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Abstract. In this paper, a process algebra that incorporates expliclt representations of successful

termination, deadlock, and divergence is introduced and its semantic theory is analyzed. Both an

operational and a denotational semantics for the language is given and it is shown that they agree. The

operational theory N based upon a suitable adaptation of the notion of bisimulation preorder. The

denotational semantics forthelanguage isgiven interms of theinitial continuous algebra that satisfiesa

set of equations E, CI~. It is shown that C’IE is fully abstract with respect to our choice of behavioral

preorder. Several results ofindependent interest are obtained; namely, the finite approximability of the

behavioral preorder and a partial completeness result for the set of equations E with respect to the

preorder.

Categories and Subject Descriptors: D.4.1 [Operating Systems]: Process Management—dead[ocks;

F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages—operational

semantics

General Terms: Languages, Theory

1. Introduction

In this paper, we wish to develop a theory for a process algebra that incorpo-

rates some explicit representation of termination, deadlock, and divergence. We

develop both an operational theory based on bisimulations, [30] and an

equational theory similar to those for CCS, ACP, [8, 19, 20].

The theory of ACP [7, 8] deals with deadlock explicitly by introducing into

the signature of the calculus a distinguished constant symbol 6. Deadlock can

also occur directly in processes. If p can only perform actions from the set H,

then the process i?~( P) is considered to be the same as the deadlocked process

6. But ACP, at least in its original formulation, does not have an explicit

representation of successful termination.

On the other hand, CCS [26] has a single “terminated” process, nil, which

stands for both successful termination and deadlock. This choice is justified by

the fact that in CCS these two kinds of termination are experimentally indistin-

guishable, due to the restricted form of sequential composition, action-

prefixing, present in the calculus. Since ACP allows sequential composition,

this is no longer the case. Consider, for example, the process nil; p, where nil
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is now used to denote a successfully terminated process. Then, since nil is

successfully terminated, nil; p can perform any action which p may perform.

On the other hand, h is natural to assume that the process ~; p is deadlocked

and will never perform any action. Thus, in the presence of sequen-

tial composition, there is an observable difference between the successfully

terminated process nil and 6.

One may express desirable properties of processes by means of equations.

For example,

6; X=6

represents the fact that a deadlocked process can never proceed, and

nil; x= x

the fact that nil is a properly terminated process, Equational laws play a central

role in the theory of ACP. ACP aims at isolating axioms expressing some a

priori desirable properties that communicating systems should enjoy. A seman-

tics for the resulting equational theory may then be obtained by constructing

models for it, see, e.g., [8] and [9]; thus, establishing its logical consistency. In

this paper, following previous work in the CCS literature [20, 22] we derive the

equations for our language from an operational view of processes. In this

approach, the emphasis is on operational semantics as a framework within

which different intuitions about the behavior of processes may be discussed and

compared. Sets of equations, for instance, complete equational characterizations

of some notion of behavioral equivalence over processes, may then be derived

from and justified using the operational semantics. In the remainder of the

paper, we examine the equational theory induced by one possible choice of

operational semantics for our language; a more detailed comparison between

our approach and the philosophy underlying ACP may be found in the

conclusions, where possible modifications to our operational semantics in order

to obtain an equational theory closer to the ACP one are also discussed.

Many of the equations for our language are already well known either from

CCS or ACP. However, the presence of the terminated process nil invalidates

some of those from ACP. The equation

(X+y); z=x; z+y; z

is part of the theory of ACP, [8], but is not valid for our language, at least in

its general form. In fact, if x is 6 and y is nil then, assuming that

8 + nil = 6, the left-hand side is equal to 6; z, that is, 8, whereas the

right-hand side is equal to nil; z + 8; z, that is, z + 8. If z is a nontrivial

process, it is then reasonable to assume that 8 and z + 8 are different

processes.

We also have within our language processes that may diverge internally. We

let Q be a process that can only diverge internally. Using the usual notation for

recursive terms, this could also be represented by rec x. 7; x, where 7 is an

internal unobservable move. The semantic identification of the totally undefined

process Q with the process that can only diverge internally rec x. ~; x is indeed

open to debate. However, this choice may be supported both on behavioral and

pragmatic grounds. In this paper, we follow Milner’s experimental approach to

the semantics of concurrent systems [26]. This approach is based upon the idea

that two processes that cannot be distinguished by means of experimentation
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based on observation should be deemed to be equivalent. With this in mind, it

may be argued that the environment will never be able to elicit any information

from a process that can only diverge internally by experimenting on it, that is,

such a process contains no observable information. Following Scott’s approach

to semantics, a process that contains no information is considered less than any

other process and thus identified with Q. A similar choice is present in the

theory of denotational semantics for imperative sequential programming lan-

guages, where Q is usually given the same denotation as the program while

true do skip od. Such a program can only embark in infinite internal idling

and as such represents a natural counterpart of the process rec x. ~; x. Pragmat-

ically, the choice of semantically identifying Q and rec x. t-; x allows us to rely

on the standard body of techniques of continuous algebraic semantics [13,

15], for instance, to give a denotational semantics for our language and provide

powerful proof techniques for it. Our choice has some drawbacks in dealing

with infinitary properties of processes such as fairness. However, a study of

these properties is out of the scope of this paper and, in general, cannot be

carried out within the framework of continuous semantics.

Obviously, we would expect nil and Q to be different processes and we also

demand that 6 and Q be different. The latter requirement is less defensible, but

we are motivated by the information-theoretic view of computation as advo-

cated by Scott [34]. Here the process that can only diverge ( Q ) contains no

information and is therefore considered less than any other process. There is

some information available about the process 8; namely, that it is deadlocked;

so Q and 6 should be considered different. In the presence of !2, and in

particular taking Scott’s approach to semantics, it is natural to express our

theory in terms of inequatior,w. One inequation is

and more generally the equations given above could be viewed as shorthand for

two inequations, t = u representing t s u and u s t.

The main purpose of this paper is to show that an adequate semantic theory

for a process algebra containing divergence, termination, and deadlock can be

constructed using a suitable set of inequations, E. More specifically, we

propose as a denotational semantics the initial continuous algebra generated by

E, C1~, [13, 15]. This is in contrast to [6], where metric spaces are used for

this purpose in place of continuous partial orders. The advantage of the former

is that all of the usual operators found in process algebra may be interpreted,

whereas using metric spaces we can only readily interpret operators that are

contractile. For instance, unguarded recursive definitions give rise to operators

that are not contractile; in addition to this drawback, silent actions and

abstraction operators have never been dealt with satisfactorily in this frame-

work. Moreover, we can apply the existing and well-understood theory of

algebraic continuous partial order’s (cpo’s); for example, to show the existence

of CI~ and to derive useful proof techniques such as Scott Induction [24].

In order to show that C1~ is a reasonable model, we develop a behavioral or

observational view of processes and prove that this coincides with the interpre-

tation given by CIE. This is given in terms of a variation on bisimula-

don equivalence [30]. To take divergence into account, we generalize bisim-

ulation equivalence ( z ) to a preorder ~, which is often called pre-bisimulation

preorder. Intuitively, p Ej q means that p and q are bisimilar except that at
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times p may diverge more frequently than q; in the absence of divergence

p~ q will imply p = q. This type of behavioral relation has been studied in

[1], [4, [22], [27], and [36]. Here we modify it to take into consideration

termination and deadlock and show that two processes are behaviorally related

with respect to this new relation if and only if they are related in the equational

model CI~. In other words, CI~ is fully abstract with respect to this new

behavioral preorder. There may be other fully abstract models, but C1~ is

distinguished by being initial in the category of fully abstract models. In fact, it

is initial in the category of models that are consistent with the behavioral

preorder.

We now give a brief outline of the remainder of the paper. In Section 2, we

define the language whose semantic properties will be investigated in the paper.

The language is endowed with both an operational and a denotational semantics.

The operational semantics is defined in Section 2.1 following standard lines by

means of Plotkin’s Structural Operational Semantics (SOS) [26, 32]. Section

2.1 also introduces several definitions and notational conventions which will be

used throughout the paper. The denotational semantics for the language is given

in Section 2.2. The definition is based on the well-known techniques of Initial

Algebra Semantics [13, 15]; as already mentioned, we propose as a denota-

tional model for the language the initial continuous X-algebra that satisfies a set

of equations E, C1~. The following sections are entirely devoted to showing

that C1~ is indeed a reasonable denotational model for our language. As argued

by Milner [28], operational semantics should be the touchstone for assessing

mathematical models for concurrent languages. The agreement between denota-

tional models and operational ones is called full abstraction in [21], [2.5], and

[31]. In this paper, we follow Milner and Plotkin’s paradigm and justify the

choice of our denotational model by showing that CI~ is fully abstract with

respect to a natural notion of an operational or behavioral preorder over our

language. The behavioral preorder is introduced in Section 3, where several

constraints that behavioral relations have to meet in order to be related to

denotational ones are also discussed. In particular, it is argued in Section 3.1

that, in order to be related to s ~, a behavioral preorder should be finitely

approximable [2, 16] and closed with respect to all contexts.

All the remaining sections of the paper are devoted to showing that our choice

of a behavioral preorder, ~ ~, possesses these two properties and coincides

with s ~ over our language. Section 3.2 is devoted to an analysis of the

preorder ~. and of its substitutive version ~ ~. This analysis paves the way to

the proof of our promised full abstraction result. The proof of full abstraction of

C1~ with respect to ~ ~ over our language is outlined in Section 3.3 and relies

on two main results:

—finite approximability of ~;, and

—partial completeness of s ~ with respect to ~ ~.

The proof of the partial completeness result is given in full detail in Section

3.3. It relies on the usual machinery used in the proofs of equational complete-

ness for bisimulation-like relations [ 16, 19, 20, 36]. The proof of finite

approximability of ~ L occupies all of Section 4. It is given in two stages. The

first, which is the topic of Section 4.1, consists of a modal characterization of

the preorder ~ . and is a simple adaptation of similar results present in the

literature [2, 20, 27, 35]. The second employs this modal characterization to
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prove that ~ ~ is finitely approximable; this will allow us to conclude that ~;

is finitely approximable as well.

We end with a conclusion in which we discuss the results of the paper and

relationships with related work.

2. The Language

Let Act be a countable set of atomic action symbols. It is assumed that Act

comes equipped with a bijection y: Act -+ Act, which is its own inverse. The

set Act will be called the set of observable actions and will be ranged over by

a, b,.... Let ~ and 6 be two distinguished symbols not occurring in Act.

The symbol ~ will stand for an internal, unobservable action; these actions will

occur when processes communicate with each other. Act, =~.~ Act U {T} will

be called the set of actions and will be ranged over by p, -y . . . . The symbol 6

will stand for a deadlocked process, a process that cannot perform any move

but is not successfully terminated. Successful termination will be denoted by the

constant symbol nil.

The set of constant symbols in the process algebra we consider is completed

by the symbol Q; as discussed in the introduction, Q will stand for a process

that can internally diverge. Alternatively, one may think of Q as the totally

undefined process, the process about which the environment has no informa-

tion at all. Q is not deadlocked and has not successfully terminated. The

process combinators used to build new systems from existing ones will be the

following:

— + for nondeterministic choice,

— ; for sequential composition,

– I for parallel composition,

– t)~(” ) for the encapsulation operator. Intuitively, the process %J P)

behaves like p, but with actions in H prohibited. A more detailed discus-

sion of this operator may be found in, for example, [8].

Formally:

Definition 2.1. For each n e o, let E., the set of operation symbols of

arity n, be defined as follows:

The signature X is defined as X = U. ~ ~X..

Let Var be a countable set of variables, ranged over by x, y, . . . . The

syntax of recursive terms over Z is then defined by

t::= f(tl,...,~,k)(.f=~k) I xl recx. t.

We assume the usual notions of free and bound variables in terms, with rec x.

_ as the binding constructor. The set of recursive terms over Z will be denoted

by RECJVar) and will be ranged over by t, u, ... . The set of closed

recursive terms over ~ will be denoted by RECX and will be ranged over by

P?9, P’.... The set of syntactically finite processes (i.e., those not involving
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occurrences of recx. t) will be denoted by FRECX and will be ranged over by

d,e, d....

