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ABSTRACT Sliding mode control (SMC) has been a very popular control technology due to its simplicity

and robustness against uncertainties and disturbances since its inception more than 60 years ago. Its very

foundation of stability and stabilization is built on the principle of the Lyapunov theory which ascertains

asymptotic stability. In the 1990s, a novel class of SMC, called the terminal sliding mode control (TSMC),

was proposed which has been studied and applied extensively, giving rise to a robust control with tunable

finite-time convergence delivering fast response, high precision, and strong robustness. In recent years,

interest in this particular control technology has been increasing. This paper provides an overview of the state

of the art of the TSMC theory and its applications, and postulates key technical issues and future challenges.

INDEX TERMS Finite-time convergence, robustness, sliding mode control, stability, terminal sliding mode,

variable structure systems.

I. INTRODUCTION

Sliding mode control (SMC) has been a very popular control

technology for its simplicity and robustness, and studied ex-

tensively for over 60 years and received many applications

[1]–[4]. Key to the SMC is the creation of the domain of

attraction around a pre-defined switching manifold (or called

sliding manifold) by imposing a discontinuous control. The

desired control performance expectations are built into the

switching manifold upon which an ideal sliding mode is estab-

lished. The discontinuous control is required to alter infinitely

to enforce the ideal sliding motion.

The developments of SMC theory and applications have

been well documented in seminal works such as [5]–[7].

The bulk of the SMC theories developed so far are based

on the foundation of the asymptotic stability-based Lyapunov

theory, especially the linear switching manifolds that specify

the expected control performances. The asymptotic stability

is underpinned by the Lipschitz condition for the Ordinary

Differential Equations (ODEs), which guarantees the required

‘smoothness’ of functions easier for analysis and synthe-

sis. However, it is well known that the very nature of the

asymptotic stability infers that, in the evolution of system

dynamics, the closer to the equilibrium, the slower the state

convergence. This means that the system state would never

reach the equilibrium in finite-time. While this may not be an

issue in terms of practical applications, it does mean that, if a

much higher steady-state precision is required, greater control

force would be required which may not be feasible if control

equipment/facility is restrained.

It is well known that some non-smoothness in dynamics

may be used to deliver superior performance. For example, in

[8] it was shown that introducing a terminal attractor (i.e. a

first-order dynamics with fractional-power) in a neural learn-

ing rule results in finite-time convergence. Inspired by this,

a concept of terminal sliding mode control (TSMC), was

proposed in 1992 [9] for second-order systems, and extended

to deal with higher-order single-input single-output (SISO)

systems [10] and a class of multi-input multi-output (MIMO)

systems [11], [12]. By using the finite-time convergence prop-

erty [8], TSMC can ramp up the control force to speed up

the convergence. In the early 2000s, a series of theoretical

breakthroughs were made, such as the nonsingular TSMC [13]

to address the singularity problem in TSMC systems, the fast

TSMC [14] to accelerate the convergence of the basic TSMC

for higher-order SISO systems, and continuous TSMC for

robot control [15]. Since then, the TSMC theory and appli-

cations have finally taken off and enjoyed a significant growth

of publications concerning TSMC in recent years – over 20%
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annual growth over the last five years according to Google

Scholar.

This paper presents an overview of the state of the art in the

TSMC theory and applications, and examines the technical is-

sues and future challenges in the context of a broader scope of

technological developments such as cyber-physical systems,

artificial intelligence and network systems. It is organized as

follows. Section II presents the basics of SMC theory and

related technical issues. Section III introduces the basic con-

cepts of TSMC. Section IV outlines the main TSMC design

methods. Section V describes the developments of TSMC.

Section VI reports the extensive applications of TSMC.

Section VII presents the future challenges, and Section VIII

concludes the paper.

II. BASICS OF SMC THEORY

The SMC theory was founded in the late 1950s, led by V. I.

Utkin and S. V. Emelyanov [1], to deal with control systems

problems involving discontinuous control [6], [16].

The SMC theory can be formulated in the following single-

input affine system setting:

ẋ = f (x, t ) + b(x, t )u + ξ (x, t ) (1)

where x ∈ R
n is the state, u ∈ R is the control, and b(x, t ) �= 0

and ξ (x, t ) ∈ R
n denotes the internal uncertainties and ex-

ternal disturbances. If ξ is in the range of b, i.e., ξ ∈ R(b),

then the well-known invariance property of SMC holds. The

simplicity lies in the following discontinuous control structure

by

u =

{

u+(x) for s(x)> 0

u−(x) for s(x)< 0
(2)

which is employed to enable the switching manifold s = 0 to

become a terminal attractor, that is maintaining s = 0. The

challenge is to embed desirable characteristics and properties

into s = 0, which is normally a linear hyperplane and these

days increasingly nonlinear ones.

A well-known design tool is the Lyapunov theory, by which

a Lyapunov function V = 0.5s2 can be used to induce s(x) =

0. A common criterion is V̇ < −ρ|s|, ρ > 0, which results in

V to reach zero, i.e. s(x) = 0 in less than the time ρ−1|s(0)|.

When the sliding motion on s = 0 occurs, that is,

ṡ =
∂s

∂x
ẋ =

∂s

∂x
( f (x, t ) + b(x, t )u + ξ (x, t )) (3)

where the so-called “equivalent control” is induced. Assum-

ing that ∂s
∂x

b(x, t ) is non-singular and noting ξ ∈ R(b) in (1).

Hence, one can derive a virtual control signal (the equivalent

control), ueq by ṡ = 0, giving rise to in

ueq = −

(

∂s

∂x
b(x, t )

)−1 (

∂s

∂x
( f (x, t ) + ξ (x, t ))

)

(4)

In the sliding mode s = 0, the motion is governed by

ẋ =

[

I − b(x, t )

(

∂s

∂x
b(x, t )

)−1
∂s

∂x

]

f (x, t ) (5)

which is insensitive to the matched uncertainties and distur-

bances ξ (x, t ), dubbed as the well-known invariance property

of SMC [17].

There are several typical SMC design methods, for detailed

discussions on them and key challenging issues, readers are

referred to [2], [6].

On-going technical issues associated with SMC include the

following. While the required ideal infinite switching is ben-

eficial, such as fast response and robustness against matched

uncertainties and disturbances, it is sensitive to switching fre-

quency if the switching frequency cannot be infinite or ideal

because of hysteresis or time-delay in the controlled systems.

Chattering as a direct result, if scrutinized further, may cause

some irregular motions [18], though by some well-known

approaches, it can be avoided [19]. For example, replacing

the sign function by a boundary layer |s| < ǫ, for a very

small ǫ > 0, within which a constant or linear control is used.

Another example is to let sgn(s) ≈ s
|s|+ǫ

, which functions

a high gain control. Another new method is the high-order

sliding mode (HOSM) control [20], though as shown in [7] it

may result in a higher amplitude of chattering. Therefore, the

chattering is still an open problem.

In SMC systems, unideal switching may induce high-

frequency oscillations as well. The small time-delay in sam-

pling (for instance, zero-order holder), and signal transmis-

sion delay in the networked control systems may also present

problems.

There is another shortcoming where the sensitivity to un-

modelled parts of the controlled systems due to the existence

of parasitic dynamics may also induce small amplitude high-

frequency oscillations. Examples include the fast actuators

and sensors which are usually omitted in the control design.

