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Abstract. We consider nondeterministic probabilistic programs with
the most basic liveness property of termination. We present efficient
methods for termination analysis of nondeterministic probabilistic pro-
grams with polynomial guards and assignments. Our approach is through
synthesis of polynomial ranking supermartingales, that on one hand sig-
nificantly generalizes linear ranking supermartingales and on the other
hand is a counterpart of polynomial ranking-functions for proving termi-
nation of nonprobabilistic programs. The approach synthesizes polyno-
mial ranking-supermartingales through Positivstellensatz’s, yielding an
efficient method which is not only sound, but also semi-complete over
a large subclass of programs. We show experimental results to demon-
strate that our approach can handle several classical programs with com-
plex polynomial guards and assignments, and can synthesize efficient
quadratic ranking-supermartingales when a linear one does not exist even
for simple affine programs.

1 Introduction

Probabilistic Programs. Classic imperative programs extended with random-value
generators give rise to probabilistic programs. Probabilistic programs provide
the appropriate framework to model applications ranging from randomized algo-
rithms [17,38], to stochastic network protocols [5,34], to robot planning [30,33],
etc. Nondeterminism plays a crucial role in modeling, such as, to model behaviors
over which there is no control, or for abstraction. Thus nondeterministic proba-
bilistic programs are crucial in a huge range of problems, and hence their formal
analysis has been studied across disciplines, such as probability theory and sta-
tistics [18,28,32,39,42], formal methods [5,34], artificial intelligence [30,31], and
programming languages [10,19,21,43].

Basic Termination Questions. Besides safety properties, the most basic property
for analysis of programs is the liveness property. The most basic and widely used
notion of liveness for programs is termination. In absence of probability (i.e., for
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nonprobabilistic programs), the synthesis of ranking functions and proof of ter-
mination are equivalent [22], and numerous approaches exist for synthesis of
ranking functions for nonprobabilistic programs [8,13,40,48]. The most basic
extension of the termination question for probabilistic programs is the almost-
sure termination question which asks whether a program terminates with proba-
bility 1. Another fundamental question is about finite termination (aka positive
almost-sure termination [7,21]) which asks whether the expected termination
time is finite. The next interesting question is the concentration bound compu-
tation problem that asks to compute a bound M such that the probability that
the termination time is below M is concentrated, or in other words, the proba-
bility that the termination time exceeds the bound M decreases exponentially.

Previous Results. We discuss the relevant previous results for termination analy-
sis of probabilistic programs.

– Probabilistic Programs. First, quantitative invariants was introduced to estab-
lish termination of discrete probabilistic programs with demonic nondetermin-
ism [35,36], This was extended in [10] to ranking supermartingales resulting
in a sound (but not complete) approach to prove almost-sure termination of
probabilistic programs without nondeterminism but with integer- and real-
valued random variables from distributions like uniform, Gaussian, and Poison,
etc. For probabilistic programs with countable state-space and without non-
determinism, the Lyapunov ranking functions provide a sound and complete
method for proving finite termination [7,23].Another soundmethod is to explore
bounded-termination with exponential decrease of probabilities [37] through
abstract interpretation [15]. For probabilistic programs with nondeterminism,
a sound and complete characterization for finite termination through ranking-
supermartingale is obtained in [21]. Ranking supermartingales thus provide a
very powerful approach for termination analysis of probabilistic programs.

– Ranking Functions/Supermartingales Synthesis. Synthesis of linear ranking-
functions/ranking-supermartingales has been studied extensively in [10,12,13,
40]. In context of probabilistic programs, the algorithmic study of synthesis of
linear ranking supermartingales for probabilistic programs (cf. [10]) and prob-
abilistic programs with nondeterminism (cf. our previous result [12]) has been
studied. The major technique adopted in these results is Farkas’ Lemma [20]
which serves as a complete reasoning method for linear inequalities. Beyond
linear ranking functions, polynomial ranking functions have also been consid-
ered. Heuristic synthesis method of polynomial ranking-functions is studied
in [4,9]: Babic et al. [4] checked termination of deterministic polynomial pro-
grams by detecting divergence on program variables and Bradley et al. [9]
extended to nondeterministic programs through an analysis on finite differ-
ences over transitions. More general methods for deterministic polynomial
programs are given by [14,47] where Cousot [14] uses Lagrangian Relaxation,
and Shen et al. [47] use Putinar’s Positivstellensatz [41]. Complete meth-
ods of synthesizing polynomial ranking-functions for nondeterministic pro-
grams are studied by Yang et al. [50], where a complete method through root
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classification/real root isolation of semi-algbebraic systems and quantifier
elimination is proposed.

To summarize, while many different approaches has been studied, the algorithmic
study of synthesis of ranking supermartingales for probabilistic programs has
only been limited to linear ranking supermartingales (cf. [10,12]). Hence there
is no algorithmic approach to handle nonlinear ranking supermartingales even
for probabilistic programs without nondeterminism.
Our Contributions. Our contributions are as follows:

1. Polynomial Ranking Supermartingales. First, we extend the notion of linear
ranking supermartingales (LRSM) to polynomial ranking supermartingales
(pRSM). We show (by a straightforward extension of LRSM) that pRSM
implies both almost-sure as well as finite termination.

2. Positivstellensatz’s. Second, we conduct a detailed investigation on the appli-
cation of Positivstellensatz’s (German for “positive-locus-theorem” which is
related to polynomials over semialgebraic sets) (cf. Sect. 5.1) to synthesis
of pRSMs over nondeterministic probabilistic programs. To the best of our
knowledge, this is the first result which demonstrates the synthesis of a poly-
nomial subclass of ranking supermartingales through Positivstellensatz’s.

3. New Approach for Non-probabilistic Programs. Our results also extend exist-
ing results for nonprobabilistic programs. We present the first result that
uses Schmüdgen’s Positivstellensatz [45] and Handelman’s Theorem [25] to
synthesize polynomial ranking-functions for nonprobabilistic programs.