Notationally, all the binary operators will be used in infix form, with the

assumption that ; binds stronger than 1, which in turn binds stronger than

+. The constructor rec x.— will have the lowest precedence among all the

operators.

2.1. THE OPERATIONAL SEMANTICS. The operational semantics for the lan-

guage REC~ consists of three different components. The first is an interpreta-

tion of RECX as a Iabelled transition system in Plotkin’s SOS style, [26, 32].

This associates with each action symbol p a binary infix relation. Intuitively,

P 3 !? means that P may perform the action p and thereby be transformed into

q. The second is a successful termination predicate ~, which will be written

in a postfix manner. Intuitively, p~ if p has terminated successfully, which

will mean, among other things, that p cannot perform any further actions. We

would expect rzil~ but not !JJ, not a; p~ and not d{a}( a; p)~.

There is a choice of exactly how to define the termination predicate J. In what

follows we will present one choice; another choice, which is more in keeping

with the intuitions of [5], will be discussed in the conclusions. The final

component is a convergence predicate, L. Intuitively, p 4 means that the set of

actions which p can initially perform is fully specified. It will turn out that

nil+ but not Q $.

Definition 2.2. Let J be the least subset of RECX that satisfies:

In what follows, we write p~ iff p e d. Note that the process nil + 6 is not

considered successfully terminated. Intuitively, the process is “stagnating” on

a branch of its computation and the environment has no way of discarding this

branch. In the semantic theory that we shall present in what follows, the process

nil + 6 will be equated to the deadlocked process 6.

Definition 2.3. Let J be the least subset of RECZ that satisfies

(i) nil~, 8$, p$

(ii) PL implies 8H( p)~

(iii) p~, q~ imply (P + q) J,(Pl 9)J

(iv) t[recx. t/x]L implies recx. t~

(v) PJ, 94 imply (P; 9)J

(vi) m(p~), p~ imply (p; q)l.

Intuitively, p 4 iff p is a completely specified process, that is, if we can

expand the recursive definition of p a finite number of times to obtain at the top

level all the possible moves of p. Clause (vi) of the definition of the predicate J

deserves some comment. It expresses the intuition that, if p is not successfully

terminated, p; q is a completely specified process if p is; in this case, in fact,

the set of initial moves of p; q is determined by that of p. !, the divergence

predicate, will denote the complement of J, that is, p? iff 7( p 1).
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Example 2.1. The following processes are divergent:

— recx. a + x

— recx. a; x + !2
— recx. a; x + recx. a + al x.

The predicate J is used to detect a form of “syntactic divergence”. Roughly,

p T if p contains unguarded recursive definitions [26], or unguarded occur-

rences of the divergent process Q. One can show that p~ implies p J using

induction on the proof of p~. Of course, the converse is not true; for instance,

a; qi but a; q~~.

Definition 2.4.

REC~ that satisfies

(1) p~nil

For each p c Act,, let ~ be the least binary relation on

the following axiom and rules:

(2) p$p’implies p + q~p’, q +p~p’

(3) p ~p’ implies p; q ~p’; q

(4) p~, q ~ q’ imply p; q ~ q’

(5)p~p’ imp~esp lq:p’, qlp:qlp’

(6) p~p’, q-+q’ imply plq~p’lq’

(7) p ~pf, P ~H imply a~(p): a~(p’)

(8) t[recx. t/x] <p’ implies recx. t~p’.

For any p, let Sort(p) = {p eAct, \ 3ac Act~, q CRECX: p ~ q}, where,

for o~Act~, ~ is defined in the natural way. One can check that, for each p,

Sort(p) is finite. That is, according to the terminology of [1] and [2], the

transition system ( RECX, Act,, ~ ) is sort finite. Some of our results will

depend on this fact.

The three concepts defined above take no account of the special nature of 7.

Following Milner [26], ~ is meant to be an internal invisible action. We now

define three weaker versions of ~ , J, and J which use this assumption.

Let ~ denote (~)*0 ~ 0( L)*. So p ~ q means that p may evolve to q

performing the action K and possibly silent moves. We also use the relation ~ ,

defined as ( ~ )*. In what follows, we write p ~ iff there exists a sequence

(Pi I i ~ 0) such that p, = p and P, ~~,+,, for each i >0.

Let Stable(p) = { q I p S q and q ~ }. Then the weak counterpart to J is

defined by

p~ iff, for each q e Stable( p), q~.

For example, nil~, r +

Ip~ * (i)

(ii)

8J, but not sJ. This relation is characterized by

p; and p~, or

p ~- and, for each q, p ~ q implies q~.
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Note that rec x. r; x + a~, which is somewhat anomalous. However, we only

apply the “weak tick” predicate # to processes that cannot perform an infinite

sequence of ~-actions and, for such processes, no such counterintuitive cases

arise. Processes that can perform an infinite sequence of ~-actions are semanti-

cally divergent, which brings us to our final weak predicate. Let U be the least

predicate over REC= that satisfies

pl and (for each q, p ~ q implies q u ] imply p u .

Intuitively, p U means that p cannot perform ~-actions indefinitely and a

syntactically divergent process cannot be reached by performing these actions.

Formally, one can prove

pu *p: and p S q implies q ~.

Note also that pd implies p J . This follows because we already know that p~

implies p ~ and one can also show that it implies p ~ for no p, including ~.

In the semantic preorder to be defined in Section 3 we use versions of JJ that

are parameterized by actions:

—p~rifp~,

p U a if p J and, for each q, p Z q implies q U .

This concludes our operational description of a semantics for the language

REC~. It defines a Labelled Transition System with divergence and termination

predicates ( RECZ, ACT, U { E}, -, ~, U ). In Section 3, this LTS will be

used to define an operational preorder on processes.

2.2. DENOTATIONAL SEMANTICS. As pointed out in the introduction, the main

purpose of this paper is to show that an adequate semantic theory for the

process algebra described in the previous section can be constructed using a

suitable set of inequations, -E. Following Caurcelle and Nivat [1 1], Goguen et

al. [13], Guessarian [15], and Hennessy [18], we propose as a denotational

semantics for RECZ the initial continuous algebra generated by a set of

equations E, CI~.

In order to show that CIE is a reasonable model for RECX, in subsequent

sections we develop a behavioral theory of processes and prove that this

corresponds to the interpretation given by C1~. In other words, CI~ is fully

abstract with respect to the behavioral preorder that we introduce in the next

section. We assume the reader is familiar with the basic notions of continuous

algebras (see, e.g., the above-quoted references); however, in what follows, we

give a quick overview of the way a denotational semantics can be given to

RECZ(Var) following the standard lines of algebraic semantics [15]. The

interested reader is invited to consult [18] for an explanation to the theory.

Let 2 be the signature introduced in Definition 2.1 and A be any X-cpo. A

denotational semantics for the language RECZ(Var) is given by the mapping

A[ . ]: RECZ(Var) ~ [ENV~ ~A],

where ENV~ = [Var ~ ~] is the set of ~-environments, ranged over by the

metavariables p, p’. . . . As usual, p[ x - a] will denote the environment,
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Al X+~=~+.Y El d~(rul) = nil

A2 X+(~+Z)=(X+~)+Z E2 aHfti) = 6

A3 X+ X=.~
{

6 ifPe H
E3 d~( P) =

P otherwise

A4

AS

B1

B2

B3

B4

cl

C2

x + nil = x

x+b=xifx~~

x; nil = x = nil; x

6;X=8

X:(. V;z) = (.Y; y); z

(x+y); z=x; z+y; zifx, y#J

816=8

Let x = ZzeIp,; X1{+ Q},

if l=@
T3/L; (x+7; y)= P;(.Y+7:Y)+&:Y

otherwise

NOTE: The summation notation in axiom EXP is justified by axioms Al -A5. In axiom EXP, an empty

sum is understood as nil, { + Q} indicates that Q IS m optional summand of a term and Q is a

summand of the right-hand side iff it IS either a summand of x or of y.

FIG. 1. The set of inequations E.

which is defined as follows:

{

if x=y

~[~~a](y)= a
P(Y) otherwise.

For completeness sake, we define A [ c ] by structural induction on recursive

terms, as follows:

where Y denotes the least fixed-point operator.

Note that for each P e RECX, A [p] P does not depend on the environment

p. The deflotation of a closed term P will be denoted by A [P] and we write

P~~qiffAIPl~~A[qlandP =~ qiff P=.~qand Q~/t P.

As already pointed out, a natural choice of A would be the initial 2-CPO CTF

in the class of’ >-cpo’s that satisfy some set of equations, or inequations, E

defined over the signature Z. The equations that we consider will express

desirable properties of processes; many of them are ah-eady well known from

CCS or ACP. Some of the equations that are part of the theory of ACP have

had to be modified due to our different treatment of successful termination. For

example, note that by considering eq. (A4) for x = 8, we obtain that 6 +

nil = 8. This identity captures the main difference between our nil and the

empty process ~ recently investigated in the literature on ACT [4, .5]: the

intuition underlying it has been discussed after Definition 2.2. A more detailed

comparison between our equations and the ones used in the theory of AC% with

the empty process may be found in the conclusions. Let %’(E) denote the

category of Z-cpo’s that satisfy the equations in Figure 1 and continuous

M-homomorphisms. The following result is then standard [11, 13, 15, 18].
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PROPOSITION 2.1. %(E) has an initial object CI~.

3. The Behavioral Semantics

3.1. THE BEHAVIORAL PREORDER. This section is devoted to an operational

preorder that will be the behavioral counterpart of the denotational relation

s ~Ic (the ordering relation in the initial model C1~) over RECZ. The

existence of such a behavioral preorder, defined using a well-established

mathematical tool, will reinforce C1~ as a reasonable model for the language

REC=

The behavioral preorder will be defined using a variation of bisimulation

equivalence [26, 30], suitable for our language RECZ. Let Rel denote the set

of binary relations over RECZ. We define a functional Y’: Rel ~ Rel, as

follows:

given 4? ~ Rel, pY-( 4?) q iff, for each p ~ Act,,

(i) if p <p’, then, for some q’, q ~ q’ and p’ Zq’,

(ii) if p V p, then

(a) q J P,

(b) if q Z q’ then, for some p’, p Z p’ and p’ 4?q’,

(iii) if p U , then p~ w q~.

The notation o IS used to simplify the definition: ; stands for E and ti stands for

a.

The functional % is one of the methods for adapting the usual definition

functional of bisimulation equivalence. A number of variations are discussed in

[1], [2], and [36]. There are also a number of ways of defining a behavioral

preorder using $. An established method is to take < to be the largest relation

Y/~ Rel such that 3? G Y–( 9?), [28, 29]. This relatlon is easily seen to be a

preorder, that is, a reflexive and transitive relation. and is, in fact, the

maximum fixed-point of the equation # = S( ~). The preorder ~ also

satisfies many of the properties that we have already discussed in the introduc-

tion. For example, for every p e REC~, ~ ~ p; also 8; p = 6 and nil; p = p,

where = is the kernel of ~, that is, = = ~ (7 ~ -‘. The processes nil and d

are incomparable with respect to ~. In fact, it is easy to see that nil U and

8 J , but nil~ whereas 8 @i. Note also that 8 + Q = !2. This follows from the

definition but it is also perfectly reasonable. Intuitively, we would expect that,

for every action a, 8 + 0 ~ 6 + a. But 8 + a = a, so that 6 + Q should be

less than a for each a; the only such process is Q.

Clause (iii) in the definition of Y–( @ ) takes care of deadlock considerations

and there are a number of equivalent ways of stating it. Suppose we say that

p must terminate if p 4 and p ~ p’ ~ implies p’~.

Then (iii) could be replaced by

(iiia)’ p must terminate implies q must terminate,

(iiib)’ p d , q must terminate imply p must terminate.
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Alternatively, suppose we say that p is deadlocked if p V , p ~ for no p, but

P $ d and P may deadlock if p ~ p’ for some p’ such that p’ is deadlocked.

Then clause (iii) could also be replaced by

(iiia)’ p may deadlock implies q may deadlock,

(iiib)’ p U , q may deadlock imply p may deadlock.