Last but not the least issue is the unmatched uncertainties and

disturbances which destroy the invariance property of SMC.

In this case, the sliding motion is dependent on the unmatched

uncertainties and the disturbances.

III. CONCEPTS OF TERMINAL SLIDING MODES

A. BASIC TERMINAL SLIDING MODE

The concept of Terminal Sliding Mode (TSM) was rooted in

a notion of terminal attractors [8] for studying the content

addressable memory in neural networks. The first specific use

in control design was in [9] where the following basic TSM

form was used for controlling the second-order systems:

s = ẋ + β|x|λsgn(x) (6)

where x ∈ R is a variable, β > 0, and 0 < λ < 1. Note that

in early works on TSM, for analytical convenience, λ was

selected as λ = q/p where p and q are positive odd integers.

Equation (6) is more general and has been frequently used in

recent times. It can be easily proved that given x(0) �= 0 and

when s = 0, the dynamics (6) will reach x = 0 in a finite-time

specified by

ts = β−1(1 − λ)−1|x(0)|1−λ (7)
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The equilibrium x = 0 is called a terminal attractor [8],

i.e. x = 0 is finite-time stable. The term “terminal” refers to

the finite-time reachable equilibrium. The reaching time ts is

adjustable by using parameters λ and β.

The addition of the term xλ (here we define xλ as |x|λ sgn(x)

and both will be used interchangeably in this paper.) enhances

the convergence towards the equilibrium. The closer to the

equilibrium, the faster the convergence, leading to finite-time

convergence. Note that while the terminal dynamics is not

Lipschitz, for any x(0) �= 0, their solution is unique in the

forward time direction [21].

B. FAST TSM AND FIXED-TIME CONVERGENCE

It can be seen from (6) that the convergence rate of the system

on the ideal sliding mode, s = 0, is inverse-proportional to the

distance to the equilibrium. When x ≫ 0, it does not prevail

over the linear version (i.e. λ = 1 in (6)) since the term xλ in

(6) would reduce the magnitude of the convergence rate at a

distance of the system state to the zero. Hence, to increase the

convergence rate of the basic TSM (6), a fast TSM (FTSM)

was created in [14]:

s = ẋ + αx + β|x|λsgn(x) (8)

when s = 0, it results in ẋ = −αx − β|x|λsgn(x), which will

reach x = 0 in a finite-time faster than (6) for s = 0 by prop-

erly choosing λ, i.e.

ts = α−1(1 − λ)−1(ln(α|x(0)|(1−λ) + β ) − ln β ) (9)

Recently, extensions to (8) have been done, e.g. replacing a

power-one term with a power-greater-than-one term, such that

s = ẋ + α|x|σ sgn(x) + β|x|λsgn(x) (10)

where σ > 1, its reaching time can be obtained by

ts = F

(

1;
σ − 1

σ − λ
;

2σ − λ − 1

σ − λ
;−βα−1|x(0)|λ−σ

)

(11)

where the function F is Gaussian Hypergeometric function.

Note that function F may be convergent under certain con-

ditions, e.g. if λ ≈ σ , then F is bounded above. This has

been referred to as “fixed-time” convergence. Note that such

control may not be practically realizable due to that the control

magnitude would have to be enormous to ensure that the

system state from any initial condition is brought back to

the equilibrium within an initial-condition independent time-

frame, though mathematically it looks elegant. A more rigor-

ous mathematical proof of the fixed-time convergence is found

in [22].

C. NONSINGULAR TSM

The SMC controller design requires differentiation of the slid-

ing manifold s, which, in TSM cases, may be problematic

since it may result in terms with negative powers, e.g. for

(6), the time-derivative of the second term, βλ|x|λ−1sgn(x)ẋ,

would result in a negative-power term due to λ < 1 causing

singularity when x = 0 but ẋ �= 0. This leads to an infinite

control, which is impossible for practical applications. To

overcome the singularity in both the basic TSM (6) and the

FTSM (8), an alternative TSM, which has become very popu-

lar in recent times, is the nonsingular TSM (NTSM), defined

by [13]

s = |ẋ|λsgn(ẋ) + βx (12)

where 1 < λ < 2, and one convenient way to express λ is to

make it a rational number, i.e. λ = p/q where p and q are

positive odd integers so that differentiation can be easily done.

Note that for other types of λ, this operation can be done as

well, though the expressions would become quite complex.

D. INTEGRAL TSM

For control systems with relative degree one, to avoid the

singularity problem in the controller design of the TSMC

systems, an integral TSM can be chosen as the form of [23]

s(t ) = x(t ) + β

∫ t

0

|x(τ )|λsgn(x(τ ))dτ (13)

where β and λ can be determined as the same as the method

in (6). Let ẋI(t ) = |x(t )|λsgn(x(t )) with xI(0) = −x(0)/β. In

the ideal sliding motion s = 0, we have x(t ) = −βxI(t ) or

ẋI(t ) = −βλ|xI(t )|λsgn(xI(t )). The finite-time of x(t ) from

x(0) to x(t f ) = 0 is the same with that of xI(t ) from xI(0) to

xI(t f ) = 0, and can be obtained by solving the above equation:

t f = β−1(1 − λ)−1|x(0)|1−λ.

E. HIGHER-ORDER TSM

For controlling higher-order SISO systems, the first-order

TSM (6) needs to be extended to higher-order TSM as fol-

lows:

s = xn + cn−1sgn (xn−1) |xn−1|
αn−1 + · · · + c1sgn (x1) |x1|

α1

(14)

where n ≥ 3; xi = ẋi−1, i = 2, . . . , n, ci > 0 are selected

such that the polynomial pn−1 + cn−1 pn−2 + · · · + c2 p + c1,

which corresponds to (14), is Hurwitz-stable. That is, all its

eigenvalues are on the left-half side of the complex plane. The

parameter αi can be determined using the following condi-

tions [24], [25]:

αi =
αiαi+1

2αi+1 − αi

i = 1, . . . , n − 1 (15)

where αn = 1, αn−1 = α, α ∈ (1 − ε, 1), ε ∈ (0, 1).

F. NESTED HIERARCHICAL TSM

To design the higher-order TSM more conveniently, a nested

hierarchical TSM was presented in [14] to achieve FTSM:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

s1 = ṡ0 + α0s0 + β0s
λ0

0

s2 = ṡ1 + α1s1 + β1s
λ1

1
...

sn−1 = ṡn−2 + αn−2sn−2 + βn−2s
λn−2

n−2

(16)

where s0 = x1, αi > 0, βi > 0, s
λi

i = |si|
λi sgn(si ) and 0 <

λi < 1 (i = 0, · · · , n − 2). The same reasoning applies so that
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when sn−1 = 0 is reached, sn−2 will reach zero in finite-time,

so will sn−3, · · · , s0. It is easy to derive that the time taken to

reach s0 = 0 is T =
∑n

i=1 ti, where tn is the time to reach the

TSM sn−1 while

ti = α−1
i−1(1 − λi−1)−1(ln(αi−1|si−1(ti )|

(1−λi−1 )) − ln βi−1)

for i = n − 1, · · · , 1, are the time from si(ti ) �= 0 to si(ti +

ti−1) = 0.

The challenge is in using it for control design where the

derivative of sn−1 would lead to a series of terms with negative

fractional powers which result in singularities. This can be

dealt with in the actual control design processes to be dis-

cussed in the next section. Note that the structure (16) can be

easily extended to (10) and its reaching time is similar to T

aforementioned.