4. Efficient Approach. The previous complete method [50] suffers from high com-
putational complexity due to the use of quantifier elimination. In contrast,
our approach (sound but not complete) is efficient since the synthesis can be
accomplished through linear or semi-definite programming, which can mostly
be solved in polynomial time in the problem size [24]. In particular, our app-
roach does not require quantifier elimination, and works for nondeterministic
probabilistic programs.

5. Experimental Results. We demonstrate the effectiveness of our approach on
several classical examples. We show that on classical examples, such as Gam-
bler’s Ruin, and Random Walk, our approach can synthesize a pRSM effi-
ciently. For these examples, LRSMs do not exist, and many of them cannot
be analysed efficiently by previous approaches.

In summary, while Farkas’ Lemma and Motzkin’s Transposition Theorem are stan-
dard techniques to linear ranking functions or linear ranking supermartingales,
they are not sufficient for synthesizing polynomial ranking-supermartingales. To
address this problem, we study the use of Positivstellensatz’s for the first time
to synthesize polynomial ranking-supermartingales for probabilistic programs, for
some of them even the first time for nonprobabilistic programs, and show that how
they can be used for efficient termination analysis over programs. Due to space
restrictions, some technical details are available only in the full version [11].
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2 Probabilistic Programs

2.1 Basic Notations and Concepts

For a set A, we denote by |A| the cardinality of A. We denote by N, N0, Z,
and R the sets of all positive integers, non-negative integers, integers, and real
numbers, respectively. We use boldface notation for vectors, e.g. x , y , etc., and
we denote an i-th component of a vector x by x [i].

Polynomial Predicates. Let X be a finite set of variables endowed with a fixed
linear order under which we have X = {x1, . . . , x|X|}. We denote the set of real-
coefficient polynomials by R

[
x1, . . . , x|X|

]
or R[X]. A polynomial constraint over

X is a logical formula of the form g1��g2, where g1, g2 are polynomials over X and
��∈ {<,≤, >,≥}. A propositional polynomial predicate over X is a propositional
formula whose all atomic propositional literals are either true, false or polynomial
constraints over X. The validity of the satisfaction assertion x |= φ between a
vector x ∈ R

|X| (interpreted in the way that the value for xj (1 ≤ j ≤ |X|) is
x [j]) and a propositional polynomial predicate φ is defined in the standard way
w.r.t polynomial evaluation and normal semantics for logical connectives. The
satisfaction set of a propositional polynomial predicate φ is defined as �φ� :=
{x ∈ R

|X| | x |= φ}. For more on polynomials (e.g., polynomial evaluation and
arithmetic over polynomials), we refer to the textbook [29, Chapter 3].

Probability Space. A probability space is a triple (Ω,F , P), where Ω is a non-
empty set (so-called sample space), F is a σ-algebra over Ω (i.e., a collection
of subsets of Ω that contains the empty set ∅ and is closed under comple-
mentation and countable union), and P is a probability measure on F , i.e., a
function P : F → [0, 1] such that (i) P(Ω) = 1 and (ii) for all set-sequences
A1, A2, · · · ∈ F that are pairwise-disjoint (i.e., Ai ∩ Aj = ∅ whenever i �= j) it
holds that

∑∞
i=1 P(Ai) = P (

⋃∞
i=1 Ai).

Random Variables and Filtrations. A random variable X in a probability space
(Ω,F , P) is an F-measurable function X : Ω → R ∪ {−∞,+∞}, i.e., a function
satisfying the condition that for all d ∈ R∪{+∞,−∞}, the set {ω ∈ Ω | X(ω) ≤
d} belongs to F . The expected value of a random variable X, denote by E(X), is
defined as the Lebesgue integral of X with respect to P, i.e., E(X) :=

∫
X dP ;

the precise definition of Lebesgue integral is somewhat technical and is omitted
here (cf. [6, Chapter 5] for a formal definition). A filtration of a probability
space (Ω,F , P) is an infinite sequence {Fn}n∈N0 of σ-algebras over Ω such that
Fn ⊆ Fn+1 ⊆ F for all n ∈ N0.

2.2 Probabilistic Programs

The Syntax. The class of probabilistic programs we consider encompasses
basic programming mechanisms such as assignment statement (indicated by
‘:=’), while-loop, if-branch, basic probabilistic mechanisms such as probabilis-
tic branch (indicated by ‘prob’) and random sampling, and demonic nondeter-
minism indicated by ‘�’. Variables (or identifiers) of a probabilistic program
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are of real type, i.e., values of the variables are real numbers; moreover, vari-
ables are classified into program and sampling variables, where program variables
receive their values through assignment statements and sampling variables do
through random samplings. We consider that each sampling variable r is bounded,
i.e., associated with a one-dimensional cumulative distribution function Υr and
a non-empty bounded interval suppr such that any random variable z which
respects Υr satisfies that z lies in the bounded interval with probability 1. Due
to space restriction, details (e.g., grammar) are relegated to the full version [11].
An example probabilistic program is illustrated in Example 1.

Example 1. Consider the running example depicted in Fig. 1, where r is a sam-
pling variable with the two-point distribution {1 �→ 0.5,−1 �→ 0.5} where the
probability to take values 1 and −1 are both 0.5. The probabilistic program
models a scenario of Gambler’s Ruin where the gambler has initial money x and
repeats gambling until he wins more than 10 or loses all his money. The result of
a gamble is nondeterministic: either win 1 with probability 0.5 (nondeterministic
branch); or lose with probability 0.51 (the probabilistic branch). The numbers
1–7 on the left are the program counters for the program, where 1 is the initial
program counter and 7 the terminal program counter.

Fig. 1. Running example: Gambler Ruin Fig. 2. The CFG of the running example

The Semantics. We use control flow graphs to capture the semantics of prob-
abilistic programs, which we define below.

Definition 1 (Control Flow Graph). A control flow graph (CFG) is a tuple
G = (L,⊥, (X,R), �→) with the following components:

– L is a finite set of labels partitioned into four pairwise-disjoint subsets Ld,
Lp,Lc and La of demonic, probabilistic, conditional-branching (branching for
short) and assignment labels, resp.; and ⊥ is a special label not in L called the
terminal label;
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– X and R are disjoint finite sets of real-valued program and sampling variables
respectively;

– �→ is a transition relation in which every member (called transition) is a
tuple of the form (�, α, �′) for which � (resp. �′) is the source label (resp.
target label) in L and α is either a real number in (0, 1) if � ∈ Lp, or �
if � ∈ Ld, or a propositional polynomial predicate if � ∈ Lc, or an update
function f : R

|X| × R
|R| → R

|X| if � ∈ La.

