
Termination Analysis of Active Rules A Petri Net
Based Approach

Lorena Chavarría Báez
Programming and System Development Department

Superior School of Computing,
National Polytechnic Institute

Mexico, D. F.
lchavarria@computacion.cs.cinvestav.mx

Xiaoou Li
Computer Science Department

CINVESTAV IPN
Mexico, D. F.

lixo@cs.cinvestav.mx

Abstract—Active rules allow software systems behave auto
matically when relevant events take place. Due to unstructured
rule processing, it is necessary to inspect behavior characteris
tics such as termination which guarantees that rule processing
finishes.

In this paper we introduce potential termination concept which
gives valuable information about those rules whose processing
may not terminate during execution time. It is very useful to
manage possible bad scenarios. We also describe our Petri net
based approach to effectively detect termination and potential
termination problems.

Keywords: Active rule, termination, potential termination,
CCPN.

I. INTRODUCTION

Active rules allow software systems to specify actions to
be performed automatically when certain relevant events take
place and some conditions are met. Several applications, such
as smart homes [7], sensor [5] and active databases [4], [6],
integrate active rules for the management of some of their
important activities.

An active rule consists of three parts: an Event, a Condition
and an Action, so it is also called an ECA rule. The occurrence
of an event can generate many rules may fire and the execution
of them may cause other rules to be firable. This rule execution
process is performed non deterministically and, as result, it is
quite difficult (even for a small rule set) to predict the rule set
behavior. Two desirable properties of active rule behavior are
termination and con uence. A rule set is guaranteed to termi
nate if rule execution processing cannot continue indefinitely.
A rule set is con uent if for any initial system state the final
state is independent of the rule execution order.

Several works have been proposed in the literature to
analyze static properties of active rules, e.g. termination and
con uence. Some approaches tackled the problem based on
triggering and execution graphs analysis [8], [9]. A triggering
graph is a directed graph whose nodes represent the rules and
whose edges indicate that a rule produces an event that may
trigger another rule. If the graph is acyclic, rule execution
terminates. In execution graphs, nodes represent the state and
directed edges are labeled with the name of the rule whose
execution makes the system switch from one state to another.

If the graph is acyclic and every pair of rules commute, the rule
execution process is con uent. In order to describe termination
completely information of both graphs has to be used. In
reference [6] the authors propagate the effect of the action
part of a condition action rule to the condition part of another
rule to determine if the arcs of the triggering graph have to be
included in the graph and to verify if two rules commute. In
some cases, the proposed propagation algorithm may produce
incorrect results. In reference [1] the authors translate a set
of active rules into logical clauses and then apply results
about termination and con uence available in the literature for
deductive rules to conclude about fulfilment of those properties
in active rules. In reference [2], con uence is investigated
by using a rewriting technique. A user defined transaction is
translated by means of active rules into an induced one(s) and
then they check their equivalence. This work doesn’t address
termination issue.

In this paper we present an approach for analyzing ter
mination in an active rule base (ARB). First, we introduce
traditional termination conception, additionally we introduce
for the first time the concept potential termination which
represents situations in which rule processing may terminate or
not. Second, we develop a Petri net based method for detecting
termination and potential termination in an ARB. Our method
is performed in three steps: “Rule Normalization” is done in
order to simplify later analysis. “Rule Modeling” is executed to
represent the ARB as a Conditional Colored Petri Net (CCPN)
structure. “Termination Analysis” is carried out to identify
structures that may have termination problems. Since rule type
transitions in CCPN model stand for rules, we actually obtain
the rules that may exhibit abnormal behavior and termination is
investigated by analyzing their interaction. The main contribu
tions of this paper are the introduction of potential termination
concept and the development of CCPN based method to detect
both termination and potential termination.

II. ACTIVE RULES

An active rule has both knowledge and execution models.
The general form of an active rule is the following:

ON event
IF condition

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
2274

THEN action
An event is something that occurs at a point in time. It

can be of two types: primitive or composite. An event is
primitive when it cannot be decomposed in smaller events,
for example, a transaction in database operation. An event is
composite when it is defined by some combination of primitive
or composite events using a range of operators that constitute
the event algebra. In this paper we will consider disjunction
-OR(E1,E2) and conjunction AND(E1, E2) operators. The
condition examines the context in which the event has taken
place. The action describes the task to be carried out by the
rule if the condition is fulfilled once an event has taken place.