However, replacing clause (iii) with clauses such as

“if p U , then p~iff q~”

or

“if p O , then p is deadlocked iff q is deadlocked”

would lead to a different semantic preorder. The terms ~; 8 and 8 would be

distinguished as would a; r; 6 and a; 6. Since a; r and a are identified, this

would mean that the revised semantic preorder would not be preserved by :.

An alternative method for using Y- to obtain a behavioral preorder is to apply

it inductively, as follows:

– E ~ = RECX x RECX (the top element in the lattice ( Rel, G )),

–~n+, = Y-(~n),

and finally CO = nf120~~.

The two relations ~ and E ~ are in general different. For example,

Abramsky [2], take the synchron~zation trees p and q defined as follows:

Then, it is easy to see that p ~ ~q, but p @ q. Two equivalent terms in our

language are rec x. a; x + O and rec x. x; a + a, respectively. All the

properties of ~ discussed above are also true of ~ ~. In deciding which

preorder to use, we take into account the type of semantic model we discussed

in the previous section. We wish to define a behavioral preorder s that

satisfies

psq@psCIEq~ (1)

where p s cl~ 9 means C~~ [ P] s CIE [ 9], for the set of inequations E in

Figure 1. This requirement induces certain constraints on s , the most

important of which is called finite approximability. For any binary relation d?

over RECZ, let @ F be defined by

p @‘q if, for every finite term d, d @ p implies d ~ q.

We say that @ is finitely approximable ( fa) if i? = J?’. Note that, for

every transitive relation 3?, @ G %‘; thus, in order to show that such

relations are fa, it is sufficient to prove that .~ F G ~. Intuitively, the finite

approximability of a relation # means that 9? is essentially determined by

how it behaves on finite terms. By the general construction of C1~, [18], it

follows that s cI~ is fa and therefore, to meet (1), we must also choose a

behavioral preorder, which is also fa. The above example shows that ~ is not

fa, asp~Fq but p~q.
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There is one further complication caused by requirement (1). The relation

S C1~ is, by definition, closed with respect to all contexts. To explain this we

need some notation. For any binary relation 9? over RECX, let J? be

extended to RECz(Var) by

t iZ’ u if, for every closed substitution p, tp W u P.

For any 4? over RECJVar) define the new relation 2?’c by:

t 3? ‘u if, for every context %’[” ] such that %’ [ t] and Y [u] are closed,

‘%[t]a’&[u].

Then ~ is said to be closed with respect to contexts if W = i? c. By

construction, it follows that s ~f is closed with respect to contexts. However,

this is not true of ~ or ~ ~, T%e usual counterexample associated with the

CCS + operator [26] works:

We may sum up this discussion by saying that in order to reflect the semantic

ordering 5 ~1~ behaviorally, it is necessary to choose a behavioral preorder

that is both finitely approximable and preserved by contexts. We shall show that

~ ~ is fa and therefore it is appropriate to take as our behavioral preorder ~ ~,

its closure with respect to all contexts. The proof that ~ ~ is fa depends on the

fact that our operational semantics is sort finite. In a transition system which is

not sort finite ~ ~ may not be fa. For instance, consider the following

synchronization trees from [2]:

where. for each n # m. b. # b~. Then p~Fq, but p~zq.

The remainder of the paper is devoted to proving that our behavioral and

denotational view of processes do agree on RK’Z, that is, that, for p, q e

RECX ,

In the next section, we analyze the preorder ~ ~, giving an equivalent but more

manageable definition. Using this equivalent formulation, we show that ~;

satisfies all of the equations in E.

3.2. ~NALy515 OF THE PREORDER. h this section, we give a reformulation of

~ and use the more manageable definition to prove some of its properties. We

are mainly interested in ~ ~ but, as it turns out, most of the technical

development concerns ~ rather than ~ ~.



Termination, Deadlock, and Divergence 159

Let 3’: Rel ~ Rel be the functional defined as follows:

For each 9? e Rel, p S?( 4?)q iff, for each p ~ Act.,

(i) if p ~p’, then, for some q’, q ~ q’ and p’ 4? q’

(ii) if p O p, then

(a)q~~

(b) if q ~ q’, then, for some p’, p ~ p’ and p’ J? q’

(iii) if p ! , then p~ iff q~.

Let 5 denote the maximum fixed-point of the functional %, whose existence

can be easily shown following standard lines [29].

PROPOSITION3.1. Forp, q~RECX, p~q*p Sq.

PROOF. Standard and thus omitted. ❑

This proposition allows us to investigate the properties of EJ using the

technically simpler relation s . As a first application, we show that s , and

consequently ~ , is preserved by many of the operators of the calculus.

LEMMA 3.1. Ifp 5 q, then

(a)p; rsq; r

(b)plrsqlr

(c) aH(p) s d~(q).

PROOF. We examine only two of the operators leaving the remaining case to

the reader.

(a) To show that p s q implies p; r s q; r it is sufficient to prove that the

relation 9? defined as follows:

is a prebisimulation with respect to the functional 27, that is, 9? G !4 ( :7).

We only check that the clauses of the definition of the functional %’ are met

for (p; r, q; r) such that p s q.

(i) Assume p; r ~ x. There are two cases to examine:

—P 3P’ and x E P’; r. Then, as P 5 q, there exists q’ such that

q~q’ and p’ s q’. Thus q;r~q’; r and (p’; r,q’; r)~ 97. by

the definition of 97.

—P4 and r ~ x. As pd, we may assume that p I , q~ and q u . By

the definition of -J, vq’ c Stable( q) q’~. Now, since q v ,

Stable(q) # 0. Let q’ e Stable(q); then q; r ~ q’; r ~ x and

(x, x)Ga.

(ii) Assume (p; r) J p. First of all, we show that this implies (q; r) O W.

Note that (p; r) U K implies p v K. As p s q, we have that q u p.

Suppose (q; r) TTW. We distinguish two cases:

(P = ~). This is equivalent to

q;r~ or 3y:q; rSyandy T.
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(iii)

Assume that q;r~. As q J,itmustb ethecaset hatthereexists q’

such that q> q’, q’~ and r~ . By induction on the derivation

q ; q’, we can show that there exists p’ such that p ~ p’ and

p’ 5 q’. AS q’d and p U , P’4. This would mean (p; r)?, which

contradicts the hypothesis.

Checking that the other possibility leads to a contradiction as well is

omitted.

(p = a) By definition, (q; r) II a iff (q; r) I? or 3Y: q; r~y and

y lt . The case (q; r) il is dealt with as above. We assume that 3 y:

q;r=$yand yfi. Bythedefinition ofO, yfiiffy~or2~:YS~

and j?.

Thus, either q; r~y ~ or q; r~y~, for some y.

If q; r ~ y ~ , then. as q U a, vq’: q ~ q’, q’; . Thus, there must

exist q‘ such that

In both cases, from p U a and p s q, we may deduce that

(p; r) lr a. This goes against the hypothesis.

If q; r ~ y T, we proceed by analyzing the move q; r ~ y. There

are three possibilities:

(a) q ~ q’ and y = (q’; r)t. As q U a itmust be the case that q’~

and r?. By induction on the derivation q ~ q’, we get p’ such

that p ~ p’ and p’ s q’. As p U a itmust be the case that P’4

and p’ J . Hence, there exists p“ such that p’ S p“~. Thus

p: r ~ ( p“; r) r. This contradicts the hypothesis that (p; r) U a.

(b) q ~ q’~ and r S y.

(c) q ~ q’~ and r ~ y.

Both (b) and (c) follow the pattern of case (a). The p-moves of q; r

can be matched by those of p; r as in case (i) above.

Assume (p; r) J , We have to show that (p; r)~ iff (q; r)~. By

clause (ii) above, (q; r) L and this, together with p s q, implies p U

and q J . It is easy to see that ( p: r)~ implies PW and p< implies

r~.

Assume now (p; r)i. By the above observation, we get that p~ and

pJ implies rd. As p ~ , p~ and p 5 q imply q~. Hence, if q;

r f ~,it must be the case that, for some x c Stable(r),

q; r: q’; r ~ x, where q’d and x$4.

It is now easy to see that this would imply p; r ~ J, against the

hypothesis. The proof of the converse implication is similar.
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(b) It is sufficient to prove that J? s $4( ~), where

~=d,, {(plr, qlr)l pSqandre RECx}.

Most of the proof is identical to that of the corresponding case of lemma 1

in [36, pp. 208 –209]. The only new property to check is that ( p I r) U im-

plies p I ru iff q I rd. Assume p I r O and q I r ~ ~. Then there exists

q’ I r’ such that q I r S q’ I r’, q’ I r’ is stable and q’ I r’ ~ ~. This implies

that either q’ # ~ or r’ ~ ~. As q I r S q’ I r’, there exist sequences

(q,lo~i~n), (r,l Osi Sn)and(aIIO=i <n) such that

qo=q,ro=r>vi<nqi~q,+land ri~r,+l,q.~q’andr.~r’.

Since p I r Y implies q I r J , we have that qi U , for each i. Hence, we
a,

may inductively construct a sequence (pi 10 = i < n) such that p, * pi+ ~

and p, s q,. Thus, there exists p’ such that p. ~ p’ and p’ 5 q’. As

p I r ~ , p’ U . If q’ f ~, then p’ f ~ and p I r ~ ~–a contradiction. If

r’ #~, then, since q’ I r’ is stable, p’ Q and p’ s q’, there exists a stable

state of the form p“ I r’ such that p’ ~ p“. Now, p“ I r’ ~ J implies

p I r f ~, again a contradiction. The converse implication is similar.

Checking that s is preserved by d~(” ) is left to the reader. ❑

Since it is well known from the theory of bisimulation equivalence for CCS

[29] and ACP, [8], s is not preserved by +. For example, nil s ~, but it is

not the case that a + nil s a i- r. In fact, (a + ni{) U but a + r ~ nil and

a + nil ~ nil. However, following Milner [26], we have a standard way of

associating a precogruence with s . It is sufficient to close = with respect to

all the operators in Z. The resulting precogruence, which we denote by s ‘c, is

known to be the largest X-precongruence contained in s . Note that = c and

<‘C are a priori different. In the latter, we only close with respect to contexts

built from the operators in Z, but in the former we also close with respect to

contexts involving rec x. .—. We eventually prove that they coincide, but, for

the moment, we concentrate on s ‘c.

Let us now define the following preorder over RECX:

ps+q~vr~RECXp+r5q+ r.

By analogy with one of the characterizations of the congruence associated with

bisimulation equivalence [29], we might expect that S+ and = ‘C coincide

over RECX. In order to prove that this is indeed the case, it will be useful to

introduce an alternative characterization of s +. The following definition is

adapted from [36]:

Definition 3.1. For each p, q e REC=, p 5 *q iff

(i) Va eAct, if p 3P’, then, for some q’, q ~ g’ and p’ s q’,

(ii) if p S p’, then

(a) p’ J implies, for some q’, q ~ q’ and p’ s q’,

(b) p’ T? implies, for some q’, q ~ q’ and p’ s q’,

(iii) p V p implies

(a) q V p,

(b) if q: q’, then, for some q’, p ~ p’ and p’ 5 q’,

(iv) if p & , then p~ iff q~.
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The relation s * is easily seen to be a preorder. The following theorem states

that s * and =+ coincide over l?ECX. The proof of the theorem uses the

following technical lemma.

LEMMA 3.2. Ifpfl, p~q and ~]p’: p~p’~p’ti, thenp~q+r,

for each r ~ RECX.

PROOF. It is sufficient to check that the relation

2? =def
{

sU (p’, q+r)lp~p’andp’s q
1

is such that 3 Q ~–( 9? ). Checking the clauses of the definition of ~ is

routine. ❑

T~EORENI 3.1. For each p, q ~RECZ, p <‘q iff p <w q.

PROOF. The proof is identical to the one of the corresponding result in [36,

Lemma 3]. Thus, we just check the cases not covered by that lemma.

(e)

(=’)

Assume that p #*q because

pU and[(p~Aq#~) V(p#~Aq@].