W.l.o.g, we assume that L ⊆ N0. Intuitively, labels in Ld correspond to demonic
statements indicated by ‘�’; labels in Lp correspond to probabilistic-branching
statements indicated by ‘prob’; labels in Lc correspond to conditional-branching
statements indicated by some propositional polynomial predicate; labels in La

correspond to assignments indicated by ‘:=’; and the terminal label ⊥ denotes
the termination of a program. The transition relation �→ specifies the transitions
between labels together with the additional information specific to different types
of labels. The update functions are interpreted as follows: we first fix two linear
orders on X and R so that X = {x1, . . . , x|X|} and R = {r1, . . . , r|R|}, inter-
preting each vector x ∈ R

|X| (resp. r ∈ R
|R|) as a valuation of program (resp.

sampling) variables in the sense that the value of xj (resp. rj) is x [j] (resp. r [j]);
then each update function f is interpreted as a function which transforms a val-
uation x ∈ R

|X| before the execution of an assignment statement into f(x , r)
after the execution of the assignment statement, where r is the valuation on R
obtained from a sampling before the execution of the assignment statement.

It is intuitively clear that any probabilistic program can be naturally trans-
formed into a CFG. Informally, each label represents a program location in an
execution of a probabilistic program for which the statement of the program
location is the next to be executed (see Fig. 2).

In the rest of the section, we fix a probabilistic program P with the set X =
{x1, . . . , x|X|} of program variables and the set R = {r1, . . . , r|R|} of sampling
variables, and let G = (L,⊥, (X,R), �→) be its associated CFG. We also fix �0
and resp. x 0 to be the label corresponding to the first statement to be executed
in P and resp. the initial valuation of program variables.

The Semantics. A configuration (for P ) is a tuple (�,x ) where � ∈ L ∪ {⊥}
and x ∈ R

|X|. A finite path (of P ) is a finite sequence of configurations
(�0,x 0), · · · , (�k,xk) such that for all 0 ≤ i < k, either (i) �i+1 = �i = ⊥
and x i = x i+1 (i.e., the program terminates); or (ii) there exist (�i, α, �i+1) ∈�→
and r ∈ {r ′ | ∀r ∈ R. r ′(r) ∈ suppr} such that one of the following condi-
tions hold: (a) �i ∈ Lp ∪ Ld and x i = x i+1 (probabilistic or demonic transi-
tions), (b) �i ∈ Lc, x i = x i+1 and x i |= α (conditional-branch transitions),
(c) �i ∈ La and x i+1 = α(x i, r) (assignment transitions). A run (of P ) is an
infinite sequence of configurations whose all finite prefixes are finite paths over
P . A configuration (�,x ) is reachable from the initial configuration (�0,x 0) if
there exists a finite path (�0,x 0), · · · , (�k,xk) such that (�,x ) = (�k,xk).

The probabilistic feature of P can be captured by constructing a suitable
probability measure over the set of all its runs. However, before this can be
done, nondeterminism in P needs to be resolved by some scheduler.
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Definition 2 (Scheduler). A scheduler (for P ) is a function which assigns to
every finite path (�0,x0), . . . , (�k,xk) with �k ∈ Ld a transition in �→ with source
label �k.

The behaviour of P under a scheduler σ is standard: at each step, P first
samples a real number for each sampling variable and then evolves to the next
step according to its CFG or the scheduler choice. In this way, the scheduler
and random choices/samplings produce a run over P . Moreover, each scheduler
σ induces a unique probability measure P

σ over the runs of P . In the sequel, we
will use E

σ(·) to denote the expected values of random variables under P
σ.

Random Variables and Filtrations over Runs. We define the following (vectors
of) random variables on the set of runs of P : {θP

n }n∈N0 , {xP
n }n∈N0 and {rP

n }n∈N0 :
each θP

n is the random variable representing the (integer-valued) label at the n-
th step; each xP

n is the vector of random variables such that each xP
n [i] is the

random variable representing the value of the program variable xi at the n-th
step; and each rP

n [i] is the random variable representing the sampled value of the
sampling variable ri at the n-th step. The filtration {HP

n }n∈N0 is defined such
that each σ-algebra HP

n is the smallest σ-algebra that makes all random variables
in {θP

k }0≤k≤n and {xP
k }0≤k≤n measurable. We will omit the superscript P in all

the notations above if it is clear from the context.

Remark 1. Under the condition that each sampling variable is bounded, using
an inductive argument it follows that each xn is a vector of bounded random
variables. Thus E

σ(|xn[i]|) exists for each random variable xn[i].

Below we define the notion of polynomial invariants which logically captures
all reachable configurations. A polynomial invariant may be obtained through
abstract interpretation [15].

Definition 3 (Polynomial Invariant). A polynomial invariant (for P ) is a
function I assigning a propositional polynomial predicate over X to every label
in G such that for all configurations (�,x) reachable from (�0,x0) in G, it holds
that x |= I(�).

3 Termination over Probabilistic Programs

In this section, we first define the notions of almost-sure/finite termination and
concentration bounds over probabilistic programs, and then describe the com-
putational problems studied in this paper. Below we fix a probabilistic program
P with its associated CFG G = (L,⊥, (X,R), �→) and an initial configuration
(�0,x 0) for P .

Definition 4 (Termination [7,12,21]). A run ω = {(�n,xn)}n∈N0 over P is
terminating if �n = ⊥ for some n ∈ N0. The termination time of P is a random
variable TP such that for each run ω = {(�n,xn)}n∈N0 , TP (ω) is the least number
n such that �n = ⊥ if such n exists, and ∞ otherwise. The program P is said
to be almost-sure terminating (resp. finitely terminating) if P

σ(TP < ∞) = 1
(resp. E

σ(TP ) < ∞) for all schedulers σ (for P ).
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Note that E
σ(TP ) < ∞ implies that P

σ(TP < ∞) = 1, but the converse does not
necessarily hold (see [10, Example 5] for an example). To measure the expected
values of the termination time under all (demonic) schedulers, we further define
the quantity ET(P ) := supσ E

σ(TP ).

