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TERM STRUCTURES OF CREDIT SPREADS WITH
INCOMPLETE ACCOUNTING INFORMATION

BY DARRELL DUFFIE AND DAVID LANDO1

We study the implications of imperfect information for term structures of credit
spreads on corporate bonds. We suppose that bond investors cannot observe the issuer’s
assets directly, and receive instead only periodic and imperfect accounting reports. For a
setting in which the assets of the firm are a geometric Brownian motion until informed
equityholders optimally liquidate, we derive the conditional distribution of the assets,
given accounting data and survivorship. Contrary to the perfect-information case, there
exists a default-arrival intensity process. That intensity is calculated in terms of the
conditional distribution of assets. Credit yield spreads are characterized in terms of
accounting information. Generalizations are provided.

KEYWORDS: Credit risk, corporate bond yields, incomplete information, default inten-
sity.

1. INTRODUCTION

THIS PAPER ANALYSES TERM STRUCTURES of credit risk and yield spreads in
secondary markets for the corporate debt of firms that are not perfectly
transparent to bond investors.

The valuation of risky debt is central to theoretical and empirical work in
corporate finance. A leading paradigm in corporate-bond valuation has taken as
given the dynamics of the assets of the issuing firm, and priced corporate bonds

Ž .as contingent claims on the assets, as in Black and Scholes 1973 and Merton
Ž .1974 . Generalizations treat coupon bonds and the effects of bond indenture

Ž Ž . Ž ..provisions Black and Cox 1976 and Geske 1977 and stochastic interest rates
Ž Ž . Ž ..Shimko, Tejima, and van Deventer 1993 and Longstaff and Schwartz 1995 .
By introducing bankruptcy costs and tax effects, this framework has been
extended to treat endogenous capital structure, liquidation policy, recapitaliza-

Ž Ž .tion, and renegotiation of debt Brennan and Schwartz 1984 , Fischer, Heinkel,
Ž . Ž . Ž .and Zechner 1989 , Leland 1994, 1998 , Leland and Toft 1996 , Uhrig-Hom-

Ž . Ž .burg 1998 , Anderson and Sundaresan 1996 , Mella-Baral and Perraudin

1 We are exceptionally grateful to Michael Harrison for his significant contributions to this paper,
which are noted within. We are also grateful for insightful research assistance from Nicolae
Garleanu, Mark Garmaise, and Jun Liu; for very helpful discussions with Martin Jacobsen, Marlieseˆ
Uhrig-Homburg, Marc Yor, and Josef Zechner; and for comments from Michael Roberts, Klaus
Toft, William Perraudin, Monique Jeanblanc, Jean Jacod, Philip Protter, Alain Sznitmann, Em-
manuel Gobet, Anthony Neuberger, Jason Wei, Pierre de la Noue, Olivier Scaillet, numerous
seminar participants, as well as an editor and several anonymous referees. Duffie was supported in
part by the Financial Research Initiative and the Gifford Fong Associates Fund at The Graduate
School of Business, Stanford University. We are also grateful for hospitality from the Institut de
Finance, Universite de Paris, Dauphine, and the Financial Markets Group of the London School of´
Economics. Lando was supported in part by The Danish Natural and Social Science Research
Councils.
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Ž ..1997 . These second-generation models allow for endogenous default, opti-
mally triggered by equity owners when assets fall to a sufficiently low level.

In practice, it is typically difficult for investors in the secondary market for
corporate bonds to observe a firm’s assets directly, because of noisy or delayed
accounting reports, or barriers to monitoring by other means. Investors must
instead draw inference from the available accounting data and from other
publicly available information, for example business-cycle data, that would bear
on the issuer’s credit quality. Under informational assumptions, we derive public
investors’ conditional distribution of the issuer’s assets, explicitly accounting for
the implications of imperfect information and survivorship. This provides a
model for conditional default probabilities at each future maturity. Default
occurs at an arrival intensity that bond investors can calculate in terms of
observable variables.

We show several significant implications of incomplete information for the
Žlevel and shape of the term structure of secondary-market yield spreads the

excess over risk-free interest rates at which corporate bond prices are quoted in
.public markets . With perfect information, yield spreads for surviving firms are

zero at zero maturity, and are relatively small for small maturities, regardless of
the riskiness of the firm. As illustrated in Figure 1, yield spreads for relatively
risky firms would, with perfect information, eventually climb rapidly with matu-

Žrity. The assumptions and parameters used for this figure are explained in
.Section 2. Such severe variation in the shape of the term structure of yield

Ž Ž . Ž .spreads is uncommon in practice Fons 1994 , Helwege and Turner 1999 ,
Ž . Ž .Johnson 1967 , Jones, Mason, and Rosenfeld 1984 , and Sarig and Warga

Ž ..1989 . With imperfect information, however, yield spreads are strictly positive
at zero maturity because investors’ are uncertain about the nearness of current
assets to the trigger level at which the firm would declare default. This uncer-
tainty causes a more moderate variation in spreads with maturity, as illustrated
in Figure 1 for an otherwise identical firm whose accounting reports are noisy.
The shape of the term structure of credit spreads may indeed play a useful
empirical role in estimating the degree of transparency of a firm as viewed by
bond-market participants. The existence of a default intensity, moreover, is
consistent with the fact that bond prices often drop precipitously at or around

Žthe time of default. With perfect information, as default approaches bond
.prices would converge continuously to their default-contingent values.

As opposed to the structural models described above, which link default
explicitly to the first time that assets fall below a certain level, a more recent
literature has adopted a reduced-form approach, assuming that the default
arrival intensity exists, and formulating it directly as a function of latent state
variables or predictors of default.2 The popularity of this reduced-form ap-
proach to modeling defaultable bonds and credit derivatives, particularly

2 Ž . Ž .See, for example, Artzner and Delbaen 1995 , Arvanitis, Gregory, and Laurent 1999 , Duffie
Ž . Ž . Ž .and Singleton 1999 , Duffie, Schroder, and Skiadas 1996 , Jarrow and Turnbull 1995 , Jarrow,

Ž . Ž . Ž . Ž .Lando, and Turnbull 1997 , Lando 1994, 1998 , Madan and Unal 1998 , and Schonbucher 1998 .¨
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FIGURE 1.�Credit spreads under perfect and imperfect information.

Ž Ž ..in business and econometric applications Duffee 1999 arises from its tract-
ability.

This approach allows the application of statistical methods for estimating the
Ž Ž . Ž . Ž .incidence of default Altman 1968 , Bijnen and Wijn 1994 , Lennox 1999 ,

Ž . Ž .Lundstedt and Hillegeist 1998 , McDonald and Van de Gucht 1999 , Shumway
Ž ..2001 , and the use of convenient methods for risk management and derivative
pricing that were originally developed for default-free term structures.

We present here a first example of a structural model that is consistent with
such a reduced-form representation.

Bounding short spreads away from zero can also be obtained in a structural
model in which the assets of a firm are perfectly observable and given by a

Ž .jump-diffusion process, as in Zhou 1997 . This approach is not, however,
3 Žconsistent with a stochastic intensity for default unless the only variation in

3 Ž .For a stopping time � to have an associated intensity, it must among other properties be totally
inaccessible, meaning that, for any sequence of stopping times, the probability that the sequence

Ž .approaches � strictly from below is zero. See, for example, Meyer 1966, p. 130, Definition D42 . The
� 4 Ž .first time �� inf V �V that the asset process V defined by Zhou 1997 crosses the defaultt B

Ž .boundary V could be the time of a jump, or could be via a continuous ‘‘diffusion’’ crossing. ThatB
� �14is, if we let � � inf t : V �V �n , then there is a strictly positive probability that � converges ton t B n

� , so � is not totally inaccessible, and therefore does not have an intensity.
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.asset levels is through jumps . Hence, this approach does not lay the theoretical
groundwork for hazard-rate based estimation of default intensities. With pre-
cisely measured assets, moreover, this jump-diffusion model offers no role in the
estimation of default risk for such potentially useful explanatory variables as
duration of survivorship, industrial performance, or consumer confidence. One
could, of course, build a model for a firm with complete information in which
various different state variables determine the dynamics of assets or liabilities,
and would therefore also be determinants of default risk.