One should note that the nested hierarchical structure actu-

ally defines a pathway for x to reach the equilibrium. Indeed,

if letting λi = 1, then one gets (by using some simple com-

putations with the Laplace operator p) sn−1 = (p + αn−1 +

βn−1) · · · (p + α1 + β1)x, which is a conventional linear hy-

perplane.

IV. TSMC APPROACHES

In the following, we outline the main TSMC approaches. For

illustration purposes, we use the following uncertain second-

order system to inform the discussions:
{

ẋ1 = x2

ẋ2 = f̂ (x) + b̂(x)u + ρ(t, x, u)
(17)

where x= [x1,x2]T ∈ R
2, f̂ (x) and b̂(x) �= 0 are smooth scalar

functions, u ∈ R is the control. ρ(t, x, u) = � f (x) + d (t ) +

�b(x)u represents uncertainties, including the matched un-

certainty � f (x), external disturbance d (t ), and uncertainty in

the control gain �b(x). It can be assumed that |ρ(t, x, u)| ≤

F (x) + γ |u|, where F (x) > 0 and γ > 0 are known with

|�b(x)| ≤ γ < b̂(x).

A. BASIC TSMC

For the second-order system (17), a TSM is selected in the

basic form (6), i.e. s = x2 + βxλ
1 . The control is designed by

u = ueq + un, where
{

ueq = −b̂−1(x)
(

f̂ (x) + βλ|x1|
λ−1sgn(x1)x2

)

un = −b̂−1(x)
F (x)+γ |ueq|+η

1−γ
∣

∣b̂−1(x)
∣

∣

sgn(s)
(18)

where η > 0 is a constant. It can guarantee that the system

satisfies the existence condition of the sliding mode, i.e.,

0.5ds2/dt < −η|s|, in the vicinity of s = 0. This means that

if s(0) �= 0, the system will reach s = 0 in time tr<|s(0)|/η.

Once s = 0, the system (17) will behave in an identical fash-

ion, namely ẋ1 + βxλ
1 = 0, where x1 = 0 is the terminal at-

tractor of the system (1). Assume ts is the time that is taken

from x1(tr ) �= 0 to x1(ts + tr ) = 0. The system in the ideal

sliding mode can be described by [27]

x1(t ) =

{

(

|x1(tr )|(1−λ) − β (1 − λ) t
)

1
1−λ sgn (x1(tr )) t < ts

0 t ≥ ts

x2(t ) = −βxλ
1 (t ) = −β |x1(t )|λ sgn (x1(t )) (19)

where the finite-time ts can be calculated using (7), which

means that, in the ideal sliding motion, both x1 and x2 con-

verge to zero in finite-time.

The term containing |x1|
λ−1sgn(x1)x2 in (18) may cause

a singularity when x1 = 0 while x2 �= 0. When s = 0, we

have x2 = −βxλ
1 . As long as 1/2 < λ < 1, |x1|

λ−1sgn(x1)x2

is equivalent to |x1|
2λ−1 which is nonsingular. Therefore, the

singularity may only occur in the reaching phase when there

is insufficient control to guarantee x2 �= 0 for x1 = 0.

B. NONSINGULAR TSMC (NTSMC)

Different from the original TSM (6), an NTSM is selected

in the form of (12), s = |x2|
λ sgn(x2) + βx1. If the sufficient

condition for the existence of the sliding-mode is satisfied,

then the system will reach s = 0 from s(0) �= 0 within time

tr ≤ |s(0)|/η. On s = 0, the system will behave in an ideal

sliding mode, i.e., |x2|
λ sgn(x2) + βx1 = 0, where x1 = 0 is

the terminal attractor of the system (7). For the NTSM chosen

as (12), the control can be designed as u = ueq + un, where

{

ueq = −b̂−1(x)
(

f̂ (x) + βλ−1x2
2−λ

)

un = −b̂−1(x)
F (x)+γ |ueq|+η

1−γ
∣

∣b̂−1(x)
∣

∣

sgn(s)
(20)

where 1 < λ < 2, η > 0, then the TSM (12) will be reached in

finite-time. Moreover, the states x1 and x2 will converge to the

equilibrium in finite-time. Different from control (18), control

(20) has no singularity problem.

Another NTSMC is the saturation function-based method

[27]. The TSM is chosen as the basic TSM (6), however, the

control is designed as:

u = b̂−1(x)
(

− f̂ (x) + sat(u f , us) − ksgn(s)
)

(21)

where sat(u f , us) is the saturation function, us > 0 is a thresh-

old, η > 0 is a design constant, and u f = −βλx1
λ−1x2, k =

F (x)+γ |ueq|+η

1−γ |b̂−1(x)|
.

In [27], it was proved that the TSMC strategy (21) can avoid

the singularity as well as guarantee the finite-time reachabil-

ity to the TSM and the finite-time convergence towards the

equilibrium along the TSM s = 0.

C. FULL-ORDER TSMC

If the system (17) has no uncertainty in the control gain, i.e.

�b(x) = 0, the full-order TSMC can be utilized to attenuate

the chattering. In this case, the uncertainty ρ(t, x, u) in (17)

becomes ρ(t, x) due to �b(x) = 0 and can be assumed to

satisfy

|ρ(t, x)| ≤ F (x), |ρ̇(t, x)| ≤ D(x) (22)

where F (x) and D(x) are two known positive functions.

A full-order TSMC was proposed in [28] to resolve two

problems, the singularity in TSMC and the chattering in both

the conventional SMC and the TSMC. The full-order TSM

can be expressed as

g = ẋ2 + c2|x2|
α2 sgn(x2) + c1|x1|

α1 sgn(x1) (23)
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FIGURE 1. The block diagram of a system with the basic TSMC and the
NTSMC.

where ci and αi (i = 1, 2) are constants. ci can be selected

such that p2 + c2 p + c1 is Hurwitz. αi can be determined

as α1 = α/(2 − α), α2 = α, where α ∈ (1 − ε, 1), ε ∈ (0, 1).

Once the sliding-mode g = 0 is reached, the system (17) will

behave in an identical fashion, that is

ẍ1 + c2|ẋ1|
α2 sgn(ẋ1) + c1|x1|

α1 sgn(x1) = 0 (24)

which is finite-time convergent. The control u = ueq + un can

be set up as:
{

ueq = −b̂−1
(

f̂ (x) + c2|x2|
α2 sgn(x2) + c1|x1|

α1 sgn(x1)
)

un = −b̂−1
∫ t

0
(D(x) + η) sgn(g)dt

(25)

where η is a positive constant.

Since no terms in control (25) have negative powers, the

singularities do not occur. On the other hand, the chattering

can be attenuated because of the smooth control in (25). Dur-

ing the ideal sliding motion, the system would behave in a

full-order dynamics instead of a reduced-order dynamics [29].

D. CONTINUOUS TSMC

For the system (17) with �b(x) = 0, the continuous SMC

technique can be applied [15], [30] to attenuate the chattering.

If the NTSM is chosen as in (12), the continuous TSMC

strategy can be designed as u = ueq + un, where

{

ueq = −b̂−1(x)
(

f̂ (x) + βλ−1x2
2−λ

)

un = −b̂−1(x)
(

k1s + k2 |s|ρ sgn(s)
) (26)

where k1, k2 > 0, 0 < ρ < 1.

