
 Open access Book Chapter DOI:10.1007/3-540-49674-2_6

Termination Analysis for Tabled Logic Programming — Source link

Stefaan Decorte, Danny De Schreye, Michael Leuschel, Bern Martens ...+1 more authors

Institutions: Katholieke Universiteit Leuven

Published on: 10 Jul 1997 - Logic-based Program Synthesis and Transformation

Topics: Logic programming, Termination analysis and Program transformation

Related papers:

 Termination of logic programs: the never-ending story

 Finiteness analysis

 A semantic basis for the termination analysis of logic programs

 OLD resolution with tabulation

 Partial evaluation in logic programming

Share this paper:

View more about this paper here: https://typeset.io/papers/termination-analysis-for-tabled-logic-programming-
50jset7u4r

https://typeset.io/
https://www.doi.org/10.1007/3-540-49674-2_6
https://typeset.io/papers/termination-analysis-for-tabled-logic-programming-50jset7u4r
https://typeset.io/authors/stefaan-decorte-45u73ywsjk
https://typeset.io/authors/danny-de-schreye-1a110e3o48
https://typeset.io/authors/michael-leuschel-3m1v029ftl
https://typeset.io/authors/bern-martens-1fzvsj76l8
https://typeset.io/institutions/katholieke-universiteit-leuven-j400mi90
https://typeset.io/conferences/logic-based-program-synthesis-and-transformation-18gzq1z8
https://typeset.io/topics/logic-programming-2ptphjjz
https://typeset.io/topics/termination-analysis-3vdkw9us
https://typeset.io/topics/program-transformation-1r3ueirt
https://typeset.io/papers/termination-of-logic-programs-the-never-ending-story-2dxnx2pid6
https://typeset.io/papers/finiteness-analysis-5gp2v89n1h
https://typeset.io/papers/a-semantic-basis-for-the-termination-analysis-of-logic-1qyi7wmyl7
https://typeset.io/papers/old-resolution-with-tabulation-3i5mw4qx0t
https://typeset.io/papers/partial-evaluation-in-logic-programming-w98hxygufi
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/termination-analysis-for-tabled-logic-programming-50jset7u4r
https://twitter.com/intent/tweet?text=Termination%20Analysis%20for%20Tabled%20Logic%20Programming&url=https://typeset.io/papers/termination-analysis-for-tabled-logic-programming-50jset7u4r
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/termination-analysis-for-tabled-logic-programming-50jset7u4r
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/termination-analysis-for-tabled-logic-programming-50jset7u4r
https://typeset.io/papers/termination-analysis-for-tabled-logic-programming-50jset7u4r

Termination Analysis for Tabled Logic

Programming

Stefaan Decorte, Danny De Schreye, Michael Leuschel,

Bern Martens and Konstantinos Sagonas

Department of Computer Science

Katholieke Universiteit Leuven

Celestijnenlaan 200A, B-3001 Heverlee, Belgium

fstefaan,dannyd,michael,bern,kostisg@cs.kuleuven.ac.be

Abstract. We provide a theoretical basis for studying the termination

of tabled logic programs executed under SLG-resolution using a left-

to-right computation rule. To this end, we study the classes of quasi-

terminating and LG-terminating programs (for a set of atomic goals S).

These are tabled logic programs where execution of each call from S

leads to only a �nite number of di�erent (i.e., non-variant) calls, and a

�nite number of di�erent calls and computed answer substitutions for

them, respectively. We then relate these two classes through a program

transformation, and present a characterisation of quasi-termination by

means of the notion of quasi-acceptability of tabled programs. The lat-

ter provides us with a practical method of proving termination and the

method is illustrated on non-trivial examples of tabled logic programs.

1 Introduction

The relative novelty of tabled-based logic programming implementations has

given rise to a number of both theoretical and practical questions related to

the study of the characteristics of such programs and to improving their per-

formance. This work has been motivated by an initial study on how to adapt

advanced program specialisation techniques, originally developed for standard

logic programming, to the context of tabled logic programming. In a companion

paper [12], we describe how left-propagation of bindings in a program executed

under SLG-resolution [4] using a �xed left-to-right computation rule (as SLG

is usually implemented in practical tabled-based systems such as XSB [15]) can

seriously endanger the termination characteristics of that program. A simple

example from [12] is the program

p(X) p(Y); Y = f(X)

X = X

For the query p(X), the program �nitely fails in SLG since its left-to-right

evaluation encounters (a variant of) an existing call for which no answers can be

produced. By performing one unfolding step with respect to the atom Y = f(X),

giving rise to the clause p(X) p(f(X)), the same query p(X) will now result

in an in�nite computation under SLG.

In [12], preconditions for safe (i.e. termination preserving) program specialisa-

tion through unfolding are proposed. In the present paper we study the universal

termination of tabled programs (where we are interested in the termination of

the computation after all solutions have been generated), executed under SLG

using a �xed left-to-right computation rule, in its own right. We adapt exist-

ing results on acceptability of programs with respect to sets of atoms from [6].

We show how this provides a natural necessary and su�cient condition for the

termination of tabled logic programs. We also brie
y discuss automatic veri�ca-

tion of the proposed termination conditions, and present a non-trivial example

(Appendix B).

The rest of the paper is structured as follows. In the next section we introduce

some preliminaries and present a brief formalisation of SLG-resolution restricted

to de�nite programs. In Section 3 we present the notions of quasi-termination

and quasi-acceptability with respect to sets of atoms and prove that they are

equivalent. In Section 4 we discuss the stronger notion of LG-termination and,

again, characterise it in terms of quasi-termination. We end with a discussion.

