

TITLE:

Termination for the Direct Sum of Left-Linear Term Rewriting Systems : Preliminary Draft

AUTHOR(S):

Toyama, Yoshihito

CITATION:

Toyama, Yoshihito. Termination for the Direct Sum of Left-Linear Term Rewriting Systems: Preliminary Draft. 数理解析研究所講究録 1988, 666: 18-28

ISSUE DATE:

1988-07

URL:

http://hdl.handle.net/2433/100689

RIGHT:

Termination for the Direct Sum of Left-Linear Term Rewriting Systems - Preliminary Draft*-

Yoshihito Toyama NTT Basic Research Laboratories 3-9-11 Midori-cho, Musashino-shi, Tokyo 180, Japan

1. Introduction

We prove the following conjecture [1]:

 $R_0 \oplus R_1$ is left-linear and complete (complete = confluent + terminating) iff R_0 and R_1 are so.

Note that $R_0 \oplus R_1$ is confluent iff R_0 and R_1 are so [3]. Clearly, the direct sum of two systems always preserves their left-linearity. It is trivial that if $R_0 \oplus R_1$ is terminating then R_0 and R_1 are so. Thus, in this paper, we shall prove the termination property of $R_0 \oplus R_1$, assuming that R_0 and R_1 are left-linear and complete.

2. Notations and Definitions

Assuming that the reader is familiar with the basic concepts and notations concerning term rewriting systems in [3], we briefly explain notations and definitions for the following discussions.

Let F be a set of function symbols, and let V be a set of variable symbols. By T(F, V), we denote the set of terms constructed from F and V.

Consider disjoint systems R_0 on $T(F_0, V)$ and R_1 on $T(F_1, V)$. Then the direct sum system $R_0 \oplus R_1$ is the term rewriting system on $T(F_0 \cup F_1, V)$. From here on the notation \to represents the reduction relation on $R_0 \oplus R_1$.

^{*}This paper is for LA Symposium in February 1988, Kyoto, Japan

Lemma 2.1. $R_0 \oplus R_1$ is weakly normalizing, i.e., every term M has a normal form (denoted by $M \downarrow$).

The identity of terms of $T(F_0 \cup F_1, V)$ (or syntactical equality) is denoted by \equiv . $\stackrel{*}{\to}$ is the transitive reflexive closure of \to , $\stackrel{+}{\to}$ is the transitive closure of \to , $\stackrel{=}{\to}$ is the reflexive closure of \to , and = is the equivalence relation generated by \to (i.e., the transitive reflexive symmetric closure of \to). $\stackrel{m}{\to}$ denotes a reduction of m ($m \ge 0$) steps.

Definition. A root is a mapping from $T(F_0 \cup F_1, V)$ to $F_0 \cup F_1 \cup V$ as follows: For $M \in T(F_0 \cup F_1, V)$,

$$root(M) = \left\{ egin{array}{ll} f & ext{if } M \equiv f(M_1, \ldots, M_n), \\ M & ext{if } M ext{ is a constant or a variable.} \end{array}
ight.$$

Definition. Let $M \equiv C[B_1, \ldots, B_n] \in T(F_0 \cup F_1, V)$ and $C \not\equiv \square$. Then write $M \equiv C[B_1, \ldots, B_n]$ if $C[\ldots,]$ is a context on F_d and $\forall i, root(B_i) \in F_{\bar{d}}$ $(d \in \{0,1\})$ and $\bar{d} = 1 - d$. Then the set S(M) of the special subterms of M is inductively defined as follows:

$$S(M) = \begin{cases} \{M\} & \text{if } M \in T(F_d, V) \ (d = 0 \text{ or } 1), \\ \bigcup_i S(B_i) \cup \{M\} & \text{if } M \equiv C[B_1, \dots, B_n] \ (n > 0). \end{cases}$$

The set of the special subterms having the root symbol in F_d is denoted by $S_d(M) = \{N | N \in S(M) \text{ and } root(N) \in F_d\}.$

Let $M \equiv C[B_1, \ldots, B_n]$ and $M \xrightarrow{A} N$ (i.e., N results from M by contracting the redex occurrence A). If the redex occurrence A occurs in some B_j , then we write $M \xrightarrow{i} N$; otherwise $M \xrightarrow{o} N$. Here, \xrightarrow{i} and \xrightarrow{o} are called an inner and an outer reduction, respectively.