In the control (26), different with sgn(s), |s|ρsgn(s) is con-

tinuous. Therefore, the control (26) is continuous, and the

chattering can be attenuated. The continuous TSMC approach

can guarantee the finite-time convergence of the systems with

H2 norm-bounded uncertainties, i.e. in (17) with �b(x) = 0,

|ρ(t, x)| ≤ F (x), and F (x) = 0 if x = 0, where F (x) is a

positive function.

E. SUMMARY OF TSMC APPROACHES

The block diagrams of systems with the basic TSMC and the

NTSMC, as well as the full-order TSMC are shown in Figs. 1

FIGURE 2. The block diagram of a system with the full-order TSMC.

FIGURE 3. Development of the TSMC.

and 2 respectively. The main features of the TSMC can be

illustrated in the following:

1) The sliding manifolds of the TSMC systems are non-

linear, while that of the conventional SMC systems are

linear.

2) Different from the asymptotic convergence of the con-

ventional SMC systems, the TSMC systems are finite-

time convergent.

3) The steady-state errors of TSMC systems are smaller

than that of conventional SMC systems with simi-

lar parameter conditions. The former are |x1(∞)| <

(ϕ/β )p/q, |x2(∞)| < 2ϕ, the latter are |x1(∞)| < ϕ/β,

|x2(∞)| < 2ϕ, where ϕ is the width of the boundary

layer [27].

4) The full-order TSMC can resolve the two problems

hindering the practical applications of the SMC, the

singularity and the chattering simultaneously.

5) The continuous TSMC can attenuate the chattering and

guarantee the finite-time convergence of the systems

with H2 norm-bounded uncertainties.

The development of the TSMC can be shown in Fig. 3,

from the initial TSMC, to nonsigular TSMC (NTSMC), con-

tinuous TSMC, and adaptive TSMC (ATSMC). The ATSMC

includes the gain adaptive TSMC [29], [31], [32], adaptive

sliding mode disturbance observer-based TSMC [33], adap-

tive TSMC [34], [35], adaptive integral TSMC [36] [37], etc.
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It should be noted that the TSMC has been applied to guaran-

tee the global fixed-time stability of systems [38].

Some SMC concepts similar to TSMC have also appeared

in the control and observation, demonstrating superior per-

formances in their particular application areas. The super-

twisting SMC is an important SMC approach. It is the con-

servation of the features of SMC, while attenuating chattering

effect in control signal. The structure of the super-twisting

SMC is TSM alike and expressed by [7]
{

u = −α|σ |1/2sgn(σ )+v

v̇ = −M0sgn(σ )
(27)

Levant’s differentiator is a real-time differentiation algo-

rithm to estimate derivatives of signals using sliding mode

control theory. The kth-order differentiator (k = 1, 2, ...)

utilises TSM-like output injection [20]:

⎧

⎪

⎪

⎪
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⎪
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⎪
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⎪
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ż0 = −λkL
1

k+1 |z0 − f (t )|
k

k+1 sgn (z0 − f (t )) + z1

ż1 = −λk−1L
1
k |z1 − v0|

(k−1)/ksgn (z1 − v0) + z2

...

żk−1 = −λ1L
1
2

∣

∣zk−1 − vk−2

∣

∣

1
2 sgn

(

zk−1 − vk−2

)

+ zk

żk = −λ0Lsgn
(

zk − vk−1

)

(28)

V. TSMC DEVELOPMENTS

In the applications of the TSMC theory and techniques, there

are two main obstacles, namely, the singularity and the chat-

tering. Both of them need to be addressed appropriately in

the TSMC systems. Although some recent developments are

made to attack these challenges, further researches on these

issues are still needed.

A. TSMC OF SINGLE-INPUT AND MULTI-INPUT SYSTEMS

There are several ways of extending the results for single-

input and multi-input systems.

For single-input systems, the challenge is dealing with that

with order higher than 2. One way is to adopt the nested

hierarchical structure in (16) as a sliding mode and use the

equivalent-control technique for higher-order systems in con-

trollable canonical form: ẋi = xi+1(i = 1, . . . , n − 1), ẋn =

f (x) + g(x)u. As shown in [14], if the pairing conditions

λk > n−k−1
n−k

for k = 0, . . . , n − 1, are met, the singularities

are avoided.

For multi-input systems, the approach is rather intuitive,

for example, the multi-link robotic manipulator systems can

be expressed as a vector-based second-order system where

the single-input techniques can be easily applied. In [11], the

multi-link robotic manipulator systems are controlled by such

control mechanism. Another approach is by matrix decom-

position where MIMO systems are decomposed into block-

form where the single-input approaches can be applied [12].

However, this does impose restrictions on system dimensions

and matrices. In [12] the single-input TSMC approach was

extended to those MIMO systems which can be reformulated

into a canonical form which can be easily used for MIMO

TSMC design. In [31], a full-order TSMC can be also applied

for MIMO systems using the virtual control technique.

B. INTEGRAL TSMC (ITSMC)

One particular approach called here ‘integral control-based

design’ directly uses the TSM/FTSM/NTSM as the reaching

law and the sliding mode is of the same dimension of the

system to be controlled. All of these methods are called the

integral TSMC (ITSMC). The general purpose of ITSMC is to

avoid the singularity problem. This would result in somehow a

control without discontinuous though robustness features may

be compromised.

In [23], an ITSMC was proposed for output tracking con-

trol of uncertain MIMO systems with relative degree one.

An ITSM is designed as s(t ) = e(t ) + α
∫ t

0
eq/p(t )dt , where

e(t ) = y(t ) − yd (t ), yd (t ) and y(t ) are a desired and practical

outputs respectively. The initial value of s(t ) can be set to

be 0 by setting the initial value of the integral in s(t ) to be

−e(0)/α. The system is forced to start on the TSM, and the

reaching phase is eliminated. Therefore, the singular problem

is avoided due to the utilization of the ITSM.

In [39], the derivative-integral TSMC technique was used

to suppress the chaotic behaviors in complex and uncertain

biological systems. Some simulation results illustrated that the

settling time using the derivative-integral TSMC technique is

around 26% of that using the high-order SMC technique, and

the state errors using the derivative-integral TSMC technique

is below 7.1% of that using the high-order SMC technique.

C. DIGITISATION AND DISCRETE-TIME TSMC

While TSMC demonstrates its superior finite-time conver-

gence performance due to the addition of fractional powers

in control, when digitized, it does cause some practical issues

that need to be studied. In [40], the Euler discretization of

TSMC was discussed and conditions obtained to ensure the

existence of discrete-time FTSM. In [41], further digitisation

behaviors, such as multiple convergent fixed points were ob-

served.

SMC in the discrete-time domain is important because that

many plants are discrete or digitized. On the other hand, al-

though most plants are continuous, almost all controllers are

implemented using digital computers or processors [42]–[47].

The theories of discrete-time SMC cannot be obtained directly

from their continuous-time counterparts. In [48], the applica-

bility of TSMC in the discrete-time framework is analyzed. a

nilpotent function-based discrete-time TSMC (DTSMC) ap-

proach is proposed for nth-order single-input discrete-time

time-invariant system expressed by x(k + 1) = F(x(k), u(k)).

