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Abstract
Document indexing and representation of term-
document relations are very important issues
for document clustering and retrieval. In this
paper, we present Generalized Latent Seman-
tic Analysis as a framework for computing se-
mantically motivated term and document vec-
tors. Our focus on term vectors is motivated by
the recent success of co-occurrence based mea-
sures of semantic similarity obtained from very
large corpora. Our experiments demonstrate
that GLSA term vectors efficiently capture se-
mantic relations between terms and outperform
related approaches on the synonymy test.

1 Introduction

Document indexing and representation of term-
document relations are crucial for document
classification, clustering and retrieval (Salton &
McGill 83; Ponte & Croft 98; Deerwester et al.

90). Since many classification and categoriza-
tion algorithms require a vector space representa-
tion for the data, it is often important to have a
document representation within the vector space
model approach (Salton & McGill 83). In the
traditional bag-of-words representation (Salton &
McGill 83) of the document vectors, words repre-
sent orthogonal dimensions which makes an un-
realistic assumption about the independence of
terms within documents.

Modifications of the representation space, such
as representing dimensions with distributional
term clusters (Bekkerman et al. 03) and expand-
ing the document and query vectors with syn-
onyms and related terms as discussed in (Levow
et al. 05), improve the performance on average.
However, they also introduce some instability and
thus increased variance (Levow et al. 05). The
language modelling approach (Salton & McGill
83; Ponte & Croft 98; Berger & Lafferty 99) used
in information retrieval uses bag-of-words docu-
ment vectors to model document and collection
based term distributions.

Since the document vectors are constructed in
a very high dimensional vocabulary space, there

has also been a considerable interest in low-
dimensional document representations. Latent
Semantic Analysis (LSA) (Deerwester et al. 90)
is one of the best known dimensionality reduc-
tion algorithms used in information retrieval. Its
most appealing features are the ability to inter-
pret the dimensions of the resulting vector space
as semantic concepts and the fact that the anal-
ysis of the semantic relatedness between terms is
performed implicitly, in the course of a matrix de-
composition. LSA often does not perform well on
large heterogeneous collections (Ando 00). Dif-
ferent related dimensionality reduction techniques
proved successful for document clustering and re-
trieval (Belkin & Niyogi 03; He et al. 04; Callan
et al. 03).

In this paper, we introduce Generalized Latent
Semantic Analysis (GLSA) as a framework for
computing semantically motivated term and doc-
ument vectors. As opposed to LSA and other di-
mensionality reduction algorithms which are ap-
plied to documents, we focus on computing term
vectors; document vectors are computed as lin-
ear combinations of term-vectors. Thus, unlike
LSA (Deerwester et al. 90), Iterative Residual
Rescaling (Ando 00), Locality Preserving Index-
ing (He et al. 04) GLSA is not based on bag-of-
words document vectors. Instead, we begin with
semantically motivated pair-wise term similarities
to compute a representation for terms. This shift
from dual document-term representation to term
representation has the following motivation.

Terms offer a much greater flexibility in ex-
ploring similarity relations than documents. The
availability of large document collections such as
the Web offers a great resource for statistical ap-
proaches. Recently, co-occurrence based mea-
sures of semantic similarity between terms have
been shown to improve performance on such tasks
as the synonymy test, taxonomy induction, and
document clustering (Turney 01; Terra & Clarke
03; Chklovski & Pantel 04; Widdows 03). On the



other hand, many semi-supervised and transduc-
tive methods based on document vectors cannot
yet handle such large document collections and
take full advantage of this information.

In addition, content bearing words, i.e. words
which convey the most semantic information, are
often combined into semantic classes that corre-
spond to particular activities or relations and con-
tain synonyms and semantically related words.
Therefore, it seems very natural to represent
terms as low dimensional vectors in the space of
semantic concepts.

In this paper, we use a large document col-
lection to extract point-wise mutual informa-
tion, and the singular value decomposition as a
dimensionality reduction method and compute
term vectors. Our experiments show that the
GLSA term representation outperforms related
approaches on term-based tasks such as the syn-
onymy test.