2 Preliminaries

Throughout the paper, P will denote a de�nite tabled logic program. We also

assume that in all programs all predicates are tabled (i.e. executed under SLG-

resolution). The extended Herbrand Universe, U

E

P

, and the extended Herbrand

Base, B

E

P

, associated with a program P , were introduced in [7]. They are de�ned

as follows. Let Term

P

and Atom

P

denote the sets of respectively all terms and

atoms that can be constructed from the alphabet underlying P . The variant

relation, denoted �, de�nes an equivalence. U

E

P

and B

E

P

are respectively the

quotient sets Term

P

=� and Atom

P

=�. For any term t (or atom A), we denote

its class in U

E

P

(B

E

P

) as

~

t (or

~

A). However, when no confusion is possible, we

omit the tildes. Finally, by Pred

P

and Fun

P

we denote the sets of predicate and

function symbols of P , respectively.

In this paper, we consider termination of SLG-resolution (see [4]), using a

�xed left-to-right computation rule, for a given set of atomic (top level) queries

with atoms in S � B

E

P

. We will abbreviate SLG-resolution under the left-to-

right computation rule by LG-resolution (which for de�nite programs is similar

to OLDT-resolution [16, 11], modulo the fact that OLDT speci�es a more �xed

control strategy and uses subsumption checking and term-depth abstraction in-

stead of variant checking to determine existence of subgoals and answers in the

tables). Below, we formalise these notions. While doing so, we also introduce

some example programs that are used throughout the paper to illustrate various

aspects of (non)-termination of tabled logic programs.

2.1 SLG-Resolution for De�nite Programs

We present a non-constructive de�nition of SLG-resolution that is su�cient for

our purposes, and refer the reader to [2, 4, 16, 17] for more constructive formula-

tions of (variants of) tabled resolution.

De�nition 1. (pseudo SLG-tree, pseudo LG-tree) Let P be a de�nite

program, R be a computation rule, and A an atom. A pseudo SLG-tree for

P [f Ag under R is a tree �

A

such that:

1. the nodes of �

A

are labeled by goals along with an indication of the selected

atom,

2. the arcs are labeled by sets of substitutions (either most general uni�ers or

computed answer substitutions),

3. the root of �

A

is A,

4. the children of the root A are obtained by resolution against all matching

(program) clauses in P ,

5. the (possibly in�nitely many) children of non-root nodes can only be ob-

tained by resolving the selected (using R) atom B of the node with clauses

of the form B� (not necessarily in P).

IfR is the leftmost literal selection rule, �

A

is called a pseudo LG-tree for P [f

Ag.

We say that a pseudo SLG-tree �

A

for P [f Ag is smaller than another pseudo

SLG-tree �

0

A

for P [f Ag i� �

0

A

can be obtained from �

A

by attaching new

sub-branches to nodes in �

A

.

A (computed) answer clause of a pseudo SLG-tree �

A

for P [f Ag is a clause

of the form A� where � is the composition of the answer substitutions found

on a branch of �

A

whose leaf is labeled by the empty goal.

Intuitively, a pseudo SLG-tree (in an SLG-forest, see De�nition 2 below)

represents the tabled computation of all answers for a given subgoal labeling

the root node of the tree. The trees in the above de�nition are called pseudo

SLG-trees because there is no condition yet on which clauses B� exactly are

to be used for resolution in point 5. These clauses represent the answers found |

possibly in another tree of the forest | for the selected atom. This interaction

between the trees of an SLG-forest is captured in the following de�nition.

De�nition 2. (SLG-forest, LG-forest) Let P be a program,R be a compu-

tation rule, and S be a (possibly in�nite) set of atoms such that no two di�erent

atoms in S are variants of each other. F is an SLG-forest for P and S under R

i� F is a set of minimal pseudo SLG-trees f�

A

j A 2 Sg where

1. �

A

is a pseudo SLG-tree for P [f Ag under R,

2. every selected atomB of each node in some �

A

2 F is a variant of an element

B

0

of S, such that every clause resolved with B is a variant of an answer

clause of �

B

0

and vice versa.

Let Q = A be an atomic query. An SLG-forest for P [fQg is an SLG-forest

for a minimal set S with A 2 S. An LG-forest is an SLG-forest containing only

pseudo LG-trees.

Point 2 of De�nition 2, together with the imposed minimality of trees in a for-

est, now uniquely determines these trees. So we can drop the designation \pseu-

do" and refer to (S)LG-trees in an (S)LG-forest. The notion of an (S)LG-forest

introduces explicitly the relation between selected atoms and their computed

answers. Also note that (S)LG-trees always have a �nite depth.

Example 3 (NAT). Let NAT be the program below:

nat(0)

nat(s(X)) nat(X)

The (unique) (S)LG-forest for NAT and fnat(X)g, shown in Figure 1, consists

of a single (S)LG-tree. Note that this tree has an in�nitely branching node.

X=0 X=s(X’)

nat(X’)

X’=s(0)
......

X’=s(s(0))

nat(X)

X’=0

Fig. 1. SLG-forest for NAT [f nat(X)g.

Example 4. (NAT

sol

) Let NAT

sol

be the following program:

nat(0)

nat(s(X)) nat(X); sol(nat(X))

nat

sol

(X) nat(X); sol(nat(X))

sol(X)

The LG-forest for NAT

sol

[f nat(X)g contains an in�nite number of LG-

trees; see Figure 2.