We have to find a process r e REC~ such that p + r $ q + r. Assume,

without loss of generality, that p 0 , p~, and q ~ ~. Take r = nil. Then

(p + nil) u and (p + nil)w whilst, as it may be easily checked, (q +

nil) +4. Hence, p + nil +q + nil and p $ + q.

Suppose that p 5 *q. We show that, for each

implies (p + r)~ iff (q + r)~.

Now, (p + r) $ implies p V . Since p U and p

iff q~. The claim then follows from the fact that,

I

{P+r}

Stable(p + r) = {xc Stable(p) U Stable(r)

lp~xorr~x
}

rcREC~, (p+r)u

s *q, we have that ~

for each p, r e RECX,

r
if p+ andr~

otherwise. ❑

As an easy corollary of the above theorem, we get that s * G = . In fact,

ps+q~p<~q+p+nil~q +nil*psq.

The next lemma establishes the fact that s * is a Z-precongruence.

< * is a ~.precongruence.
LEMMA 3.3. _

PROOF. We examine each operator separately.

(;) Assume p 5 q and r c R-ECx. We check that the clauses of the definition

of 5* are met by p; r and q; r.

(i) Suppose that p; r ~ x. By the operational semantics, there are two

cases to examine:

—p ~p’ and x = p’; r. Then, as p s *q, q ~ q’ and p’ 5 q’, for

some q’. By the operational semantics, q; r ~ q’; r and, as by

Lemma 3,1 s is preserved by; , p’; r s q’; r.
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—p~ and r ~ X. Now p~ implies p U , and since p s *q, we may

deduce that

P

qu. q~ and vp~Act,, q~.

Since q 4, we get that Stable(q) = { q}. Thus, q~. Hence,

q;r~x~nd XSX.

(ii) Suppose that p; r ~ x. Following the definition of s *, we

distinguish two cases:

—x U . We proceed by analyzing the move p; r ~ x.

(1) p ~p’ and x = p’; r. Then, x V implies p’ u . Since p s *q,

there exists q’ such that q S q’ and p’ s q’. By the operational

semantics, q; r ~ q’; r and, by Lemma 3.1, p’; r s q’; r.

(2) p S p’~ and r ~ x. Left to the reader.

—x O . This case can be checked using the pattern used in the above

case.

(iii) Assume (p; r) J p. Reasoning as in the corresponding case of Lemma

3.1, we get that (q; r) J ,u. Suppose that q; r ~ x. By the operational

semantics, there are tvvo cases to examine:

—q39’ and x s q’; r. Since (p; r) U p and (q; r) u ~, we get that

p U P and q u P. Since P s *q, there exists p’ such that p ~ p’

and p’ 5 q’. By the operational semantics, p; r Z p’; r and, by

Lemma 3.1, p’; r s q’; r.

—q~ and r~x. Since (P; r) 0 ~, we get that p O . Thus, p S*q

and q~ imply PJ. By the operational semantics, p: r ~ x and

X<x,

(iv) As in the corresponding case of Lemma 3.1.

(+)

(11

To prove that s * is preserved by +, it is sufficient to notice that + is

associative with respect to ~ and use the alternative ~hara~terization of

~ * given by the previous theorem.

The proof is identical to that of the corresponding case of Lemma 4 in

[36]. Checking clause (iv) of the definition of < * can be done as in

Lemma 3.1.

Checking that s * is preserved by C3H(o) is left to the reader. ❑

As a corollary of the above result, we get that <*, and consequently s+,

coincides with s ‘c.

COROLLARY 3.1. The relations s ‘c, S+, and s * all coincide over

RECZ .

PROOF. By Them-em 3.1, we know that ~ * = ~+. By the definition of
fc ~ <+. Moreover,s ‘c we derive that s _ _ by the above lemma, s * is a

X-precongruence and this implies s * G SfC, aS s ‘c is the largest ~-

precongruence contained in s and s * G s . ❑
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The results that we have presented so far seem to imply that s * is a suitable

notion of semantic preorder for the language RECZ. However, difficulties arise

when we try to relate s * with the denotational model CIE outlined in Section

2. This is discussed more fully in the conclusions.

As we have already seen, s (and consequently ~ ) is not finitely approx-

imable [2]. Fortunately, however, we are able to relate ~, ~ ~, and ~ ~ over

an important subset of REC~; in fact, our next aim is to show that the three

preorders coincide over FREC’X x RECZ. The following technical result is

standard.

THEOREM 3.2. For each d~FRECx, p~RECZ, d~p iffd~tip.

PROOF. The “only if” implication is easily seen to hold by induction on n.

To prove that d ~ ~p implies d ~ p, we define the depth of a finite process as

follows:

[

2 if {~~ActT: d:
dt ( ~) =def

1 + rnax{dt(d’) I ~p: d: d’] otherwise.

This is well defined because all the d“s are finite (hence {d’ \ ds d’} is

finite for each p c Act,) and the transition system that we are considering is

sort-finite. Note that, for each d e FRECX, p 6 Act,, d ~ d’ implies

dt( d’) s dt( d) – 1. By induction on dt( t), we prove that d ~ ~t(~)p implies

d~p.

Base case. dt( d) = 2. Assume dt( d) = 2 and d ~ ~ p. We show that the

relation

is a prebisimulation. Consider (d, p’) ~ 4? ; we proceed to check the defining
P

clauses of the functional K Clause (i) is trivially met as dt( d) = 2 implies d =

for each p ~ActT. Assume d U p. Since dE, p, we have that p J p. It is—.
easy to see that this implies p’ tl ~.

Assume d V u, p’ V P and p’ $ P“. As d~ 9 P we have that P ! k. Hence,

it must be the case that p = ~ (otherwise, p S p’ 4 p“ whilst, as dt( d) = 2,

d ~ . This would contradict the hypothesis that d ~ ~ p). Thus, (d, p“) c U

by the definition of $?. To check clause (iii), assume that d U . Then, since

d~ , p, p b and d~, iff pd. Suppose-.

If d~ and p’ $ ~, then p + ~, contradicting the hypothesis. If d # ~ and

P’d, then P ~ P’ and d @ ~P’, again contradicting the hypothesis that d ~ ~p.
Hence, d~ iff p’~. Thus, .9?G %( i??) and, as (d, p) ~ @. d~ p.
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Inductive step. Assume dt(d) >2 and d ~ ~.(~)p. Then:

(i) if d $ d’ then there exists p’ such that p ~ p’ and d’~ ,.(d) -, p. Since

dt(d’) s dt(d) – 1, we have that d’~~ttd)., p’ implies d’~~t(fl)p’. By

induction this implies that d’~ p’.

(ii) Assume d V p. Then, p 0 p as ~ ~ ..(d) p. Assume now that p ~ p’.

Then reasoning as in case (i), we can find d such that d ~ d’ and d~ p’.

(iii) Follows from the assumption that d ~ ..(~) p.

PROOF. An easy consequence of the above theorem and of the definition of

g:. ❑

As a consequence of the above result we have that ~ ~ and s * coincide

over FRECI x RECZ. This explains our interest in s *; it is technically

more manageable than ~ ~ and it will be used in the next section to show that

for de FRECX, p e RECX

This result can be lifted to the entire language in a fairly standard way, once we

know that ~ ~ is finitely approximable.

As a final result in this section, we examine the equations in E and show that

they are satisfied by ~ ~. Let s ~ denote the least X-precongruence over

RECZ that satisfies the equations E.

PROPOSITION 3.2. Forp, q ~RECx, p s ~q implies p~~q.

PROOF. Since ~~ contains s * and s * k a Z-precongruence, it is

sufficient to establish that = * satisfies all of the equations E. This we leave to

the reader. ❑

3.3. FULL-ABSTRACTION. In this section we outline the proof of full-

abstraction, namely

For convenience, we abbreviate C1~ [ p] to [p] ~. The first point to note is that

it is sufficient to prove (2) for ~ $ rather than ~ ~. For, in this case, we can

show that ~ ~ and ~ ~ coincide: we already know that ~ ~ L ~ ~ and the

fact that ~ ~ coincides with the preorder generated by the model means that it

is preserved by contexts, that is, ~ J = ~ ~, c. We know ~ & G ~., from

which it now follows that ~ J G ~ ;.

One crucial property of ~ $ that we require is finite approximability.

T~~o~~~ 3,3, ~ ~ is finitely approximable,

The proof of this theorem is quite involved and uses a characterization of ~ .

in terms of a modal property language similar to that in [2] and [20]. The next

section is entirely devoted to the exposition of the proof. Since it is independent

of the rest of the paper, we assume the theorem in the remainder of this section.



166 L. ACETO AND M. HENNESSl-

Another property that reestablish isapartial completeness result, namely:

THEOREM 3.4. For d ~FRECz, p e RECZ, d = *P implies [d]~ s [p]~.

Using these two theorems we now show how to establish full-abstraction (2).

The proof actually requires some general results about the semantic mappings

defined in Section 2.2, which may be found in [1 1], [15], and [18]. The first

states that for any p = RECZ there exists an infinite sequence of finite

approximations p” ~ FRECZ such that, for any interpretation A,

The second states that for interpretations of the form C1~, for each d,

e ~ FRECZ,

~d]~= [e]~ if, and only if, ds~e.

Finally, every finite approximation p“ may be generated syntactically from p.

Let < be the least Z-precongruence over REC~ which satisfies

(Ret) recx. t = t[recx. t/x],

Then, for every n z O, pn < p. These general results may now be applied to

prove:

THEOREM 3.5 (FULL-ABSTRACTION) . For p, q e RECZ, (p] ~ s [g] ~ iff

p~:q.

PROOF. Suppose [p] ~ < ~q] ~. Since we may assume that ~ ~ is fa. it is

sufficient to show that, for finite d, if d ~ fp, then d ~ fq. From the partial

completeness result and the coincidence of s * and ~ ~ over FREC~ x

RECX, we may assume that, for such a d, [d] ~ s [p] ~ and therefore

[d]~ s [q]~. Now, since d6FREC~, [d] ~ is a finite element in the

algebraic cpo C1~. This means that, for some n > 0, [d) ~ s [q”] ~, that is,

d = ~ q”. From Proposition 3.2 it follows that d ~ ~q’. Now, it is trivial to

check that both of the laws (Q) and ( Ret) are satisfied by s *, that is,

< G s*, from which it follows that q” ~ ~q. We may therefore conclude that

d~~q.

The converse is even more straightforward as it is an immediate consequence

of the partial completeness theorem. Let us recall that s ~1, denotes the

relation over REC~ x REC~ defined by p s ~lEg iff [p] ~ s ~g] ~. 13y the

construction of C1~, it is a fmltely approximable relation. So, it is sufficient to

show that if d ~ fip, for d c FREC.., then d s CI~P. But, as ~ ~ and s *
coincide over FRECX x RECZ, this is precisely the statement of Theorem 3.4.

❑

There may be other models which are fully abstract with respect to ~ ~ over

RECX. However, C1~ is characterized by being initial in the category of fully

abstract models and continuous Z-homomorphisms. A Z-cpo A is called

consistent if, for each p. q E RECX,

PL!9 implies A[p] < A[q].
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The next theorem states that C1~ is initial in the category of consistent

models and continuous Z-homomorphisms. Since every fully abstract model is

obviously consistent, this implies that Cl~ is, up to isomorphism, the initial

fully abstract model.

THEOREM 3.6. Let A be a consistent E-cpo. Then there exists a unique

continuous E-homomorphism h~: CI~ ~ A.

PROOF. Assume #l is a consistent ~-cpo. By the full abstraction theorem,

[P] ~ ~ [q] ~ iff P ~ :9, for each P, q sREC.. As A is consistent,
for each p, q e RECX, [p]~ < ~q]~ implies A[p] s A[q]. Thus,

A e V(s =1 ), the category of Z-cpo’s that satisfy the relation s ~1~ and

continuous ‘%-homomorphisms. As CI~ is initial in ti’(s ~,,) and A e

%’(5 ~1 ), we thus have that there exists a unique continuous Z-homomorphism

h~: CIj~A. ❑

So we have reduced full-abstraction to two theorems, Theorem 3.3 and

Theorem 3.4. As already stated, the former is the subject of the next section, so

in the remainder of this subsection we prove the latter. The proof of the partial

completeness theorem follows the lines of the completeness theorems for finite

terms in [16], [20], and [36], except that some care must be taken in the form of

induction used— one of our terms may be infinite.