Definition 5 (Concentration on Termination Time [12,37]). A concentra-
tion bound for P is a non-negative integer M such that there exist real constants
c1 ≥ 0 and c2 > 0, and for all N ≥ M we have P(TP > N) ≤ c1 · e−c2·N .

Informally, a concentration bound characterizes exponential decrease of prob-
ability values of non-termination beyond the bound. On one hand, it can be
used to give an upper bound on probability of non-termination beyond a large
step; and on the other hand, it leads to an algorithm that approximates ET(P )
(cf. [12, Theorem 5]).

In this paper, we consider the algorithmic analysis of the following problems:

– Input: a probabilistic program P , a polynomial invariant I for P and an
initial configuration (�0,x 0) for P ;

– Output (Almost-Sure/Finite Termination): “yes” if the algorithm finds
that P is almost-sure/finite terminating and “fail” otherwise;

– Output (Concentration on Termination): a concentration bound if the
algorithm finds one and “fail” otherwise.

4 Polynomial Ranking-Supermartingale

In this section, we develop the notion of polynomial ranking-supermartingale
which is an extension of linear ranking-supermartingale [10,12]. We fix a prob-
abilistic program P , a polynomial invariant I for P and an initial configuration
(�0,x 0) for P . Let G = (L,⊥, (X,R), �→) be the associated CFG of P , with
X = {x1, . . . , x|X|} and R = {r1, . . . , r|R|}. We first present the general notion
of ranking supermartingale, and then define polynomial ranking supermartingale.

Definition 6 (Ranking Supermartingale [12,21]). A discrete-time stochas-
tic process {Xn}n∈N0 w.r.t a filtration {Fn}n∈N0 is a ranking supermartin-
gale (RSM) if there exist K < 0 and ε > 0 such that for all n ∈ N0,
we have E(|Xn|) < ∞ and it holds almost surely (with probability 1) that
Xn ≥ K and E(Xn+1 | Fn) ≤ Xn − ε · 1Xn≥0 , where E(Xn+1 | Fn) is the
conditional expectation of Xn+1 given Fn (cf. [49, Chapter 9]).

Informally, a polynomial ranking-supermartingale over P is a polynomial instan-
tiation of an RSM through certain function η : (L ∪ {⊥}) × R

|X| → R which
satisfies that each η(�, ·) (for all � ∈ L∪{⊥}) is essentially a polynomial function
over X. Given such a function η, the intuition is to have conditions that make
the stochastic process Xn = η(θn,xn) an RSM. To ensure this, we consider
the conditional expectation E

σ (Xn+1 | Hn); this is captured by an extension of
pre-expectation [10,12] from the linear to the polynomial case. Below we define
L⊥ := L ∪ {⊥}. For a function g : R

|X| × R
|R| → R, we let ER(g, ·) : R

|X| → R
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be the function such that each ER(g,x ) is the expected value E(g(x , r̂)), where
r̂ is any vector of independent random variables such that each r̂ [i] is a random
variable that respects the cumulative distribution function Υri

.

Definition 7 (Pre-Expectation). Let η : L⊥ × R
|X| → R be a function such

that each η(�, ·) (for all � ∈ L⊥) is a polynomial function over X. The function
preη : L⊥ × R

|X| → R is defined by:

– preη(�,x) :=
∑

(�,z,�′)∈	→ z · η (�′,x) if � ∈ Lp (probabilistic transitions);
– preη(�,x) := max(�,�,�′)∈	→ η(�′,x) if � ∈ Ld (nondeterministic transitions);
– preη(�,x) := η(�′,x) if � ∈ Lc and (�, φ, �′) is the only transition in �→ such

that x |= φ (conditional transitions);
– preη(�,x) := ER (g,x) if � ∈ La, where g is the function such that g(x, r) =

η (�′, f(x, r)) and (�, f, �′) is the only transition in �→ (assignment transitions);
and

– preη(�,x) := η(�,x) if � = ⊥ (terminal location).

The following lemma establishes the relationship between pre-expectation and
conditional expectation.

Lemma 1. Let η : L⊥ × R
|X| → R be a function such that each η(�, ·) (for

all � ∈ L⊥) is a polynomial function over X, and σ be any scheduler. Let the
stochastic process {Xn}n∈N0 be defined by: Xn := η(θn,xn). Then for all n ∈ N0,
we have E

σ(Xn+1 | Hn) ≤ preη(θn,xn).

Example 2. Consider the running example in Example 1 with CFG in Fig. 2. Let
η be the function specified in the second and fifth column of Table 1, where
g(x) := (x − 1)(10 − x). Then preη is given in the third and sixth column of
Table 1. Note that the case for i = 2 is obtained from preη(2, x) = max{g(x) +
9.6, g(x) + 9.6}, and the case for i = 3 is from preη(3, x) = ER(h, x), where h is
the function h(y, r) = g(y) − (2y − 11)r − r2 + 10.

We now define the notion of polynomial ranking-supermartingale. The intu-
ition is that we encode the RSM-difference condition as a logical formula, treat
zero as the threshold between terminal and non-terminal labels, and use the
invariant I to over-approximate the set of reachable configurations at each label.
Below for each � ∈ Lc, we define PP(�) to be the propositional polynomial pred-
icate

∨
(�,φ,�′)∈	→,�′ �=⊥ φ; and for � ∈ L\Lc, we let PP(�) := true.