Finally, given S � B

E

P

, by Call(P; S) we denote the subset of B

E

P

such that

~

B 2 Call(P; S) whenever an element of

~

B is a selected literal in an LD-derivation

for some P [f Ag, with

~

A 2 S. We note that we can use the notions of LD-

derivation and LD-computation even in the context of SLG-resolution, as the set

of call patterns and the set of computed answer substitutions are not in
uenced

by tabling; see e.g. Theorem 2.1 in [11].

3 Quasi-termination and quasi-acceptability

As the examples in the previous section show, an LG-forest can be in�nite. In par-

ticular, whenever LD-computation from an initial goal leads to in�nitely many

di�erent, non-variant calls, the corresponding LG-forest under tabled execution

will be in�nite. Obviously, such a phenomenon is undesirable, and therefore a

......

sol(nat(0)) sol(nat(s(0))) sol(nat(s(s(0))))

X=0 X=s(X’)

X’=s(0) X’=s(s(0))

nat(X’), sol(nat(X’))

X’=0

sol(nat(0)) sol(nat(s(0))) sol(nat(s(s(0))))

......

......

nat(X)

Fig. 2. The (in�nite) LG-forest for Example 4.

�rst basic notion of termination studied in this paper is quasi-termination (a

term borrowed from [9], de�ning a similar notion in the context of termination

of o�-line partial evaluation of functional programs). It is de�ned as follows.

De�nition 5. (quasi-termination) Let P be a program and S � B

E

P

. P

quasi-terminates with respect to S i� for every A 2 S, Call(P; fAg) is �nite.

Also, P quasi-terminates i� it quasi-terminates wrt B

E

P

.

Lemma 6. Let P be a program, A 2 B

E

P

, and let F be the LG-forest for P [f

Ag. Then P quasi-terminates wrt fAg i� F consists of a �nite number of LG-

trees.

This is the termination notion that also forms the heart of the study in [12].

Example 7. Consider the programs NAT and NAT

sol

of Examples 3 and 4 re-

spectively. With respect to fnat(X)g, NAT quasi-terminates, but NAT

sol

does

not.

In order to characterise the notion of quasi-termination, we adopt the follow-

ing concept from [6].

De�nition 8. (level mapping)A level mapping for a program P is a function

l : B

E

P

! IN .

De�nition 9. (�nitelypartitioning)A level mapping l is �nitely partitioning

i� for all n 2 IN : #l

�1

(n) <1.

In other words, only �nitely many atoms are mapped to any n 2 IN .

We now introduce the notion of quasi-acceptability. It is adapted from the

acceptability notion de�ned in [6] and not from the more \standard" de�nition

of acceptability by Apt and Pedreschi in [1]. The reason for this choice is that

the quasi-termination property of a tabled program and (set of) goal(s) is not

invariant under substitution. Consider the following example from [12]:

Example 10. Let p=2 be a tabled predicate de�ned by the following clause.

p(f(X); Y) p(X;Y)

Then, the query p(X;Y) quasi-terminates while p(X;X) does not!

The acceptability notion in [1] is expressed in terms of ground instances of

clauses and its associated notion of left-termination is expressed in terms of

the set of all goals that are bounded under the given level mapping. Such sets

are closed under substitution. Because quasi-termination lacks invariance under

substitution, we need a stronger notion of acceptability, capable of treating any

set of interest S.

De�nition 11. (quasi-acceptability) Let l be a �nitely partitioning level

mapping on B

E

P

. We say that P is quasi-acceptable with respect to l and S i�

� for every atom A such that

~

A 2 Call(P; S),

� for every clause H B

1

; : : : ; B

n

in P , such that mgu(A;H) = � exists,

� for every initial subsequence B

1

; : : : ; B

i�1

of B

1

; : : : ; B

n

and every LD-

computed answer substitution �

i�1

for (B

1

; : : : ; B

i�1

)�:

l(A) � l(B

i

��

i�1

)

In brief, the main di�erences with the acceptability notion of [6] are that:

1. level mappings are assumed to be �nitely partitioning the extended Herband

Base, and

2. decreases of the level mapping are not assumed to be strict.

Intuitively, the reasons for these di�erences can be understood as follows. Con-

trary to SLD, computations in which a call has a variant of itself as its (imme-

diate) recursive descendant do not lead to non-termination under tabled evalu-

ation. As we want to allow such computations, requiring a strict decrease of the

level mapping is too strong. On the other hand, we do not want to allow that

in�nitely many di�erent calls within a same level occur (due to the non-strict

decrease). To exclude this, we impose the �nite partitioning requirement.

More directly, it should be intuitively clear that the combination of the non-

strict decrease with �nitely partitioning level mappings implies that only a �nite

number of di�erent calls are allowed to descend from a given call. This corre-

sponds to quasi-termination.

Given these de�nitions, we can now prove one of the main results of this

paper.

Theorem 12. (termination condition) Let P be a program and S � B

E

P

.

P is quasi-acceptable wrt some �nitely partitioning level mapping l and S i� P

is quasi-terminating with respect to S.

For a proof, we refer to Appendix A.

Quasi-termination captures the property that, under LD-computation, a given

atomic goal leads to only �nitely many di�erent calls. It is exactly in such cases

that tabling aims at achieving actual termination of top-down logic program ex-

ecution. Hence the importance of quasi-termination as a key property for tabled

programs.

Also, in a broader context, techniques for proving quasi-termination can be

of great value to ensure termination of o�-line specialisation of logic programs

(whether tabled or not). Currently, in all o�-line partial evaluation methods for

logic programs (e.g. [13,10]) termination has to be ensured manually. In the

context of o�-line partial evaluation, quasi-termination is actually identical to

termination of the partial evaluator. Thus, given a technique to establish quasi-

termination, one can also establish whether a given binding time annotation

will ensure termination or whether further abstraction is called for. This idea

has already been successfully applied in the context of functional programming

(cf. [8]), using the termination criterion of [9].