2. THE BASIC MODEL

This section presents our basic model of a firm with incomplete secondary-
market information about the credit quality of its debt. For simplicity, we treat a
time-homogeneous setting, staying within the tradition of the work of Anderson,

Ž . Ž .Pan, and Sundaresan 1995 , Anderson and Sundaresan 1996 , Fan and Sun-
Ž . Ž . Ž .daresan 2000 , Fischer, Heinkel, and Zechner 1989 , Leland 1994, 1998 ,

Ž . Ž . Ž .Leland and Toft 1996 , Mella-Barral 1999 , Mella-Barral and Perraudin 1997 ,
Ž .and Uhrig-Homburg 1998 . We solve for the optimal capital structure and

default policy, and then derive the conditional distribution of the firm’s assets,
given incomplete accounting information, along with the associated default
probabilities, default arrival intensity, and credit spreads. In Section 3, we treat
extensions of the basic model.

2.1. Setup and Optimal Liquidation

We begin by reviewing a standard model of a firm’s assets, capital structure,
and optimal liquidation policy. With some exceptions, the results are basically

Ž .those of Leland and Toft 1996 .
The stochastic process V describing the stock of assets of our given firm is

modeled as a geometric Brownian motion, which is defined, along with all other
Ž . ZŽ t .random variables, on a fixed probability space � , FF, P . In particular, V �e ,t

where Z �Z �mt�� W , for a standard Brownian motion W, a volatilityt 0 t
Ž .parameter ��0, and a parameter m� ��, � that determines the expected

�1 � Ž .� 2asset growth rate �� t log E V �V �m�� �2. The firm generates casht 0
Ž .flow at the rate � V at time t, for some constant �� 0, � .t

The firm issues debt so as to take advantage of the tax shields offered for
Ž .interest expense, at the constant tax rate 	� 0, 1 . In order to stay in a simple

time-homogeneous setting, the debt is modeled as a consol bond, meaning a
commitment to pay coupons indefinitely at some constant total coupon rate
C�0. Tax benefits for this bond are therefore received at the constant rate 	 C,

Ž .until liquidation. We briefly consider callable debt in Section 3.
All agents in our model are risk-neutral, and discount cash flows at a fixed

market interest rate r.
The debt is sold at time 0 for some amount D to be determined shortly. For

contractual purposes, it is assumed that the debt is issued at par, determining its
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face value D and coupon rate C�D. The optimal amount of debt to be issued
will be discussed after considering its valuation.

The firm is operated by its equity owners, who are completely informed at all
times of the firm’s assets. This means that they have the information filtration
Ž . 4FF generated by V. The expected present value at time t of the cash flows tot
be generated by the assets, excluding the effects of liquidation losses and tax
shields, conditional on the current level V of assets, ist

� � Vt�r Ž s�t .Ž .1 E e � V ds �V � ,H s t r��t

Žprovided that r��. If �	 r, the present value of cash flows is infinite, a case
.we do not consider. One could therefore equally well take this value or the

firm’s cash flow rate � V , as the state variable for the firm’s opportunities, ast
these alternative state variables are simply multiples of the stock of assets V .t

For simplicity, the equity owners’ only choice is when to liquidate the firm. A
Ž . � �liquidation policy is an FF -stopping time � : �� 0, � . Given an asset level att

liquidation of V , we choose for simplicity to define the liquidation value of the�

Ž .�1 Ž .assets to be � r�� V , i.e., the present unlevered value defined in 1 .�

Alternatively, one could consider a liquidation value that reflects the value of
assets in an optimally levered, reorganized firm. This would require the solution
of an associated fixed-point problem�a problem that is not central to the

� �objectives of this paper. At the chosen liquidation time � , a fraction 
� 0, 1 of
the assets are lost as a frictional cost. The value of the remaining assets,
Ž .�1Ž .� r�� 1�
 V , is, by an assumption of strict priority, assigned to debt-�

holders.5

Proceeds from the sale of debt are paid at time 0 as a cash distribution to
initial equity holders. After this distribution, the initial value of equity to
shareholders, given a liquidation policy � and coupon rate C, is

�
�r tŽ . Ž . Ž Ž . .2 F V , C , � �E e � V � 	�1 C dt .H0 t

0

Equity shareholders would therefore choose the liquidation policy solving the
optimization problem

Ž . Ž .3 S � sup F V , C , � ,0 0
��TT

Ž .where TT is the set of FF -stopping times.t

4 � 4That is, for each t�0, FF is the �-algebra generated by V : 0�s� t .t s
5 For an alternative formulation, one might suppose that equity holders would receive at

Ž .�1 Ž .liquidation any excess of the recovery value of assets, � r�� 1�
 V , over the face value D of�

Ž Ž .�1 Ž . .debt, with min � r�� 1�
 V , D going to debtholders. For certain parameters, such as those�

used in our illustrative numerical example to follow, the two formulations imply the same default
policy and valuations, as equity holders would in any case optimally declare default only when there

Žare insufficient post-recovery assets to cover the face value of debt. In other parameters cases with
.large V , r, and C, and with negligible � , �, and � , equity holders given the chance for recovery of0

Ž Ž .�1 Ž . .max 0, � r�� 1�
 V �D would liquidate at time 0.�
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If at some time t the asset level V is less than C�� , then equity owners havet
a net negative dividend rate.6 Equity owners may nevertheless prefer to con-
tinue operating the firm, suffering such negative distributions, bearing in mind
that assets might eventually rise and create large future dividends. At some
sufficiently low level of assets, however, the prospects for such a future recovery
are dim enough to warrant immediate liquidation. Indeed, the optimal liquida-

7 Ž .tion time, as shown in a different context by Leland 1994 , is the first time
Ž . � 4� V � inf t : V �V that the asset level falls to some sufficiently low boundaryB t B

V �0. The optimality of such a trigger policy is unsurprising, as V is aB t
sufficient statistic for the firm’s future cash flows, and cash flows are increasing
in V .t

Specifically, one conjectures that the optimal equity value at time t,
�

�r Ž s�t .Ž . Ž Ž . .4 S �ess sup E e � V � 	�1 C ds �FF ,Ht s t
t��TT

Ž .is given by S �w V , where w solves the Hamilton-Jacobi-Bellman differentialt t
equation

� 1 � 2 2Ž . Ž . Ž . Ž . Ž .5 w 
 �
 � w 
 � 
 � rw 
 � 1�	 C�� 
 , 
 �V ,B2

with the boundary conditions
Ž . Ž .6 w 
 �0, 
 �V ,B

and
Ž . � Ž .7 w V �0.B

Ž .Under this conjecture, to be verified shortly, 6 means that it is no longer
optimal to operate the firm once the equity value has been reduced to its

Ž .liquidation value, while 7 is the so-called ‘‘smooth-pasting’’ condition. The
Ž .differential equation 5 states that, so long as it is optimal to continue operating

the firm, the expected rate of increase in equity value, net of the rate of
Ž .opportunity cost rw 
 of equity capital, is equal to the net rate at which cash is

paid out by equity.
Ž . Ž .The HJB equation is solved by w 
 �0 for 
 �V �
 C , whereB B

Ž . Ž .1�	 C� r��
Ž . Ž .8 
 C � ,B Ž .r 1�� �

where
2 2'm� m �2 r�

�� ,2�

6 In a model restricted to have nonnegative net equity dividends per share, such net negative cash
distributions could be funded by dilution, for example through share purchase rights issued to
current shareholders at the current valuation.

