it possible to e�ciently spread the identi�cation over a wide zone.

�e corresponding AUC for each ROC curve, the TPR − FPR value, the sensitivity and the speci�city for the 
�rst two best refractive index thresholds are given in Table 1 (see Supplementary Information, Supplementary 
Table 1. for the complete list of performances). While �1 and �2 are less e�cient than �3 for both sensitivity and 
speci�city, the �0 classi�er provides a slightly greater sensitivity for a threshold of 2.1, by about 83%. However, 
the gain of 4% in sensitivity with respect to �3 costs concomitantly 20% in method speci�city. Reasonably, this 
gain is not worth it, considering such a drastic decrease in classi�cation speci�city. Alternatively, if one wants 

(9)False Positive Rate = 1 − Specificity =
False Positives

False Positives + True Negatives
.

Figure 7.  Sample TS#1. (i) Pathology image and correlated view of the respective zones (a,b,c,d); (ii) pathology 
mask; (iii) raw terahertz image at 550-GHz; (iv) refractive index map at 550-GHz.
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to increase the sensitivity while maintaining speci�city at a reasonable level, second best thresholds may o�er a 
promising substitute. On using the second best threshold provided by �3 of 2.5, an increase of 7% in sensitivity 
conjointly leads to a decrease by about 12% in speci�city. By doing so, one reaches a sensitivity of 86%.

�e superimposition of the classi�cation images from the reported method and the clinical one, correspond-
ing to the performances listed in Table 1 are given in Fig. 9.

TS#2. TS#2 sample is an invasive ductal carcinoma from which a 67 years old woman was su�ering. �e 
initial tumor site was found to be roughly 100 mm2 . On Fig. 10, the pathology image with some enlightened 
pathology areas, the pathology mask, the terahertz image at 550-GHz, and the refractive index map are shown. 
�e pathology image as well as the pathology mask exhibit the presence of a hole, where no tissue is found. �e 
lack of tissue in the middle of the section is not natural and enlightens the issues, that have been previously 
reported towards pathology images. Hence, this speci�c region is not considered for performance evaluation.

�e ROC curves as well as the TPR − FPR function for di�erent classi�ers with various thresholds are given 
in Fig. 11. Similarly to the foregoing, all ROC curves are located to the le� of the TPR = FPR line, hence proving 
that the fraction of true positives remains greater than that of false positives.

�e most e�ective classi�ers towards conserving classi�cation are �2 and �3 , both for a threshold set at 2.1. 
While the combination of such a threshold with �2 provides a sensitivity of 67% and a speci�city of 70%, the 
same threshold operating with �3 gives rise to a sensitivity by about 78% and a speci�city of 57%. Hence, tuning 
the structuring element geometry would o�er an interesting trade-o� between speci�city and sensitivity. �e 
respective performances of each classi�er applied to TS#2 are listed in Table 2 (see Supplementary Information, 
Supplementary Table 1 for the complete list of performances).

�e classi�cation maps involving each classi�er and their respective best performing thresholds are exposed in 
Fig. 12. �ese images show the improvement in classi�cation with the use of morphological dilatation. Moreover, 
they highlight the di�culties of good prediction at the outer margins. Low performance at the outer margins 
may come from the non-conformity of the information in these areas between the terahertz image and the 
histology picture. �e most convincing hypothesis for this non-conformity is the tissue deformation imposed 
by the histological routine.

Figure 8.  Le�: receiver operating characteristic for the di�erent classi�cation methods, at 550-GHz applied to 
TS#1. �e black line stands for TPR = FPR . Right: refractive index threshold as a function of the TPR − FPR 
measure for the di�erent classi�ers.

Table 1.  Statistical measure of the performance of the classi�ers and AUC. �e sensitivity and speci�city 
obtained for the best performing classi�er-refractive index threshold association is given in bold.