4 LG-termination

Even when tabling, quasi-termination as in De�nition 5 and Lemma 6 only

partially corresponds to our intuitive notion of a `terminating computation'.

Example 13. Consider the program of Example 3. Given the set S = fnat(X)g,

NAT quasi-terminates with respect to S. This is obvious since Call(NAT; S) =

fnat(X)g, which is �nite. The program is also quasi-acceptable with respect to

S and any �nitely partitioning level mapping B

E

NAT

! IN .

Nevertheless, this example does not correspond to our intuitive notion of a

terminating program. Although the LG-forest is �nite, its unique LG-tree is in-

�nitely branching (see Figure 1) and the computation does not terminate. Notice

however that the computed answers do not lead to new calls. Therefore, quasi-

termination does hold. Also note that the same program is not LD-terminating

either: there exists an in�nite LD-derivation. To capture this, we de�ne the fol-

lowing stronger termination notion.

De�nition 14. (LG-termination) Let P be a program and S � B

E

P

. P is

LG-terminating with respect to S i� for every A 2 S, the LG-forest for P[f Ag

is a �nite set of �nite LG-trees.

Also, P is LG-terminating i� it is LG-terminating wrt B

E

P

.

Let us now study how quasi-termination and LG-termination relate to each

other. According to Lemma 6, quasi-termination only corresponds to part of the

LG-termination notion; it does not capture in�nitely branching LG-trees. But a

simple program transformation can remedy this.

De�nition 15. (sol(ution) transformation) The sol transformation is de-

�ned as follows:

� For a clause C = H B

1

; : : : ; B

n

we de�ne

C

sol

= H B

1

; sol(B

1

); : : : ; B

n

; sol(B

n

)

Here, sol(B

i

) is the syntactic application of the predicate sol=1 on B

i

.

� For a program P , we de�ne:

P

sol

= fC

sol

j C 2 Pg [

fp

sol

(X

1

; : : : ; X

n

) p(X

1

; : : : ; X

n

);

sol(p(X

1

; : : : ; X

n

)) j p=n 2 Pred

P

g [

fsol(X) g

where each p

sol

=n is a new predicate symbol.

� For a set of atoms S � B

E

P

, we de�ne

S

sol

= f~p

sol

(t

1

; : : : ; t

n

) j ~p(t

1

; : : : ; t

n

) 2 Sg

The goal of the construction is that P LG-terminates wrt S i� P

sol

quasi-

terminates wrt S

sol

. Note that P

sol

is �nite provided that P is also �nite.

Example 16. The programs NAT of Example 3, and NAT

sol

of Example 4 are

related through the sol transformation.

Example 17. Let P be the following extension of the NAT program.

t(X) nat(X); fail

nat(0)

nat(s(X)) nat(X)

ThenCall(P; ft(X)g) = ft(X); nat(X); failg, so P quasi-terminates wrt ft(X)g.

However, note that the query t(X) does not terminate but fails in�nitely in

tabled evaluation under a left-to-right computation rule. Using the sol transfor-

mation, we have that ft(X)g

sol

= ft

sol

(X)g, and P

sol

is the following program:

t(X) nat(X); sol(nat(X)); fail; sol(fail)

nat(0)

nat(s(X)) nat(X); sol(nat(X))

t

sol

(X) t(X); sol(t(X))

nat

sol

(X) nat(X); sol(nat(X))

sol(X)

Now, we have that

Call(P

sol

; ft

sol

(X)g) =

ft

sol

(X); t(X); nat(X); fail; sol(nat(0)); sol(nat(s(0))); : : :g

and as expected P

sol

does not quasi-terminate wrt ft(X)g

sol

.

Theorem 18. Let P be a program and S � B

E

P

. Then P LG-terminates wrt S

i� P

sol

quasi-terminates wrt S

sol

.

Proof. (Sketch) As can be seen in Figure 3 for a node in an LG-tree labeled by

a compount goal B;Q, where B is the selected atom, every answer clause

resolution for B in P (with the answer clause B�) translates into two answer

?

?

?

?

? ?

?

?

 sol(B�)

2

 B;Q

 Q�

 B; sol(B);Q

sol

 sol(B�);Q

sol

�

 Q

sol

�

� �

�

�

P

sol

P

Fig. 3. Relating answer clause resolution in P and P

sol

.

clause resolutions (for B and sol(B�)) and one new LG-tree (for sol(B�)) in

P

sol

. Note that in the same �gure, Q

sol

is the sol-translation of Q. Let A 2 S.

()) If A LG-terminates in P , then we can build a �nite set of �nite LG-trees.

Thus in P

sol

only �nitely many answer clause resolutions and �nitely many LG-

trees are added and, by Lemma 6, P

sol

quasi-terminates wrt fAg

sol

.

(() If A does not LG-terminate in P , then we either have an in�nite set of

LG-trees, and thus also an in�nite set of LG-trees for P

sol

. Or we have an in�nite

branching in some tree, which translates into an in�nite set of LG-trees for P

sol

.

So, by Lemma 6, in both cases P

sol

does not quasi-terminate wrt fAg

sol

.

A fully worked out example of a termination proof using the level mappings

of Section 3 can be found in Appendix B.

5 Discussion

Tabled logic programming is receiving increasing attention in our community.