7 Leland’s 1994 model has ��0. With ��0, the manner in which equity holders extract value is
Ž . Ž .not modeled. The subsequent results of Leland and Toft 1996 and Leland 1998 have ��0,

although the candidate solution was not subjected to verification.
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and, for 
 �V ,B

�� ��Ž .� 
 
 C � 
 C 
BŽ . Ž . Ž .9 w 
 � � � 	�1 1� .ž / ž /Ž . Ž .r�� r�� 
 C r 
 CB B

Ž .The first term in 9 represents the present value of all future cash flows
generated by assets, assuming no liquidation. The second term represents the
present value of the cash flows lost to distress or transferred to debtholders at
the time of liquidation. The last term represents the costs of all future debt

Ž Ž ..��coupon payments, net of tax shields. The key factor 
�
 C is the presentB
Ž .value at an asset level 
 �
 C of receiving one unit of account at the stoppingB

Ž Ž ..time � 
 C .B
The optimality property

Ž . Ž . Ž Ž ..10 S �w V �F V , C , � V0 0 0 B

is verified as follows. For each t, let

t�r t �r sŽ . Ž Ž . .q �e w V � e � V � 1�	 C ds.Ht t s
0

Ž . 8 Ž .From 5 and Ito’s Formula, and noting that for 
 �
 C we have bothB
Ž . Ž .w 
 �0 and � 
 � 1�	 C�0, it follows that q is a uniformly integrable

Ž .supermartingale. Thus, for any stopping time � , we have q 	E q . This implies0 �

that, for any stopping time � , we have
�

�r s �r�Ž . Ž Ž . . Ž . � Ž .�11 E e � V � 1�	 C ds �w V �E e w V .H s 0 �
0

Ž . Ž .As w is nonnegative, w V 	F V , C, � . For the candidate optimal policy0 0
Ž . Ž . Ž .��� V , we have w V �0 and equality in 11 , confirming optimality andB �

Ž .10 .
The associated expected present value of the cash flows to the bond at any

Ž .time t before liquidation, conditional on V , is d V , C , wheret t

�� ��Ž . Ž .1�
 
 C � 
 C 
BŽ . Ž .12 d 
 , C � � 1� .ž / ž /Ž . Ž .r�� 
 C r 
 CB B

We summarize as follows:

Ž . Ž .. Ž .PROPOSITION 2.1: Suppose r��. Let 
 C and d V , C be defined by 8B 0
Ž . Ž .and 12 , respecti
ely. Then the optimal liquidation problem 3 is sol
ed by the first

8 Although w need not be twice continuously differentiable, it is convex, C1, and C 2 except at V ,B
�Ž . Ž .where w V �0. We have w 
 �0 for 
 �V . Under these conditions,B B

s s
� � �1 2 2Ž . Ž . � Ž . Ž . � Ž .w V �w V � 1 w V �V � w V � V dt� w V � V dB .H Hs 0 �V Ž t .� V 4 t t t t s s s2B0 0

Ž Ž . . �Ž .See, for example, Karatzas and Shreve 1998, page 219 . Because w 
 is bounded, the last term is
a martingale.
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Ž Ž .. Ž .time � 
 C that V is at or below 
 C . The associated initial 
alues of equityB B
Ž . Ž . Ž .and debt are w V and d V , C , respecti
ely, where w is gi
en by 9 for0 0

Ž . Ž . Ž .
 �
 C and w 
 �0 for 
 �
 C .B B

� Ž .We suppose that the total coupon rate C V of the bonds to be issued0
is chosen so as to maximize over C the total initial firm valuation,
Ž Ž Ž .. Ž .F V , C, � 
 C �d V , C , which is the initial value of equity plus the sale0 B 0

value of debt.

2.1.1. Example: Optimal Capital Structure and Liquidation

As a numerical illustration, we consider the case

Ž .13 	�0.35; ��0.05; r�0.06; m�0.01; ��0.05; 
�0.3.

� Ž .As the solutions for the optimal total coupon rate C V and the optimal0
Ž � Ž ..liquidation boundary V �
 C V are linear in V , we may without loss ofB B 0 0

generality take V �100. For these parameters, we have the optimal total0
Ž .coupon rate C�8.00, liquidation boundary V �
 C �78.0, and initial parB B

Ž .debt level D�d V , C �129.4.0
The yield of the debt is C�D�6.18%. Recovery of the debt at default, as a

Ž .�1Ž .fraction of face value, is � r�� 1�
 V �D�43.3%. For comparison, theB
average recovery, as a fraction of face value, of all defaulted bonds monitored9

by the rating agency Moody’s, for 1920 to 1997, is 41%. Of course, recovery
varies by subordination and for other reasons.

2.2. Imperfect Bond Market Information

Now we turn to how the secondary-market assesses the firm’s credit risk and
values its bonds.

After issuance, bond investors are not kept fully informed of the status of the
firm. While they do understand that optimizing equity owners will force liquida-
tion when assets fall to V , bond investors cannot observe the asset process VB
directly. Instead, they receive imperfect information at selected times t , t , . . . ,1 2
with t � t . While extensions to more general observation schemes are pro-i i�i
vided in the next section, for now we assume that at each observation time t

ˆ ˆthere is a noisy accounting report of assets, given by V , where log V and log Vt t t
ˆŽ . Ž . Ž .are joint normal. Specifically, we suppose that Y t � log V �Z t �U t , wheret

Ž . Ž . ŽU t is normally distributed and independent of Z t . The independence
.assumption is without loss of generality, given joint normality.

� .Also observed at each t� 0, � is whether the equity owners have liquidated
Ž .the firm. That is, the information filtration HH available to the secondaryt

9 See ‘‘Historical Default Rates of Corporate Issuers,’’ Moody’s Investors Service, February, 1998,
page 20.
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market is defined by

Ž . Ž . Ž .14 HH �� Y t , . . . , Y t , 1 : 0�s� t ,� 4Ž .t 1 n �� � s4

Ž .for the largest n such that t � t, where ��� V .n B
For simplicity, we suppose that equity is not traded on the public market, and

that equity owner-managers are precluded, say by insider-trading regulation,
from trading in public debt markets. This allows us to maintain the simple

Ž .model HH for the information reaching the secondary bond market, andt
avoiding a complex rational-expectations equilibrium problem with asymmetric
information.

Our main objective for the remainder of this subsection is to compute the
conditional distribution of V given HH . We will begin with the simple case oft t
having observed a single noisy observation at time t� t . In Section 3, we extend1
to multiple observation times.

10 'Ž .We will need, as an intermediate calculation, the probability � z , x, � t ,0
conditional on Z starting at some given level z at time 0 and ending11 at some0

� 4level x at a given time t, that min Z : 0�s� t �0. As indicated by ours
notation, this probability does not depend on the drift parameter m, and
depends on the variance parameter � 2 and time t only through the term k�
'� t . From the density of the first-passage time recorded in Chapter 1 of

Ž .Harrison 1985 , and from Bayes’ Rule, one obtains after some simplification
that

2 zx
Ž . Ž .15 � z , x , k �1�exp � .2ž /k

Ž .Next, fixing z �Z , we calculate the density b 
�Y , z , t of Z , ‘‘killed’’ at0 0 t 0 t
� 4�� inf t : Z �
 , conditional on the observation Y �Z �U . That is, using thet t t t

conventional informal notation,

Ž . Ž . Ž .16 b x �Y , z , t dx�P �� t and Z �dx �Y , x	
 .t 0 t t

Using the definition of � and Bayes’ Rule,

' Ž . Ž .� z �
 , x�
 , � t � Y �x � xŽ .0 U t ZŽ . Ž .17 b x �Y , z , t � ,t 0 Ž .� YY t

where � denotes the density of U , and likewise for � and � . TheseU t Z Y
Ž .densities are normal, with respective means u�E U , mt�z , and mt�z �u,t 0 0

2 Ž . 2 2 2and with respective variances a �var U , � t, and a �� t. The standardt

10 The approach taken here, as well as the specific calculations for a slightly different case, were
generously shown to us by Michael Harrison. We are much in his debt for this assistance.

11 To be more precise, if we take Z to be a pinned standard Brownian motion, with Z �z�00
Ž . � 4and Z �x�0, we want the probability � z, x, t that min Z : 0�s� t �0.t s
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deviation a of U may be thought of as a measure of the degree of accountingt
noise.