Definition. For a term $M \in T(F_0 \cup F_1, V)$, the rank of layers of contexts on F_0 and F_1 in M is inductively defined as follows:

$$rank(M) = \begin{cases} 1 & \text{if } M \in T(F_d, V) \ (d = 0 \text{ or } 1), \\ max_i\{rank(B_i)\} + 1 & \text{if } M \equiv C\llbracket B_1, \dots, B_n \rrbracket \ (n > 0). \end{cases}$$

Lemma 2.2. If $M \to N$ then $rank(M) \ge rank(N)$.

Lemma 2.3. Let $M \to N$ and $root(M), root(N) \in F_d$. Then there exists a reduction $M \equiv M_0 \to M_1 \to M_2 \to \cdots \to M_n \equiv N \quad (n \geq 0)$ such that $root(M_i) \in F_d$ for any i.

The set of terms in the reduction graph of M is denoted by $G(M) = \{N | M \xrightarrow{*} N\}$. The set of terms having the root symbol in F_d is denoted by $G_d(M) = \{N | N \in G(M) \text{ and } root(N) \in F_d\}$.

Definition. A term M is persistent iff $G(M) = G_d(M)$ for some d.

Definition. A term M is erasable iff $M \stackrel{*}{\to} x$ for some $x \in V$.

From now on we assume that every term $M \in T(F_0 \cup F_1, V)$ has only x as variable occurrences, unless it is stated otherwise. Since $R_0 \oplus R_1$ is left-linear, this variable convention may be assumed in the following discussions without loss of generality. If we need fresh variable symbols not in terms, we use z, z_1, z_2, \cdots .

3. Essential Subterms

In this section we introduce the concept of the essential subterms. We first prove the following property:

$$\forall N \in G_d(M) \exists P \in S_d(M), M \stackrel{*}{\to} P \stackrel{*}{\to} N.$$

Lemma 3.1. Let $M \to N$ and $Q \in S_d(N)$. Then, there exists some $P \in S_d(M)$ such that $P \stackrel{\equiv}{\to} Q$.

 R_e consists of the single rule $e(x) \triangleright x$. \xrightarrow{e} denotes the reduction relation of R_e , and $\xrightarrow{e'}$ denotes the reduction relation of $R_e \oplus (R_0 \oplus R_1)$ such that if $C[e(P)] \xrightarrow{\Delta} N$ then the redex occurrence Δ does not occur in P. It is easy to show the confluence property of $\xrightarrow{e'}$.

Lemma 3.2. Let
$$C[e(P_1), \dots, e(P_{i-1}), e(P_i), e(P_{i+1}), \dots, e(P_p)] \xrightarrow{k} e(P_i)$$
. Then $C[P_1, \dots, P_{i-1}, e(P_i), P_{i+1}, \dots, P_p] \xrightarrow{k'} e(P_i) \ (k' \leq k)$.

Let $M \equiv C[P] \in T(F_0 \cup F_1, V)$ be a term containing no function symbol e. Now, consider C[e(P)] by replacing the occurrence P in M with e(P). Assume $C[e(P)] \xrightarrow{*} e(P)$. Then, by tracing the reduction path, we can also obtain the reduction $M \equiv C[P] \xrightarrow{*} P$ (denoted by $M \xrightarrow[pull]{*} P$) under $R_0 \oplus R_1$. We say that the reduction $M \xrightarrow[pull]{*} P$ pulls up the occurrence P from M.

Example 3.1. Consider the two systems R_0 and R_1 :

$$R_0 \quad \left\{ \begin{array}{l} F(x) \to G(x,x) \\ G(C,x) \to x \end{array} \right.$$

$$R_1 \quad \left\{ \begin{array}{l} h(x) \to x \end{array} \right.$$

Then we have the reduction:

$$F(e(h(C))) \underset{e'}{\longrightarrow} G(e(h(C), e(h(C))) \underset{e'}{\longrightarrow} G(h(C), e(h(C))) \underset{e'}{\longrightarrow} G(C, e(h(C))) \underset{e'}{\longrightarrow} e(h(C)).$$

Hence $F(h(C)) \xrightarrow{*}_{pull} h(C)$. However, we cannot obtain $F(z) \xrightarrow{*}_{pull} z$. Thus, in generally, we cannot obtain $C[z] \xrightarrow{*}_{pull} z$ from $C[P] \xrightarrow{*}_{pull} P$. \square

Lemma 3.3. Let $P \stackrel{*}{\to} Q$ and let $C[Q] \stackrel{*}{\underset{pull}{\longrightarrow}} Q$. Then $C[P] \stackrel{*}{\underset{pull}{\longrightarrow}} P$.