Classi�er �
0

�
1

�
2

�
3

AUC 0.7804 0.8149 0.8285 0.8360

RI-threshold 2.1 2.2 2.4 2.3 2.5 2.4 2.6 2.5

TPR–FPR 0.4540 0.4181 0.5227 0.4829 0.5759 0.5093 0.6068 0.5433

Sensitivity% 83 62 72 84 76 86 79 86

Speci�city% 62 79 81 65 81 65 82 69
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TS#3. In contrast to the two previous samples, the TS3 sample was taken from an 83 years old patient with an 
invasive lobular carcinoma. On Fig. 13, the pathology image with some enlightened pathology areas, the pathol-
ogy mask, the terahertz image at 550-GHz, and the refractive index map are shown.

�e ROC curves plotted in Fig. 14 indicate a lower e�ciency towards classi�cation than the e�ciencies for 
TS#1 and TS#2. �e cause may be found in the distribution of cancer cells within the malignant zone, in com-
parison to previously tested samples. While for other cases the malignant zone was densely populated, cancer 
cells are found in small quantity and in an inhomogeneous manner over TS#3. Additionally, the histology routine 
may have altered the tissue morphology as stated in “Image discrepancies issues”.

�e AUC values and the performances for each classi�er are given in Table 3 (see Supplementary Information, 
Supplementary Table 1. for the complete list of performances). Despite the lower e�ciency the most accurate 
classifying strategy remains �3 when associated with a refractive index threshold of 2.3. �e TPR − FPR measure 

Figure 9.  TS#1 tissue sample classi�cation maps at 550-GHz for �0 , �1 , �2 , �3 and their respective �rst two 
best thresholds. “Not applicable” refers to regions where the binary pathology classi�cation and the binary 
terahertz classi�cation image do not match spatially. �e values listed in each box are respectively standing for 
the refractive index threshold, the true positive rate and the false positive rate.

Figure 10.  Sample TS#2. (i) Pathology image and correlated view of the respective zones (a,b,c,d); (ii) 
pathology mask; (iii) raw terahertz image at 550-GHz; (iv) refractive index map at 550-GHz.
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is by around 0.28 with a sensitivity of 53% and a speci�city of 76%. As already indicated these performances are 
below the ones reached for other study cases. �2 classi�er o�ers a greater speci�city of 85% but simultaneously 
concedes 11% upon sensitivity, thus falling below the critical threshold of half the number of malignant pixels 
correctly classi�ed. �e weak density of cancer cells within a lobular carcinoma slice may lead one to opt for 
�

0 classi�er operating in association with a low refractive index threshold to maximize the sensitivity, despite 
a concomitant loss in speci�city.

�e corresponding classi�cation images for TS#3 for each classi�er and the correlated best refractive index 
threshold are demonstrated in Fig. 15. �e global classi�cation clearly su�ers from the spatial discrepancies 
between the fresh state tissue and the histological state. Even though such di�erences are expected to be the main 
roots behind classi�cation accuracy weakness, the histological type of TS#3 may also trigger di�culties. It can 
be assumed that the classi�cation strategy may provide better performances when applied on ductal carcinoma 
cases than on lobular ones. However, it is noted that the number of samples investigated does not allow to assert 
such a hypothesis.

Conclusions
In this paper, a new approach to support breast carcinoma margin delineation during surgeries with terahertz 
radiations was proposed. �e method relies on the acquisition of the excised samples by means of a terahertz 
time-domain imager followed by a segmentation based on the extracted refractive index map at 550-GHz and 
its morphological dilation. Morphological dilation was introduced to overcome the weakness of the refractive 
index alone as a classi�er in tissue regions sparsely populated with cancer cells. Dilation was used to construct a 
zone of in�uence of pixels. Hence, tissue areas close to regions identi�ed as malignant were succesfully classi�ed 
as cancerous despite a refractive index suggesting benign zones.

�e performances of the classi�cations were assessed for three di�erent samples. Overall, the association 
of a high refractive index threshold with a wide dilation has shown to be the most appropriate combination to 
maintain both method sensitivity and speci�city at decent levels for invasive ductal carcinoma. �e best per-
formances of the methods have been reported to stand by about 80% in sensitivity and 82% in speci�city. On 
the contrary, the same methodology applied onto an invasive lobular carcinoma showed lower performances. 
Various hypothesis were drawn to determine the roots for classi�cation failure. While lobular carcinoma are 

Figure 11.  Le�: receiver operating characteristic for the di�erent classi�cation methods, at 550-GHz applied 
to TS#2. �e black line stands for TPR = FPR . Right: refractive index threshold as a function of the TPR − FPR 
measure for the di�erent classi�ers.