We have

��
Ž . Ž . Ž .18 P �� t �Y � b z �Y , z , t dz .Ht t 0




Ž .Finally, we compute the density g 
�Y , z , t of Z , conditional on the noisyt 0 t
Ž . Ž .observation Y and on �� t. Using 16 and 18 , and another application oft

Bayes’ Rule,

Ž .b x �y , z , t0Ž . Ž .19 g x �y , z , t � .0 �� Ž .H b z �y , z , t dz
 0

Letting y�y�
 �u, x�x�
 , and z�z �
 , a calculation of the integral in˜ ˜ ˜ 0
Ž .19 leaves us with

Ž . Ž .20 g x �y , z , t0

� �2 z x˜ ˜0 0�JŽ y , x , z .˜ ˜ 0̃e 1�exp( 2ž /� � t
� ,2 2� � � �1 1 2 2

exp �� � �exp �� � �3 3ž / ž /ž / ž /4� 4�2� 2�' '0 00 0

where

2 2Ž . Ž .y�x z �mt�x˜ ˜ ˜ ˜0Ž .21 J y , x , z � � ,˜ ˜ ˜Ž .0 2 22 a 2� t

for

a2 �� 2 t
Ž .22 � � ,0 2 22 a � t

y z �mt˜ 0̃Ž .23 � � � ,1 2 2a � t

z̃0Ž .24 � ��� �2 ,2 1 2� t
22 Ž .1 y z �mt˜ 0̃Ž .25 � � � ,3 2 2ž /2 a � t

and where � is the standard-normal cumulative distribution function. Given
survival to t, this gives us the conditional distribution of assets, because the
conditional density of V at some level 
 is easily obtained from the conditionalt
density of Z at log 
 .t



CREDIT SPREADS 643

FIGURE 2.�Conditional density for varying accounting precision.

2.2.1. Numerical Illustration�Continued

We extend the numerical illustration begun in Section 2.1.1 by considering the
conditional distribution of assets for the same firm at some current date t�1.

Ž̂ . Ž .We suppose that a noise-free asset report of V t�1 �V t�1 �86.3 was
provided one year ago. Figure 2 shows the conditional density of the current
asset level V , given HH , that would be realized in the event that the bond has nott t

ˆŽ Ž . .yet defaulted � V � t and the current asset report V has an outcome equalB t
to the previous year’s report, 86.3. As the default boundary is V �78, the firmB
has become rather risky in this scenario. We indicate various cases for the
standard deviation a of the accounting noise U . Our basic case is a�10%. Wet
have no empirical evidence at this writing of a reasonable level of accounting
noise, which in any case would presumably vary with the nature of a firm, so we
consider the effect of variation in a. We suppose in all cases that U hast

2 UŽ t .Ž .expectation u��a �2, so that E e �1, implying an unbiased accounting
report.12 Figure 3 shows how this conditional density is affected by the lagged

Ž̂ .asset report V t�1 , for all other parameters at their base cases.
12 This does not imply that the accounting report is conditionally unbiased given survivorship.

One may think, for example, of an accounting report based on a physical measurement of the stock
of assets, which is imperfect but unbiased. An alternative would be an accounting report in the form
of a conditional distribution of assets, given survivorship and the results of noisy measurements. The
mean of this conditional distribution would, by definition, be conditionally unbiased.
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FIGURE 3.�Conditional asset density, varying previous year asset level.

Ž .We also compute the HH -conditional probability p t, s of survival to somet
Ž . Ž .future time s� t. That is, p t, s �P ��s �HH . For t�� , we havet

�
Ž . Ž . Ž Ž .. Ž .26 p t , s � 1�� s� t , x�
 g x �Y , z , t dx ,H t 0




Ž .where � t, x denotes the probability of first passage of a Brownian motion with
drift m and volatility parameter � from an initial condition x�0 to a level

Ž Ž ..below 0 before time t, which is known explicitly Harrison 1985 . Figure 4
Ž .illustrates outcomes of the conditional default probability 1�p t, s , for our

base-case example, for various time horizons s� t and various levels a of
accounting noise. For example, with perfect information, the conditional proba-
bility of default within one year is approximately 2.9%, while this conditional
probability is approximately 6.7% if the accounting assets are reported with a
10% level of accounting noise.

2.3. Default Intensity

The conditional probability that default occurs within h units of time goes to
zero as h goes to zero, regardless of the informational assumptions. What
distinguishes perfect from imperfect information is the rate of convergence. In
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FIGURE 4.�Default probability, varying accounting precision.

Ž .the case of perfect information, that is, for a filtration such as FF to which Z ist
adapted, on the event that �� t we have

Ž . Ž .P �� t�h �FF � h , Z �
t tŽ .27 lim � �0 a.s.
h hh�0

In structural models with default defined as the first hitting time of an observ-
able diffusion, it is this fact that forces credit spreads on zero-coupon bonds to
go to zero as time to maturity goes to zero, as in Figure 1. It is tempting to
conclude that the same is true with imperfect information, because, as we see

Ž .from 26 ,

Ž . Ž .�1�p t , t�h � h , x�

Ž .� g x �Y , z , t dx ,H t 0h h


and the first factor of the integrand converges to 0 for all x. The integral itself,
Žhowever, does not converge to 0 as h goes to 0. In this section, we prove that in

.general a nonzero limit exists, we give an explicit expression for the limit, and
we show that this limit is in fact the intensity of � , defined as follows. The
default stopping time � has an intensity process � with respect to the filtration
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Ž . tHH if � is a nonnegative progressively measurable process satisfying H � ds��t 0 s
� t 4 Ž .a.s. for all t, such that 1 �H � ds : t	0 is an HH -martingale. For details,�� � t4 0 s t

Ž .see, for example, Bremaud 1981 .´
The intuitive meaning of the intensity is that it gives a local default rate, in

that

Ž Ž .�P �� t , t�dt �HH �� dt .t t

Ž . Ž .From the results in Section 2.2, at any �, t such that 0� t�� � , the
HH -conditional distribution of Z has a continuously differentiable conditionalt t

Ž .density f t, 
 , � . This density is zero at the boundary 
 , and has a derivative
Ž . Ž .from the right f t, 
 , � that exists and is nonzero. We are ready to state thex
key result of this section.

Ž .PROPOSITION 2.2: Define a process � by � t �0 for t�� and

1 2Ž . Ž . Ž .28 � � � � f t , 
 , � , 0� t�� .t x2

13 Ž .Then � is an HH -intensity process of � .t

A proof is found in Appendix A. In order to gain intuition for the result, we
consider a standard binomial ‘‘random-walk’’ approximation for Z, supposing at
first that m�0. We can assume without loss of generality that the default-

Ž .triggering boundary 
 for Z is 0. For notational simplicity, we let f 
 also
denote the HH -conditional density of Z on the event that �� t. The conditionalt t
probability that Z �0 is zero. The conditional probability that Z is one stept t' 'Ž .above 0 is, to first order, approximated by f � h � h , as illustrated in Figure 5.

FIGURE 5.�Binomial approximation of hitting intensity.

13 Ž .While there may exist other HH -intensity processes for � , they are equivalent for our purposes.t
Ž .For the sense in which uniqueness applies, see Bremaud 1981, p. 30 .´
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Because the only level from which Z can reach 0 within one time step oft'length h is � h , the conditional probability of hitting 0 by time h is equal to
1 ' 'Ž .f � h � h . Thus,2

1 ' 'Ž .1 f � h � h2Ž .lim P �� t�h �HH � limth hh�0 h�0

1 2'Ž .f � h �2� lim 'h�0 � h

1
� 2Ž .� f 0 � ,

2

Ž .where we have used the fact that f 0 �0 to calculate the derivative. This
binomial approximation can easily be extended to handle a drift term m by
changing the probability of up and down moves to

' '1 m h 1 m h
� and � ,

2 2� 2 2�
1respectively. As h goes to zero these probabilities go to , and we have the same2

limit result for the intensity.14

2.4. Credit Spreads

We turn now to the implications of incomplete information for the term
structures of credit yield spreads of the modeled firm.