The rest of the paper is organized as follows.
Section 2 contains the outline of the GLSA algo-
rithm, and discusses the method of dimensionality
reduction as well as the term association measures
used in this paper. Section 4 presents our exper-
iments, followed by conclusion in section 5.

2 Generalized Latent Semantic

Analysis

2.1 GLSA Framework

The GLSA algorithm has the following setup. We
assume that we have a document collection C

with vocabulary V . We also have a large Web
based corpus W .

1. Construct the weighted term-document ma-
trix D based on C

2. For the vocabulary words in V , obtain a ma-
trix of pair-wise similarities, S, using the
large corpus W

3. Obtain the matrix UT of a low dimensional
vector space representation of terms that pre-
serves the similarities in S, UT ∈ Rk×|V |

4. Compute document vectors by taking linear
combinations of term vectors D̂ = UT D

The columns of D̂ are documents in the k-
dimensional space.

The motivation for the condition on the low
dimensional representation in step 3 can be ex-
plained in the following way. Traditionally, cosine

similarity between term and document vectors is
used as a measure of semantic association. There-
fore, we would like to obtain term vectors so that
their pair-wise cosine similarities correspond to
the semantic similarity between the correspond-
ing vocabulary terms. The extent to which these
latter similarities can be preserved depends on
the dimensionality reduction method. Some tech-
niques aim at preserving all pair-wise similari-
ties, for example, the singular value decomposi-
tion used in this paper. Some graph-based ap-
proaches, on the other hand, preserve the sim-
ilarities only locally, between the pairs of most
related terms, e.g. Laplacian Eigenmaps Embed-
ding (Belkin & Niyogi 03), Locality Preserving
Indexing (He et al. 04).

The GLSA approach can combine any kind of
similarity measure on the space of terms with any
suitable method of dimensionality reduction. The
traditional term-document matrix is used in the
last step to provide the weights in the linear com-
bination of term vectors.

In step 2, it is possible to compute the ma-
trix S for the vocabulary of the large corpus W

and use the term vectors to represent the docu-
ments in C. In addition to being computationally
demanding, however, this approach would suffer
from noise introduced by typos and infrequent
and non-informative words. Finding methods of
efficient filtering of the core vocabulary and keep-
ing only content bearing words would be another
way of addressing this issue. This is subject of
future work.

2.1.1 Document Vectors

One of the advantages of the term-based GLSA
document representation is that it does not have
the out-of-sample problem for new documents. It
does have this problem for new terms, but new
terms appear at a much lower rate than doc-
uments. In addition, new rare terms will not
contribute much to document classification or re-
trieval. Since the computation of the term vectors
is done off-line, the GLSA approach would require
occasional updates of the term representation.

GLSA provides a representation for documents
that reflects their general semantics. Since GLSA
does not transform the document vectors in the
course of computation, the GLSA document rep-
resentation can be easily extended to contain
more specific information such as presence of
proper names, dates, or numerical information.



2.2 Low-dimensional Representation

2.2.1 Singular Value Decomposition

In this section we outline some of the basic
properties of the singular value decomposition
(SVD) which we use as a method of dimension-
ality reduction. SVD is applied to the matrix S

that contains pair-wise similarities between the
vocaburaly terms.

First, consider the eigenvalue decomposition of
S. Since S is a real symmetric matrix, it is diag-
onizable, i.e. it can be represented as

S = UΣUT

The columns of U are the orthogonal eigenvec-
tors of S. Σ is a diagonal matrix containing the
corresponding eigenvalues of S.

If in addition, S is positive semi-definite, it
can be represented as a product of two matrices

S = Û ÛT , and in this case Û = UΣ1/2. This
means that the entries of S, which in the GLSA
case represent pair-wise term similarities, are in-
ner products between the eigenvectors of S scaled
with the corresponding eigenvalues.

The singular value decomposition of S is S =
U Σ̄V T , where U and V are column orthogonal
matrices containing the left and right singular
vectors of S, respectively. Σ̄ is a diagonal ma-
trix with the singular values sorted in decreasing
order.