We first show that all finite terms may be reduced to a suitable normal form.

The following facts will be useful in the syntactic manipulations to follow:

LEMMA 3.4. The following are derived laws of the set of inequations E:

(Dl) r; K1 = Q,

(D2)T; (x+~) =x+!J.

PROOF. Left to the reader. The proof of (D2) uses axioms (Q 1), ( !J2), and

(T2). ❑

Definition 3.2. The set of normal forms ( nfs) is the least subset of

REC= that satisfies:

(i) 6 is an nf,

(ii) Xpl; Pi{ +Q} is an nf if

(a) each p, is a nf, and

(b) if, for some i, pi is ~, then Pi Jl .

The notation { + Q} is used, as usual, to indicate that Q is an optional

summand.

Note that, according to the definition, if n is an nf, then n II iff Q is a

summand of n.

PROPOSITION 3.3 (NORMALIZATION) . For each d ~ FRECX, there exists an

nf, nf (d), such that nf (d) =~ d and depth(d) = depth(nf ( d)).

PROOF. By induction on the depth of d. We proceed by case analysis on the

structure of d. We examine only two cases leaving the others to the reader.

d = e; f By the inductive hypothesis, e =~ nf ( e) and f =~ nf ( f ). If nf ( e) = 8,

then d = e; f =~ 6; f =~ 6, which is an nf. If nf(e) - nil, then d = e;
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f =~ nf (~). Otherwise,

e:~=~(xp,;e,{+~});~

=~Z(pl;et);~{+Q;~}j by repeated application of B4,

=~ I~,; (e,; ~){+Q} by Ql, f14, and

repeated application of B3.

As the depth of e,; f is less than that of e; f, for each i, we may apply the

inductive hypothesis to obtain an nf r, such that ml =~ e,; f, for each i.

Thus, e; f =~ EI-L,; m{{ +!2}. Assume now that I.LJ= ~ and ~j I? for

some j. Then Q is a summand of Ty. Let mJ be F + Q. Then,

e;f=~ ~p,:7rl{+Kl} +7;(7+~)
r#j

=E ~ p,; TL{+Q} + i+ Q by induction and D2.
I ~j

This procedure can be iterated to obtain an nf.

d = e I f By the inductive hypothesis, e =~nf (e) and f =Enf ( f ). If

nf ( e = 8, then there are two cases to examine:

—nf(f) = 6. Then, et f =~ al ~ =~ 8. by axiom Cl.

—nf ( f ) = Z ,CIK,; f,{ + 0}. We distinguish two cases:

If 1 = a, then, by axiom C2, e I f =~ 8{ + ~}. A normal form may now

be obtained by possibly applying axioms Al and A5.

If 1 # @, then, by axiom C2,

elf=E~l(Zk; f,{+ Q}] =E~lwj:(df[){+Q}
161

By the inductive hypothesis, for each i e 1, there exists a normal form m,

such that m, =F 8 I fi. Thus e I f =~ Z,GIW,; r,{ +~}. Assume now

that there exists j e 1 such that KJ = ~ and ~J t? . Then. as TJ is an nf,

xl =~ r + Q, where r U . Thus,

T;7rJ=F T;(7r+Q)=E7r+fl by D2

Iterating this procedure we may generate a normal form.

So by symmetry, we may assume that nf ( e) and nf (f’) are both different

and nf(f) G

f,)
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by applying axiom Exp. By the inductive hypothesis, for each i e 1, j e J,

and (i, j) such that pl = ~j there exist normal forms TZ, Zj, and r,Y such

that

T, =E e, Inf(f), ‘j =Enf(e) I fj, and ‘i~ ‘E ‘t I f].

Thus, e I f ‘~ ~icI~[; ~i + ~j~J~jj ~j + ~(,, J): ~,=Y,T~“ Ttj{ +Q} . As-

sume now that there exists i, c 1 such that pi, = ~ and xi, t . Then, as mi,

is an nf, T, =~ Z + Q, where F Jl . Thus,

The same applies to each j e J such that -yj = ~ and TJ 1? and to each r,j

such that n-ij lt . Iterating this procedure we may generate an nf. ❑

The above proposition tells us that we can deal with the set of normal forms

instead of l?RIZCz. This is first applied in proving the following technical

result:

FACT 3.2. For each d~FRECX, d b andd II a imply d =~ d+ a; !J.

PROOF. By the above proposition we may assume, without loss of general-

ity, that d is an nf. The proof is by induction on the depth of the nf d E

~ i=I~i; d,. By the definitions of the divergence predicates, d t a and d V

imply d ~ e for some e I? . There are two cases to examine:

(1) d ~ e and e 11. Then, there exists i = I such that p, = a and d, - e. Since

e is an nf, e I? implies e =~ e + Q. Hence

d=~d+a; (e+~)

=~d+a; (e+~; !J) by (D 1) and substitutivity

=~d+a; (e+~; ~)+a; ~ by (T3)

=~d+a;~.

(2) d: d’ ~ e and e fi . Then, d’ ft a. Moreover, as d is an nf and d J , d’ is

an nf and d 11. Thus, by the inductive hypothesis, d =~ d’ + a; !J, We

can then calculate

d=~d+r; d as p,=randd, =d,

for some i ~ 1,

=~d+~; (d’+ a;~)

=~d+~; (d’+ a;~)+d’+a; ~ by (T2)

=~d+a;~ by (T2)and(Al)-(A3)

This completes the proof. ❑

We would not expect arbitrary terms from RECX to have normal forms

since the process of normalization may not terminate. However, for weakly
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convergent terms, we have a weaker form of normal forms, called head

normal forms; these look like normal forms at the topmost level.

Definition 3.3. The set of head normal forms ( lmfs) is the least subset of

REC~ that satisfies:

–6 is an hnf,

— Xp,; P, is an hnf if, for each i, p, = r implies p, is an hnf.

It is easy to check that if h is an hnf, then h U . It would not be reasonable to

expect all terms to be reducible to hnfs using the equations E. For example,

p = recx. a; x is not an hnf, and applying equations to it will not help.

However, if we are allowed to expand recursive definitions, that is, use the

axiom (Ret), then p can be rewritten to a; rec x. a; x, which is an hnf. Let us

use s ~, to denote the precongruence obtained by allowing the use of axiom

(Ret). In this extended rewrite system, all weakly convergent terms may be

reduced to hnfs.

PROPOSITION3.4. For each p ~ RECZ, such that p v , there exists an hnf

h(p) such that p =~, h(p).

PROOF. We assume that, for each q such that p ~ q, q has an hnf. The

proof then proceeds by induction on why p J. We examine only two cases of

the inductive definition of J.

p=

p.

The

q; r Then (q; r)~ iff (i) qJ and r~ or (ii) q~~ and q $.

If (i) holds, then, by induction, r =~, h( ~). It is easy to show that q~

implies q =~, nil. Hence q; r“ =E7 nil; h(r) =~~ h( r).

If (ii) holds, then, by induction, q =~ 8 or q =E, h( q) ~ X p,: 9,. If

q ‘~ ~, then apply D2 to obtain an hnf. Otherwise, q: r =~, h( q); r.

Recall that all hnfs are weakly convergent. Then

h(9); ~=(zvt; 9i)i~=Erx(P1;9i): ~ by repeated use of B4

=EJZP,; (W) by repeated use of B3.

Assume that there exists j such th@ pj = ~. ~hen,

By hypothesis, there exists an hnf h such that h =~,

by B3 and B1. Thus, each g]; r such that KJ =

J={~/pJ=~}. Then

~ ~T; zj+ ~p,;( q,;q;r=

Jd j#J

which is an hnf.

h(q); r~(nil; q,): r.

(nil; qJ); r =~, 4J; r,

~ has an hnf ~,. Let

r),

rec x. t. Then ( rec x. t) L iff t [ rec x. t/x] L. By the inductive hypothesis,

there exists an hnf h such that

t[recx. t/x] =~, h.

Thus, by axiom (Ret),

rec x. t =~~ t[recx. t/x] =~, h.

other cases can be checked as in Proposition 3.3. •l
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A standard ingredient in the proofs of the equational characterization of

bisimulation type relations is the so-called derivation lemma [19, 20, 36]. We

also need such a lemma and, although it is not strictly necessary, it will be

convenient to extend the set of equations with

(X1) (X+ P: Y) IZ=(X+P; Y) IZ+P; (Y I z)>

(X2) (x+a; y)l(z+.2; w)=(x+a; y)l(z +ti; w)+~; (yl w),

(X3) ZI(X+P; Y)= ZI(X+P; Y)+ P;(ZI Y).

These equations are satisfied by the interpretation C1~ and so including them is

harmless. Let F’ denote the extended set of equations obtained by augmenting

E with axioms (Xl), (X2), (X3), and (Ret).

PROPOSITION 3.5. Forp ~RECx, p Z q impliesp =~ p + p; q.

PROOF. By induction on the derivation, p ~ q.

Basis. P z q. We proceed by a subkluctim on why p ~ q. Most cases

are straightforward, so we just give the proof for a few selected cases in which

the auxiliary axioms are used.

—P = PI I PZ, PI: ql and q = ql I PZ. BY the subinductive hywhesk PI

‘~ PI + p; ql. Hence

P11P2 =F(P1 + w;ql)l P2

=F(Pl+w; ql)l P2+w; (911P.?) by Xl

=FPll P2+w; (qll P?).

—P=Pl\P23 PI ~ ql and Pz ~ qz. Then, by the subinductive hypothesis,

PI ‘F PI + a; ql and PI ‘F Pz + ~; qz. Thus

P11P2 =F(P1 +~; ql)l(P?+zc72)

=F(P1 +~; ql)l(P2+~; q2) +~; (qll!h) by X2

=FPll P2+7-; (qllq2).

—p = recx. t and t[recx. t/x] ~ q. By the subinductive hypothesis,

t[recx. t/x] =F t[recx. t /x] + p; q. The claim now follows by axiom

(Ret).

Inductive step. We distinguish two cases:

(i) p ~p’ S q. By induction, p =~ p + p; p’ and p’ =~ p’ + T: q. Thus

P=17P+P; (P’+~; q)

‘Fp+p; (p’+ 7;q)+~; q by T3

=Fp+p; q.
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(ii) p~p’~q. By induction, P=FP+?; P’ and p’ =~p’+p; q. Thus

P=FP+~; (P’+ v;!7)

=Fp+7; (p’+ p;q)+p’+p; q by T2

=Fp+r; p’+p’+p; q

=Fp+r; p’+p; q by T2

=FP+P;9.

This completes the inductive argument. ❑

To prove the partial completeness result for < ~ over lRECX x REC,, we

need one further technical result. This is an adaptation of a result orig~nally

shown for observational equivalence [29], and further adapted in [36] to

prebisimulations.

LEMMA 3.5. For each p, q~RECx, p s q impliesp <*q or r; p <*q

orp s*r; q.

PROOF. Assume p, q ~ REC’Z and p s q. There are three possibilities:

(i) 1P’: P 4P’ and p’ s q,

(ii) ~q’: q ~ q’ and p s q’,

(iii) neither (i) or (ii) holds.

If (i) holds, then we show that p s *7; q. This follows easily by noting that

now the move p ~ p’ matches ~; q ~ nil; q = *q (where = * denotes the

kernel of s *). Moreover, q~ iff ~; q~.

If (ii) holds, then one may show that ~; p s *q. This follows easily from an

argument that is based on the following observations:

—~; p Jl ~ implies p U T. Then, as p s q. q U T. Moreover, the move q ~ q’

matches r; p ~ nil; p = *P.

—r; p U iff p 4. Moreover, r; p~ iff pd.

If (iii) holds, then it is easy to show that p s *q. El

The above lemma will be used in the proof of relative completeness to relate

processes with respect to s and ~ *, that is, in each case in which we how

that p s q we distinguish three cases:

P ~*q2 r;ps *q, and ps*T:q.