In the following there are some active rules which were
taken from [6]. They are part of an active database system (it
consists of a traditional database and an ARB). The relation
scheme account(num, name, balance, rate) is part of the
database, it contains tuples about bank’s accounts. Rules in the
ARB established on relation scheme account automatically
enforce some of the bank’s policies for managing customers’
accounts. Below there is an informal description of the rules.

Example 1: Bank’s policies for managing customers’ ac
counts.

Policy 1: When an new account is registered, if that account
has a balance less than 500 and an interest rate greater than
0%, then that account’s interest rate is lowered to 0%.

Policy 2: When an account’s interest rate is modified, if an
account has a balance less than 500 and an interest rate greater
than 0%, then that account’s interest rate is lowered to 0%.

Policy 3: When an account’s balance is modified, if that
account has an interest rate greater than 1% but less than 3%,
then that account’s interest rate is raised to 2%.

Policy 4: When an account’s balance is modified, if that
account has an interest rate greater than 1% but less than 3%,
then that account is deleted.

Above policies are represented as active rules as follows:
Rule 1
ON insert account
IF insert.balance 500 and insert.rate 0
THEN update account set rate = 0

where balance 500 and rate 0
Rule 2
ON update account.rate
IF update.balance 500 and update.rate 0
THEN update account set rate = 0

where balance 500 and rate 0
Rule 3
ON update account.balance
IF update.rate 1 and update.rate 3
THEN update account set rate = 2

where rate 1 and rate 3
Rule 4
ON update account.balance
IF update.rate 1 and update.rate 3
THEN delete from account

where rate 1 and rate 3

The execution model of an active rule specifies how a rule
base is treated at run time. There are several phases during
rule execution that require special attention:

1) Signaling phase refers to the appearance of an event
occurrence caused by an event source.

2) Triggering phase takes the events produced thus far, and
triggers the corresponding rules.

3) Evaluation phase evaluates the condition of the triggered
rules. The rule con ict set is formed from all rules whose
condition is satisfied.

4) Scheduling phase indicates how the rule con ict set is
processed.

5) Execution phase carries out the actions of the chosen
rules. During the action execution other events can in
turn be signaled that may produce a cascade rule firing.

Let’s show ECA rule execution process with rule base of
Example 1. Suppose the event “update account.balance” has
been detected (signaling phase), then Rule 3 and Rule 4 are
triggered (triggering phase). After the event has been detected,
conditions of Rule 3 and Rule 4 must be evaluated in order
to determine if their corresponding actions can be executed
(evaluation phase). Let’s assume the condition update.rate
1 and update.rate 3 is true, then it is necessary to schedule
the rule execution (scheduling phase). For simplicity, rule
execution will be done by following the order of rules in the
list. Therefore, Rule 3’s action will be executed first, only
then Rule 4’s action will be executed (execution phase). After
Rule 3’s action execution, the event “update account.rate”
is signaled, so Rule 2 is triggered and execution process is
repeated until there is no rule eligible to trigger, this is a rule
execution chain. On the other hand, when Rule 4’s action is
executed, rule processing finishes since there is no rule such
that is triggered by the event “delete from account”.

During rule execution rules interact in different ways, they
can trigger, activate/deactivate and commute each other. A
rule triggers another rule if the action of the former generates
the event that the latter is overseeing. For example, in above
rule execution process, after execution phase finishes, Rule 3
triggers Rule 2 because Rule 3’ action coincides with Rule
2’s event. A rule activates (deactivates) another rule when the
condition of the last one is true (false) after the action execution
of the former rule. Rule 3 activates Rule 2 because when
Rule 3 executes its action it makes Rule 2’s condition true.
On the other hand, Rule 4 deactivates Rule 3 since the former
takes away data which satisfy Rule 3’s condition. Two rules
commute each other if they don’t activate/deactivate each other
and their actions commute. Since Rule 4 deactivates Rule 3,
those rules cannot commute because of different final results
are obtained when Rule 4 is executed before Rule 3 and vice
versa.