For a given time T to maturity, the yield spread on a given zero-coupon bond
selling at a price ��0 is the real number � such that ��e�Ž r�� .T. If we
assume that a bond with maturity date s� t issued by our modeled firm recovers

Ž . � �some fraction R s � 0, 1 of its face value at default, then the secondary
Ž .market price � s, t at time t of such a bond, in the event that the firm has yet

to default by t, is given by

s
�r Ž s�t . �r Žu�t .Ž . Ž . Ž . Ž . Ž .29 � t , s �e p t , s �R s e p t , du ,H

t

Ž .where we recall that p t, u is the probability of survival to time u. The first
Ž .term in 29 is the value of the survival-contingent contractual payoff of the

bond at maturity, while the second is the value of any recovery at default,
Ž . Ž .contingent on default before maturity. Using 26 , our calculation of � t, s is

reduced to a single numerical integration over the current log-asset level x,
weighted by its conditional density, applying Fubini’s Theorem to the integral in
Ž .29 . As our model was based for simplicity on a single consol bond, and as our

14 This is a reflection of the fact that, locally, the volatility dominates the evolution of the
ŽBrownian motion. This can be seen from the law of the iterated logarithm for example, Karatzas

Ž ..and Shreve 1988 .



D. DUFFIE AND D. LANDO648

FIGURE 6.�Default intensity, varying accounting precision.

Ž .calculation of the survival probability p t, s is based on that capital structure,
Ž .some interpretation of 29 is appropriate. One possibility is that the consol is

stripped in the secondary market into a continuum of zero-coupon bonds. While
various recovery assumptions could be made, it is convenient for our purposes to

Ž .assume that, given default at time � , the recovery R s for a bond with maturity
date s�� is proportional to the default-free discount e�r Ž s�� . for that maturity.
Ž .This could, for instance, be a contractual provision. Later, we consider default
swap spreads, which do not call for such recovery assumptions.

Figure 1 compares the term structure of credit spreads in our base-case
numerical illustration with the term structure that would apply with perfect

Ž .accounting data dashed curve, for the case with a�0 . Figure 8 compares the
Ž .base case solid curve with the term structure that would apply with various

Žqualities of accounting information. Figure 9 compares the base case solid
.curve against the term structure that would apply with various lagged asset

reports. With perfect accounting information, the previous accounting report
would be irrelevant, given the current report. Figures 6 and 7 compare default
intensities across cases treated in Figures 8 and 9, respectively.

Ž . Ž . Ž .In a setting of perfect information a�0 , we have � t, s �J V , fort, s t
� . Ž . Ž .J : 0, � � 0, � determined by 29 . If m�0, it can be shown by calculationt, s
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FIGURE 7.�Default intensity, varying previous year asset level.

Ž . 15of its second derivative that J 
 is concave. It follows by Jensen’s Inequalityt, s
ˆthat yield spreads are larger at an outcome for V that is conditionally unbiasedt

for V than they would be in the case of perfect information. This is analogoust

to the fact that, in a Black-Scholes setting, the equity price as a function of asset
level is increasing in the volatility of assets, and therefore the debt price is
decreasing in asset volatility. Here, however, the asset volatility is fixed, and it is
a question of precision of the accounting observation. One might extrapolate to
practical settings and anticipate that, other things equal, secondary-market yield
spreads are decreasing in the degree of transparency of a firm. We emphasize
this as separate from the adverse-selection effect on new-issue prices, which may
suffer from a lemon’s premium associated with the issuer’s superior information
regarding its own credit quality. In our setting, all participants in the secondary
market for bonds are equally well informed; they simply adjust their views
regarding credit risk based on the precision of their information.

15 A proof, due to Nicolae Garleanu, is provided in a working-paper version of this paper. Ifˆ
m�0, counterexamples can be constructed.
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FIGURE 8.�Credit spreads for varying accounting precision.

2.4.1. Default-Swap Spreads

Default swaps are the most common form of credit derivative. With a given
maturity T , a default swap is an exchange of an annuity stream at a constant
coupon rate until maturity or default, whichever is first, in return for a payment
of X at default, if default is before T , where X is the difference between the
face value and the recovery value on the stipulated underlying bond. A default
swap can thus be thought of as a default insurance contract for bond holders
that expires at a given date T , and makes up the difference between face and
recovery values in the event of default.

By considering the market valuation of default swaps, we can effectively
Ž .uncover as explained below the term structure of credit spreads for par coupon

bonds. This is a measure of credit spreads that is more standard than the
zero-coupon bond structure considered above. Moreover, our results regarding

Ž .the shape of the zero-coupon term structure � t, 
 are sensitive to our assump-
tion regarding how these strips share in the assets remaining after default.
Default-swap spreads depend only on the total recovery value to the underlying
consol bond.
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FIGURE 9.�Credit spreads, varying previous year’s asset level.

We assume, as typical in practice, that the default-swap annuity payments are
made semiannually, and that the default swap’s maturity date T is a coupon
date. We take the underlying bond to be the consol bond issued by the firm in
our example. This fixes the default-contingent payment, for each default swap,
of

Ž .1�
 � VB
X�1� .Ž .r�� D

We can solve for the at-market default-swap spread, which is the annualized
Ž .coupon rate c t, T that makes the default swap sell at time t for a market value

of 0. With T� t�n�2, for a given positive integer n, we have

�r Ž��t .2 XE e 1�� � T 4Ž .c t , T � .n �0.5r i � �Ý e E 1i�1 �� � t�0.5 i4

Default-swap spreads are a standard for price quotation and credit informa-
tion in bond markets. In our setting, they have the additional virtue of providing
implicitly the term structure of credit spreads for par floating-rate bonds of the
same credit quality as the underlying consol bond, in terms of default time and
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recovery at default.16 Figure 10 compares default-swap spreads, in our base-case
model, with imperfect and perfect information.

2.5. Summary of Empirical Implications

We summarize some of the empirical implications of our model for corporate
debt valuation as follows.

Even if default is triggered by an insufficient level of assets relative to
liabilities, observable variables that are correlated with current asset-liability
ratios have explanatory power for credit spreads and for default probabilities.

Ž . Ž .For example, as with Bijnen and Wijn 1994 , Lennox 1999 , Lundstedt and
Ž . Ž . Ž .Hillegeist 1998 , McDonald and Van de Gucht 1999 , and Shumway 2001 ,

Ž .firm-specific ratios such as interest expense to income , or macroeconomic
variables related to the business cycle, may have predictive power for default

Žprobabilities or yield spreads, even after exploiting asset and liability data. We
.offer some specific modeling in Section 3. We have also shown the contributing

role of lagged accounting variables.
Perfect observation in standard diffusion models of corporate debt, such as

Ž . Ž .those of Leland 1994 and Longstaff and Schwartz 1995 , implies that credit
spreads also go to zero as maturity goes to zero, regardless of the credit quality
of the issuer.17 For poorer-quality firms, credit spreads would widen sharply with
maturity, and then typically decline. With imperfect information about the firm’s
value, however, credit spreads remain bounded away from zero as maturity goes
to zero. The shape of the term structure of credit spreads is moderated, and may
provide some indication of the quality of accounting information assumed by
investors.18

A ‘‘Jensen effect’’ implies a lower price of debt, fixing the reported level of
assets, for an issuer with a conditionally unbiased but imperfect asset report
than for a perfectly observable issuer that is otherwise identical. This follows

16 This follows from the fact that, without transactions costs, a default swap can be viewed as an
exchange of a par floating-rate default-free bond of maturity T for a par defaultable floating-rate

Žbond of the same maturity. This is the case because this portfolio has an initial market value of 0 as
. Ž .an exchange of par for par , provides an annuity until min � , T at a coupon rate that is the credit

spread of the defaultable bond over the default-free bond, and at default, if before T , is worth
X�100. This follows from the fact that a default-free floating rate bond is always worth its face
value. This argument ignores the impact of default between coupon dates, which is negligible except

Ž .in extreme cases. See Duffie 1999 .
17 Ž .In a model such as that of Merton 1974 , when the ‘‘solvency ratio’’ of asset value to the face

value of debt is less than one, the default probability goes to 1, and spreads therefore to infinity, as
time to maturity goes to 0.