The discrete-time TSM is defined by Sd = {x(k) | sd (x(k)) =

0}, where sd (x(k)) is a real-valued scalar function. If the sys-

tem dynamics are confined to the discrete-time TSM, x(k +

1) = Fc(x(k)), then the finite-time convergence characteris-

tics can be represented in discrete-time as 0 = x(k + kd ) =

Fc(x(k + kd − 1)), kd ∈ N, for all x(k) ∈ Sd . This means that
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Fc(·) is a nilpotent function with index kd . Hence, the discrete-

time TSM may be achieved if the sliding manifold is specified

so that the system confined to the manifold is nilpotent.

The design of the DTSMC can be summarized as the fol-

lowing three steps: 1) the discrete-time system is transformed

into a Brunowsky-like canonical form using an appropriate

diffeomorphism; 2) select a sliding manifold with the desired

characteristics; 3) design a SMC to force the sliding manifold

at the next step to zero, i.e. sd (k + 1) = 0.

In additions, many other papers studied the DTSMC meth-

ods and their applications in many different areas [40], [49],

[47].

D. EVENT-TRIGGERED TSMC

To save the resources for computation and/or communication,

enhance the robustness and increase the response speed of

systems, event-triggered techniques can be used in combina-

tion with TSMC theory. The former can be used to update the

control signals of the latter, only when it is required [50]–[53].

In [54], to address the distributed consensus problem of

multiagent systems with fast finite-time convergence and

with bounded disturbances in a leader-follower framework,

an integral sliding mode-based event-triggered SMC strategy

was developed. An integral sliding surface was designed as

Si(t ) = xi(t ) − xi(0) −
∫ t

0
χ

η
i (t )dt , i = 1, . . . , n, where χi is

defined in [55], η ∈ (0.5, 1) is the ratio of positive odd num-

bers. On the ideal sliding motion, the system would behave

in ẋi(t ) = χ
η
i (t ), which is finite-time convergent. The slid-

ing mode-based consensus protocol is designed as ui(t ) =

χ
η
i (t i

k ) − K1sgn(Si(t
i
k )) − K2Si(t

i
k ), where t ∈ [t i

k, t i
k+1), and

t i
k is the triggering time. The event-triggering rule is chosen

by fi(t ) = ‖ei(t )‖ − ρi < 0 [54]. Besides the finite-time con-

vergence and the robustness, the event-triggered TSMC can

considerably reduce the control requirements in comparison

with their time-triggered approaches, which is valuable for

practical applications.

E. INTELLIGENT TSMC

To decrease the requirements of the system dynamics, intelli-

gent TSMC methods were studied to accurately approximate

unknown system dynamics using fuzzy wavelet network [56],

or adaptive learning algorithm and fuzzy logic [57].

For a n-th order nonlinear system, x(n) = f (x) + g(x)u,

where x = [x, ẋ, · · · , x(n−1)]T , g(x) > 0, u is the control.

Define the desired state as xc and tracking error as e = x − xc.

The error system is e(n) = u + zn(x) + �z(x), where

z(x)=zn(x)+�z(x) = −x
(n)
c +(1−1/g(x))x(n) + f (x)/g(x),

zn(x) is the nominal value of z(x), �z(x) denotes a

bounded uncertainty, |�z(x)| ≤ Z , where Z > 0 is a

constant. In [56], a TSM is designed as si = si−1 + ṡ
pi/qi

i−1 ,

i = 1, . . . , n − 1. The intelligent TSMC is designed by

uic = utc + urc = −ẑ0 −
∑n−1

i=1 λi
qid

n−is
2−pi/qi
i−2

pidtn−i , where utc

serves as the main control, the output of the perturbed fuzzy

neural network, ẑ0 is utilized to online approximate z(x), and

the compensator urc is used to overcome the effect of the

approximation error on system stability.

F. DEALING WITH UNMATCHED UNCERTAINTIES

Unmatched uncertainties or disturbances have been a key

problem in SMC. One way to overcome this problem is to in-

troduce an estimator or disturbance modeler to compensate it

[58]. The virtual control is another method. In [31], the TSMC

can be combined with the virtual control to deal with the un-

matched uncertainties or disturbances. It should be noted that

no control approach can attenuate completely the unmatched

uncertainties in the systems. The matched uncertainties can

be attenuated completely under the condition that all system

states can be controlled to zeros. While the unmatched un-

certainties cannot be attenuated completely, i.e., only part of

the states can be controlled to reach the equilibrium and the

remaining states to converge to an area containing zero.

G. COMPARISON OF DIFFERENT SMC METHODS

The TSMC is a special type of the SMC method and has

some unique steady-state and dynamic behaviors [59]. To

demonstrate the features of the TSMC, it is compared to other

main SMC methods, conventional SMC and high-order SMC.

Conventional SMC is related to the works on n-dimensional

systems with m-dimensional control, hence the dimension of

the utilized sliding manifold is n − m. The high-order SMC

is generally applied for n-dimensional systems with a scalar

control. Different from conventional SMC, the dimension of

the sliding manifold in the high-order SMC is lower than

n − 1 [7].

Comparison of three different SMC methods for SISO sys-

tems is listed in Table 1. The phase portraits of three different

SMC methods are shown in Fig. 8 respectively. It can be seen

the differences of three different SMC methods in both the

reaching phase and sliding mode.

In [29], four different SMC methods were compared for the

second-order DC motor system in the simulation. The position

errors are shown in Fig. 4, where -b, -c, -f, and -s denote

the traditional boundary layer SMC, the continuous SMC, the

full-order TSMC, and the super-twisting SMC respectively.

An important conclusions were drawn: the TSMC has the

fastest dynamic response and smaller steady-state error. To

test the effectiveness of the TSMC techniques, the real-time

experiments were performed for the position control on the

Quanser DC servo motor [29]. The actual position and desired

position of the DC motor are shown in Fig. 5. The actual

control is depicted in Fig. 6. It can be seen that the position of

the DC motor can be controled to track the desired references

quickly and accurately. The experimental test was carried out

for the observer applying the TSMC techniques as well in

[65]. The true value of SoC for a Li-ion battery, its estima-

tion results using the proposed TSMC-based observer and the

comparison with the super-twisting algorithm are depicted in

Fig. 7. The former has higher accuracy compared with the

latter.
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FIGURE 4. Comparison of four continuous SMC methods on position error
(-b: boundary layer; -c: continuous; -f: full-order; -s: super-twisting SMC)
(Fig. 3 in [29]).

FIGURE 5. Practical position and desired position of the DC motor.

FIGURE 6. Actual control of the DC motor.

TABLE 1. Comparison of three different SMC methods for SISO systems

FIGURE 7. SoC estimation results using the TSMC and the super-twisting
algorithm (Fig. 6 in [65]).

VI. TSMC APPLICATIONS

TSMC theory and techniques have been applied extensively in

recent years. In the following, we will survey its applications

in different areas.

A. STATE OBSERVATION AND PARAMETER ESTIMATION

One of the most important applications of the TSMC theories

is state observation and parameter estimation. Different from

the controllers, the chattering does not affect the observers.

However, the output injections of the TSM observers are

generally used for the parameter estimation. Therefore, a key

technique is still how to soften these signals while keeping the

features of SMC.
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FIGURE 8. The phase portraits of three different SMC methods.