It avoids many of the shortcomings of SLD(NF) execution and provides a more

exible and often extremely e�cient execution mechanism for logic programs.

In particular, tabled execution of logic programs terminates more often than

execution based on LD-resolution. Nevertheless, termination can still not be

guaranteed. Our motivation for the reported work is that we want to port pro-

gram specialisation techniques for \standard" logic programs to tabled ones. In

this attempt, we noticed that simple transformations, which are termination-

preserving in the standard logic programming setting, can distort the termina-

tion behaviour in the setting of tabled logic programs. This motivated us to start

a deeper study of termination of tabled logic programs, in the hope of using the

results as tools in the further development and study of optimisation of tabled

logic programs through transformations.

There are only relatively few works (in disguise) studying termination under

tabled execution. [14], within the context of well-moded programs, gives a suf-

�cient (but not necessary) condition for the bounded term-size property, which

implies LG-termination. [9] provides another su�cient (but not necessary) con-

dition for quasi-termination in the context of functional programming.

A speci�c concern that one might raise with respect to the termination con-

ditions we propose is to what extent existing (automated) termination analyses

can be adapted to verify the quasi-acceptability condition. Before addressing this

question, we note that all programs that terminate under LD-resolution, are LG-

terminating as well. Thus, veri�cation of termination under LD-resolution (i.e.,

ignoring the designation of predicates as tabled) using an existing automated ter-

mination analysis (such as those surveyed in e.g. [5]) is a su�cient proof of the

program's quasi-acceptability. Naturally this is not a necessary condition, since

there are LG-terminating programs which do not terminate under LD-resolution

(from trivial ones as the program in the introduction to more interesting ones as

that presented in Appendix B). In such cases, existing termination analyses may

require modi�cations or extensions. The most important issue in this context

is to what extent the focus on �nitely partitioning level mappings becomes a

bottleneck in providing level mappings in practice. Or, more speci�cally, which

of the level mappings used in practice in (automated) termination analysis are

�nitely partitioning?

In most automatic approaches to termination analysis, level mappings are

de�ned in terms of positive linear combinations of norms. A norm is a function

n : U

E

P

! IN . Given such a norm n, a level mapping is induced by selecting

a number of argument positions, I

p

, for each predicate symbol p=k, and by

de�ning: l(p(t

1

; : : : ; t

k

)) =

P

i2I

p

p

i

n(t

i

), where all p

i

are natural numbers.

Note that if the selected norm n is `�nitely partitioning', meaning that for

every m 2 IN : #n

�1

(m) < 1, and I

p

= [1; k] as well as p

i

> 0, then the level

mapping l is �nitely partitioning as well (assuming that the language underlying

P only contains a �nite number of predicate symbols). So, the question is: which

norms are �nitely partitioning ?

Let us �rst assume that the language underlying P contains only a �nite

number of constants and functions symbols. In that case, consider any semi-

linear norm [3], which are norms that can be de�ned as:

n(f(t

1

; : : : ; t

k

)) = c

f

+

X

i2I

f

n(t

i

)

where c

f

2 IN , I

f

� [1; k] and depend on f=k only.

Given the restriction on the language underlying P , any semi-linear norm

which has c

f

> 0 and I

f

= [1; k], for all f=k in Fun

P

, (in other words no part

of the term can be ignored) is �nitely partitioning. In particular, the well-known

termsize norm is �nitely partitioning (but e.g. the list-length norm is not).

If the underlying language contains an in�nite number of constants (e.g. the

natural numbers), we can still design very natural �nitely partitioning norms

by exploiting any existing well-founded ordering on the in�nite data set and

incorporating that in the norm.

Therefore, automated termination analysis can be quite easily adapted to

the case of quasi-termination and in fact requires nothing more than moving

from a strict inequality check to verifying the weaker inequality expressed in

quasi-acceptability.

However, the requirement that c

f

> 0 can in some cases complicate the

task of �nding appropriate norms and level mappings, as the following example

illustrates.

Example 19. Let P just consist of the following clause C:

p([H

1

;H

2

jT]) p([[H

1

;H

1

;H

2

]jT])

Let us restrict our attention to calls p(t) where t is a ground list. Then P quasi-

terminates (failing �nitely) and it even terminates under ordinary, un-tabled

evaluation. For the un-tabled case we can simply use the level mapping l(p(t)) =

list length(t) and we have that the level mapping of the head of a ground instance

of C is strictly larger than the level mapping of the corresponding body atom.

As previously mentioned, a termination proof under un-tabled execution implies

LG-termination. However, such an indirect proof of LG-termination could not

be used if the program also contained the clause p(X) p(X). In such a case,

the list length norm could not be used to directly prove quasi-acceptability as

it is not �nitely partitioning (there are in�nitely many di�erent terms up to

variable renaming with the same list length) and we would have to search for

another candidate. Unfortunately, we could not simply use the termsize norm

either, because it will lead to the heads of ground instances of C being strictly

smaller than the corresponding body atoms. Thus, using the termsize norm we

are not able to prove quasi-acceptability and one has to resort to more powerful

level mappings. The following, slightly involved, level mapping, where we denote

the termsize by k:k, will fortunately be su�cient:

l(p([t

1

; : : : ; t

n

])) = 2

n

(n +

P

i2[1;n]

kt

i

k)

Now let p([t

1

; t

2

jt]) p([[t

1

; t

1

; t

2

]jt]) be any ground instance of C, where

list length([t

1

; t

2

jt]) = n, t = [s

1

; : : : ; s

n�2

] and s =

P

i2[1;n�2]

ks

i

k. We have

that l(p([t

1

; t

2

jt])) = 2

n

(n + kt

1

k + kt

2

k + s) which is (strictly) larger than

l(p([[t

1

; t

1

; t

2

]jt])) = 2

n�1

(n� 1 + 1 + 2kt

1

k+ kt

2

k+ s).