18 For theoretical or empirical evidence of how the shape of the term structure of credit spreads
Ž . Ž . Ž .depends on credit quality, see Fons 1994 , He, Hu, and Lang 1999 , Helwege and Turner 1999 ,

Ž . Ž . Ž .Johnson 1967 , Jones, Mason, and Rosenfeld 1984 , Pitts and Selby 1983 , and Sarig and Warga
Ž .1989 . For an empirical study linking the quality of accounting information, as measured by a rating
of disclosure quality provided by the Financial Analysts Federation, to the price and rating of

Ž .corporate debt, see Sengupta 1998 .
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FIGURE 10.�Default swap spreads with perfect and imperfect information. Base case.

from the fact that, under certain conditions, including examples provided in this
paper, corporate bond prices in a setting of perfect information are concave in
the issuer’s asset level.

Our model is consistent with the fact that bond or equity prices often drop
precipitously at or around the time of default. Empirically, given the imperfect
manner in which the ‘‘surprise’’ may be revealed around the time of default, we
would expect to see a marked increase in the volatility of bond returns during
the time window bracketing default. Some evidence in this direction is already

Ž . Ž . 19available in Beneish and Press 1995 and Slovin, Sushka, and Waller 1997 .

3. EXTENSIONS

This section outlines some extensions of the basic model. First, we allow for
inference regarding the distribution of assets from several variables correlated
with asset value, or from more than one period of accounting reports. We briefly
discuss how to model recapitalization, or decisions by the firm that may be
triggered by more than one state variable, such as a stochastic liquidation

19 Ž .Some of the evidence presented in Slovin, Sushka, and Waller 1997 is through the stock price
reaction of creditors of the defaulting firm.
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boundary. We characterize the default intensity for cases in which the asset
process V is a general diffusion process, with a general observation scheme.

3.1. Conditioning on Se
eral Signals

Suppose, extending from Section 2.2, that the observation Y made at time t ist
valued in � k for some k	1, and is joint normal with Z . This may accommo-t
date observations, beyond merely noisy observation of assets, that have explana-
tory power for credit risk and yield spreads, such as various accounting ratios,
peer performance measures, or even macroeconomic variables, such as con-
sumer sentiment panel data, stock-market indices, or economic growth-rate
measures.

Ž .For convenience, we let G Z denote the conditional expectation of YY t t
given Z . That is, G : ��� k is affine, and determined as usual by the meanst Y

Ž .and covariances of Y , Z . We note that, by joint normality, if we define U tot t t
Ž .be the ‘‘residual vector’’ U �Y �G Z , then U is independent of Z . We lett t Y t t t

Ž . Ž . Ž .� 
 denote the joint-normal density of U , and � 
 denote the joint densityU t Y
Ž .of Y . Now, b in 17 is redefined byt

' Ž Ž .. Ž .� z �
 , x�
 , � t � Y �G x � xŽ .0 U t Y ZŽ . Ž .30 b x �Y , z , t �t 0 Ž .� YY t

Ž .and the solution for g given by 19 continues to apply.

3.2. Conditioning with Se
eral Periods of Reports

We now suppose that noisy reports of assets arrive at successive integer dates.
Because it is reasonable to allow for persistence in accounting noise, we suppose
that U , U , . . . may be serially correlated. Specifically, we suppose that Y �Z �1 2 i i
U , fori

Ž .31 U ��U �� ,i i�1 i

where � is a fixed coefficient and � , � , . . . are independent and identically1 2
distributed normal random variables, independent of Z.

Let
�

Žn. Žn.Ž . Ž .z � z , z , . . . , z denote an outcome of Z � Z , Z , . . . , Z .1 2 n 1 2 n
�

Žn. Žn.Ž . Ž .y � y , y , . . . , y denote an outcome of Y � Y , Y , . . . , Y .1 2 n 1 2 n
�

Žn. Žn. Žn. Žn. Žn. Žn.u �y �z denote an outcome of U �Y �Z .

Ž Žn.. Žn.We let b 
�Y denote the improper conditional density of Z , killed withn
Žn. Ž .first exit before time n, given Y . As with 16 , this is the density defined by

Ž Žn. Žn. Žn.. Žn.P Z �dz and ��n �Y . For notational simplicity, at the outcomes z ,
Žn. Žn. Ž .y , and u , we let p u �u denote the transition density of U , U , . . . ;U n n�1 1 2

Ž . Ž Žn�1..p z �z denote the transition density of Z , Z , . . . ; and p y �yZ n n�1 1 2 Y n
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Žn�1. Ždenote the conditional density of Y given Y . For the case of ��0 seriallyn
.uncorrelated noise , it may be seen that Y , Y , . . . is autoregressive of order 1,1 2

and p takes a simple form.Y
By Bayes’ Rule,

Ž Žn. Žn. Žn. Žn. .P ��n , Z �dz , Y �dy
Žn. Žn.Ž .b z �y � .n Žn. Žn.Ž .P Y �dy

� Žn. Žn. Žn. Žn.4As the event ��n, Z �dz , Y �dy is the same as the event A�B,
� 4where A� ��n, Z �dz , Y �dy andn n n n

� Žn�1. Žn�1. Žn�1. Žn�1.4B� ��n�1, Z �dz , Y �dy ,

we have

Ž . Ž .P A �B P B
Žn. Žn.Ž . Ž .32 b z �y � .n Žn�1. Žn�1. Žn�1.Ž . Ž .p y �y P Y �dyY n

Ž Žn.After some straightforward manipulation of this expression, we find that b z �n
Žn..y is given by

Ž . Ž . Ž . Ž Žn�1. Žn�1. .� z �
 , z �
 , � p z �z p y �z �y �z b z �yn�1 n Z n n�1 U n n n�1 n�1Ž .33 .Žn�1.Ž .p y �yY n

Žn. ŽAfter conditioning on Y and also on survival to time n that is, on the event
. Ž Žn.. Žn.��n , we have the conditional density g 
�Y of Z , given byn

Ž Žn. Žn. .b z �ynŽn. Žn.Ž . Ž .34 g z �y � ,n Žn.Ž .H b z �y dzAŽn. n

Ž .where the region of integration for the denominator survival probability is

Ž . � n 4A n � z�� : z 	
 , . . . , z 	
 .1 n

Ž Žn..We do not have an explicit solution for the survival probability, H b z �y dz,AŽn. n

but numerical integration can be done recursively, one dimension at a time,
Ž . Ž Žn.from the explicit recursive solution 33 for b . Given the joint density g z �n n

Žn.. Žn. Žn�1.y for Z , we can integrate with respect to z to obtain the marginal
density of z , and from the intensity 20 of � on date n, for n�� .n

3.3. General Default or Re-Structuring Intensity

Our results in Section 2 on default intensity can be significantly extended.
Ž . Ž .As with Fischer, Heinkel, and Zechner 1989 and Leland 1998 one can

consider cases in which the firm will recapitalize when the level of assets reaches

20 In order to compute the intensity, it is of course numerically easier to obtain the derivative of
b with respect to z explicitly, and then to integrate this with respect to z Žn�1., reversing the ordern n
of differentiation and integration to save one numerical step.
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some sufficiently high level 
 . For example, the firm could issue callable debt,
giving it the right to pay down for the existing debt at face value. For a given
fixed frictional cost for calling the debt, it would be optimal to call when V hits
a sufficiently high level 
 . In order to compute the density f of Z given a noisyt
signal Y , and neither liquidation nor recapitalization by t, we would simplyt 'Ž . Ž .replace the probability � z, x, t used in 17 with the analogous term based on

� 'Ž .the probability � z, y, z, t that a pinned standard Brownian motion starting
Ž .at z� 0, z at time 0, and finishing that time t at level y, does not leave the
Ž . � �interval 0, z during 0, t . This probability can be obtained explicitly from

Ž .results found, for example, in Harrison 1985 . As for the intensity, we let
� � �� Ž .4 � 4 � 4� � inf t : V � 
 , 
 , �� inf t�� : V 	
 , and �� inf t�� : V �
 . At t�t t t
�� , the intensity � of � is given byt

1 2Ž . Ž .35 � �� � f t , 
 , t�� .t x2

� � �Ž .The HH -intensity � for � is given at t�� by ���.t
Another useful generalization replaces the constant default-triggering bound-

Ž .ary 
 with a process Z, whose value Z t at t may not be observable. Suppose,
Žfor example, that Z is a Brownian motion with some drift and volatility

. �parameters . The difference Z �Z�Z is then itself a Brownian motion, and
� � 4�� inf t : Z �0 is a first-passage time that may be treated by the samet

Ž .methodology just developed. An extension of our result by Song 1998 treats
multi-dimensional cases, for example for a model in which the difference
Z� �Z�Z is not a one-dimensional diffusion, and the hitting problem there-
fore must be formulated as that of a two-dimensional process crossing a smooth
surface.