A TSM observer was proposed for estimating the immea-

surable parameters of permanent-magnet synchronous motors

(PMSMs) for mechanical systems in [60]. A second-order

sliding-mode algorithm was proposed to smoothen the switch-

ing control for the observer. The experiments were carried out

on a practical CNC machine tool. A similar TSM observer

for a PMSM control system was developed in [26] to observe

the rotor position and speed of the PMSMs. In [61], a TSM

observer was applied to build a reference model on the ro-

tor flux and then establish an online estimation method for

the rotor resistance and the mutual inductance of an indirect

field-oriented induction motor drive. The proposed method

can be used in the case of electric vehicles or wind power

generators, where the parameter deviation may degrade the

drive performances.

There are some other applications on state observation and

parameter estimation, such as the estimation of flux and speed

of induction motors [62], the state estimation for a TCP/IP

network [63], the estimation of the unmeasured states in re-

motely operated vehicles[64], and the estimation for state-of-

charge and state-of-health of Lithium-ion batteries [65], etc.

In [65], the estimation precision using the TSMC technique is

4.3%, while the estimation precision using the super-twisting

algorithm is 16.13% (Fig. 6 in [65]).

B. MOTOR AND INVERTER CONTROL

The control of motors is a challenge due to the nonlinear-

ities and time-varying loads in the systems, especially for

the high speed and high precision applications. In [66], a

robust observer-controller of DC servomotors was proposed

for antenna control in satellite tracking, radio telescopes, and

conveyor belt systems. In [67], an integral TSMC was applied

for the torque ripple reduction and overcoming of two draw-

backs of SMC (the infinite-time convergence of brushless DC

motors and the chattering). In [68], a fast NTSMC was devel-

oped for linear motors. Its important feature is that the control

signal is inherently continuous. In [69], a TSMC was de-

signed for the speed loop of a PMSM, which can achieve fast

convergence and better tracking precision. Further, a compos-

ite TSMC using disturbance observer was applied to reduce

the chattering. In [70], a nonsingular fast TSMC strategy was

proposed for a bearingless induction motor. It can not only

quickly track the given speed and radial displacement simul-

taneously, but also enhance the operation quality. In [71], the

TSMC method is utilized to regulate the speed of permanent

magnet synchronous motors for achieving faster convergence,

higher tracking accuracy and stronger robustness. The experi-

mental results illustrated that compared to conventional SMC,

the TSMC method has smaller speed fluctuation and the speed

drop is only 58% of the conventional SMC. Furthermore, a

continuous fast TSMC was developed to enhance the speed

control performance of the permanent magnet synchronous

motors [72].

TSMC theory and technique have also been applied in in-

verter control. In [73], a continuous output feedback TSMC

was developed for single-phase DC-AC inverters. In [74], a

recursive fast TSMC for a low-voltage microgrid system was

developed and further utilized in the voltage source inverter

to control the bus voltage. The particle swarm optimization

can be combined with TSMC for the single-phase inverter

of the electric vehicle [75] and the UPS inverters [76]. In

[77], an integral compensation was added to classic TSMC

to eliminate steady-state errors in the DC-AC inverter.

A DC-DC converter is a voltage converter that converts

a DC voltage to another desired level of voltage. It can be

divided three categories, step-down (Buck), step-up (Boost),

and step-down/step-up (Buck/Boost) converters. The DC-DC

converters have been widely applied in electric vehicles, bat-

tery energy storage systems, DC grid, renewable energy, DC

motor drives and many other fields [78], [79], [80]. The

TSMC has been used in the DC-DC converters due to its

fast response and strong robustness. In [81], a fast TSMC

scheme was proposed for the voltage tracking control of the

DC-DC Boost converter. In [82], a finite-time disturbance

observer-based TSMC approach was developed for DC-DC

Buck converters. In [83], an integral-type TSMC was studied

for grid-side converters used in wind energy conversion sys-

tems. The experimental results demonstrated that the TSMC

approach appeared the stronger robustness, higher accuracy,

and faster convergence than the conventional PI controller. In

[84], a digital FTSMC approach was applied for DC-DC Buck

converters and demonstrated high voltage tracking accuracy

and excellent dynamic performances. In the experimental re-

sults, settling time using the FTSMC is 42.87% of that using

conventional SMC, and the tracking error using the FTSMC

is 15.79% of that using conventional SMC.

C. ROBOT CONTROL AND HUMAN-ROBOT INTERACTION

The robots include rigid and flexible robots. They can be used

in harmful and industrial environments. Their control is chal-

lenging due to the highly coupled nonlinear characteristics

of their dynamics. In [13], a TSMC for n-link rigid robots

was developed to avoid singularity and guarantee the finite-

time convergence. In [85], a practical tracking control with
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fractional-order TSMC using time-delay estimation (TDE)

was studied for tracking control of robotic manipulators to

avoid the detailed information about the robotic dynamics.

In [86], [87], the TSMC technique was combined with TDE

to be used for the tracking control of robotic manipulators,

which can provide fast convergence, high tracking accuracy

and strong robustness against parameter variations and the

TDE error. In [88], a neural network-based TSMC was de-

veloped for robotic manipulators with actuator dynamics and

verified using experimental results. In [89], to accurately ap-

proximate unknown dynamics, an adaptive NTSM tracking

control was combined with the fuzzy wavelet network for the

robot control. In [90], a TSMC combined with an unscented

Kalman filter was developed, which can tolerate external

disturbances.

Besides the aforementioned rigid robots, TSMC theories

have been used in flexible robots. The latter is more challeng-

ing due to the nonminimum phase characteristics of flexible

robots, which hinders asymptotic tracking of a desired tip tra-

jectory with bounded control inputs. To solve this, an inverse

dynamics NTSMC was proposed in [91]. The output of the

flexible robot was redesigned as a function of joint angles,

modes, and parameters. The system was designed based on the

input-output subsystem and the zero dynamics. The former

was controlled to reach its equilibrium in finite-time, and the

latter was guaranteed to be asymptotically stable indirectly.

Human-robot interaction can be used for teleoperation or

supervisory control, telemanipulation, robot assistants, artic-

ulated exoskeleton systems. To obtain satisfactory perfor-

mances, the controller must be robust to model uncertainties

and external disturbances. In [92], a modular controller using

a fast TSMC was developed for articulated systems expressed

by exoskeletons to perform flexion/extension movements. It

can drive an upper limb exoskeleton with 3 DOF, and obtained

satisfactory results. In [93], a decentralized modular control

framework was proposed for robust control of walker-assisted

functional electrical stimulation-activated walking. In [94],

an adaptive integral TSMC was applied to an upper limb

exoskeleton.

Teleoperation, also known as remote control, has many

applications, such as ground-space teleoperation, telesurgery,

telemanipulation, underwater robots, teleassistance robot, etc.

TSMC has been used in remote control due to its superior

feathers. In [95], to obtain a finite-time synchronization per-

formance, a TSM-based finite-time control was developed for

teleoperation system with position error constraints. In [96],

a TSMC for networked bilateral teleoperation was proposed

based on the TSMC technique. In [97], a fast TSM velocity

observer was developed to estimate the velocity for the net-

worked bilateral teleoperation system. In [98], a finite-time

synchronization NTSMC was proposed for the master-slave

control based on the adaptive fuzzy approximation. Compared

with the traditional teleoperation methods, it achieves a better

performance. In [64], an adaptive trajectory tracking control

was developed for a remotely operated vehicle. To estimate

the unmeasured states, an adaptive TSM state observer was

designed to assure the finite-time convergence of the trajec-

tory tracking error.