Rule interaction is an important issue in inspecting relevant
characteristics of rule behavior such as termination which
verifies if rule processing is guaranteed to finish.

For simplicity, from now onwards we denote an active rule
as () where and are the event, condition and action
of rule respectively. An ARB is formed by a set of active

2275

rules 1 2 , i. e., = { 1 2 } where =
1 has the described form ().

III. TERMINATION ANALYSIS

Active rules’ behavior can be modeled by many graphical
representations such as triggering [10], activation [11] and
evolution [12] graphs. However, modeling characteristics of
Petri nets, particularly Conditional Colored Petri Nets (CCPN)
[3], make them a suitable tool for representing both rule
behavior and rule elements cooperation.

A. Definitions

Termination problems arise when in an ARB there exists
circular rules.

Definition 1: Circular rules. If in R, there exists a trig
gering rule sequence where triggers and
activates and so on, and triggers and activates then
rules are circular rules. A special case is when
rule triggers and activates itself indefinitely.

In ARB of Example 1, although Rule 2 triggers itself it
doesn’t activate itself, since its condition becomes false after
its action is performed. So, it is not a circular rule and its
processing is guaranteed to terminate.

Sometimes it is not possible to accurately determine if
circular rules processing will finish. Then we propose the
concept potential termination. We identified two circumstances
under which circular rule processing may not terminate.

Definition 2: Potential termination. Given a triggering
rule sequence , its processing may not terminate in the
following cases:

1) When it is not possible to determine if acti
vates/deactivates +1.

2) When “pseudo triggers” +1.
In the first case, rule processing will not finish until we

have a system state in which becomes false. Let’s modify
Rule 2’s condition of above Example 1 as follows:

Rule 2’
ON update account.rate
IF update.balance 500
THEN update account set rate = 0

where balance 500
It is clear that action execution of Rule 2’ neither activates

nor deactivates its condition. So, once its processing has
started, rule processing is not going to finish until there is
a new database state in which attribute balance takes a value
greater than 500.

In the second case, we need to define pseudo triggering
relation.

Definition 3: A rule pseudo triggers +1 if +1,
i.e., partially produces the needed events to trigger +1

Let’s consider the following rule Rule 2”:
Rule 2”
ON AND(update account.rate, update account.balance)
IF update.balance 500 and update.rate 0
THEN update account set rate = 2

where balance 500 and rate 0

Step 2: Rule Modeling

Rule
Base

Step 3: Termination Analysis

Step 2.1:
ECA – CCPN
Conversion

Step 1:
Rule
Normalización

Step 2.2:
Incidence Matrix
Generation

Step 3.1:
Termination Structure
Detection

Step 3.2:
Rule Interaction
Analysis

List of Non-
Terminating
Rules

Step 2: Rule Modeling

Rule
Base

Step 3: Termination Analysis

Step 2.1:
ECA – CCPN
Conversion

Step 1:
Rule
Normalización

Step 2.2:
Incidence Matrix
Generation

Step 3.1:
Termination Structure
Detection

Step 3.2:
Rule Interaction
Analysis

List of Non-
Terminating
Rules

Fig. 1. CCPN based termination analysis approach

In this case, Rule 2” pseudo triggers itself since its action
partially produces the needed events to trigger itself.

Termination in a pseudo triggering relation depends on
the events ow. For example, in Rule 2” if event “update
account.balance” raises only once then rule processing
finishes.

Potential termination needs to be supervised to avoid infinite
rule processing during execution time.

B. CCPN Based Analysis Approach

Our analysis is a CCPN based approach which consists of
three steps: Rule Normalization, Rule Modeling, and Termi
nation Analysis. Figure 1 shows the order in which they are
performed.