Indeed, even if the boundary Z is a constant in t, but uncertain, we can apply
our results to Z� , defined by Z� �Z �Z, provided Z is itself incompletelyt t
observed. If Z is perfectly observed, however, then our theory does not apply, as
the conditional density of Z� is not both zero and smooth at zero.21 Lambrechtt

Ž .and Perraudin 1996 have presented a model of default based on first passage
of an observed diffusion for assets to a trigger boundary that is unobserved by
certain debtholders, who are each uncertain of the other debtholder’s valuation
of the firm in default.

We can also accommodate an underlying asset process V that need not be a
geometric Brownian motion. For example, suppose V satisfies a stochastic
differential equation of the form

Ž . Ž .dV �� V , t dt�� V , t dW .t t t t

Consider, moreover, some general observation scheme, perhaps continual in
Ž .time as in Kusuoka 1999 , for which, at t�� there exists a conditional density

21 For an argument, see our working paper version.
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Ž .f t, 
 for V . We show in Appendix B, under technical conditions on �, � , andt
f , that the intensity process � for first hitting of V at 
 is given by

1 2Ž . Ž . Ž .36 � � � 
 , t f t , 
 , t�� .t x2
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APPENDICES

A. PROOF OF PROPOSITION 2.2

� 4Let Z �Z �mt�� W . Without loss of generality, let 
 �0 and define � � inf s�0 : Z �0 .t 0 t 0 s
To begin with, we consider a fixed time t�0. For now, we suppose that the only information

� 4available is survivorship; that is, HH is generated by 1 : s� t . On the event � � t, it followst �� � s4 00

Ž . Ž . Ž .directly from results in Harrison 1985 that Z has a conditional density f t, 
 , denoted f 
 fort
Ž .notational simplicity. This density is bounded, satisfies f 0 �0, and has a bounded derivative, with

�Ž .f 0 defined from the right. We let

1
Ž . Ž .�� lim � h , x , m , � f x dx ,Hh Ž .h�0 t , �

Ž . Ž .where � h, x, m, � denotes the probability of first passage to zero before time h for an m, � -
Brownian motion with initial condition x. Our first objective is to show that this limit exists and that

�1 2Ž . Ž .A.1 �� � f 0 .2

Ž . Ž . ŽFrom expression 11 on page 14 of Harrison 1985 noting that the probability of hitting 0 before h
starting from x�0 with drift m is the probability of hitting the level x starting from 0 before h with

'. Ž .drift �m , we have, by substituting z�x� � h ,

1 x�mh 2mx �x�mh
�� lim 1�� �exp � �H 2ž /ž / ž /ž /' 'h Ž . �h�0 � h � h0, �

Ž .�f x dx

' ' 'm h 2m h z m h
� lim 1�� z� �exp � � �z�H ž / ž / ž /ž /� � �Ž .h�0 0, �

1 ' 'Ž .� f � h z � h dz ,
h

Ž . Ž .� lim G z , h G z , h z dz ,H 1 2
Ž .h�0 0, �
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where

' ' 'm h 2m h z m h
Ž .G z , yh �1�� z� �exp � � �z�1 ž / ž / ž /� � �

and

'Ž .f � h z
2Ž .G z , h � � .2 '� h z

Thus, if the dominated convergence theorem can be applied, we have

Ž . Ž . Ž .A.2 �� G z , 0 G z , 0 z dzH 1 2
Ž .0, �

Ž Ž . Ž .. � Ž . 2� 1�� z �� �z f 0 � z dzH
Ž .0, �

� 1 � �2 Ž . Ž . Ž .�� f 0 2� �z z dz� � f 0 ,H 2
Ž .0, �

as desired. To justify dominated convergence, first note that since the derivative of f is bounded,
there exists a constant K such that

'Ž .f � h z
Ž .A.3 �K .'� h z

Ž .Now note that for h�1

	 	 	 	m 2 m z
Ž . Ž . Ž .G z , h �G z 
1�� z� �exp � �z .1 ž / ž /� �

Ž . Ž . Ž .We use the fact that 1�� x behaves like � x �x as x�� to see that G z goes to zero
exponentially fast as z�0. Hence, we have shown that for h�1,

2Ž . Ž . Ž .G z , h G z , h z �K� zG z ,1 2

Ž .and this provides the integrable upper bound for all h�1 justifying the application of dominated
convergence.

In our model there is perfect information at time Z and we can therefore only establish the0
existence of an intensity for t�0 and we do this by proving existence on compact intervals of the

� � Ž . Ž Ž ..form t, T for all t�0. Having established A.1 , we need to check see Aven 1985 that there
exists a positive measurable process � satisfying for every T

T Ž .� s, � ds�� a.s.,H
t

and that dominates the error of approximation in the following sense. For each T , there exists for
Ž .almost every � an n �n T , � such that, for n�n ,0 0

Ž . Ž . Ž .Y s, � �� s, � �� s, � for all s�T ,n

where Y is the process defined byn

1
Ž . Ž .Y s � P � �s�h �HH 1 ,n 0 n s �� � s4hn

� 4for some fixed sequence h of positive reals converging to zero. Note that n can depend on �.n 0
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We first verify that the process � itself satisfies this integrability condition. Assume Z �z .0 0
Between time t and the first accounting report at time t , assuming no default, the density of Z can1 t

Ž̃ . Žbe written as f t, 
 , z , which does not depend on � and has an analytical expression. See, for0
Ž . . Ž .example, Harrison 1985 . This density satisfies f t, 0, z �0 and is differentiable as a function ofx 0

Ž . Ž . � .t, x , with the derivative f t, 
 , z bounded uniformly on t, t as can easily be seen by including tx 0 1 1
Žin the domain. The density at the first accounting report is derived in Section 2.3 as g x �

Ž . . Ž .Y t , � , z , t , which for each given outcome Y t , � is zero for x�0 and has a bounded derivative1 0 1 1
with respect to x. If we let s be a given time after the first accounting report but before the next, the
density of Z is given byt� s

�
Ž̃ . Ž Ž . .f s, x , u g u �Y t , � , z , t du.H 1 0 1

0

The derivative with respect to x can be taken inside the integral, so the derivative of the density at
time t�s with respect to the point x is

d� ˜Ž . Ž . Ž Ž . .f t �s, x , � � f s, x , u g u �Y t , � , z , t du.Hx 1 1 0 1dx0

˜We see from these two expressions that the density inherits from f the properties of being 0 at x�0
� .and having a uniformly bounded derivative with respect to x over the finite interval t , t . Since1 2

there are only finitely many accounting reports over a finite period of time, it follows that the bound
of the derivative can be obtained by taking the maximum of the bounds needed for each interval
between accounting reports.22 This proves integrability of a sample path of � by proving the

Ž .stronger property that for each �, f t, 
 , � is bounded as a function of x, with one bound holdingx
� �uniformly over t, T .