Table 1. η and preη for Example 1 and Fig. 2

i η(i, x) preη(i, x) i η(i, x) preη(i, x)

1 g(x) + 10 11≤x≤10 · (g(x) + 9.8)
+ 1x<1∨x>10 · (−0.2)

5 g(x) + 2x − 1.8 g(x) + 2x − 2

2 g(x) + 9.8 g(x) + 9.6 6 g(x) − 2x + 20.2 g(x) − 2x + 20

3 g(x) + 9.6 g(x) + 9 7 −0.2 −0.2

4 g(x) + 9.6 g(x) + 0.04x + 8.98
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Definition 8 (Polynomial Ranking-Supermartingale). A d-degree poly-
onomial ranking-supermartingale map (in short, d-pRSM) w.r.t (P, I) is a func-
tion η : L⊥ × R

|X| → R satisfying that there exist ε > 0 and K ≤ −ε such that
for all � ∈ L⊥ and all x ∈ R

|X|, the conditions (C1-C4) hold:

– C1: the function η(�, ·) : R
|X| → R is a polynomial over X of order at most d;

– C2: if � �= ⊥ and x |= I(�), then η(�,x) ≥ 0;
– C3: if � = ⊥, then η(�,x) = K;
– C4: if � �= ⊥ and x |= I(�) ∧ PP(�), then preη(�,x) ≤ η(�,x) − ε.

Note that C2 and C3 together separate non-termination and termination by the
threshold 0, and C4 is the RSM difference condition which is intuitively related
to the ε difference in the RSM definition (cf. Definition 6). By generalizing our
previous proofs in [12] (from LRSM to pRSM), we establish the soundness of
pRSMs w.r.t both almost-sure and finite termination.

Theorem 1. If there exists a d-pRSM η w.r.t (P, I) with constants ε,K (cf.
Definition 8), then P is a.s. terminating and ET(P ) ≤ UB(P ) := η(�0,x0)−K

ε .

Example 3. Consider the running example (cf. Example 1) and the function η
given in Example 2. Assuming that the initial valuation satisfies 1 ≤ x ∧ x ≤ 10,
we assign the trivial invariant I such that I(1) = 0 ≤ x ∧ x ≤ 11, I(j) = 1 ≤
x∧x ≤ 10 for 2 ≤ j ≤ 6 and I(7) = x < 1∨x > 10. It is straightforward to verify
that η is a 2-pRSM with ε = 0.2 and K = −0.2 (cf. Definition 8 for ε,K). Hence
by Theorem 1, the program in Example 1 terminates almost-surely under any
scheduler and its expected termination time is at most 5 ·(x0−1) ·(10−x0)+51,
given the initial value x0.

Remark 2. The running example (cf. Example 1) does not admit a linear (i.e.
1-) pRSM since ER(r) = 0 at label 3. This indicates that linear pRSMs may not
exist even over simple affine programs like Example 1. Thus, this motivates the
study of pRSMs even for simple affine programs.

Remark 3. The non-strict inequality symbol ‘≥’ in C2 can be replaced by its
strict counterpart ‘>’ since η + c (c > 0) remains to be a pRSM if η is a pRSM
and K (in C3) is sufficiently small. (By definition, preη+c = preη + c.) Moreover,
the non-strict inequality symbol ‘≤’ in C4 can be replaced by ‘<’ since a pRSM
η and a constant K (for C3) can be scaled by a constant factor (e.g. 1.1) so that
strict inequalities are ensured. Moreover, one can also assume that K = −1 and
ε = 1 in Definition 8. This is because one can first scale a pRSM with constants
ε,K by a positive scalar to ensure that ε = 1, and then safely set K = −1 due
to C2.

Theorem 1 answers the questions of almost-sure and finite termination in a uni-
fied fashion. Generalizing our approach in [12], we show that by restricting a
pRSM to have bounded difference, we also obtain concentration results.

Definition 9 (Difference-Bounded pRSM). A d-pRSM η is difference-
bounded w.r.t a non-empty interval [a, b] ⊆ R if the following conditions hold:
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– for all � ∈ Ld ∪ Lp and (�, α, �′) ∈�→, and for all x ∈ �I(�)�, it holds that
a ≤ η(�′,x) − η(�,x) ≤ b;

– for all � ∈ Lc and (�, φ, �′) ∈�→, and for all x ∈ �I(�) ∧ φ�, it holds that
a ≤ η(�′,x) − η(�,x) ≤ b;

– for all � ∈ La and (�, f, �′) ∈�→, for all x ∈ �I(�)� and for all r ∈ {r′ | ∀r ∈
R. r′[r] ∈ Suppr}, it holds that a ≤ η(�′, f(x, r)) − η(�,x) ≤ b.

Note that if a d-pRSM η with constants ε,K (cf. Definition 8) is difference-
bounded w.r.t [a, b], then from definition a ≤ −ε; one can further assume that
−ε ≤ b since otherwise one can reset ε := −b. By definition, the stochastic
process Xn := η(θn,xn) defined through a difference-bounded pRSM w.r.t [a, b]
satisfies that a ≤ Xn+1 − Xn ≤ b; then using Hoeffding’s Inequality [12,26], we
establish a concentration bound.

Theorem 2. Let η be a difference-bounded d-pRSM w.r.t [a, b] with constants
ε and K. For all n ∈ N, if ε(n − 1) > η(�0,x0), then P(TP > n) ≤
e

− 2(ε(n−1)−η(�0,x0))2

(n−1)(b−a)2 .

From Theorem 2, a difference-bounded d-pRSM η implies a concentration bound
η(�0,x0)

ε + 2.

Example 4. Consider again our running example in Example 1 with invariant
given in Example 3. Let η be the function illustrated in Table 1. One can verify
that the interval [−10.2, 8.6] satisfies the conditions specified in Definition 9 for
η, as the following hold:

– for all x ∈ [1, 10], η(2, x) − η(1, x) = −0.2;
– for all x ∈ [0, 1) ∪ (10, 11], −10.2 ≤ η(7, x) − η(1, x) ≤ −0.2;
– for all x ∈ [1, 10] and i ∈ {3, 4}, η(i, x) − η(2, x) = −0.2;
– for all x ∈ [1, 10] and i ∈ {5, 6}, −9.4 ≤ η(i, x) − η(4, x) ≤ 8.6;
– for all x ∈ [1, 10], η(1, x − 1) − η(5, x) = −0.2;
– for all x ∈ [1, 10], η(1, x + 1) − η(6, x) = −0.2;
– for all x ∈ [1, 10] and r ∈ {−1, 1}, −9.6 ≤ η(1, x + r) − η(3, x) ≤ 8.4 .