The proof of completeness will use induction over a binary relation < over

FRECZ x REC’~. The relation < is defined as follows:

Definition 3.4. For each (d, p), (d’, p’) ~FREC5 x RECZ, (d, p) {{

(d. p’) iff

(i) depth(d) < depth(d), or

(ii) depth(d) = depth(d), p’ J and p’ S p.
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To apply induction over << , we need to know that << is a well-founded re-

lation over FRECX x RECV, that is, for each (d, p) ~ FRECZ x REC~,

there does not exist an in~inite descending chain (d, p) >> ( dO, PO) })

(d, >p, ) ““” . However, the well-foundedness of << is an easy consequence of

the finiteness of depth(d), d ~ FRECZ, the depth of the derivation tree of d,

and of the fact that p o implies p ~ . We have now got all the technical

machinery that we need to prove the partial completeness result.

THEOREM 3.7 (PARTIAL COMPLETENESS). For each d e FRECX, p e RECZ,

d s *p implies [d]~ s [P]~-

PROOF. First, note that the interpretation C1~ satisfies all of the equations in

F. As a result p s ~q implies [p] ~ s [q] ~ and so it is sufficient to show that

d s *p implies d < ~p. The proof is by induction over << . By Proposition

3.3, we may assume that d is a normal form. By definition of normal form, d

is either 6 or Z pi; di{ +0}.
P

If d= 6, then 6 <*p implies p+, for each p~Act,, p#~ and p O .

Then, by Proposition 3.4, there exists a hnf h such that h =~, p. By the above

observations we get that, as =~, is sound with respect to = *, it must be the

case that h = 6. Hence, p =~, 6. This implies p =~ 6.

Thus, we may assume that d = E p,; d,{ + ~}. For technical reasons that

will be clear in the remainder of the proof, it will be convenient to isolate the

case in which d is of the form ~; e for some nf e.

–d = ~; e. Since d is a normal form we can assume d U . The proof of the

statement d < ~p is divided into two steps:

(i) We prove that r; e +p <~p. As T; e S*P and r; e: nil; e ~*e

then, as e Jl , there exists p’ such that p ~ p’ and e 5 p’. By Lemma

3.5, e S p’ implies

It is easy to see that:

(e, d) << (~; e,p), as depth(e) < depth (T; e),

(~; e,p’) << (~; e,p), as PJ andp~p’, and

(e, ~;p’) << (~; e,p) as depth(e) < depth (7; e);

thus we may apply induction to obtain

e 5 ~p’ or r;e<~p’ or e<~r; p’.

In each case, we obtain, by possibly applying axiom T1, that r; e s ~

r; p’. Since p & p’, we may apply Proposition 3.5 to deduce that

p+.; p’ =~ p. Hence, r;e+pspp-l-r;p’;.~. p.

(ii) We Prove r;e<Fr; e+p. &pJJ , by Proposltlon 3.4, there exists

an hnf h such that p =~, h. This obviously implies p ‘F h. Nlore-

over, as r; e s *p, h must have the form Z p,; p,. We show that, for

each i, T; e SFT; e + pi; P,. We distinguish two cases:
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(1) ~in~. Then p~tnil; pl=*pl. Since ~;e~~, there exists e’

such that r; e S e’ and e’ s p,. Once again, by Lemma 3.5,

e’ S pi implies

e’ s *p, or p, orT; e’<* e’ 5*r; pl.

Moreover, reasoning as in case (i), we may apply induction to

obtain

e’<~pl or ?;e’<Fpl or e’ <~r;p,.

In each case, we get, by possibly applying T1, that 7; e’ s ~~; p,.

By Proposition 3.5, ~; e =F ~; e + ~; e’ <Fr; e + ~; p,.

(2) p, = a. We distinguish two subcases:

(A)

(B)

If ~; e J a, then there exists e’ such that ~; e ~ e’ and e’ 5 p,.

By Lemma 3.5, e’ = p, implies

e’ 5 *p, or T;e’ S*pI or e’ <* T;pL.

In each case depth(e’) < depth(r; e) and depth(r; e’) <

depth( r; e); thus, we may apply induction to obtain

e’<~p, or r;e’=~pi or e’ SF T; p,.

In each case, by possibly applying T1, a; e’ s ~ a; P,. By

Proposition 3.5, ~; e =F ~; e + a; e’ <~ ~; e + a;pl;

if ~; e 0 a, then, by Fact 3.2 and the definition of ==, ~; e u

and ~; e lt a imply ~; e =F ~; e + a; 0. This implies that

r;e=~r; e+a; ~~~r; e+ a; p,.

This completes the proof of the fact that ~; e < ~~; e + p,; p,, for each

i.

Combining (i) and (ii), we get that ~; e s ~ ~; e + Zp,; p, =F ~; e +P SF

p, and this finishes the proof for the case d - ~; e.

— We now consider the general case, d - Z ~,; d,{ + Q}. To show that

d s ~ p, we follow the pattern used above.

(i) We prove, first of all, that p,; d, + p s ~ p, for each i. As d is an nf
P,

and d s *P. then d ~ nil; d, = *d, implies that there exists p’ such that

p ~ p’ and d, s p’ (note that if p, = r, then, as d is an nf, d, U ). By

Lemma 3.5, d, s p’ implies

di ~ *p’ or r;dl <*p’ or d, 5*T; p’.

If d, 5 *p’ or di s *r; p’, we have that depth( d,) < depth(d); lhus,

we may apply induction to obtain d, s ~ p’ or d, s ~ r; p’. If r; d, s

*p’, then we might not be able to apply induction (e.g., consider the case

in which depth(d) = depth( r; d,) and p lt ). However, by the case

d ~ ~; e examined above, we know that, as ~; d, is itself an nf.
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r; di < ~ p’. So in each of the three cases, by possibly applying T

obtain pi; d, 5 ~~i; p’.

Hence, pi; di + p s ~~i; p’ + p and, by Proposition 3.5, P ‘~

~,; p’. Thus, for each i, pi; d, + p s ~P.

(ii) We now show that d s ~ d + p.

175

, we

p+

(A) If 0 is a summand of d, then d =~ d + ~ < ~ d + p and we are

done.

(B) If Q is not a summand of d, then d O . Since d s *p and d J , we

have that p U . Thus, by Proposition 3.4, there exists an hnf

~~i; Pi such that P ‘F EIL,; P1. As in case (ii) of the part of the

proof concerning the case d = ~; e, we can show that, for each

i,d<~d+~l; pl. Thus, d< Fd+P.

Combining (i) and (ii), we get that d s ~ d + p s ~ p.

This completes the proof. ❑

4. Finite Approximability

This section is entirely devoted to proving that ~ $ is finitely approximable.

Using the fact that ~ ~ coincides with ~ ~, it 1s quite easy to see that it is

sufficient to establish that ~ ~ is finitely approximable. This is carried out in

two stages. The first consists in a modal characterization of ~ .; we define a set

&“ of modal formulas, d and a satisfaction relation i= with the property that

PLU9 iff {OlPl=4}~{@191=4}.

This is the topic of Section 4.1 and is a simple modification of similar results in

[2], [201, [27], and [35]. In Section 4.2, we show that satisfying a particular

modal formula + depends on a finite amount of information. More precisely, if

p I= +, then there is a finite term d( p, 4) from FRECZ such that d( p. ~) E @

and d( p, ~) ~ ~p. Intuitively, d( p, o) represents the finite part of p which

ensures that p satisfies +. These two results are combined in the final theorem

of the paper, Theorem 4.3, which establishes that ~ . and ~ ~ coincide.

4.1. MODAL CHARACTERIZATION OF ~ . . We introduce a modal language

which is a slight reformulation of the program logics introduced in [2], [20],

[27], and [35]. The added atomic formulas will reflect the extra deadlock

structure, which is present in the definition of our transition system semantics

for RECZ.

Definition 4.1. Let $ be the least class of formulas generated by the

following clauses:

—V, A, T, 1E2,

–~,~e~imply4A~,~V#E~,

—ae Act U {e}, o=~, imply (u)4, [u]OCY.

The metavariables o, ~, P - “ “ will range over ~.
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The satisfaction relation e G REC2 x & is defined as follows:

pKT always.

pl= (a)@ * 3q:pz Iqandqt=~,

Here p S q is used to mean p ~ q or p - q; moreover, p U e iff p 0. The

set of modal formulas in ~ satisfied by a process p c RECZ. Y’ ( p), is given

by:

Y’(p) =def{@GY’l p!=@}.

The modal depth of a formula ~, md( ~ ), is defined by structural recursion as

follows:

red(T) = md(l)=O,

red(V) = red(A) = I,

md((a)@) = md([a]q5) = 1 + md(q5).

For each ~, md( +) measures the maximum depth of the nesting of modalities

and atomic formulas A and V in ~. For example, md((a)([ b] T V [c][ d] V)) = 4

and md((a)A A [b]T) = 2.

THEOREM 4.1 (MODAL CHARACTERIZATION THEOREM). For p, q e RECZ,

p~dq iff Y’(p) G -$?(q).

PROOF, Let J? ‘“) denote the subset of modal formulas o e ~ such that

md( @) s rz. To prove the “only ifl’ implication, it is sufficient to show that, for

each nsu, ~~y(n),

We proceed by induction on n. The claim is trivial for n = O. Assume

p~.+lq; we show that, for each @e ~(n+l), p = @ implies q E $. The

proof proceeds by structural induction over ~. We consider only two cases and

leave the others to the reader.

4 = V. Obviously V = &“(”+’). Assume p E V. By the definition of e ,

p b V iff p IJ and pd. Since p~ ~+lq, we have that q ~ and q~.

Thus, q E V.

+ - [a]+. Assume p = [cY]4. Then. by the definition of I= , p L a and,

for each p’ such that p Z p’, p I= +. Since p ~ ~h ,q, p U a implies

q Jl a. Moreover, it is easy to see that q ~ q’ implies

3p’: p z p’ and p’~~q’.

By the outer inductive hypothesis, q’ b t, for each q’ such that q ~ q’.

Thus q I= [a]+.
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We now show the converse implication. In fact, we show a stronger result that

depends on the sort finiteness of the operational semantics for RECX. Assume

P, q c RECX. Let A be a finite subset of Act U {E} such that e = A and

(SOrt( p) U Sort(q)) – {r} Q ~. Such an A exists by the sort finiteness of

our transition system semantics for REC~. For each n c ~, let & (~> ~) denote

the subset of modal formulas C$over A of modal depth at most n. By induction

on n, we prove that

The base case is vacuous. Assume p ~ ~+ ~q. Then, one of the following cases

occurs:

(1) p ~ p’ and, for all q’, q ~ q’ implies p’#,, q’. By the inductive hypothe-

sis, for each q’ such that q ~ q’ there exists @g,c & ‘A’) such that

p = ~~, and q t# ~~,. The set

F={@q, /q:q’}

might be infinite, for example, if q t V; however, since A is a finite set,

~ ‘~’”) is finite up to logical equivalence -x. Hence 1?/ -X is finite as

well, and there exists a formula ~ c 4? (~ ~”) that is logically equivalent to

Ar. Take ~ = (~)~. Then, md(q5) s n + 1 and p t= ~. On the other

hand, q + ~.

(2) p U u and q ft a. Wedistinguish two cases: if q ~ , then [cY]Te &’(An+l)

and p I= [a] ~ while q ~ [a] T. Otherwise, it must be the case that q fl .

Hence, p ~ [~]T while q t# [6]T.

(3) p J K, q tl I-L, q ~ q’ and, for all p’, p ~p’ implies p’~ ~q’. By the

inductive hypothesis, for each p’ such that p ~ p’ there exists 4P, ~

& ‘~>”) such that p’ E @P, and q’ !# @P,. The set of formulas 17 =

{@P I P: P’} miizht be infinite, however, reasoning as above, we may
deduce the existence of a formula ~ e & (~> “), which is logically equiva-

lent to vr. Take

@=[j]t.

It is easy to see that md( O) s n + 1 and p != ~. On the other hand,

9+4.

(4) p J and 1( p~ iff q~). We may assume, without loss of generality. that

q fi ; otherwise, case (2) applies. There are two subcases to examine:

(a) PJl, qu, p4andq+-J. Then, p~V while q#V.