Lemma 3.4. $\forall N \in G_d(M) \ \exists P \in S_d(M), \ M \xrightarrow[null]{*} P \xrightarrow{*} N.$

Now, we introduce the concept of the essential subterms. The set $E_d(M)$ of the essential subterms of the term $M \in T(F_0 \cup F_1, V)$ is defined as follows:

$$E_d(M) = \{P \mid P \in G(M) \cap S_d(M) \text{ and } \neg \exists Q \in G(M) \cap S_d(M) [Q \xrightarrow{+} P]\}.$$

The following lemmas are easily obtained from the definition of the essential subterms and Lemma 3.4.

Lemma 3.5. $\forall N \in G_d(M) \exists P \in E_d(M), P \stackrel{*}{\rightarrow} N.$

Lemma 3.6.
$$E_d(M) = \phi$$
 iff $G_d(M) = \phi$.

We say M is deterministic for d if $|E_d(M)| = 1$; M is nondeterministic for d if $|E_d(M)| \geq 2$. The following lemma plays an important role in the next section.

Lemma 3.7 If $root(M \downarrow) \in F_d$ then $|E_d(M)| = 1$, i.e., M is deterministic for d.

4. Termination for the Direct Sum

In this section we will show that $R_0 \oplus R_1$ is terminating. Roughly speaking, termination is proven by showing that any infinite reduction $M_0 \to M_1 \to M_2 \to \cdots$ of $R_0 \oplus R_1$ can be translated into an infinite reduction $M_0' \to M_1' \to M_2' \to \cdots$ of R_d .

We first define the term $M^d \in T(F_d, V)$ for any term M and any d.

Definition. For any M and any d, $M^d \in T(F_d, V)$ is defined by induction on rank(M):

- (1) $M^d \equiv M$ if $M \in T(F_d, V)$.
- (2) $M^d \equiv x$ if $E_d(M) = \phi$.
- (3) $M^d \equiv C[M_1^d, \dots, M_m^d]$ if $root(M) \in F_d$ and $M \equiv C[M_1, \dots, M_m]$ (m > 0).
- (4) $M^d \equiv P^d$ if $root(M) \in F_{\bar{d}}$ and $E_d(M) = \{P\}$. Note that rank(P) < rank(M).
- (5) $M^d \equiv C_1[C_2[\cdots C_{p-1}[C_p[x]]\cdots]]$ if $root(M) \in F_{\bar{d}}, E_d(M) = \{P_1, \cdots, P_p\}$ (p > 1), and every P_i^d is erasable. Here $P_i^d \equiv C_i[x] \xrightarrow{*}_{pull} x$ $(i = 1, \cdots, p)$. Note that $rank(P_i) < rank(M)$ for any i.
- (6) $M^d \equiv x$ if $root(M) \in F_{\bar{d}}$, $|E_d(M)| \ge 2$, and not (5).

Note that M^d is not unique if a subterm of M^d is constructed with (5) in the above definition.

Lemma 4.1. $root(M \downarrow) \notin F_d$ iff $M^d \downarrow \equiv x$.

Note. Let $E_d(M) = \{P_1, \dots, P_p\}$ (p > 1). Then, from Lemma 3.6 and Lemma 4.1, it follows that every P_i is erasable. Hence case (6) can be removed from the definition of M^d .

Lemma 4.2. If $P \in E_d(M)$ then $M^d \stackrel{*}{\to} P^d$.

We wish to translate directly an infinite reduction $M_0 \to M_1 \to M_2 \to \cdots$ into an infinite reduction $M_0^d \stackrel{*}{\to} M_1^d \stackrel{*}{\to} M_2^d \stackrel{*}{\to} \cdots$. However, the following example shows that $M_i \to M_{i+1}$ cannot be translated into $M_i^d \stackrel{*}{\to} M_{i+1}^d$ in generally.