Then by Theorem 2, assuming that the program have initial value x0 = 5,

one can deduce that P (TP > 50000) ≤ e− 2·(0.2·49999−30)2

49999·18.82 ≈ 1.3016 · 10−5 .

We end this section with a result stating that whether a (difference-bounded)
d-pRSM exists can be decided (using quantifier elimination).

Theorem 3. For any fixed natural number d ∈ N, the problem whether a
(difference-bounded) d-pRSM w.r.t an input pair (P, I) exists is decidable.

5 The Synthesis Algorithm

In this section, we present an efficient algorithmic approach for solving almost-
sure/finite termination and concentration questions through synthesis of pRSMs.
Instead of computationally-expensive quantifier elimination (cf. Theorem3) we
use Positivstellensatz, which is sound but not complete. Note that by Theorem 1,
the existence of a pRSM implies both almost-sure and finite termination of a
probabilistic program.
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The General Framework. To synthesize a pRSM, the algorithm first sets up a
polynomial template with unknown coefficients. Next, the algorithm finds values
for the unknown coefficients, ε,K (cf. Definition 8) and [a, b] (cf. Definition 9) so
that C2-C4 in Definition 8 and concentration conditions in Definition 9 are sat-
isfied. Note that from Definition 7, each preη(�, ·) is a (piecewise) polynomial
over X whose coefficients are linear combinations of unknown coefficients from
the polynomial template. Instead of using quantifier elimination (cf. e.g. [50] or
Theorem 3), we use Positivstellensatz’s [44]. We observe that each universally-
quantified formula described in C2, C4 and Definition 9 can be decomposed
(through disjunctive normal form of propositional polynomial predicate or trans-
formation of max in Definition 7 into two conjunctive clauses) into a conjunction
of formulae of the following pattern (†)

∀x ∈ R
|X|. [(g1(x ) ≥ 0 ∧ · · · ∧ gm(x ) ≥ 0) → g(x ) > 0] (†)

where each gi is a polynomial with constant coefficients and g is one with
unknown coefficients from the polynomial template. In the pattern, we over-
approximate any possible ‘gj(x ) > 0’ by ‘gj(x ) ≥ 0’. By Remark 3, the difference
between ‘g(x ) > 0’ and ‘g(x ) ≥ 0’ does not matter.

Example 5. Consider again the program in Example 1 with its CFG. Consider
the invariant specified in Example 3. The instances of the pattern for termination
of this program are listed as follows, where each instance is represented by a pair
(Γ, g) where Γ and g corresponds to {g1, . . . , gm} and resp. g described in (†).
– (C4, label 1) ({x − 1, 10 − x, x, 11 − x}, η(1, x) − η(2, x) − ε);
– (C4, label 2) ({x−1, 10−x}, η(2, x)−η(3, x)−ε) and ({x−1, 10−x}, η(2, x)−

η(4, x) − ε);
– (C4, label 3) ({x − 1, 10 − x}, η(3, x) − ER((y, r) �→ η(1, y + r), x) − ε);
– (C4, label 4) ({x − 1, 10 − x}, η(4, x) − 0.51η(5, x) − 0.49η(6, x) − ε);
– (C4, label 5) ({x − 1, 10 − x}, η(5, x) − η(1, x − 1) − ε);
– (C4, label 6) ({x − 1, 10 − x}, η(6, x) − η(1, x + 1) − ε);
– (C2) ({x, 11 − x}, η(1, x)) and ({x − 1, 10 − x}, η(j, x)) for 2 ≤ j ≤ 6.

In the next part, we show that such pattern can be solved by Positivstellensatz’s.

5.1 Positivstellensatz’s

We fix a linearly-ordered finite set X of variables and a finite set Γ =
{g1, . . . , gm} ⊆ R[X] of polynomials. Let �Γ � be the set of all vectors x ∈ R

|X|

satisfying the propositional polynomial predicate
∧m

i=1 gi ≥ 0. We first define
pre-orderings and sums of squares as follows.

Definition 10 (Sums of Squares). Define Θ to be the set of sums-of-squares,
i.e.,

Θ :=

{
k∑

i=1

h2
i | k ∈ N and h1, . . . , hk ∈ R[X]

}

.
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Definition 11 (Preordering). The preordering generated by Γ is defined by:

PO(Γ ) :=

⎧
⎨

⎩

∑

w∈{0,1}m

hw ·
m∏

i=1

gwi
i | ∀w. hw ∈ Θ

⎫
⎬

⎭
.

Remark 4. It is well-known that a real-coefficient polynomial g of degree 2d is a
sum of squares iff there exists a k-dimensional positive semi-definite real square
matrix Q such that g = yTQy , where k is the number of monomials of degree no
greater than d and y is the column vector of all such monomials (cf. [27, Corollary
7.2.9]). This implies that the problem whether a given polynomial (with real
coefficients) is a sum of squares can be solved by semi-definite programming [24].

Now we present the first Positivstellensatz, called Schmüdgen’s Positivstellen-
satz.

Theorem 4 (Schmüdgen’s Positivstellensatz [45]). Let g ∈ R[X]. If the
set �Γ � is compact and g(x) > 0 for all x ∈ �Γ �, then g ∈ PO(Γ ).

From Schmüdgen’s Positivstellensatz, any polynomial g which is positive on
�Γ � can be represented by

(‡) : g =
∑

w∈{0,1}m

hw · gw ,

where gw :=
∏m

i=1 gwi
i and hw ∈ Θ for each w ∈ {0, 1}m. To apply Schmüdgen’s

Positivstellensatz, the degrees of those hw’s are restricted to be no greater than
a fixed natural number. Then from Remark 4 and by equating the coefficients
of the same monomials between the two polynomials, Eq. (‡) results in a system
of linear equalities that involves coefficients of g and variables (grouped as 2m

square matrices) under semi-definite constraints.

Example 6. Consider that X = {x} and Γ = {1−x, 1+x}. Choose the maximal
degree for sums of squares to be 2. Then from Remark 4, the form of Eq. (‡) can
be written as:

g =
4∑

i=1

[
(
1 x

) ·
(

ai,1,1 ai,1,2

ai,2,1 ai,2,2

)
·
(

1
x

)]
· ui

where u1 = 1, u2 = 1 − x, u3 = 1 + x, u4 = 1 − x2 and each matrix (ai,j,k)2×2

(1 ≤ i ≤ 4) is a matrix of variables subject to be positive semi-definite.