Acknowledgements

Stefaan Decorte and Michael Leuschel are supported by the Belgian GOA \Non-

Standard Applications of Abstract Interpretation". Danny De Schreye is a senior re-

search associate of the Belgian National Fund for Scienti�c Research. Bern Martens is

a post-doctoral fellow of the K.U.Leuven Research Council. Konstantinos Sagonas is a

post-doctoral fellow of the Fund for Scienti�c Research | Flanders Belgium (FWO).

References

1. K.R. Apt and D. Pedreschi. Reasoning about Termination of Pure Prolog Pro-

grams. Information and Computation, 106(1):109{157, 1993.

2. R. Bol and L. Degerstedt. The Underlying Search for Magic Templates and Tabu-

lation. In D. S. Warren, editor, Proceedings of the Tenth International Conference

on Logic Programming, pages 793{811, Budapest, Hungary, June 1993. The MIT

Press.

3. A. Bossi, N. Cocco, and M. Fabris. Norms on Terms and their use in Proving Uni-

versal Termination of a Logic Program. Theoretical Computer Science, 124(2):297{

328, February 1994.

4. W. Chen and D. S. Warren. Tabled Evaluation with Delaying for General Logic

Programs. Journal of the ACM, 43(1):20{74, January 1996.

5. D. De Schreye, S. Decorte. Termination of Logic Programs: The never-ending story.

Journal of Logic Programming, 19/20:199{260, May/July 1994.

6. D. De Schreye, K. Verschaetse, and M. Bruynooghe. A Framework for Analysing

the Termination of De�nite Logic Programs with respect to Call Patterns. In Pro-

ceedings of the International Conference on Fifth Generation Computer Systems

(FGCS'92), pages 481{488, ICOT Tokyo, 1992. ICOT.

7. M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative Modeling of

the Operational Behaviour of Logic Languages. Theoretical Computer Science,

69(3):289{318, 1989.

8. A. J. Glenstrup and N. D. Jones. BTA algorithms to ensure Termination of o�-

line Partial Evaluation. In Perspectives of System Informatics: Proceedings of the

Andrei Ershov Second International Memorial Conference, LNCS, pages 25{28.

Springer-Verlag, June 1996.

9. C. K. Holst. Finiteness Analysis. In J. Hughes, editor, Proceedings of the 5th

ACM Conference on Functional Programming Languages and Computer Architec-

ture (FPCA), number 523 in LNCS, pages 473{495. Springer-Verlag, August 1991.

10. J. J�rgensen and M. Leuschel. E�ciently Generating E�cient Generating Exten-

sions in Prolog. In O. Danvy, R. Gl�uck, and P. Thiemann, editors, Proceedings of

the 1996 Dagstuhl Seminar on Partial Evaluation, number 1110 in LNCS, pages

238{262, Schlo� Dagstuhl, 1996. Springer-Verlag.

11. T. Kanamori and T. Kawamura. OLDT-based Abstract Interpretation. Journal

of Logic Programming, 15(1&2):1{30, January 1993.

12. M. Leuschel, B. Martens, and K. Sagonas. Preserving Termination of Tabled Logic

Programs While Unfolding. In N. Fuchs, editor, Proceedings of Logic Program

Synthesis and Transformation (LOPSTR'97), Leuven, Belgium, July 1997.

13. T. Mogensen and A. Bondorf. Logimix: A self-applicable Partial Evaluator for Pro-

log. In K.-K. Lau and T. Clement, editors, Proceedings of Logic Program Synthesis

and Transformation (LOPSTR'92), pages 214{227. Springer-Verlag, 1992.

14. L. Pl�umer. Termination Proofs for Logic Programs, number 446 in LNCS. Springer-

Verlag, 1990.

15. K. Sagonas, T. Swift, and D. S. Warren. XSB as an E�cient Deductive Database

Engine. In Proceedings of the ACM SIGMOD International Conference on the

Management of Data, pages 442{453, Minneapolis, Minnesota, May 1994. ACM

Press.

16. H. Tamaki and T. Sato. OLD Resolution with Tabulation. In E. Shapiro, editor,

Proceedings of the Third International Conference on Logic Programming, number

225 in LNCS, pages 84{98, London, July 1986. Springer-Verlag.

17. L. Vieille. Recursive Query Processing: The Power of Logic. Theoretical Computer

Science, 69(1):1{53, 1989.

A Termination condition

The following concept will be useful for proving our termination condition. To

any �xed P and S, we can associate a call graph as follows.

De�nition 20. (call graph associated to S) Let P be a program and S �

B

E

P

. The call graph Call-Gr(P; S) associated to P and S is a graph such that:

� its set of nodes is Call(P; S),

� there exists a directed arc from

~

A to

~

B i�

� there exists a clause H B

1

; : : : ; B

n

in P , such that mgu(A;H) = �

exists,

1

and

� there exists i 2 [1; n], such that there is an LD-refutation for

 (B

1

; : : : ; B

i�1

)�

with computed answer substitution �

i�1

, and B � B

i

��

i�1

.

The notion of a call graph has a particularly interesting property, which will

be useful in the study of termination.

Proposition 21. (paths and selected atoms) Let P be a program, S �

B

E

P

, Call(P; S) and Call-Gr(P; S) be de�ned as above. Let p be any directed

path in Call-Gr(P; S). Then there exists an LG-derivation for some element of

Call(P; S), such that all the nodes in p occur as selected atoms in the derivation.