Table 2.  Statistical measure of the performance of the classi�ers and AUC. �e sensitivity and speci�city 
obtained for the best performing classi�er-refractive index threshold association is given in bold.

Classi�er �
0

�
1

�
2

�
3

AUC 0.6976 0.7307 0.7264 0.7127

RI-threshold 1.9 1.8 2.1 2.0 2.1 2.2 2.1 2.2

TPR–FPR 0.3013 0.3006 0.3395 0.3307 0.3697 0.3113 0.3480 0.3295

Sensitivity% 62 76 54 69 67 51 78 62

Speci�city% 68 54 80 64 70 80 57 71
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Figure 12.  TS#2 tissue sample classi�cation maps at 550-GHz for �0 , �1 , �2 , �3 and their respective �rst 
two best thresholds. “Not applicable” refers to regions where the binary pathology classi�cation and the binary 
terahertz classi�cation image do not match spatially. �e values listed in each box are respectively standing for 
the refractive index threshold, the true positive rate and the false positive rate.

Figure 13.  Sample TS#3. (i) Pathology image and correlated view of the respective zones (a,b,c,d); (ii) 
pathology mask; (iii) raw terahertz image at 550-GHz; (iv) refractive index map at 550-GHz.
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globally less populated by cancer cells than the ductal histology type, pathology image alterations may also have 
contribute by rendering the diagnosis evaluation tedious.

�e recognition performances of malignant areas could be improved. Indeed, the terahertz classi�cation has 
localized false negatives surrounded by true positives. �erefore, implementing an additional and simple pro-
cessing that classi�es as malignant, benign-predicted pixels that are encircled by cancerous ones would enhance 
the classi�cation accuracy.

Although investigations on higher rank classi�er, i.e. for �n with n > 3 , have not been conducted, a more 
e�cient structuring element could be found. Nevertheless, a high rank for a structuring element is accompanied 
by an equally high refractive index threshold. �us, a reasonable assumption would be that the refractive index 
suitable for the use of these higher-ranked classi�ers lies beyond the optical properties of biological tissues.

�is preliminary investigation towards terahertz refractive index-based morphological dilation may open the 
routes to re�ne strategies to improve the accuracy with which breast tumour margins are delineated. However, 
the �eld still stands in its early stages and su�ers challenges due to pathology reference image alterations that 
complicate classi�cation correctness assessment. Additionally, performance comparison with other classi�cation 
algorithms are yet to be investigated and will be needed to pursue with the proposed methodology. Finally, and 
in authors’s opinion, the applicability of terahertz waves for breast carcinoma margin demarcation still requires 
further studies to evaluate its feasibility in the clinical environment.

Methods
Numerical procedures were conducted with in-house so�ware, written with the MatLab development framework. 
�e so�ware follows mathematical procedures described in this paper and our preceding works.

Figure 14.  Le�: receiver operating characteristic for the di�erent classi�cation methods, at 550-GHz applied 
to TS#3. �e black line stands for TPR = FPR . Right: refractive index threshold as a function of the TPR − FPR 
measure for the di�erent classi�ers.

Table 3.  Statistical measure of the performance of the classi�ers and AUC. �e sensitivity and speci�city 
obtained for the best performing classi�er-refractive index threshold association is given in bold.

Classi�er �
0

�
1

�
2

�
3

AUC 0.6478 0.6631 0.6695 0.6693

RI�reshold 2.0 1.9 2.2 2.1 2.3 2.2 2.3 2.4

TPR–FPR 0.2215 0.2080 0.2484 0.2148 0.2690 0.2626 0.2845 0.2234

Sensitivity% 55 72 49 65 42 64 53 36

Speci�city% 68 49 76 56 84 62 76 86
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