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Modal Kleene algebras (MKAs) are Kleene algebras with forward and

backward modal operators defined via domain and codomain operations.

The paper formalizes and compares different notions of termination,

including Löb’s formula, in MKA. It studies exhaustive iteration and

gives calculational proofs of two fundamental termination-dependent

statements from rewriting theory: the well-founded union theorem by

Bachmair and Dershowitz and Newman’s lemma. These results are also

of general interest for the termination analysis of programs and state

transition systems.

Kleene algebras, initially conceived as algebras of regular events [5,

12], have by now applications ranging from program development and

analysis to rewriting theory and concurrency control. Recently, they

have been extended to comprise infinite iteration [4] and abstract do-

main and codomain operations [6]. The latter extension leads to modal

Kleene algebras: forward and backward boxes and diamonds are defin-

able “semantically” in terms of domain and codomain operations.

We propose MKAs as a useful tool for termination analysis. It allows

a simple and calculational style of reasoning that is also well-suited for

mechanization. Induction with respect to “external” measures is avoided

in favour of “internal” fixed-point reasoning and contraction law. Point-

*Partially supported by DFG Project InopSys (Interoperability of System Calculi).

Abstract

1. Introduction
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free proofs in the algebra of modal operators introduce a new level of

abstraction and conciseness.

Our main results are as follows. First, we investigate notions of Noe-

thericity and well-foundedness in MKA, abstracted from set-theoretic

relations (cf. [8]). We compare this notion with two alternatives. The

first models termination as absence of proper infinite iteration. We show

that this notion is not equivalent to the previous one, even under natu-

ral additional assumptions. It turns out that the notion of termination

induced by MKA is the more natural and useful one. The second al-

ternative arises in modal logic as Löb’s formula [3] and is essentially

equivalent to the first one. MKA can serve as an algebraic semantics

for modal logics, allowing simple calculational correspondence proofs for

second-order frame properties. Note however, that the star operation of
Kleene algebra is usually not available in classical modal logic.

Second, we continue our research on abstract rewriting in Kleene alge-

bra [16, 17]. We prove Bachmair’s and Dershowitz’s well-founded union
theorem [2] and a variant of Newman’s lemma (cf. [1]) in MKA. These

proofs are simpler than previous results in related structures [8, 14].

Moreover, MKA provides an algebraic semantics for the usual rewrite

diagrams; the algebraic proofs immediately reflect their diagrammatic

counterparts. Together with our earlier results this shows that a large

part of abstract rewriting is indeed conveniently modelled by MKA.

Because of space limitations we suppress some details and additional

results that, however, can be found in [7].

2. Modal Kleene Algebra

A semiring is a structure (K,+, ·,0,1) such that (K, +,0) is a com-

mutative monoid, (K, ·, 1) is a monoid, multiplication distributes over

addition from the left and right and zero is a left and right annihilator,

i.e., for all (the operation symbol ·  is omitted here

and in the sequel). The semiring is idempotent if it satisfies

for all Then K has a natural ordering defined for all

by iff It induces a semilattice with + as join and 0 as
the least element; addition and multiplication are isotone w.r.t.

A Kleene algebra [12] is a structure (K, *) such that K is an idem-

potent semiring, and the star *  satisfies, for the unfold and
induction laws

Therefore, is the least pre-fixpoint and the least fixpoint of the map-

pings and and the star is
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Models of KA are for instance the set-theoretic relations under set

union, relational composition and reflexive transitive closure, the sets of

regular languages (regular events) over some finite alphabet, the algebra

of path sets in a directed graph under path concatenation and the algebra

of imperative programs with angelic choice, composition and iteration.

A Boolean algebra is a complemented distributive lattice. A test

semiring is a structure (K, test(K )), where K is an IL-semiring and

test(K) K is a Boolean algebra embedded into K , such that join

and meet in test (K) coincide with the restrictions of + and · of K to
test(K), resp., and such that 0 and 1 are the least and greatest elements

of test (K). Hence for all But in general, test(K) is

only a subalgebra of the subalgebra of all elements below 1 in K.

We will consistently use the letters for semiring elements and

for Boolean elements. The symbol - denotes complementation

in test(K). We will also use relative complement and
implication with their standard laws.

A Kleene algebra with tests [13] is a test semiring (K, B) such that K

is a KA. For all we have that
Let now a semiring element describe an action or abstract program

and a test a proposition or assertion. Then describes a restricted
program that acts like when the initial state satisfies and aborts

otherwise. Symmetrically, describes a restriction of in its possible

final states. We now introduce an abstract domain operator that
assigns to the test that describes precisely its enabling states.