Proof. By de�nition ofCall-Gr(P; S), for every arc from

~

A to

~

B inCall-Gr(P; S),

there exists a sequence of consecutive LG-derivation steps, starting from A

and having a variant of B as its selected atom at the end. Because (a variant

of) B is selected at the end-point, any two such derivation-step sequences, corre-

sponding to consecutive arcs in Call-Gr(P; S), can be composed to form a new

sequence of LG-derivation steps. In this sequence, all 3 nodes of the consecutive

arcs remain selected atoms in the new sequence of derivation steps. Transitively

exploiting the above argument yields the result.

Note that by de�nition of Call-Gr(P; S) and Call(P; S), this also implies that

there is a sequence of derivation steps starting from P[f Ag, with

~

A 2 S, such

that all nodes in the given path p are selected atoms in the derivation sequence.

Theorem 12 (termination condition) Let P be a program and S � B

E

P

. P

is quasi-acceptable with respect to some �nitely partitioning level mapping l and

S i� P is quasi-terminating with respect to S.

Proof. The \only-if" part of the proof is fairly straightforward. We have that P

is quasi-acceptable with respect to l and S. Take any atom A with

~

A 2 S. Due

to the acceptability condition, any call in Call(P; S) directly descending from

1

Throughout the paper we assume that representatives of equivalence classes are

systematically provided with fresh variables, to avoid the necessity of renaming apart.

A, say B, is such that l(A) � l(B). The same holds recursively for the atoms

descending from B. Thus, the level mapping of any call, recursively descending

from A, is smaller than or equal to l(A) 2 IN . Since l is �nitely partitioning, we

have that: [

n�l(A)

l

�1

(n)) <1. Hence, #Call(P; f

~

Ag) <1 and the program is

quasi-terminating for A.

The \if"-part of the proof is slightly more complicated. Given is that P quasi-

terminates for all atomic queries A, with

~

A 2 S. We need to design a �nitely

partitioning level mapping, l, such that the quasi-acceptability condition with

respect to l and s holds.

First of all, we will only de�ne l on the elements of Call(P; S). On elements

of the complement of Call(P; S) in B

E

P

, l can be assigned any value (as long as

we don't group in�nitely many in one layer), as these elements do not turn up in

the inequality condition of quasi-acceptability. In order to de�ne l on Call(P; S),

consider the Call-Gr(P; S)-graph.

A �rst crucial point in this part of the proof is that the strongly connected

components of Call-Gr(P; S) are necessarily all �nite. To see this, assume that

Call-Gr(P; S) contains an in�nite strongly connected component. Then, there

exists an in�nitely long path p, starting from an element in S, through elements

of this in�nite strongly connected component. By Proposition 21, this means

that there exists a derivation for that element in S, such that an in�nite number

of di�erent atoms from Call(P; S) are selected within this derivation. Obviously,

this contradicts quasi-termination.

So, all strongly connected components of Call-Gr(P; S) are �nite. De�ne

Call-Gr(P; S)/reduced as the graph obtained from Call-Gr(P; S) by replacing

any strongly connected component by a single contracting node and replacing

any arc from Call-Gr(P; S) pointing to (resp. from) any node in that strongly

connected component by an arc to (resp. from) the contracting node.

Call-Gr(P; S)/reduced does not have any (non-trivial) strongly connected

components. Moreover, any strongly connected component from Call-Gr(P; S)

that was collapsed into a contracting node of Call-Gr(P; S)/reduced necessarily

consists of only a �nite number of nodes.

We now de�ne l as follows.

Let layer-0 be the set of leaves in Call-Gr(P; S)/reduced. We will order these

nodes and assign to them an odd number within IN . For every atom in a strongly

connected component represented by one of the nodes in layer-0, we will assign

the level mapping of that atom to be equal to the assigned value of the corre-

sponding contracting node.

Then, we move up to the next layer in Call-Gr(P; S)/reduced. This layer,

layer-1, consists of all nodes N , such that:

max(flength(p) j p is a path starting from N in Call-Gr(P; S)=reducedg) = 1

To any element of layer-1, we assign a natural number n, such that n is larger

than all the natural numbers assigned to descendants of this node in layer-0

(note that the graph is �nitely branching), but such that there is at least 1

natural number larger than the ones assigned to its descendants which remains

unassigned.

We continue this process layer by layer. In each step we make sure that

an in�nite number of natural numbers remain \unassigned" to nodes, but also

that numbers assigned to nodes in higher levels of Call-Gr(P; S) are strictly

larger than the numbers assigned to their descendants. The value of the level

mapping on elements of Call(P; S) is as de�ned for layer-0 above: all calls in a

same strongly connected component of Call(P; S) receive the number assigned

to their representative in Call-Gr(P; S)/reduced.

Due to this construction, l is �nitely partitioning on Call(P; S). Also, by

construction again, the quasi-acceptability condition of P with respect to l and

S holds.

B An extended termination proof

In this appendix, the approach is illustrated on a non-trivial example. Systems

like the one in [6], after the slight adaptations discussed in Section 5, are able

to automatically derive this proof. Consider the following context-free gram-

mar, de�ning well-built numerical expressions, built up from integers and the

operators + and �.