Example 4.1. Consider the two systems R_0 and R_1 :

$$R_0 \quad \left\{ \begin{array}{l} F(C,x) \to x \\ F(x,C) \to x \end{array} \right.$$

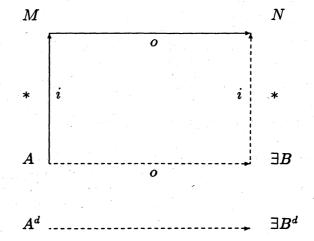
$$R_1 \quad \left\{ egin{array}{l} f(x)
ightarrow g(x) \ f(x)
ightarrow h(x) \ g(x)
ightarrow x \ h(x)
ightarrow x \end{array}
ight.$$

Let $M \equiv F(f(C), h(C)) \to N \equiv F(g(C), h(C))$. Then $E_1(M) = \{f(C)\}$ and $E_1(N) = \{g(C), h(C)\}$. Thus $M^1 \equiv f(x)$, $N^1 \equiv g(h(x))$. It is obvious that $M^1 \stackrel{*}{\to} N^1$ does not hold. \square

Now we will consider to translate indirectly an infinite reduction of $R_0 \oplus R_1$ into an infinite reduction of R_d .

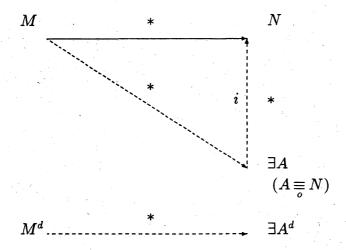
We write $M \equiv N$ when M and N have the same outermost-layer context, i.e., $M \equiv C[M_1, \dots, M_m]$ and $N \equiv C[N_1, \dots, N_m]$ for some M_i , N_i .

Lemma 4.3. Let $A \stackrel{*}{\underset{i}{\longrightarrow}} M$, $M \stackrel{}{\underset{o}{\longrightarrow}} N$, $A \stackrel{}{\underset{o}{=}} M$, and $root(M), root(N) \in F_d$. Then, for any A^d there exist B and B^d such that



Proof. Let $A \equiv C[A_1, \dots, A_m]$, $M \equiv C[M_1, \dots, M_m]$, $N \equiv C'[M_{i_1}, \dots, M_{i_n}]$ $(i_j \in \{1, \dots, m\})$. Take $B \equiv C'[A_{i_1}, \dots, A_{i_n}]$. Then, we can obtain $A \xrightarrow[o]{} B$ and $B \xrightarrow[i]{} N$. From $A^d \equiv C[A_1^d, \dots, A_m^d]$ and $B^d \equiv C'[A_{i_1}^d, \dots, A_{i_n}^d]$, it follows that $A^d \to B^d$. \square

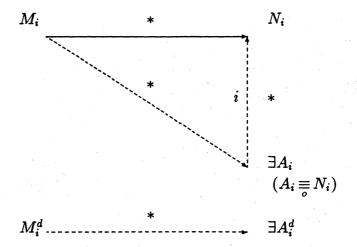
Lemma 4.4. Let $M \xrightarrow{*} N$, $root(N) \in F_d$. Then, for any M^d there exist A $(A \equiv N)$ and A^d such that



Proof. We will prove the lemma by induction on rank(M). The case rank(M) = 1 is trivial by taking $A \equiv N$. Assume the lemma for rank(M) < k. Then we will prove the case rank(M) = k. We start from the following claim.

Claim. The lemma holds if $M \stackrel{*}{\rightarrow} N$.

Proof of the Claim. Let $M \equiv C[M_1, \cdots, M_m] \xrightarrow{*} N \equiv C[N_1, \cdots, N_m]$ where $M_i \xrightarrow{*} N_i$ for every i. We may assume that $N_1 \equiv x, \cdots, N_{p-1} \equiv x, \ root(N_i) \in F_d \ (p \leq i \leq q-1), \ \text{and} \ root(N_j) \in F_{\bar{d}} \ (q \leq j \leq m)$ without loss of generality. Thus $N \equiv C[x, \cdots, x, N_p, \cdots, N_{q-1}, N_q, \cdots, N_m]$. Then, by using the induction hypothesis, every $M_i \ (p \leq i \leq q-1)$ has $A_i \ (A_i \equiv N_i)$ and A_i^d such that