Eckart and Young, see (Golub & Reinsch 71),
have shown that given any matrix S and its singu-
lar value decomposition S = UΣV T , the matrix
Sk = UkΣkV

T
k obtained by setting all but the first

k diagonal elements in Σ to zero is

Sk = argminX ||S − X||2F ,

where X is a matrix of rank k. The minimum is
taken with respect to the Frobenius norm, where
||A||2F =

∑
ij A2

ij .

The SVD of a symmetric matrix of pair-wise
term similarities S is the same as its eigen-
value decomposition. Therefore, the method for
computing a low-dimensional term representation
that we used in this paper is to compute the eigen-
value decomposition of S and to use k eigenvec-
tors corresponding to the largest eigenvalues as a
representation for term vectors. Thus, the cosine
similarities between the low dimensional GLSA
term vectors preserve the semantic similarities in
the matrix S for each pair of terms.

LSA is one special case within the GLSA frame-
work. Although it begins with the document-
term matrix, it can be shown that LSA uses SVD
to compute the rank k approximation to a par-
ticular matrix of pair-wise term similarities. In
the LSA case, these similarities are computed as
the inner products between the term vectors in
the space of documents, see (Bartell et al. 92)
for details. If the GLSA matrix S is positive
semi-definite, its entries represent inner products
between term vectors in a feature space. Thus,
GLSA with the eigenvalue decomposition can be
interpreted as kernelized LSA, similar to the ker-
nel PCA (Schölkopf et al. 98). Since S contains
co-occurrence based similarities which have been
shown to reflect semantic relations between terms,
GLSA uses semantic kernels.

2.2.2 PMI as Measure of Semantic

Association

We propose to obtain the matrix of seman-
tic associations between all pairs of vocabulary
terms using a number of well-established meth-
ods of computing collection-based term associa-
tions, such as point-wise mutual information, like-
lihood ratio, χ2 test etc. (Manning & Schütze 99).
In this paper we use point-wise mutual informa-
tion (PMI) because it has been successfully ap-
plied to collocation discovery and semantic prox-
imity tests such as the synonymy test and taxon-
omy induction (Manning & Schütze 99; Turney
01; Terra & Clarke 03; Chklovski & Pantel 04;
Widdows 03). It was also successfully used as a
measure of term similarity to compute document
clusters (Pantel & Lin 02), and to extract seman-
tic relations between verbs (Chklovski & Pantel
04).

The point-wise mutual information between
random variables representing two words, w1 and
w2, is computed as

PMI(w1, w2) = log
P (W1 = 1,W2 = 1)

P (W1 = 1)P (W2 = 1)
.

The similarity matrix S with pair-wise PMI scores
may not be positive semi-definite. Since such ma-
trices work well in practice (Cox & Cox 01) one
common approach is to use only the eigenvectors
corresponding to the positive eigenvalues (Cox &
Cox 01). This is the approach which we use in
our experiments.



3 Related Approaches

As mentioned above, most related approaches
compute a dual document-term representation
based on the same document collection. Iterative
Residual Rescaling (Ando 00) tries to put more
weight on documents from underrepresented clus-
ters of documents to improve the performance of
LSA on heterogeneous collections. Random In-
dexing (Sahlgren & Coester 04) projects the docu-
ment vectors on random low-dimensional vectors.
Locality Preserving Indexing (He et al. 04) is a
graph-based dimensionality reduction algorithm
which preserves the similarities only locally. LPI
differs from LSA due to the notion of locality,
which is incorporated through a linear transfor-
mation of the term-document matrix. GLSA can
be used with semantically motivated non-linear
kernel matrices S.

Recent applications of LSA tried to compute
term vectors using large collections. Document
vectors for other collections are constructed as
linear combinations of LSA term vectors. As
mentioned above, LSA uses only one particular
measure of term similarity. The Word Space
Model for word sense disambiguation developed
by Schütze (Schütze 98) is another special case
of GLSA which computes term vectors directly.
Instead of using document co-occurrence statis-
tics, it uses term co-occurrence in the contexts of
the most frequent informative terms, then SVD
is applied. One particular kind of co-occurrence
based similarities, namely normalized counts, are
used (Schütze 98; Widdows 03). Latent Rela-
tional Analysis (Turney 04) looks at pair-wise re-
lations between selected terms and not at term
vectors for the whole vocabulary and uses co-
occurrence counts within context patterns. SVD
is applied to the matrix of similarities between
the context patterns as a method of smoothing
the similarity information.