(b) PJJ, qJl, P#4andq~. Then, p~ Awhile qt#A.

This completes the proof. ❑

4.2. FINITARY PROPERTIES. Let us recall that the finitary part of the preorder

~ ~, ~ ~, is defined as follows:
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As an easy consequence of Theorem 3.2, we have that ~~= LF. More-

over, it is easy to establish that p ~ ~q implies p ~ ~q. We now show that the

converse implication also holds. As stated at the beginning of Section 4, the key

point of the proof of the inclusion ~ ~ G ~ . will be a construction that, given

p c REC~ and 4 c .&”’( p), will generate a finite process ci( p, @) such that

d( p, 4) = @ and cl( p, 0) c p. In order to give the construction of d( p, d).

we need a technical definition that uses the precongruence < ~, defined

immediately before Proposition 3.4:

Definition 4.2. Let p ~ RECX, d e FRECX and suppose that d s ~,p. It

follows that CI~ [ d] s CI~ [ p]. Since CIE is an algebraic cpo, there exists

some n = O such that C’lE [ d] s CIE [ p“]. Since both are finite terms, this

implies d s ~p n and therefore d s ~,p n. So, for d, e e FREC7 such that

d s ~,p and e 5~.P. let d v e denote the least principal approximation pk

such that d < E, p k and e s E~Pk.

This operator will be used in the construction of d( p. ~). In what fol-

lows, we consider Y modulo logical equivalence. Note that, because of this

assumption and the law

[~1 ~ot= ~[+kIE[
when considering formulas of the form [a]@ we can restrict ourselves to the

cases in which @ is either T or has the form v,= 10,, where each @j is either of

the form (6) t or [(3]+, for some 13e Act U {E} and 4cY’.

The construction d( – , – ): {(P, d) I P 1= ~} + FRECX will be given by

induction over the relation < G ( 1’ x RECX) 2 defined as follows:

[

(i) ht(~) < ht(~), or

(o,~) ~ (t. P) @
(ii) ht(~) = ht(~), p ~ and p~q,

where the height of a formula 4, ht( d), is easily defined by structural

recursion on @ [2]. Of course, for the following inductive construction to make

sense we have to ensure that < is a well founded relation. However, this

follows from the fact that ht( d) is finite for each ~ = ~ and the fact that p U

implies that { q I p ~ q} is finite. We can now state and prove the main

theorem of this section.

THEOREM 4.2. For each p ~ RECX, 4 ~ 9’ ( p), there exists a finite process

d( p, ~) w.zch that:

(i) d(p, o) = @, and

(ii) d(p, 0) = ~rp.

PROOF. The proof of

relation < we construct,

the theorem is constructive. By induction on the

for each p = RECZ and $ E ~’ ( p). a finite process

that meets the statement of the theorem. We proceed by structural recursion on

the formula o.

p I= ~ = T. Then, d(p, T) = K1.

@ = 1 . Vacuous.
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p i= 4 = V. Recall that, by the definition of != , p I= V iff p v and pd.

AS P U , p =~, h(p) for some hnf h(p). By the soundness of =E, ,

p = *h(p). Moreover, as P4, h(p) G El=Ir; P, + xje~al; p]. Since

s*~c ., by the modal characterization theorem

~’;P,+~aJ;pjtiV.
.E.7

Take d(p, V) = Xielr; d(pi, V) + zjEJaJ; ~.

– We show that d( p, V) E V. By the inductive hypothesis, d( p,, V) b V,

for each i ~ 1. This implies that d( pi, V) U and d( p,, V){, for each

icl. Thus, d(p, V) U and d(p, V)~ (note that, as p E V, I = @

implies J = @).

—By induction d( PI, V) < ~,pj, for each i e 1, from which it follows that

d(p, V) <~rh(p) =~, p.

pt=~=A. Bythe de finitionof t=, pt=Aiffptl andp+~. Asp4, we

may assume, without loss of generality, that p has either the form 6 or

~,EIr; P, + ~jE.-al; PJ. If p is 6, then d(p, A) = 6.

If P is ~I=I~; Pi + ~j=Ja ; pJ then partition ~ into II =~,~ { i e I I p,~}

and Iz =~~~ {ic Il p,f~~. Note that, as p~~, 1# @ implies 1,#

a. Then

d(p, A) - ~~; d(pl, V) + ~~; d(p,, A) + ~a,;o.
lEZ, ldz j~J

— We show that d( p, A) E A. The claim is trivial when 1 = a. Assume

now 1 # a. Then, 17 # a; thus, d(p, A) : nil; d(p~, A), for some

k e Iz. By the induct[ve hypothesis, d( p~, A) F A. Thus, d( pk, A) ~

~. It is easy to see that d( p, A) U ; in fact, by the inductive hypothesis,

for each i~ll UIz, d(pl, *)V, *e{ A, V}. Thus d(p, A) EA.

—To prove that d( p, A) < ~rp it is sufficient to note that, by induction,

d(p,, V) s ~,pl, for each i~Il, and d(p,, A) s ~,pl, for each i~I1.

pk$=qil Vq5z. Bythe de finitionof ~,p~$lv$ziffp~$lorp~~~.

Assume, without loss of generality, that p t= @l. Then, d( p, ~) =

d( p, @,). Both the statements of the theorem then follow by induction.

p E 41 ~dz. Then, p = 41 and p = @z. Take d(p, ~) = d(p, dl)v

d( p, 4Z). We show that d( p, ~) ~ ~. By the inductive hypothesis,

d(p, O,) i= @i, i = 1,2. By the definition of V, d(p, ~,) <F,d(p,

4,) V d(p, 4Z), i = 1,2. Since ~ and ~. coincide over FREC= x
REC~ by Theorem 3.2, d(p, dl)~ .d(p, @l) Vd(p, d~), i = 1,2. BY

the modal characterization theorem, d( p, ~1) v d( p, ~z) ~ ~,, i = 1,2.

Hence, d(p, 0) = +{ A +2.

p b (a) ~. By the definition of t= , p h (a) ~ iff there exists q such that

P ~ q and q k 4. Then:

—if a = E, then cl(p, (e)~) = ~;d(q,~) + !2;

—if CY= a, then d(p, (a)@) = a; d(q, ~) + ~.

In both cases, it is easy to see that both the statements of the theorem are

met by d( p, (U) +). The details are omitted.
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p b [e]@. By the definition of E , p b [e]@ iff p U and, for eachq such that

p ~ q, q 1= 4. As p U , we may assume, without loss of generality, that p

is an hnf. If p is 6, then d( p, [c] ~) - 6 and both the statements are

trivially seen to hold.

Assume now that p = E,EIr: p, + xle~ al; p]. As previously remarked,

we may assume that up to logical equivalence @ is either T or is of the

form V,,CH ~~, where each ok is of the form (u)@ or [a]+, for some

as Act U {e} and ~ej’.

–If @ is T. then d(p, [c]7’) - ~l=f~; d(p,, [e]T) + Z,=~aj: L?. To

see that d(p, [c]T) = [c]T, it is sufficient to prove that d(p, [c]T) u

This follows from the fact that, by the inductive hypothesis, d( p,, [c] T)

b [c] T and thus d( p,, [~] T) il . for each i E 1. The proof of the fact

that d( p, [~] T) s ~, p is routine and is omitted,

—If $ z v~e~d~, then p t= v~e~d~. This is because there exists k e H
such that p E @k. We proceed by analyzing the form of 4L:

Ok s [Lzli. Then, p JJ a and, for each q such that p ~ q, q D ~. Take

d(p, [E]4) = d(p, [alV). First of all, note that d(p, [a]~) s ~,p

follows immediately by the inductive hypothesis. We now show

that d(p, [a]i) = [~]vll=~~ll. Of course, d(p, [sly) J as, by

the inductive hypothesis, d( p, [a] ~) t= [a] ~. Assume now that

d(p, [aIi) ~ x. If x = d(p, [a]~), then, by the inductive hy-

pothesis, d(p, [a]i) E [a]v = Ok. Hence. d(p. [a]+) I=

Vh~H~h If d(p, [a]~) 4x, then it is easy to see that x E [a]~
as well. Thus, x ~ V h=~~,. This establishes that d( p, [ a]~) t=

[e]VA,H~A.

Ok s (a) ~. Then, P I= (a)~ iff there exists jl e J such that a~l = a

and p~l : q E i, for some q. Take

Note that, by construction and the inductive hypothesis, d( p, 0)

< ErP. We show that d(p, 0) t= [~]v~,~dh. Obviously,

d( p, o) V as, by the inductive hypothesis, d( P,, d) u , for each

i = 1. Assume that d( p, ~) ~ x. Then there are two cases to

examine:

(A) x E d(p, +). Then, d(p, +) ~ nil; d(p,,, (c)V). Since by

the inductive hypothesis d( pj ~, (e) ~) E (e) ~, we have that

d(p, o) = (a)~ and this implies d(p, o) 1= v;l,~oh.

(B) d( p,, 0) ~ x for some i 61. By the inductive hypothesis,

d(p,, ~) ~ ~ and this implies x b v~=[~dl,.
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Ok = [Eli. Take d(p, 0) = d(p, [E]+). Proving that d(p, [e]~) meets

the statement of the theorem is done exactly as in the case

~~ - [a]~.

~~ - (c)~. Take

Note that, by the inductive hypothesis, d( p, (c) 4) < ~,p and, as

d(pl, o) s~,p, (ie I), we also have that XieI~; d(p,, 0) +

XI EJQj; Q ~ E,P. Thus, by the definition of V, d( p, 0) 5 ~,p

and we have checked the second part of the statement of the

theorem.

We are left to show that d( p, ~) = ~. By the inductive hypothe-

sis, d(p,, ~) = ~, for each ie~. Thus, for each iel. d(p,, 0) u .

By the definition of U , this implies that (Z,GI~; d( pi, 4) +

~~=~a.; !J u and therefore that ci?(p, ~) u . Moreover,

d( P, (cj 4) - d( P, @k) s Ok, by the inductive hypothesis. Since

d( P, Ok) L . d( P, 0), by the modal characterization theorem we

get that d( p, ~) = ~~. Hence, by the definition of E , d( p, d)

k ~heH@h”

Assume now that d(p, d) ~ y. Then, since X,eI~; d(p,, o) +

XJ, Jaj; ~ c d( P, d), there exists some i E 1 and x such that

d(pi. 4) ~ x and ~L Y. Since d(pi, 4) t= [E]Vll=H~k we have

that x = V ~,~ ~~. By the modal characterization theorem, the

finiteness of x and y and Theorem 3.2, this implies y E V ~e~+~.

Thus, we have shown that d( p, o) = 4.

The proof of the case 0- [~] V h=~oh iS thus complete.

p != [a]o. Since p = [a]+ we have that p J a. This implies that p O and

thus we may assume, without loss of generality, that p is an hnf. If

P = 6, then d(p, [a]~) -6.

Both the statements of the theorem are easily seen to hold when

d( p, [a] ~) = 6. Assume now that the other case occurs. First of all, note

that d( p, [a] 4) is well defined as

–p K [a] o implies Pi = [ a]~, for each i e 1, and

—p = [a]~ implies pJ E [~]~, for each j e J such that a~ = a.

By the inductive hypothesis, d(p,, [a]~) k [a]@, for each iel, and

d(pj, [~]~) = [c]O, for each j e J such that aj = a. Thus, by the defini-

tion of = , d(pi> [a]@) Y a and d(pj, [e]o) J . It is easy to see that this
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implies cf( p. [ a]~) U a. Assume now that d( p, [a]@) ~ x. Then either

there exists i e I such that d( p,, [a] d) ~ x or, for some j such that

a~ = a, G!(p~, [c] ~) ~ x. In both cases, by the inductive hypothesis and

the definition of = , we get that x I= ~. We have thus shown that

d(p, [a]@) 1= [a]@.

Finally note that, by the inductive hypothesis, d( p,, [a] ~) s ~, p, and

d( p]. [~]d) 5 ~,pj, for each i e 1 and j such that aJ = a. Therefore, by

construction, d( p, [a] ~) s ~,p. This completes the proof of the theorem.