An semiring with domain [6] is a structure where

K is an idempotent semiring and the domain operation

satisfies for all and

If K is a KA, we speak of a KA with domain, briefly To explain

(d1) and (d2) we note that their conjunction is equivalent to each of

which constitute elimination laws for (llp) and (gla) say that is the

least left preserver and is the greatest left annihilator of resp. Both

properties obviously characterize domain for set-theoretic relations. (d3)
states that the domain of is not determined by the inner structure of

or its codomain; information about in interaction with  suffices.

Many natural properties follow from the axioms. Domain is uniquely

defined. It is strict additive

isotone local and stable on tests

Domain satisfies an import/export law and an
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induction law Finally, domain commutes with

all existing suprema. See [6] for further information.

A codomain operation is easily defined as a domain operation in the

opposite semiring in which the order of multiplication is swapped. We

call a semiring K with domain and codomain also a modal semiring; if

K in addition is a KA, we call it a modal KA (MKA).

Let K be a modal semiring. We introduce forward and backward

diamond operators via abstract preimage and image.

for all and It follows that diamond operators are
strict additive mappings (or hemimorphisms) on the algebra of tests.

Forward and backward diamonds satisfy the exchange law

for all and De Morgan duality transforms dia-

monds into boxes and vice versa, for instance and

This yields Galois connections: for all and

Hence diamonds (boxes) commute with all existing suprema (infima) of

the test algebra and thus are isotone.

In the sequel, when the direction of diamonds and boxes does not

matter, we will use the notation and For a test we have

and Hence, is the identity function on
tests. Moreover, and

We now study the modal operators as objects with their own algebra.

We use the pointwise ordering between functions

and the pointwise liftings of join and meet,

We also use the pointwise liftings of – and to the operator level.

Many properties of modal operators can now be presented much more

succinctly in the respective algebra of operators. First, modalities dis-
tribute through the semiring operators as follows.

Note that the decomposition with respect to multiplication is covariant

for forward modalities and contravariant for backward modalities. The
decomposition can be used to transform expressions into normal form

and to reason entirely at the level of modal o0perators. These laws im-

ply that diamonds are isotone, i.e., implies and boxes
are antitone, i.e., implies
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Next, the test-level Galois connections can be lifted to operators

by setting, for all

Finally, we obtain the following unfold and induction laws (cf. [6]):

3. Termination in Modal Kleene Algebra

We now abstract a notion of termination from the theory of partial
orders. A similar characterization has been used in [10].

According to the standard definition, a relation R on a set A is well-

founded iff every non-empty subset of A has an R-minimal element. In

a K the minimal part of w.r.t. some can

algebraically be characterized as i.e., as the set of points that

have no in So, by contraposition, the well-foundedness
condition holds iff for all one has

Abstracting to a modal semiring K (and using Boolean algebra) we say
that is well-founded or Noetherian, resp., if for all

Note that by de Morgan duality is Noetherian iff, for all

The set of Noetherian elements in K is denoted by

We now state abstract algebraic variants of some simple and well-

known properties of well-founded and Noetherian relations. Because of
symmetry we only treat Noethericity; for algebraic proofs see [6].

LEMMA 1 Let K be with and

(i)
if and in particular

and imply
implies i.e., is irreflexive.

and imply that is is not dense.
iff for

for K KA with domain.
implies and

In general, and do not imply so
that is not a semilattice-ideal. A trivial counterexample is given

by the relations and In Section 7 we will

present commutativity conditions that enforce this implication.

(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
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4. Termination in Modal Logics

We now give two equational characterizations of Noethericity. The

first one uses the star, the second one does not. It holds for the special

case of a transitive Kleenean element i.e., when

Let K be a or a resp. Consider the equations

The equation (14) is a translation of Löb’s formula from modal logic

(cf. [3]) that expresses well-foundedness in Kripke structures. We say

that is pre-Löbian if it satisfies (13). We say that is Löbian if it

satisfies (14). The sets of pre-Löbian and Löbian elements of K are

denoted by and resp.

In the relational model, Löb’s formula states that is transitive and
that there are no infinite We will now relate Löb’s formula and

Noethericity.

THEOREM 2  Let T be the set of transitive elements of
(i)
(ii)
(iii)
(iv)

Properties (i) and (iv) already hold in A calculational proof

of (iii) based on [10] can be found in [6].
The calculational translation between the Löb-formula and our defi-

nition of Noethericity is quite interesting for the correspondence theory

of modal logic. In this view, our property of Noethericity expresses a

frame property, which is part of semantics, whereas the Lob formula

stands for a modal formula, which is part of syntax. In modal semi-
rings, we are able to express syntax and semantics in one and the same

formalism. Moreover, while the traditional proof of the correspondence

uses model-theoretic semantic arguments based on infinite chains, the

algebraic proof is entirely calculational and avoids infinity. This is quite

beneficial for instance for mechanization.