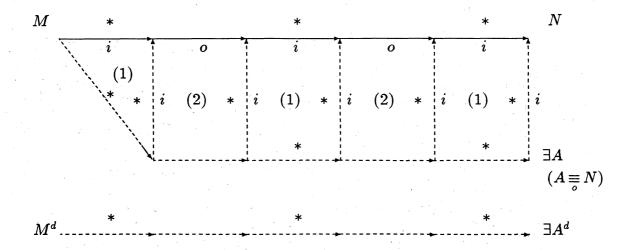
Now, take $A \equiv C[x, \dots, x, A_p, \dots, A_{q-1}, M_q, \dots, M_m]$. It is obvious that $M \stackrel{*}{\to} A$. From Lemma 2.3, we can have the reductions $A_i \stackrel{*}{\to} N_i$ $(p \le i < q)$ and $M_j \stackrel{*}{\to} N_j$ $(q \le j \le m)$ in which every term has a root symbol in $F_{\overline{d}}$. Thus it follows that $A \stackrel{*}{\to} N$ and $A \equiv N$. From Lemma 4.1 and $M_i \downarrow \equiv x$ $(1 \le i < p)$, $M_i^d \downarrow \equiv x$. Therefore, since

 $M^d \equiv C[M_1^d, \cdots, M_{p-1}^d, M_p^d, \cdots, M_{q-1}^d, M_q^d, \cdots, M_m^d]$ and $A^d \equiv C[x, \cdots, x, A_p^d, \cdots, A_{q-1}^d, M_q^d, \cdots, M_m^d]$, it follows that $M^d \stackrel{*}{\to} A^d$. (end of the claim)

Now we will prove the lemma for rank(M) = k. Consider two cases.

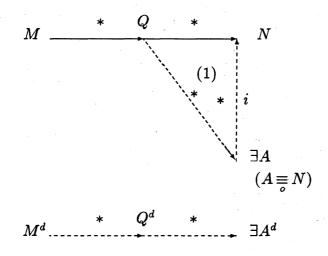
Case 1. $root(M) \in F_d$.

From Lemma 2.3, we may assume that every term in the reduction $M \stackrel{*}{\to} N$ has a root symbol in F_d . By splitting $M \stackrel{*}{\to} N$ into $M \stackrel{*}{\to} \stackrel{*}{\to} \stackrel{*}{\to} \stackrel{*}{\to} \stackrel{*}{\to} \stackrel{*}{\to} \stackrel{*}{\to} N$ and using the claim for diagram (1) and Lemma 5.1 for diagram (2), we can draw the following diagram:



Case 2. $root(M) \in F_{\bar{d}}$.

Then we have some essential subterm $Q \in E_d(M)$ such that $M \stackrel{*}{\to} Q \stackrel{*}{\to} N$. From Lemma 4.2, it follows that $M^d \stackrel{*}{\to} Q^d$. It is obvious that rank(Q) < k. Hence, we can show the following diagram, drawing diagram (1) by the induction hypothesis:



Now we can prove the following theorem:

Theorem 4.1. Every term M has no infinite reduction.

Proof. We will prove the theorem by induction on rank(M). The case rank(M) = 1 is trivial. Assume the theorem for rank(M) < k. Then, we will show the case rank(M) = k. Suppose M has an infinite reduction $M \to \to \to \cdots$. From the induction hypothesis, we can have no infinite inner reduction $\to \to \to \cdots$ in this reduction. Thus, \to must infinitely appear in the infinite reduction. From the induction hypothesis, all of the terms appearing in this reduction have the same rank; hence, their root symbols are in F_d if $root(M) \in F_d$. Hence, from the discussion for Case 1 in the proof of Lemma 4.4, it follows that M^d has an infinite reduction. This contradicts that R_d is terminating. \square

References

- [1] J. W. Klop and H. P. Barendregt, Private communication (January 19, 1986).
- [2] M. Rusinowitch, On termination of the direct sum of term rewriting systems, Inform. Process. Lett. 26 (1987) 65-70.
- [3] Y. Toyama, On the Church-Rosser property for the direct sum of term rewriting systems, J. ACM 34 (1987) 128-143.
- [4] Y. Toyama, Counterexamples to termination for the direct sum of term rewriting systems, *Inform. Process. Lett.* 25 (1987) 141-143.