D. MOTION AND PROCESS CONTROL

Motion control is a key technique for mechatronic systems

due to the requirements on the accuracy and speed [99]. In

[100], an output-based digital integral TSM predictive control

scheme was developed for the precision motion control of a

piezoelectric-driven positioning system. In [101], a discrete-

time TSMC strategy was applied to the motion tracking con-

trol in a piezoelectric-nanopositioning system. In [102], a

linear switching surface with a terminal switching surface was

integrated and designed based on the precision requirement. In

[103], TSMC strategies were developed to realize finite-time

tracking of a DSP-based bipolar electromagnetic-levitation

precise-position system. In [104], an intelligent NTSMC sys-

tem was developed for the motion control of a piezo-flexural

nanopositioning stage using an Elman neural network. In

[105], a 3-DOF dynamic intelligent NTSMC system was pro-

posed for the precision contours tracking of a gantry position

stage. In [29], the TSMC technique was used for a class of

mechatronic systems. Both the simulation and experimental

results showed that the mechatronic systems had a fast re-

sponse with high precision. The steady-state position error is

9.3 × 10−7(rad), while that using the boundary-layer SMC is

1.8 × 10−3(rad). The rising time in the former is 1.75 s, while

that in the latter is 7.5 s. Besides, under the similar tracking

acuracy conditions, the transient response using the TSMC is

faster than that using the super-twisting algorithm.

Process control can achieve consistency, economy and

safety at the production level where a fast and robust tran-

sient response is essential. In [106], a continuous NTSMC

with TDE was developed for shape memory alloy actuators

(SMAs). In [107], a TSMC was designed using an empirical

model for the level control system to assure fast finite-time

convergence and strong robustness. In [108], an output feed-

back TSMC framework was developed for continuous stirred

tank reactor in the chemical industry. In [109], a continuous

finite-time controller was developed and applied to a bioreac-

tor process based on TSMC theory.

E. CONTROL OF AIRCRAFT, SPACECRAFT, AND MISSILE

Precision, response, and robustness are important to the con-

trol of aircraft, spacecraft, and missile. In [110], a TSMC was

developed for a quadrotor. In [111], an adaptive compensation

control strategy combining the TSMC and the input shaping

method was proposed for the attitude control of a quadrotor

unmanned helicopter. In [112], an adaptive NTSMC was pro-

posed for the control of aircraft to compensate the disturbance

caused by the center of gravity variation. In [113], a TSMC

approach was presented for a quadrotor UAV. In [114], an

integral backstepping control was combined with adaptive

TSMC for the attitude control of the quadrotor. In [115], a

flight TSMC was proposed for an unmanned helicopter.
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The TSMC has been applied in the control of spacecraft.

In [116], a TSMC was designed for spacecraft formation. In

[117], a finite-time attitude tracking control scheme was pro-

posed for spacecraft using the TSMC and Chebyshev neural

network. In [118], a distributed attitude coordination TSMC

was proposed for a group of spacecraft. In [119], the second-

order NTSMC was combined with backstepping method for

rendezvous and docking with a tumbling target spacecraft.

In [120], an adaptive TSMC for the attitude control of near

space hypersonic vehicles was developed. In [121], a TSMC

was done for finite-time attitude synchronization of a group

of spacecrafts. In [122], the TSMC technique was utilized to

achieve finite-time trajectory tracking control of space ma-

nipulator. The comparison with an adaptive NN finite-time

control and the PD controller demonstrated that the TSMC

has the fastest convergence, highest steady-state accuracy, and

lest energy consumption.

The robustness and fastness abilities for missile guidance

and control are essentially important. Some control methods

have been developed utilizing TSMC for missile guidance

and control [123]. In [124], the NTSMC method was ap-

plied to construct the composite guidance-estimation law and

to guarantee the finite-time convergence of the states of the

guidance dynamic system. In [125], to solve the 3D terminal

guidance problem of multiple missiles cooperatively inter-

cepting a maneuvering target, an adaptive NTSMC law was

developed. In [126], an approach was proposed to integrated

guidance/autopilot design for missiles on the sea using the

TSMC theory in the area of the anti-vessel missile against high

maneuvering targets.

F. VEHICLE AND VESSEL CONTROL SYSTEMS

The robustness is important for the control of vehicles and

vessels due to external disturbances and parameter uncer-

tainties [127]. In [128], an adaptive TSMC scheme was de-

veloped for a steer-by-wire vehicle. In [129], a hierarchical

longitudinal TSMC was designed for the rear-end vehicle

collision avoidance. In [130], a clutch control approach for

automotive transmissions was developed using the TSMC

and an observer. In [131], a counterbalancing speed control

was proposed for the closed hydrostatic drive hydraulic sys-

tem of the heavy vehicle under long down-slope using the

TSMC to smoothly regulate the traveling speed and restrain

the load disturbance. In [132], a hybrid TSMC scheme for the

position-sensorless electric vehicle with a brushless DC motor

was developed by combining the NTSMC with the high-order

SMC.

Active automotive suspension systems can be used to im-

prove the ride comfort and road holding. However their con-

trol is still challenging due to the highly complex-nature,

serious couplings, strict constraint feasibility, substantial pa-

rameter uncertainties, and unknown external disturbance. The

TSMC is a suitable and powerful tool for dealing with this

control task. There are many publications on the control of

active automotive suspension systems using the TSMC theory

and technique. In [133], an output feedback active suspension

TSMC was developed to achieve a ride comfort while main-

taining the road holding for the vehicle. In [134], a TSMC for

vehicle suspension systems was proposed. In [135], an active

control of a seat suspension was developed using the TSMC.

In [136], a TSMC was applied for active suspension system by

using a TSM manifold. The control method provided both the

fast finite-time convergence and high control accuracy. The

experimental results showed that the TSMC-based method

could obtain the small vertical acceleration, which is 40.82%

of that using active disturbance rejection controller (ADRC)

and 20.52% of that using PID controller respectively.

The robustness, accuracy, and stability of measurement and

control against the relative motion for a vessel on the sea is

needed because it is generally waving or shifting. In [137], a

disturbance estimation scheme was developed using a TSM

observer to achieve formation control of multiple ocean sur-

face vessels with high-accuracy. In [138], the NTSMC was

combined with a trajectory planning to develop the surge and

lateral motion controllers for the under-actuated autonomous

surface vessels. In [139], a fuzzy TSMC based on multiple

sliding surfaces was developed for ship course tracking steer-

ing. In [140], with the aid of the TSMC method, two asymp-

totically stabilizing control laws were proposed to asymptot-

ically stabilize the underactuated surface vessel. In [141], a

robust TSMC was applied to the ship control in the rudder

blade deflections.

G. POWER AND RENEWABLE ENERGY SYSTEMS

To provide more robustness and faster convergence under

environmental variations, TSMC theory has been applied in

power systems [142]. In [143], a stabilizer based on the TSMC

theory was developed for a single-machine infinite bus. In

[144], a nonlinear controller was proposed for unified power

flow control based on the TSMC technique for the active-

reactive power and DC voltage excursions in a 3-machine

6-bus power system. In [145], a power flow controller was

developed based on the TSMC technique. Compared with

conventional SMC controller and a PI controller, it has the

best performances. In [146], the TSMC technique was applied

to enhance the power quality of wind turbines under unbal-

anced voltage conditions through auto-tuning the controller.