Rule Normalization step takes the original rule base and
transforms each rule into an atomic one. An atomic rule is that
whose event and condition are a conjunction of one or more
primitive events and conditional clauses, and its action is only
one instruction. This stage is done in order to simplify the later
analysis. In the second step, the atomic rule base is represented
by a CCPN structure and its corresponding incidence matrix.
This representation enables us, in the third step, to detect
termination structures and to extract the rules which may not
fulfill that property. Finally, interaction among extracted rules
is analyzed in order to draw a final conclusion.

1) Step 1: Rule Normalization: Active rules can be classi
fied into the following four types according to event condition
combination pattern.

Rule type 1. Conjunction operator in premise and action.
ON AND(1 2)
IF AND(1 2 · · ·)
THEN AND(1 2)
Rule type 2. Conjunction operator in both event and action,

and disjunction operator in condition.
ON AND(1 2)
IF OR(1 2 · · ·)
THEN AND(1 2)
Rule type 3. Disjunction operator in event and conjunction

operator in both condition and action.
ON OR(1 2)
IF AND(1 2 · · ·)
THEN AND(1 2)
Rule type 4. Disjunction operator in premise and conjunc

tion operator in action

2276

ON OR(1 2)
IF OR(1 2 · · ·)

THEN AND(1 2)

A rule () can always be divided into several
atomic rules by the following steps:

Step 1. If () is atomic, it´s OK. If not, go to Step
2.

Step 2 Transform each element of () into disjunc
tion form, by using rules from the boolean algebra, so that each
element consists of one or more disjuncts each one of them is
a conjunction of one or more instructions. If the transformed
rule has no disjunctions in its elements, then it is an atomic
rule according to the definition. Otherwise, go to the next step.

Step 3 Divide () into a set of atomic rules whose
premises and actions are the obtained disjuncts in Step 2.

The normalizations of above four rule types are:
Normalization 1. Since rules type 1 has no disjuncts in its

premises, its normalization can be done directly by executing
Step 3.

Rule 1.1 Rule 1.n
ON AND(1 2) · · · ON AND(1 2)
IF AND(1 2) IF AND(1 2)
THEN 1 THEN

For rule types 2, 3 and 4, we consider a simple case in
which rules performs only one action. For conjunctive actions,
we only need one step more to divide the conjunctive action
like Normalization 1.

Normalization 2. Rules type 2 can be normalized into a
set of rules with the following form:

Rule 1.1 Rule 1.m
ON AND(1 2) · · · ON AND(1 2)
IF 1 IF
THEN 1 THEN 1

Normalization 3. Rules type 3 are normalized into rules
with the following form:

Rule 1.1 Rule 1.n
ON 1 · · · ON
IF AND(1 2) IF AND(1 2)
THEN 1 THEN 1

Normalization 4. Rules type 4 can be normalized as
follows:

Rule 1.1 Rule 1.2 Rule 1.n
ON 1 ON 1 · · · ON 1

IF 1 IF 2 IF
THEN 1 THEN 1 THEN 1

Rule 2.1 Rule 2.2 Rule 2.n
ON 2 ON 2 · · · ON 2

IF 1 IF 2 IF
THEN 1 THEN 1 THEN 1

...
...

...
...

Rule n.1 Rule n.2 Rule n.m
ON ON · · · ON
IF 1 IF 2 IF
THEN 1 THEN 1 THEN 1

After rule normalization the number of rules may increase
but they don’t affect the behavior of the rule base.

Copy transition

Composite transition

Rule transition Normal arc Inhibitor arc

Primitive place

Copy placeVirtual place

Composite place

Copy transition

Composite transition

Rule transition Normal arc Inhibitor arc

Primitive place

Copy placeVirtual place

Composite place

Fig. 2. List of CCPN elements

Copy structure

Original place

Copy places

Copy transition

Composite structure

Composite transition

Composite place

Places that form the
composite event

. . .

T1 T2
T1

(b) (c)

Event

Condition

Action

Rule transition

Primitive output place

Basic CCPN structure

Primitive input place

T1

(a)

Copy structure

Original place

Copy places

Copy transition

Composite structure

Composite transition

Composite place

Places that form the
composite event

. . .