It now follows from the triangle inequality that we only need to verify that for each t, there exists
Ž .for almost every � an n �n t, � such that0

TŽ . Ž .A.4 Y s, � ds��, n�n .H n 0
t

� 4To see this, we first note that, by the strong Markov property of Z, on the event �� t ,

Ž Ž .. Ž Ž . .P � �h � t �Z t �� h , Z t , m , � .0 n n

Ž .Because � h , z h , m, � declines exponentially fast in z,'n n

f s, h z , �'� Ž .nŽ .Y s, � � � h , h z , m , � z dz'H Ž .n n n h z0 ' n

Ž .is bounded, using the fact shown above that, for almost every � and n such that h �1 , then
Ž . t 	 Ž . 	derivative f s, x, � is bounded uniformly in s. Hence H Y s, � �� whenever n is chosen sox 0 n 0

that h �1 for n�n . This concludes the proof.n 0

B. GENERAL DIFFUSION RESULTS

We now provide results regarding the default intensity and conditional density for cases in which
the asset process V solves a stochastic differential equation of the form

Ž . Ž . Ž .B.1 dV �� V , t dt�� V , t dW .t t t t

22 We use the fact that there are no exact accounting reports after t. At such times the intensity
would not exist, just as it does not exist at time 0 when Z is known. To have exact reports but still0
maintain an intensity, one could introduce random report times, where the report times themselves
have an intensity process.
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Without loss of generality we study the first hitting time of the level 0 starting from an unknown
positive level. We will use the following regularity for the coefficient functions � and � .

Condition A

A1. The coefficients � and � satisfy global Lipschitz and linear growth conditions, in that there
exists a fixed constant K such that, for any x, y, and t,

Ž . Ž . Ž . Ž . Ž . 	 	B.2 � x , t �� y , t � � x , t �� y , t �K x�y ,

2 2 2 2Ž . Ž . Ž . Ž .B.3 � x , t �� x , t �K 1�x .

Ž .A2. There exists constants l and r, with ��� l�0� r��, such that � 
, t is bounded away
Ž . Ž Ž . .from 0 on every compact subset of l, r , uniformly in t, and such that P V � l, r for all t �1.t

Ž . 1 Ž . � .A3. � 
, 
 is C on l, r � 0, � .

Ž . Ž .Condition A1 is standard, ensuring that a unique, strong solution to the SDE exists. A2 allows
Ž .for cases such as geometric Brownian Motion less a constant in which the diffusion lives in an open

Ž .proper subset of �, containing the boundary, and the volatility function is positive on this subset.
Ž .A3 facilitates the proof, but can be relaxed. We consider a case with no instances of perfect
information and assume that for every t	0, V admits a regular conditional distribution functiont
Ž .F 
 � HH given HH . That is:t t
Ž . Ž . Ž .i for each x�0, F x � HH is a version of P V �x � HH ;t t t
Ž . Ž .Ž .ii for every �, F 
� HH � is a distribution function.t
Ž . Ž . Ž . Ž . ŽOn �, t for which � � � t, we assume that F 
� HH has a density denoted f t, 
 , � or sometimest

Ž . . Ž .simply ‘‘ f t, 
 ,’’ notationally suppressing dependence on � . Whenever � � � t, we arbitrarily set
Ž .f t, x, � �0. Condition B forms technical assumptions regarding this conditional density.

Condition B

Ž . Ž . Ž . Ž .B1. For each �, t , we have f t, 0, � �0 and f t, 
 , � is continuously differentiable on 0, �
	 Ž . 	and differentiable from the right at x�0. Furthermore, for almost every �, f s, x, � is boundedx

�Ž . 4on sets of the form s, x : 0�s� t, 0�x�� .
� Ž . 4 Ž .B2. For each fixed x�0, the process f t, x : t	0 is HH -progressively measurable.x t

We have seen that Condition B holds in our basic model. Smoothness of f also holds for more
general diffusions under purely technical smoothness conditions on the drift coefficients m and the

Ž .volatility � , with a filtration HH defined by ‘‘noisy observation,’’ as shown below.t
The general result is as follows.

Ž .PROPOSITION B.1: Let V be gi
en by B.1 , with � and � satisfying Condition A. Suppose, for
� 4 Ž . � .t��� inf t : V �0 , that the distribution of V gi
en HH has a density f t, 
 , where f : 0, � �����t t t

� . Ž .0, � satisfies Condition B. Let � t �0 for t�� and let

1 2Ž . Ž . Ž . Ž .B.4 � � � � 0, t f t , 0, � , 0� t�� .t x2

23 Ž .Then � is an HH -intensity process of � .t

23 Ž .While there may exist other HH -intensity processes for � , they are equivalent for our purposes.t
Ž .For the sense in which uniqueness applies, see Bremaud 1981, p. 30 .´
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An outline of the proof 24 is a follows: First one shows, by deterministic scaling and time
Ž .transformation of a Brownian motion, that the limit result A.1 holds for an Ornstein-Uhlenbeck

process, that is, for V satisfying

Ž .dV � a�bV dt�� dW .t t t

The fact that the limit does not depend on the drift generalizes to SDEs of the form

Ž . Ž .B.5 dV �� V , t dt�� dW ,t t t

Ž .in which � satisfies a linear growth condition, since the solution to the SDE B.5 can be kept
pathwise between two OU processes on a fixed interval, and for these processes we have just seen

Ž .that the hitting intensity is independent of the drift coefficients. In the general case B.1 , we define
the function H by

1x
Ž . Ž .H x , t � dy , x� l , r .H Ž .� y , t0

Ž .Then, with Y �H V , t , we have by Ito’s Formula thatt t

Ž .dY �� Y , t dt�dW ,t Y t t

Ž .where � Y , t can be computed using Ito’s Formula. The first passage time of V to the level 0 isY t
the same as the first passage time of Y to the level 0. Our regularity conditions ensure that the drift

Ž .coefficient � of Y satisfies Condition A and that the density g 
 of the initial level of the processY
Y satisfies Condition B. Therefore, since Y has a constant volatility of 1, we know from above that

Ž . �Ž .the limit A.1 when considering Y hitting 0 is equal to g 0 �2, which can be shown to equal
1 � �2Ž . Ž .f 0 � 0, 0 , proving the limit result for the general case. Given the boundedness condition on f ,2

the verification of Aven’s condition is analogous to the argument given in Appendix A.
Finally, we show that existence of a smooth conditional state density that is zero on the hitting

boundary, as assumed in Condition B, is natural in our setting. We begin with the following result,
Ž .which conditions only on survivorship, and follows from Corollary 3.43, page 99, of Cattiaux 1991 .

Ž . Ž .PROPOSITION B.2: Suppose V satisfies dV �� V dt�� V dW , where � : ��� and � : ���t t t t
Ž .and all of their deri
ati
es exist and are bounded. Suppose, moreo
er, that � 
 is bounded away from

� 4zero in an open inter
al D��, possibly unbounded. Let D denote the closure of D and �� inf t : V �Dt
denote the time of first exit from D. Then, for any initial condition V in D and any time t�0, the0

�� 4distribution of V conditional on �� t has a C density on D that is zero on the boundary of D.t

Now, for a given V �D and time t�0, we consider the distribution of V conditional on no exit0 t
from D and some ‘‘noisy observations’’ Y , . . . , Y that may be correlated with the process V. To pick1 n

Ž .a concrete example that generalizes the case studied in Section 2.2, we suppose that Y �V t �U ,i i i
where 0� t � 


 � t � t, and where U , . . . , U are independent, and independent of V, and where1 i 1 n

Ž .the distribution of U has a density that is strictly positive on the real line. We let F 
 ; Y , . . . , Yi 1 n
� 4denote the conditional distribution of V given 1 , Y , . . . , Y .t �t �� 4 1 n

�Ž .COROLLARY B.3: On the e
ent �� t, F 
 ; Y , . . . , Y has, almost surely, a C density on D that is1 n
zero on the boundary of D.

A proof is provided in the working-paper version of this report, based on Proposition B.2 and
Ž .Tjur 1974, pp. 260�261 , as well as induction in n.

24 For details, see the working-paper version. A new proof of our result is due to Elliott,
Ž . Ž .Jeanblanc, and Yor 1999 and a multivariate extension of our intensity formula B.4 has been

Ž .developed by Song 1998 .
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