Theorem 4 can be further refined by a weaker version of Putinar’s Positivstel-
lensatz.

Theorem 5 (Putinar’s Positivstellensatz [41]). Let g ∈ R[X]. If (i) there
exists some gi ∈ Γ such that the set {x ∈ R

|X| | gi(x) ≥ 0} is compact and (ii)
g(x) > 0 for all x ∈ �Γ �, then

(§) g = h0 +
m∑

i=1

hi · gi

for some sums of squares h0, . . . , hm ∈ Θ.
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Similar to Eqs. (‡) and (§) results in a system of linear equalities that involves
variables for synthesis of a pRSM and matrices of variables under semi-definite
constraints, provided that an upper bound on the degrees of sums of squares is
enforced.

Example 7. Consider that X = {x} and Γ = {1 − x2, 0.5 − x}. Choose the
maximal degree for sums of squares to be 2. Then the form of Eq. (§) can be
written as:

g =
3∑

i=1

[
(
1 x

) ·
(

ai,1,1 ai,1,2

ai,2,1 ai,2,2

)
·
(

1
x

)]
· ui

where u1 = 1, u2 = 1 − x2, u3 = 0.5 − x and each matrix (ai,j,k)2×2 (1 ≤ i ≤ 3)
is a matrix of variables subject to be positive semi-definite.

In the following, we introduce a Positivstellensatz entitled Handelman’s The-
orem when Γ consists of only linear (degree one) polynomials. For Handelman’s
Theorem, we assume that Γ consists of only linear (degree 1) polynomials and
�Γ � is non-empty. (Note that whether a system of linear inequalities has a solu-
tion is decidable in PTIME [46].)

Definition 12 (Monoid). The monoid of Γ is defined by:

Monoid(Γ ) :=

{
k∏

i=1

hi | k ∈ N0 and h1, . . . , hk ∈ Γ

}

.

Theorem 6 (Handelman’s Theorem [25]). Let g ∈ R[X] be a polynomial
such that g(x) > 0 for all x ∈ �Γ �. If �Γ � is compact, then

(#) g =
d∑

i=1

ai · ui

for some d ∈ N, real numbers a1, . . . , ad ≥ 0 and u1, . . . , ud ∈ Monoid(Γ ).

To apply Handelman’s theorem, we consider a natural number which serves
as a bound on the number of multiplicands allowed to form an element in
Monoid(Γ ); then Eq. (#) results in a system of linear equalities involving
a1, . . . , ad. Unlike previous Positivstellensatz’s, the form of Handelman’s the-
orem allows us to construct a system of linear equalities free from semi-definite
constraints.

Example 8. Consider that X = {x} and Γ = {1 − x, 1 + x}. Fix the maximal
number of multiplicands in an element of Monoid(Γ ) to be 2. Then the form of
Eq. (#) can be rewritten as g =

∑6
i=1 ai ·ui where u1 = 1, u2 = 1−x, u3 = 1+x,

u4 = 1 − x2, u5 = 1 − 2x + x2, u6 = 1 + 2x + x2 and each ai (1 ≤ i ≤ 6) is
subject to be a non-negative real number.
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5.2 The Algorithm for pRSM Synthesis

Based on the Positivstellensatz’s introduced in the previous part, we present our
algorithm for synthesis of pRSMs. Below, we fix an input probabilistic program
P , an input polynomial invariant I and an input initial configuration (�0,x 0) for
P . Let G = (L,⊥, (X,R), �→) be the associated CFG of P .

Description of the Algorithm PRSMSynth. We present a succinct description
of the key ideas. The description of the key steps of the algorithm is as follows.

1. Template η for a pRSM. The algorithm fixes a natural number d as the
maximal degree for a pRSM, constructs Md as the set of all monomials over
X of degree no greater than d, and set up a template d-pRSM η such that
each η(�, ·) is the polynomial

∑
h∈Md

ah,� · h where each ah,� is a (distinct)
scalar variable (cf. C1).

2. Bound for Sums of Squares and Monoid Multiplicands. The algorithm fixes a
natural number k as the maximal degree for a sum of squares (cf. Schmüdgen’s
and Putinar’s Positivstellensatz) or as the maximal number of multiplicands
in a monoid element (cf. Handelman’s Theorem).

3. RSM-Difference and Terminating-Negativity. From Remark 3, the algorithm
fixes ε to be 1 (cf. condition C3) and K to be −1 (cf. condition C4).

4. Computation of pre-expectation preη. With ε,K fixed to be resp. 1,−1 in the
previous step, the algorithm computes preη by Definition 7, whose all involved
coefficients are linear combinations from ah,�’s.

5. Pattern Extraction. The algorithm extracts instances conforming to pat-
tern (†) from C2, C4 and formulae presented in Definition 9, and trans-
lates them into systems of linear equalities over variables among ah,�’s, ε,
K, and extra matrices of variables assumed to be positive semi-definite (cf.
Schmüdgen’s and Putinar’s Positivstellensatz) or scalar variables assumed to
be non-negative (cf. Handelman’s Theorem) through Eqs. (‡), (§) and (#).

6. Solution via Semidefinite or Linear Programming. The algorithm calls semi-
definite programming (for Schmüdgen’s and Putinar’s Positivstellensatz) or
linear programming (for Handelman’s Theorem) in order to check the feasi-
bility or to optimize UB(P ) (cf. Theorem 1 for upper bound of ET(P )) over all
variables among ah,�’s and extra matrix/scalar variables from Eqs. (‡), (§) and
(#). Note that the feasibility implies the existence of a (difference-bounded)
d-pRSM; the existence of a d-pRSM in turn implies finite termination, and
the existence of a difference-bounded d-pRSM in turn implies a concentration
bound through Theorem2.

The soundness of our algorithm is as follows.

Theorem 7 (Soundness). Any function η synthesized through the algorithm
PRSMSynth is a valid pRSM.