T1 T2
T1

(b) (c)

Event

Condition

Action

Rule transition

Primitive output place

Basic CCPN structure

Primitive input place

T1

(a)

Fig. 3. Basic CCPN structures of an active rule

2) Step 2: Rule Modeling: An ARB as well as its interac
tion can be represented by a CCPN [3]. Figure 2 shows the
basic graphical elements of CCPN.

a) Step 2.1: ECA CCPN Conversion: In CCPN, an
active rule is mapped to a transition where its condition is
attached, event and action parts are mapped to input and
output places of the transition, respectively (see Figure 3(a)).
Matching between events and input places has the following
characteristics:

1) Primitive places, represent primitive events.
2) Composite places, represent composite events such as

AND.
3) Copy places, are used when one event triggers two or

more rules. A copy place takes the same information as
its original one.

4) Virtual places are used to represent the composite event
OR. Since after Rule Normalization there are only event
conjunctions we don’t elaborate on this.

Rules and transitions are related in the following form:

1) Rule transitions, represent rules.
2) Composite transitions, represent composite event gener

ation.
3) Copy transitions, duplicate one event for each triggered

rule.

Whenever an event triggers two or more rules it has to
be duplicated by means the copy structure depicted in Figure
3(b). Composite events formation is considered in CCPN
using the composite structure drawn in Figure 3(c). Composite
transition’s input places represent all the events needed to form
a composite event while its output place correspond to the
whole composite event. The CCPN model of a set of ECA
rules is formed by connecting those places that represent both
the action of one rule and the event of another rule.

b) Step 2.2: Incidence matrix generation: Incidence
matrix shows ow relations between places and transitions in
CCPN. Rows of the matrix represent transitions and columns

2277

.

e0

t0 tm

(a) Circular triggering sequence (b) Self circular triggering sequence

e0

t0

e1

t1

(c) Potential circular triggering sequence

e0

.

e1

e2

t1 tm

t0

.

e0

t0 tm

(a) Circular triggering sequence (b) Self circular triggering sequence

e0

t0

e1

t1

e0

t0

e1

t1

(c) Potential circular triggering sequence

e0

.

e1

e2

t1 tm

t0

e0

.

e1

e2

t1 tm

t0

Fig. 4. CCPN structures for (potential) circular triggering sequences

represent places. The absolute value of an element Ai,j repre
sents the weight of the arc that connects the transition i with
the place j. If the value of Ai,j is zero it means that there is not
connection between the transition i and the place j. An entry
Ai,j with negative value means that place j is an input place for
the transition i. An entry Ai,j with positive value means that
place j is an output place for the transition i.

3) Step 3: Termination Analysis: It is performed in two
steps: first, we find all the loops in CCPN. Second, we inspect
rule interaction among rules involved in loops.

a) Step 3.1: Termination Structure Detection: In CCPN
termination is depicted by (potential) circular triggering se
quences. A triggering sequence is defined below:

Definition 4: Triggering sequence. A triggering sequence,
S, is a finite path of the form: (1 1) (1 2) (2 3)

(1) where:
is a primitive place = 1
is a rule typed transition = 1 1

1 =
•

1 =
•

In above definition, a primitive place 1 is both an output
place of a rule transition 1 and an input place of transition

which means that action of rule 1 is the event that
triggers the rule . When in a triggering sequence • =
or some pair is already considered in the path, the sequence
is complete. If = 1, then we have a circular triggering
sequence, whose CCPN structure is showed in Figure 4(a).
Figure 4(b) depicts the CCPN structure for rules whose event
and action are the same. Copy typed transition was added to
make a pure CCPN, i.e., to avoid self loops. Finally, Figure
4(c) stands for potential circular triggering sequences.