The probabilistic LSA (Hofmann 99) and La-
tent Dirichlet Allocation (Blei et al. 02) use the
latent semantic concepts as bottleneck variables
in computing the term distributions for docu-
ments. The probabilities are estimated using the
EM algorithm which can suffer from local minima
and has a large space requirement. This limits the
use of these approaches for large document collec-
tion.

4 Experiments

The goal of the experimental evaluation of the
GLSA term vectors was to demonstrate that the
GLSA vector space representation for terms cap-
tures their semantic relations. We used the syn-
onymy and term pairs tests for the evaluation.
Our results demonstrate that similarities between
GLSA term vectors achieve better results than the
latest approaches based on PMI scores (Terra &
Clarke 03).

To collect the co-occurrence for the matrix of
pair-wise term similarities S, in all experiments
presented here we used the English Gigaword col-
lection (LDC), containing New York Times arti-
cles. We only used the documents that had the la-
bel “story”. Thus, we used a collection comprised
of 1,119,364 documents with 771,451 terms. We
used the Lemur toolkit1 to tokenize and index all
document collections used in our experiments; we
used stemming and a list of stop words.

The similarities matrix S was constructed us-
ing the PMI scores. In our preliminary exper-
iments we used some other co-occurrence based
measures of similarities, such as likelihood ratio
and χ2 test but obtained results which were be-
low those for PMI. Therefore, we do not report
them here. We used the PMI matrix S in combi-
nation with SVD (denoted as GLSA) to compute
GLSA term vectors. Unless stated otherwise, for
the GLSA method we report the best performance
over different numbers of embedding dimensions.
We used the PLAPACK package2 to perform the
SVD (Bientinesi et al. 03).

4.1 Synonymy Test

The synonymy test represents a list of words and
for each of them, there are 4 candidate words.
The task is to determine which of these candidate
words is a synonym to the word in question. This
test was first used to demonstrate the effective-
ness of LSA term vectors (Landauer & Dumais
97). More recently, the PMI-IR approach devel-
oped by Turney (Turney 01) was shown to out-
perform LSA on this task (Turney 01) and (Terra
& Clarke 03).

We evaluated the GLSA term vectors on the
synonymy test and compared the results to the
latest results with the PMI-IR approach (Terra &
Clarke 03). Terra et al. (Terra & Clarke 03) com-

1http://www.lemurproject.org/
2http://www.cs.utexas.edu/users/plapack/



Figure 1: Precision with GLSA, PMI and count over different window sizes, for the TOEFL(left),
TS1(middle) and TS2(right) tests.

pared the performance of different co-occurrence
based measures of term similarity on the syn-
onymy test and came to the conclusion that PMI
yielded the best results.

Following (Terra & Clarke 03), we used the
TOEFL, TS1 and TS2 synonymy tests. The
TOEFL test contains 80 synonymy questions. We
also used the preparation tests called TS1 and
TS2. Since GLSA in its present formulation can-
not handle multi-word expressions, we had to
modify the TS1 and TS2 tests slightly. We re-
moved all test questions that contained multi-
word expressions. From 50 TS1 questions we used
46 and from 60 TS2 questions we used 49. Thus,
we would like to stress that the comparison of our
results on TS1 and TS2 to the results reported
in (Terra & Clarke 03) is only suggestive. We
used the TS1 and TS2 test without context. The
only difference in the experimental setting for the
TOEFL test between our experiments and the ex-
periments in (Terra & Clarke 03) is in the doc-
ument collections that were used to obtain the
co-occurrence information.

4.1.1 GLSA Setting

To have a richer vocabulary space, we added
the 2000 most frequent words from the English
Gigaword collection to the vocabularies of the
TOEFL, TS1 and TS2 tests. We computed GLSA
term vectors for the extended vocabularies of the
TOEFL, TS1 and TS2 tests and selected the term
t∗ whose term vector had the highest cosine sim-
ilarity to the question term vector ~tq as the syn-
onym. We computed precision scores as the ratio
of correctly guessed synonyms.