Expr) Term j Expr + Term

Term) Primary j Term * Primary

Primary) integer j (Expr)

If we encode expressions as ground lists of tokens, we can use the following

program Parse to parse such expressions in all possible ways.

expr(A;B) term(A;B)

expr(A;B) expr(A;C); C = [+jD]; term(D;B)

term(A;B) primary(A;B)

term(A;B) term(A;C); C = [�jD]; primary(D;B)

primary(A;B) A = [CjB]; integer(C)

primary(A;B) A = [

0

(

0

jC]; expr(C;D); D = [

0

)

0

jB]

It is not di�cult to see that the program is not LD-terminating wrt the following

set of atoms:

S = fexpr(l; t) j l is a list of atoms and t is any term g

For example, the query expr([1]; B) generates the answer B = [] and then

gets stuck in an in�nite loop.

The program is however LG-terminating. To see this, consider Parse

sol

which

corresponds to the following program.

expr(A;B) term(A;B); sol(term(A;B))

expr(A;B) expr(A;C); sol(expr(A;C)); C = [+jD]; sol(C = [+jD]),

term(D;B); sol(term(D;B))

term(A;B) primary(A;B); sol(primary(A;B))

term(A;B) term(A;C); sol(term(A;C)); C = [�jD]; sol(C = [�jD]),

primary(D;B); sol(primary(D;B))

primary(A;B) A = [CjB]; sol(A = [CjB]); integer(C); sol(integer(C))

primary(A;B) A = [

0

(

0

jC]; sol(A = [

0

(

0

jC]); expr(C;D);

sol(expr(C;D)); D = [

0

)

0

jB]; sol(D = [

0

)

0

jB])

expr

sol

(A;B) expr(A;B); sol(expr(A;B))

term

sol

(A;B) term(A;B); sol(term(A;B))

primary

sol

(A;B) primary(A;B); sol(primary(A;B))

sol(X)

The following level mapping can then be used to prove quasi-acceptability of

Parse

sol

wrt S

sol

, which according to Theorem 18 establishes LG-termination

of Parse with respect to S.

kterm(t

1

; t

2

)k � kexpr(t

1

; t

2

)k � kprimary(t

1

; t

2

)k

= 2� termsize(t

1

) + termsize(t

2

) + 1

kt

1

= t

2

k = termsize(t

1

) + termsize(t

2

)

kinteger(n)k = abs(n), if n is an integer

kinteger(t)k = termsize(t), if t is not an integer

ksol(t)k =

8

>

>

<

>

>

:

termsize(t

1

) + termsize(t

2

)

if t is of the form p(t

1

; t

2

) and

p=2 2 fexpr=2; term=2; primary=2;= =2g

termsize(t) otherwise

kp

sol

(

�

t)k = kp(

�

t)k; 8p=n 2 Pred

P

The following set is a superset of Call(Parse

sol

; S

sol

):

fexpr(l; t); term(l; t); primary(l; t);

integer(g); sol(t); expr

sol

(l; t);

term

sol

(l; t); primary

sol

(l; t) j l is a ground list of atoms,

t is any term and g is a ground termg

As Fun

Parse

sol

is a �nite set and jjAjj is de�ned in terms of the termsize of all

arguments ofA, jj:jj is �nitely partitioning.We can then prove quasi-acceptability

of Parse

sol

wrt S

sol

. Consider the �rst clause de�ning expr=2 and take any

atom expr(l; t) 2 Call(Parse

sol

; S

sol

) such that mgu(expr(l; t); expr(A;B)) = �

exists. Obviously, kexpr(l; t)k � kterm(A;B)�k as expr(l; t) = expr(A;B)�.

To prove that kexpr(l; t)k � ksol(term(A;B))��

2

k for any �

2

such that �

2

is a computed answer substitution for term(A;B)�, we need the following

observation. In the following, let t

1

; t

2

2 Term

Parse

sol

. The set:

fexpr(t

1

; t

2

); term(t

1

; t

2

); primary(t

1

; t

2

) j termsize(t

1

) � termsize(t

2

)g [

fexpr

sol

(t

1

; t

2

); term

sol

(t

1

; t

2

); primary

sol

(t

1

; t

2

) j termsize(t

1

) � termsize(t

2

)g

[ft

1

= t

2

j termsize(t

1

) = termsize(t

2

)g [finteger(n) j n is an integerg

is a model of Parse

sol

.

Now, whenever �

2

is a computed answer substitution for term(A;B)�, ��

2

is a grounding substitution. Consequently, for term(A;B)��

2

, termsize(A��

2

) �

termsize(B��

2

). Therefore and because A� is ground, we have that

kexpr(l; t)k = kexpr(A;B)�k = 2� termsize(A�) + termsize(B�) + 1

� 2� termsize(A��

2

)

� termsize(A��

2

) + termsize(B��

2

)

= ksol(term(A;B))��

2

k

Consider now the second clause of expr=2. Again, take any atom expr(l; t) 2

Call(Parse

sol

; S

sol

) such that mgu(expr(l; t); expr(A;B)) = � exists. We can

apply the same arguments as above to infer that kexpr(l; t)k � kexpr(A;C)�k

and that kexpr(l; t)k � ksol(expr(A;C))��

2

k, �

2

being as above. To prove that

kexpr(l; t)k � kC = [+jD]��

3

k for any �

3

such that �

3

is a computed answer

substitution for (expr(A;C); sol(expr(A;C)))�, we need the observation that

expr(A;C)��

3

is ground and thus termsize(A��

3

) � termsize(C��

3

). Therefore

and because A� is ground, we have that:

kexpr(l; t)k = 2� termsize(A��

3

) + termsize(B�) + 1

� termsize(C��

3

) + 1 � kC = [+jD]��

3

k

We can use similar arguments on all remaining atoms and clauses.