❑

Example 4.1. As an example of application of the construction of d( p, ~)

given in the above proof, we shall give d( p, ~) for p = rec x. (x; a + a) and

4=4,~4,3 with ~1 - (a) [a] 1 and ~z = (a)(a) T. It is easy to see that

p~~as

(a) p t= q$l because p~ nil = [a] 1 , and

(b) p t= ~, because p ~ nil; a I= (a) T.

By the construction of the above theorem, d( p, @,) = a; nil + Q and

d(p, q5z) = a; (a; Q + Q) + Q. Hence,

d(P, d) ~d(p,dl)vd(p,dz) =P2 =~, O+a+ a;a.

After this rather delicate and lengthy proof, we have all the technical machinery

that is needed to prove that the preorder ~ ~ is finitely approximable over

RECX .

THEOREM 4.3. For eachp. q~RECZ, p~ ~q iffp~ ~q.

PROOF. We have already recalled that p ~ ~q implies p ~ ~q. We now

show that the converse implication also holds. Assume that p ~ ~q and p E @,

@e Y. Then, by Theorem 4.2, d(p, +) = qi and d(p, o) s ~,p. By the

soundness of < ~, with respect to ~ ~, d( p, ~) ~ ~p.

Since PC ~q, d(p, d)~ .q. Since. by Theorem 4.2. d(p, o) = ~, by the

modal characterization theorem q E ~. Thus, Y‘ ( P) G .2(q) and, by the

modal characterization theorem, this implies that p ~ ~q. C

Because of the coincidence of ~ and ~ ~ over FREC~ x RECZ, we have

that ~ ~ is indeed the finitary part of the prebisimulation preorder ~, ~‘.

5. Conclusion

In this paper, we have developed a semantic theory for a process algebra that

incorporates some explicit representation of successful termination, deadlock,

and divergence. The process algebra that we have considered has been endowed

with both an operational and a denotational semantics and the two semantic

views of processes have been shown to agree. Namely, we have shown that the

denotational model that we have proposed in this paper, the initial continuous

algebra that satisfies a set of equations CIE, is fully abstract with respect to a

natural operational preorder over the language. The proof of the full abstraction

theorem relies on several results of independent interest; namely, the finite

approximability of the behavioral preorder and a partial completeness result for

the set of inequations 12 with respect to the preorder. The proof of the finite

approximability of the behavioral preorder is one of the main novelties of the
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paper; it relies on a characterization of the behavioral preorder in terms of a

modal logic and makes a fundamental use of a novel construction that produces,

for each term p and modal formula + satisfied by p, a finite approximant

of p, d( p, o), which satisfies d. We believe that the pattern followed in the

proof of Theorem 4.3 provides a general technique to establish the finite

approximability of bisimulation-like preorders that afford logical characteriza-

tions in terms of modal logics allowing finite conjunctions and disjunctions

only.

As pointed out in [16] and [18], our choice of a denotational semantics for the

language studied in this paper gives us a complete axiomatic proof system

(albeit a nonrecursively enumerable one) for closed terms of the language.

Moreover, as our denotational model is based upon the well-known theory of

algebraic cpos, rather than metric spaces as in [6], we may obtain effective

proof systems for the language by using induction rules such as Scott Induction

and Fixed-Point Induction [24]. Other advantages of using the theory of cpos

rather than metric spaces are that all of the usual operators found in process

algebras may be readily interpreted, as no restriction need be placed on the

recursive definitions allowed in the language RJ7CX, and that features like

silent actions and encapsulation/abstraction operators may be smoothly dealt

with within it. On the other hand, using metric spaces, we can only readily

interpret operators that are contractile and this requirement imposes restric-

tions on their applicability. For instance, it is well known that unguarded

recursive definitions give rise to operators which are not contractile. More-

over, essential features of process algebras like silent actions and

abstraction/encapsulation operators have never been dealt with satisfactorily in

this framework.

The language we have considered in this paper incorporates features from

CCS and ACP. It extends ACP by allowing an explicit representation of

successful termination and divergence; moreover, our language allows for

general recursive definitions. The auxiliary operators which ACP uses to

axiomatize I (namely, R, for left-merge, and ) ., for the communication

merge) could be added to our language without affecting the results of the

paper. The language extends CCS as it allows general sequential composition

and an explicit representation of deadlock (as opposed to successful termination).

However, the signature of CCS contains a family of relabeling

operators_ [R], where R: Act, - Act, is a function such that R( @ = R(a)

and R(~) = ~. The introduction of such an operator in the signature of our

language would cause some problems. To see that, we recall that our results

about the finite approximability of the behavioral preorder ~ ~ depend on the

sort-finiteness of our transition system semantics for the language (see Section

4). However, if Act is infinite, this is no longer the case. To show this,

consider an enumeration { a., al, . . . , ai, . . . } of the set of observable actions

Act. Using the enumeration of Act, we may define a relabeling S such that

S( a,) = ai+,, for each i em. Take the process P defined as follows, [21:

p = recx. aO + x[S].

Then it is easy to see that the unguarded recursive definiti~n and the generality

of S give rise to a process that is not sort-finite. In fact, p ~ for each i = u. As

a consequence of these observations, our behavioral preorder would not be

finitely approximable and CIE would not be fully abstract with respect to it.
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However, it may be argued that one rarely, if ever, needs relabeling

operators of such a generality. In practice, relabeling functions are usually

assumed to be constant on all but finitely many actions in A cl,. If we allow

only this kind of relabelings in our language, then the resulting transition

system semantics will again be sort-finite, [1, 2], and thus all of the results of

the paper will carry through to this extended language.

An interesting point to note is that most of the technical analysis of our

operational preorder ~ L has been carried out by using s and s *. Since s

is technically simpler than ~., it might be that some of the results of the paper

could have been obtained m a simpler way by using s: as behavioral

preorder. However, this is not the case. It turns out that no denotational model

of the form CIE, for any set of equations 13’, can be fully abstract with respect

to S:. This is because in such a model all the syntactically finite terms, i.e.

terms from FRECY, are interpreted as semantically finite elements. That is, if

~ ~FREC2 and d ~ Crr P thenj for some finite approximation of P> P n,
~Ir p“. This property does not hold of ~@ and so ~ti can coincide with

S ~I&, for no set of equations ~’. As a counterexample, consider the two

synchronization trees:

d = b;a+~,

where

q(1) = a+r; a;c,

q(k+l)=a+7; q(k)> k~l.

Note that, for each k > 1, a =~ q(k) and therefore d =U p. The finite

approximations to P are all of the form

P’”= ~~~~~hq(k) +~.

However, for each m > 1, d # ~pm. In fact, d ~,~+~pm because, for each k.

o $~+zq(k).
We end this conclusion with a brief comparison with related work. Several

term model constructions [25], for CCS- and SCCS-like languages have been

proposed in the literature (see e.g., [16] and [22]). In each of these papers, a

denotational semantics is given to the languages considered by means of the

initial continuous algebra that satisfies a set of equations ~. The denotational

model is then shown to be fully abstract with respect to a behavioral preorder.

In [12], DeNicola and Hennessy show how the denotational models of the

testing equivalences they introduce have a natural representation in terms of a

particular class of trees, the acceptance trees of [17]. In [2], Abramsky takes a

language-independent standpoint and analyzes the general relationships between

strong prebisimulation, ~, over transition systems and its finitary part, ~ ‘.

Abramsky also shows how his general results may be used to obtain a fully

abstract model wth respect to (the finitary part of) strong prebisimulation over a

version of SCCS [28], with only finite summations and relates his model to the

one in [16]. In [36], a behavioral relation similar to < is studied and applied

to CCS; complete axiomatizations are given for finite and regular processes. In

many ways, the present paper may be considered as an extension of this work,

employing ideas from [22]. It provides the first comprehensive treatment of a
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weak version of prebisimulation and, in addition, it establishes a mathematical

setting within which the notions of termination, divergence, and deadlock may

be compared and contrasted. Similar motivations are at the heart of [9]. There,

Bergstra et al. present several axiomatic systems to reason about successful

termination, deadlock, and divergence in the theories of both bisimulation and

failures equivalence [10]. Models for the equational theories are exhibited; thus,

proving their logical consistency. Apart from a systematic analysis of axiom

systems and semantic models dealing with the notions of abstraction and

divergence, the paper presents a new failure semantics that allow fair abstrac-

tion of unstable divergence. This semantics does not always consider diver-

gence as catastrophic, as it is done in [10], for example, and a weak form of

Koomen’s Fair Abstraction Rule [3] holds for it. The theory presented in [9]

however, only deals with a language without parallel features and no complete-

ness result, relating the axiomatic systems and the equivalences presented in the

paper, is shown. In [33], a modal logic similar to the one employed in Section 4

of this paper is used to construct an information system [34] that generates a

complete partial order of synchronization trees [26], 9C(TZ). The elements of

@,(TX), called forests, are sets of synchronization trees closed with respect to

strong observational equivalence [26] and a suitable metric [14]. Some opera-

tions, among which a general notion of sequential composition dealing with

deadlock and successfi-d termination, are defined over 9C(TX) and used to give

a denotational semantics for a CSP-like language. However, the paper, being

mostly concerned with a study of the mathematical properties of the space

YC(TX), does not attempt an operational justification of the denotational seman-

tics or an equational characterization of the congruence induced by it.

The dichotomy deadlock/successful termination has been dealt with in a

diferent fashion in CSP [10, 23] and the latest papers on ACP [4, 5]. Both

these process algebras introduce an explicit constant standing for successful

termination, SKIP in CSP and e in ACP. These constants obey the following

operational rules:

d
—SKIP + STOP, and

where STOP and 6 are the constants used to denote deadlock in CSP and ACP,

respectively. The intuition captured by the above-given rules is that successful

termination is an action in the behavior of a process, the action processes

perform when they terminate. On the other hand, a deadlocked process like

STOP or 6 is one that cannot perform any move, not even a successful

termination one. This is reflected in the equational laws satisfied by, for

example, E in ACP. For instance, in the equational theory of ACP with the

empty process E, the equation

6+E=C

replaces our 6 + nil = 6. Indeed, in that theory 6 always gets canceled in a

sum context, that is, the equation

X+ti=x

holds without any conditions on x. However, the equation

X+E=X

no longer holds (contrary to what happens for our nil). In the theory of ACP,

these equations express some a priori considerations about the properties that
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concurrent, communicating systems are expected to have and are used to

describe the intended semantics of processes. The consistency of such axiomatic

descriptions of the semantics of processes is then shown by exhibiting models

for the axioms. In this paper, following Milner [26], we have taken the view

that operational semantics should be the touchstone for assessing mathematical

models of concurrent processes. In this approach, operational semantics is used

as a framework within which different intuitions about the behavior of proc-

esses may be expressed and compared. Equational theories, for example,

complete axiomatizations of some notion of behavioral equivalence or preorder,

are then derived from and justified by the operational description of processes.

An operational description of the semantics of processes allows us to discuss

different intuitions about successful termination and deadlock. The approach we

have followed in this paper is based upon the intuition that both deadlocked

processes and successfully terminated ones do not perform any move and that

the only way of behaviorally distinguishing them is to observe their behavior in

contexts built using sequential composition. However, we can revise our

framework in at least two ways so as to give an operational understanding to the

ACP theory of e. One involves changing the interpretation of the termination

predicate ~. Following the intuition underlying the ACP treatment of the

successfully terminated process E, pd may be read as p has a termination

possibility or p may terminate, as it is done in [5]. A termination predicate

which is more in line with the ACP theory may then be defined by changing

rule (iii) of Definition 2.2 to

p~ implies (p + q)~ and (q + p)~.

Another possibility involves the introduction of a special action, ~, and

defining E to be ~; 8. In both cases we would obtain the ACP laws for e.

Alternatively, we could revise the language by replacing nil with e. Our results

carry through to the revised language after simple modifications to the opera-

tional semantics. the set of equations 13, the behavioral preorder and the modal

logic considered in Section 4. These changes are needed in order to take into

account the different nature between e and nil. This shows that the proof

techniques employed in the paper to prove our full abstraction result are indeed

quite general and easily adapted to capture different intuitive notions of

successful termination in a language.
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