The co-occurrence counts can be obtained using
either term co-occurrence within the same docu-

Figure 2: Precision at different numbers of GLSA
dimensions with the best window size.

ment or within a sliding window of certain fixed
size. In our experiments we used the window-
based approach which was shown to give better
results (Schütze 98; Terra & Clarke 03). Since
the performance of co-occurrence based measures
is sensitive to the window size, we report the re-
sults for different window sizes.

4.1.2 Results on the Synonymy Test

Figure 1 shows the precision using different
window sizes. The baselines are to choose the
candidate with the highest co-occurrence count or
PMI score. For all three data sets, GLSA signif-
icantly outperforms PMI scores computed on the
same collection. The results that we obtained us-
ing just the PMI score are below those reported in
Terra and Clarke (Terra & Clarke 03). One expla-
nation for this discrepancy is the size and the com-
position of the document collections used for the
co-occurrence statistics. The English Gigaword
collection that we used is smaller and, more im-



portantly, less heterogeneous than the web based
collection in (Terra & Clarke 03). Nonetheless, on
the TOEFL data set GLSA achieves the best pre-
cision of 0.86, which is much better than our PMI
baseline as well as the highest precision of 0.81 re-
ported in (Terra & Clarke 03). GLSA achieves the
same maximum precision as in (Terra & Clarke
03) for TS1 (0.73)and a much higher precision on
TS2 (0.82 vs. 0.75 in (Terra & Clarke 03)).

Figure 2 shows the precision for the GLSA
terms only, using different number of dimensions.
The number of dimensions is important because
it is one of the parameter in the GLSA setting.
LSA-based approaches usually perform best with
300-400 resulting dimensions. The variation of
precision at different numbers of embedding di-
mensions within the 100-600 range is somewhat
high for TS1 but much smoother for the TOEFL
and TS2 tests.

4.2 Term Pairs Test

Some of the terms on the synonymy test are in-
frequent (eg. “wig”) and some are usually not
considered informative (eg. “unlikely”). We used
the following test to evaluate how the cosine sim-
ilarity between GLSA vectors captures similarity
between terms which are considered important for
such tasks as document classification.

We computed GLSA term vectors for the vo-
cabulary of the 20 news groups document collec-
tion. Using the Rainbow software3 we obtained
the top N words with the highest mutual infor-
mation with the class label. We also obtained the
probabilities that each of these words has with re-
spect to each of the news groups. We assigned the
group in which the word has the highest proba-
bility as the word’s label. Some of the top words
and their labels can be seen in Table 3. Although
the way we assigned labels may not strictly cor-
respond to the semantic relations between words,
this table shows that for this particular collection
and for informative words (e.g., “bike”,”team”)
they do make sense.

We computed pair-wise similarities between the
top N words using the cosine between the GLSA
vectors representing these words and also used
just the PMI scores. Then we looked at the pairs
of terms with the highest similarities. Since for
this test we selected content bearing words, the
intuition is that most similar words should be se-

3http://www-2.cs.cmu.edu/ mccallum/bow/rainbow/

mantically related and are likely to appear in doc-
uments belonging to the same news group. There-
fore, they should have the same label. Each word
can also be considered a query, and in this test
we are trying to retrieve other words that are se-
mantically most related to the it.

This task is better suited to demonstrate the
advantage of GLSA over PMI-IR. In the syn-
onymy task the comparisons are made between
the PMI scores of a few carefully selected terms
that are synonymy candidates for the same word.
While PMI-IR performs quite well on the syn-
onymy task, it is in general difficult to com-
pare PMI scores across different pairs of words.
Apart from this normalization issue, PMI scores
for rare words tend to be very high, see (Manning
& Schütze 99). Our experiments illustrate that
GLSA significantly outperforms the PMI scores
on this test.

We used N = {100, 1000} top words by the
MI with the class label. The top 100 are highly
discriminative with respect to the news group la-
bel whereas the top 1000 words contain many
frequent words. Our results show that GLSA is
much less sensitive to this than PMI.