The simulation results demonstrated that the magnitudes of

the fluctuations in the active power (pu), DC-link voltage (V),

and electromagnetic torque (pu) during the deep voltage sag

conditions using the TSMC technique are 38.46%, 8.46%, and

42.86% of that respectively using conventional SMC tech-

nique.

TSMC has been applied in renewable energy systems. In

[147], an integral TSMC scheme was developed for grid-

connected PV arrays to maximize power extraction. In [148],

an adaptive TSMC instantaneous active and reactive power

control for both the rotor- and grid-side converters of the dou-

bly fed induction generator-based wind power extraction sys-

tem was developed. In [149], a TSMC method for maximum
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power tracking of PV power systems was developed. In [150],

a full-order TSMC for maximum power point tracking of PV

cells was developed. In [151], a robust TSMC was employed

to control PV system to track the maximum power point at

all operating conditions. In [152], the TSMC was applied

for load frequency stabilization of renewable power systems,

and illustrated the superior performances against parameter

uncertainties in power systems with renewable sources.

H. MULTIAGENT SYSTEMS

TSMC has bee used in multiagent systems to solve the finite-

time consensus tracking control. In [153], an NTSM proto-

col was developed to achieve fixed-time leader-following lag

consensus of the second-order multiagent systems with input

delay. In [154], the NTSMC was combined with the distur-

bance observer-based control to solve the finite-time leader-

follower consensus problem of higher-order multi-agent sys-

tems with mismatched disturbances. In [155], a continuous

nonlinear containment control protocol was constructed using

an NTSMC scheme. In [156], a finite-time consensus tracking

control for multi-robot systems was developed based on the

TSMC technique and applied to the control of multi-robot sys-

tems with input disturbances. In [157], the nonsingular fixed-

time consensus tracking was developed for second-order mul-

tiagent systems with directed topology based on the TSMC

technique. In [158], the NTSMC technique was applied for

a class of multi-agent tracking systems to force the tracking

errors to zero in finite time.

I. NONHOLONOMIC SYSTEMS AND

FAULT-TOLERANT CONTROL

TSMC has been applied in nonholonomic systems to achieve

better performances. In [159], a recursive TSMC for track-

ing control of disturbed chained-form nonholonomic systems

was proposed. In [160], a recursive NTSMC was applied for

non-holonomic systems. In [161], an auxiliary velocity con-

troller was integrated with an adaptive fuzzy ITSMC for a

nonholonomic wheeled mobile robot. In [162], an NTSMC

for wheeled mobile manipulator consisting of non-holonomic

constraints was developed.

TSMC has also been applied in the fault-tolerant control.

In [163], active TSMC-based fault-tolerant approaches were

developed for a spacecraft. In [164], an NTSMC was designed

for the rigid spacecrafts under actuator failures and satura-

tions. In [165], a robust fault-tolerant control of spacecraft at-

titude stabilization in the presence of actuator failures was de-

veloped using the TSMC. In [166], a finite-time fault tolerant

control was developed for uncertain robotic manipulators with

actuator faults by combining the obtained fault information

and the TSMC technique. In [167], an NTSMC was designed

to achieve distributed cooperative attitude synchronization us-

ing consensus theory in the presence of the wheel faults. Some

other methods were proposed such as adaptive fast TSMC ap-

proaches to resolve the attitude tracking control of spacecrafts

subject to actuator faults and actuator saturations [168], [169].

In [170], the TSMC was combined with adaptive fuzzy PID

control to formulate an enhanced robust fault tolerant control

for the purpose of enhancing the robustness and increasing the

steady-state precision.

VII. FUTURE CHALLENGES

A. THEORETICAL AND PRACTICAL CHALLENGES

Many TSMC theories have been proposed and applied in var-

ious applications, however, there are the following theoretical

and practical challenges that need to be addressed for the

development of TSMC theory and applications in the future:
� To attenuate the chattering, an important technique in

conventional SMC systems is the higher-order SMC.

However, when the higher-order SMC techniques are

utilized to attenuate the chattering, the derivative of the

control may appear infinite due to the terms with frac-

tional powers. How to address this issue to avoid the

singularities is a challenge.
� A TSM for a system is a nonlinear function of sys-

tem states. Compared with conventional sliding-mode

observers with linear sliding mode manifold, it is very

hard to design an observer utilizing the TSMC technique

due to its nonlinear features. How to design the TSM

observer is another challenge.
� On the ideal sliding motion of conventional SMC sys-

tems, some states can be considered as the linear feed-

back of the remaining states. However, for the TSMC

systems, it is nonlinear and will hinder the applications

of the TSMC on the output feedback control and the

MIMO systems. How to deal with this issue is a theo-

retical challenge as well.
� The finite-time convergence of the TSMC systems is for

the continuous-time controllers. However, in practical

applications, the controllers are generally discrete-time.

How to keep the finite-time convergence of the TSMC

systems, or to maintain this feature to the maximum is a

challenge in practical aspect.
� The relationship between the parameters of the TSMC

controller and the performances of the system is inher-

ently nonlinear and quite complex. How to select the

parameters of the TSMC controller using optimization

algorithms is another challenge in the practical applica-

tions of the TSMC theories.
� Different from the conventional SMC, the TSM and

related control strategies are nonlinear. Although the

TSMC systems have good steady-state and dynamic

performances, it is hard for the implementation of the

TSMC controller. How to trade-off the implementation

and its performances is another practical challenge as

well.
� The applications of the TSMC are mainly in the

controllers and observers. In most practical applica-

tions, both of them are implemented using the MCUs,

DSPs or FPGAs. How to implement the TSMC con-

trollers/observers with desirable real-time performances

on such computation-resource-limited embedded de-

vices is still a challenge.
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B. TSMC IN ARTIFICIAL INTELLIGENCE

Artificial intelligence (AI) is shaping the future technological

developments. How to apply the TSMC theories in AI and

how to utilize AI in TSMC design are two important issues

in both the theoretical and practical aspects. The fast finite-

time convergence, and high tracking precision of the TSMC

can be utilized in cloud computing, big data analysis and

data mining to enhance the performances, e.g. in the neural

learning [171]. On the other hand, powerful AI methods and

techniques can be applied to TSMC theories and applica-

tions. This is a direction which in the future will see more

developments.

C. TSMC IN NETWORK ENVIRONMENTS

Modern industrial network systems are embedded with a huge

number of sensors and actuators from which vast volumes of

information are available to be transmitted for coordinated

control and operations via a communication network shared

medium [172]. The advanced communication technologies

enables cost-effective information processing and industrial

control. In the same time, it encounters the problems asso-

ciated with network induced delay and data packet dropout.

Implementing TSMC in networked environments is a new

research area and their thorough studies will be very im-

portant for future TSMC applications. Typical problems to

be addressed include chattering, unmatched uncertainties and

unmodelled dynamics. Furthermore, TSMC in network en-

vironments may pose new problems due to the nonsmooth

nonlinearities and finite-time convergence.

VIII. CONCLUSION

In this paper, the TSMC has been reviewed, including TSMC

basics, TSMC developments, the state of the art of TSMC

theory and its applications. The fundamental difference be-

tween the TSMC and conventional SMC has been investi-

gated. The important features and advantages of TSMC have

been analyzed, and the challenges in TSMC and their fu-

ture trend in theory and applications have been outlined. We

hope this article will help stimulate further developments

and discussions in control, modelling and optimization using

TSMC.
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