As a traditional Petri net, cycles can be detected by com
puting T invariants over incidence matrix of CCPN. However,
potential termination caused by pseudo triggering relations
cannot be identified by this method. In this case, we compute
circular triggering sequences by following negative/positive
entries in columns/rows of incidence matrix. Then, potential
circular triggering sequence information is completed with data
about events which are not part of the cycle to have a complete
scenario of all the loop causes. For example, in Figure 4(c)
information of place 0 is added to circular triggering sequence
= {(1 0) (0 2) (1)} since 0 is necessary to

form the cycle.
b) Step 3.2 Rule Interaction Analysis: Rule interaction

analysis checks if the rules computed in previous step are

circular rules. According to Definition 1 circular rules triggers
and activates each other. Rule 2 triggers itself, so, we need to
check if it activates itself also.

Our definition of rule activation is based on our condition’s
domain concept.

Definition 5: Domain of a condition. The domain of a
condition , denoted by Dom() is the set of information that
satisfies condition

Below definition gives the notion of rule activation.
Definition 6: Rule activation. A rule activates +1

if after execution +1 changes from the state in which
Dom(+1) = to Dom(+1) 6=

Dom(+1) 6= means that there is data satisfying +1, so,
+1 is true after execution and activates +1.
In this paper we consider simple conditions of the form

where is an attribute belonging of a relation,
is a constant value and = {= 6= > 6} However, we
can analyze complex conditions even using SQL statements.

We say that activates +1 if the following conditions are
met:

1) performs “insert” or “update” operations, i.e.,
produces new data.

2) modifies the same relation and attribute as the con
dition +1 supervises, i.e., it checks if changes the
same attributes in the same relation than

3) assigns a value to the attribute such that
(+1) i.e., it verifies if the new data satisfies +1.

Potential termination is investigated taking into account
both rule activation and information about events not con
sidered in the cycle. For example, if in sequence =
{(1 0) (0 2) (1)} of Figure 4(c) all the transitions
activate each other and 0 is always ready then then cycle will
occur.

IV. EXAMPLE

Let’s consider the rule base of Example 1 to demonstrate
our analysis approach. Rules in the rule base can be easily
implemented in a real database system in the form of triggers,
so it is very important to assure its proper performance before
they are delivered.

Rule Normalization step is not necessary since all rules are
atomic.

During Rule Modeling stage, first, the rule base is modeled
as a CCPN structure. Figure 5 shows the complete CCPN
model of rules as well as a brief description of places. Each
rule typed transition is attached with the rule’s condition that
it represents. For example, transition t0 evaluates Rule 1’s
conditions and also represents Rule 1. Primitive input and
output places of each rule typed transition represent events
and actions of the rule, respectively. CCPN graphical structure
makes clear relationships among rules. For example, it is
evident that Rule 3 and Rule 4 are triggered by the same
event.

Then, we compute the incidence matrix of CCPN in Figure
5. It is showed in Figure 6 and it contains the same information
as the original CCPN but in a summarized form.

2278

e3

e4

t3

t5[Rule 4]

e5e0

t4[Rule 3]t0[Rule 1]

e6e1

t1t2[Rule 2]

e2
delete from
account

e6 [Primitive]

Copy of e1e5 [Copy]

Copy of e1e4 [Copy]

update
account.balance

e3 [Primitive]

Copy of e1e2 [Copy]

update
account.rate

e1 [Primitive]

insert accounte0 [Primitive]

Event/ActionPlace [Type]

delete from
account

e6 [Primitive]

Copy of e1e5 [Copy]

Copy of e1e4 [Copy]

update
account.balance

e3 [Primitive]

Copy of e1e2 [Copy]

update
account.rate

e1 [Primitive]

insert accounte0 [Primitive]

Event/ActionPlace [Type]

Fig. 5. CCPN of Example 1

1-100000t5

00-10001t4

011-1000t3

0000-110t2

00001-10t1

000001-1t0

e6e5e4e3e2e1e0

1-100000t5

00-10001t4

011-1000t3

0000-110t2

00001-10t1

000001-1t0

e6e5e4e3e2e1e0

Fig. 6. Incidence matrix of CCPN in Figure 5

Finally, in Termination Analysis step, we compute all the
circular triggering sequences in CCPN using its incidence
matrix representation. We found that 1 = (1 2) (2 1)
is a circular triggering sequence.