First we sort all pairs of words by similarity and
compute precision at the k most similar pairs as
the ratio of word pairs that have the same label.
Table 1 shows that GLSA significantly outper-
forms the PMI score. PMI has very poor perfor-
mance, since here the comparison is done across
different pairs of words.

The second set of scores was computed for each
word as precision at the top k nearest terms, sim-
ilar to precision at the first k retrieved documents
used in IR. We report the average precision val-
ues for different values of k in Table 2. GLSA
achieves higher precision than PMI. GLSA per-
formance has a smooth shape peaking at around
200-300 dimension which is in line with results
for other SVD-based approaches (Deerwester et

al. 90; He et al. 04). The dependency on the
number of dimensions was the same for the top
1000 words.

In Table 3 we show the individual results for
some of the words. GLSA representation achieves
very good results for terms that are not very
frequent in general document collections but are
very good indicators of particular news groups,
such as “god” or “bike”. For much more frequent
words, and words which have multiple senses,



top 100 top 1000

k Pmi Glsa Pmi Glsa

1 0.0 1.0 0.0 1.0
5 0.0 1.0 0.0 1.0
10 0.0 1.0 0.0 0.8
50 0.32 0.88 0.12 0.8
100 0.24 0.76 0.1 0.8

Table 1: Precision for the term pairs test at
the top k most similar pairs.

top 100 top 1000

k Pmi Glsa Pmi Glsa

1 0.27 0.67 0.08 0.43
5 0.40 0.48 0.8 0.40
10 0.35 0.37 0.1 0.37
50 0.14 0.13 0.16 0.20
100 0.08 0.08 0.16 0.18

Table 2: Average precision for the term pairs
test at the top k nearest words.

word nn=1 nn=2 nn=3 Prec

god (18) jesus (18) bible (18) heaven (18) 1
bike (15) motorcycle (15) rider (15) biker (15) 1
team (17) coach (17) league (20) game (17) 0.6
car (7) driver (1) auto (7) ford (7) 0.6
windows (1) microsoft (1) os (3) nt (1) 0.4
dod (15) agency (10) military (13) nsa (10) 0
article (15) publish (13) fax (4) contact (5) 0

Table 3: Precision at the 5 nearest terms for some of the top 100 words by mutual information with
the class label. The table also shows the first 3 nearest neighbors. The word’s label is given in
the brackets. (1=os.windows; 3=hardware; 4=graphics; 5=forsale; 7=autos; 10=crypt; 13=middle-
east;15=motorcycles; 17=hokey; 18=religion-christian; 20=baseball.)

such as “windows” or ”article”, the precision is
lower. The pair “car”, ”driver” is semantically re-
lated for one sense of the word “driver”, but the
word “driver” is assigned to the group “windows-
os” with a different sense.

5 Conclusion and Future Work

Our experiments have shown that the cosine sim-
ilarity between the GLSA term vectors corre-
sponds well to the semantic similarity between
pairs of terms. Interesting questions for future
work are connected to the computational issues.
As other methods based on a matrix decomposi-
tion, GLSA is limited in the size of vocabulary
that it can handle efficiently. Since terms can be
divided into content-bearing and function words,
GLSA computations only have to include content-
bearing words. Since the GLSA document vectors
are constructed as linear combinations of term
vectors, the inner products between the term vec-
tors are implicitly used when the similarity be-
tween the document vectors is computed. An-
other interesting extension is therefore to incorpo-
rate the inner products between GLSA term vec-
tors into the language modelling framework and
evaluate the impact of the GLSA representation

on the information retrieval task.

We have presented the GLSA framework for
computing semantically motivated term and doc-
ument vectors. This framework allows us to
take advantage of the availability of large doc-
ument collection and recent research of corpus-
based term similarity measures and combine them
with dimensionality reduction algorithms. Us-
ing the combination of point-wise mutual infor-
mation and singular value decomposition we have
obtained term vectors that outperform the state-
of-the-art approaches on the synonymy test and
show a clear advantage over the PMI-IR approach
on the term pairs test.
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