Remark 5 (Efficiency). It is well-known that for semi-definite programs with
a positive real number R to bound the Frobenius norm of any feasible solu-
tion, an approximate solution upto precision ε can be computed in polynomial
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time in the size of the semi-definite program (with rational numbers encoded
in binary), log R and log ε−1 [24]. Thus, our sound approach presents an effi-
cient method for analysis of many probabilistic programs. Moreover, when each
propositional polynomial predicate in the probabilistic program involves only lin-
ear polynomials, then the sound form of Handelman’s theorem can be applied,
resulting in feasibility checking of systems of linear inequalities rather than semi-
definite constraints. By polynomial-time algorithms for solving systems of linear
inequalities [46], our approach is polynomial time (and thus efficient) over such
programs.

Remark 6 (Semi-Completeness). Consider probabilistic programs of the follow-
ing form: while φ do if � then P1 else P2 od, where P1, P2 are single assign-
ments, �φ� is compact, and invariants which assign to each label a propositional
polynomial predicate is in DNF form that involves no strict inequality (i.e. no
‘<’ or ‘>’). Upon such inputs, our approach is semi-complete in the sense that
by raising the upper bounds for the degree of a sum of squares and the number of
multiplicands in a monoid element, the algorithm PRSMSynth will eventually
find a pRSM if it exists. This is because Theorems 4 to 6 are “semi-complete”
when �Γ � is compact, as the terminal label can be separately handled by PP(·) so
that only compact Γ ’s for Positivstellensatz’s may be formed, and the difference
between strict and non-strict inequalities does not matter (cf. Remark 3).

6 Experimental Results

In this section, we present experimental results for our algorithm through the
semi-definite programming tool SOSTOOLS [3] (that uses SeDuMi [1]) and the
linear programming tool CPLEX [2]. Due to space constraints, the detailed
description of the input probabilistic programs are in [11].

Experimental Setup. We consider six classical examples of probabilistic programs
that exhibit distinct types non-linear behaviours.Our examples are, namely,Logis-
ticMap adopted in [14]whichwaspreviouslyhandledbyLagrangian relaxation and
semi-definite programming whereas our approach uses linear programming, Decay
that models a sequence of points converging stochastically to the origin, Random
Walk that models a random walk within a bounded region defined through non-
linear curves, Gambler’s Ruin which is our running example (Example 1), Gam-
bler’s Ruin Variant which is a variant of Example 1, and Nested Loop which is a
nested loop with stochastic increments. Except for Gambler’s Ruin Variant and
Nested Loop, our approach is semi-complete for all other examples (cf. Remark 6).
In all the examples the invariants are straightforward and was manually integrated
with the input. Since SOSTOOLS only produces numerical results, we modify
“η(�,x ) ≥ 0” in C2 to “η(�,x ) ≥ 1” for Putinar’s or Schmüdgen’s Positivstellen-
satz and check whether the maximal numerical error of all equalities added to SOS-
TOOLS is sufficiently small over a bounded region. In our examples, the bounded
region is {(x, y) | x2 +y2 ≤ 2} and the maximal numerical error should not exceed
1. Note that 1 is also our fixed ε in C4, and by Remark 3, the modification on C2 is
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not restrictive. Instead, one may also pursue Sylvester’s Criterion (cf. [27, Theorem
7.2.5]) to check membership of sums of squares through checking whether a square
matrix is positive semi-definite or not.

Experimental Results. In Table 2, we present the experimental results, where
‘Method’ means that whether we use either Handelman’s Theorem, Putinar’s
Positivstellensatz or Schmüdgen’s Positivstellensatz to synthesize pRSMs, ‘SOS-
TOOLS/CPLEX’ means the running time for CPLEX/SOSTOOLS in seconds,
’error’ is the maximal numerical error of equality constraints added into SOS-
TOOLS (when instantiated with the solutions), and η(�0, ·) is the polynomial
for the initial label in the synthesized pRSM. The synthesized pRSMs (in the
last column) refer to the variables of the program. All numbers except errors
are rounded to 10−4. For all the examples, our translation to the optimization
problems are linear. We report the running times of the optimization tools and
synthesized pRSMs. The experimental results were obtained on Intel Core i7-
2600 machine with 3.4 GHz and 16 GB RAM.

Table 2. Experimental results

Example Method SOSTOOLS error η(�0, ·)
Decay Putinar 0.1248s ≤ 10−9 5282.3435x2 + 5282.3435y2 + 1

Random Walk Schmüdgen 0.7176s ≤ 10−7 −300x2 − 300y2 + 601

Example Method CPLEX - η(�0, ·)
Gambler’s Ruin Handelman ≤ 10−2s - 33x − 3x2

Gambler’s Ruin V Handelman ≤ 10−2s - −21 + 100x − 70y − 100x2 + 100xy

Logistic Map Handelman ≤ 10−2s - 1000500.7496x

Nested Loop Handelman ≤ 2 · 10−2s - 48 + 160n + (m − x)(800n + 240)

For all the examples we consider except Logistic Map, their almost-sure
termination cannot be answered by previous approaches. For the Logistic-
Map example, our reduction is to linear programming whereas existing
approaches [14,47] reduce to semidefinite programming.

7 Conclusion and Future Work

In this paper, we extended linear ranking supermartingale (LRSM) for prob-
abilistic programs proposed in [10,12] to polynomial ranking supermartingales
(pRSM) for nondeterministic probabilistic programs. We developed the notion
of (difference bounded) pRSM and proved that it is sound for almost-sure
and finite termination, as well as for concentration bound (Theorems 1 and 2).
Then we developed an efficient (sound but not complete) algorithm for synthe-
sizing pRSMs through Positivstellensatz’s (cf. Sect. 5.1), proved its soundness
(Theorem 7) and argued its semi-completeness (Remark 6) over an important
class of programs. Finally, our experiments demonstrate the effectiveness of our
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synthesis approach over various classical probabilistic programs, where LRSMs
do not exist (cf. Example 1 and Remark 2). Directions of future work are to
explore (a) more elegant methods for numerical problems related to semi-definite
programming, and (b) other forms of RSMs for more general class of probabilistic
programs.
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