Since rule typed transition 2 stands for Rule 2, we need
to confirm if it activates itself. Checking activation conditions
for Rule 2, we have:

1) 2 performs “update” operation.
2) 2 modifies relation account and attribute rate. 2

supervises that rate 0.
3) 2 performs rate = 0, it doesn’t belong to (0 +) which

is part of Dom(2).

Since condition 3 is not satisfied by Rule 2’s action, that
rule is not a circular one. Then, although Rule 2 depicts a self
loop its processing always finishes. Therefore, termination is
assured for the complete rule base.

V. CONCLUSION

In this paper we have addressed the analysis of termination
property in an active rule base. First, we describe the traditional
termination property and novelty introduce potential termina
tion concept. This concept is very useful to foresee and manage
those rules whose processing may not terminate at runtime.
Second, we describe a CCPN based method for accurately
detect both termination and potential termination. Our work
gives a complete framework for analyzing termination, an
important characteristic of rule behavior.

REFERENCES

[1] S. Comani, L. Tanca. Termination and Con uence by Rule Prioritization,
IEEE Trans. on Knowl. and Data Eng., Vol. 15, No. 2, pp. 257 270, 2003.

[2] D. Montesi, and R. Torlone, Analysis and Optimization of Active
Databases, Data and Knowledge Engineering, Vol. 40, pp. 241 271,
2002.

[3] X. Li, J. Medina Marín, and Chapa S., “Applying Petri Nets on Active
Database Systems”, IEEE Trans. on System, Man, and Cybernetics, Part
C: Applications and Reviews, Vol. 37, No. 4, pp. 482 493, 2007.

[4] N. Paton, O. Díaz, Active Database Systems, ACM Computing Surveys,
Vol. 31, No. 1, pp. 62 103, 1999.

[5] M. Zoumboulakis, G. Roussos and A. Poulovassilis, Active Rules for
Sensor Databases, in Proc. of the 1st Intl. Workshop on Data Manage
ment for Sensor Networks: in conjunction with VLDB 2004, Toronto,
Canadá, pp. 98 103, 2004

[6] E.Baralis, J. Widom, An Algebraic Approach to Static Analysis of Active
Database Rules, ACM Trans. on Database Systems, Vol. 25 , Issue 3,
pp. 269 332, 2000.

[7] J. C. Augusto, and C. Nugent, A New Architecture for Smart Homes
Based on ADB and Temporal Reasoning, in Toward a Human Friendly
Assistive Environment (Proc. of 2nd Intl. Conf. on Smart homes and
health Telematic, ICOST2004), Assistive Technology Research Series,
Vol. 14, pp. 106 113, IOS Press, Singapore, September 15 17, 2004.

[8] A. Aiken, J. Widom, and J M. Hellerstein, Behavior of Database Pro
duction Rules: Termination, Con uence, and Observable Determinism,
in Proc. of ACM SIGMOD, Intl. Conf., pp. 59 68, 1992.

[9] E. Baralis, S. Ceri, and S. Paraboschi, Improved Rule Analysis by Means
of Triggering and Activation Graphs, in Proc. First Intl. Workshop Rules
in Database Systems, Aug. 1993.

[10] M. K. Tschudi, S. D. Urban, S. W. Dietrich, and A. P. Karadimce,
An Implementation and Evaluation of the Refined Triggering Graph
Method for Active Rule Termination Analysis, in Proc. of the Third Intl.
Workshop on Rules in Database Systems, Lecture Notes In Computer
Science, Vol. 1312, pp: 133 148, 1997.

[11] E. Baralis, S. Ceri, S. Paraboschi, Improved Rule Analysis by Means
of Triggering and Activation Graphs, in Proc. of 2nd Intl. Workshop on
Rules in Database Systems, RIDS ’95, LNCS vol. 985, pp. 165 181,
Athens, Greece, 1995.

[12] H. Harb, H. Kelash and A. Shehata, Termination Analysis in Active
Database by using Evolution Graphs, in Proc. of 3th Intl. Conf. on
Information & Communications Technology, 5 6 Dec., 2005, Cairo,
Egypt, pp. 781 791, 2005.

2279