5. Termination via Infinite Iteration

Cohen has extended KA with an operator for modeling infinite iter-
ation [4]; he has also shown applications in concurrency control. In [17],

this algebra has been used for calculating proofs of theorems from ab-

stract rewriting that use simple termination assumptions.

An is a structure where K is a KA and

for all Hence is also the greatest fixpoint of
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Like in Section 2, for a K it seems interesting to lift (15) and

(16) to operator algebras, similar to the laws (8), and (9) for the star.

This is very simple for (15): for

However, as we will see below, there is no law corresponding to (9) and

(16). The proof of (9) uses (llp) and works, since the star occurs at the

left-hand sides of inequalities. There is no similar law that allows us to

handle which occurs at right-hand sides of inequalities.

Instead one can axiomatize the greatest fixpoint     of for

For complete test(K), by the Knaster-Tarski theorem always exists,

since is isotone. Then one can use a weaker axiomatization (see [10])

from which (19) follows by greatest fixpoint fusion.

Since existence of also implies existence of the
least fixpoint      of since In the modal

is known as the halting predicate (see, e.g., [11]). With the help of

we can rephrase Noethericity more concisely as

COROLLARY 3 Define, for fixed  and the function

by If exists and
then has  the  unique  fixpoint

Proof. The star axioms imply that that the least fixpoint of is

But by the assumption and (19) this is also the greatest fixpoint of so

that all fixpoints coincide with it.

It turns out that is more suitable for termination analysis than

In one defines guaranteed termination as the absence of infinite

iteration. We call if and denote by the

set of all elements. To study the relation between and
we call a extensional, if for all

E.g., the language model is not extensional. The following lemma shows,

somewhat surprisingly, that the connection between Noethericity and

does not depend on extensionality, although the two notions

coincide for the extensional relational model.

LEMMA 4 Let K be an with domain.
(i)
(ii)
(iii)
(iv)

for K suitably chosen.
for extensional K suitably chosen.
for non-extensional K suitably chosen.

Proof. (i) Let be Noetherian. By isotonicity, for all
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Hence Noethericity of a implies that for all But,

by strictness of domain, this is the case iff

(ii) In the language model we have if but also

(iii) We use an atomic KA, in which every ele-

ment is the sum of atoms, i.e., minimal nonzero

elements. There are 4 atoms and hence ele-

ments; it is order-isomorphic to the power set of

the set of atoms under inclusion. The atoms of

the test algebra are and i.e., The
domain of an element is the sum of all atomic tests such that

Composition is given by a table for the atoms only; it extends to

the other elements through disjunctivity, thus satisfying this axiom by
construction. E.g., for atoms we set

The algebra is extensional. Moreover, it is easily checked that
0 is the only fixpoint of the function so that

But

(iv) Consider the KA K from [5], p. 101. It consists of elements
the ordering defines the addition table. The only non-trivial

relation in the multiplication table is The star is defined by

and 0* = 1* = 1. We extend K to an by setting

and Moreover, we define domain by and

Since holds in K, i.e., we

have to verify only for the zero. But was

already stated in Lemma 1(i).

By the following corollary, (16) cannot in general be lifted to (19).

COROLLARY 5 There exists such that but

for some

Thus does not entirely capture the notion of termination.

6. Termination of Exhaustive Iteration

We now study the exhaustive finite iteration of an element

Then the set of points from which a terminal point can be reached via
is represented by

PROPOSITION 6 If then i. e., from every starting
point a terminal point can be reached.
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Proof. We calculate a recursion equation for as follows:

The first step uses (21), the second star unfold, the third distributivity
and neutrality of 1, the fourth again (21).

So has to be a fixpoint of which by Noetheric-

ity of and Corollary 3 is unique. Hence our claim is shown if 1 also is

a fixpoint of This holds, since

This theorem shows again that MKA is more adequate for termination

analysis than To see this, consider the algebra LAN of formal

languages which is both an and a with complete test

algebra test(LAN) = {0,1}. In LAN we have when
and hence Moreover, distinguishing the cases

and easy calculations show that in LAN we have This

mirrors the fact that by totality of concatenation a nonempty language

can be iterated indefinitely without reaching a terminal element. But we

also have whenever Therefore, unlike in the relational
model, while still

7. Additivity of Termination

Many statements of abstract rewriting that depend on termination

assumptions can be proved in [17], among them an abstract

variant of Bachmair’s and Dershowitz’s well-founded union theorem [2].

For comparison, we prove that here in MKA.

Consider a KA K and We say that a semi-commutes over

if quasi-commutes over if We write
if semi-commutes over and iff quasi-commutes

over Semi-commutation and quasi-commutation state conditions for

permuting certain steps to the left of others. In general, sequences with

and can be split into a “good” part with all oc-

curring to the left of and into a “bad” part where both kinds

of steps are mixed. The following lemma lifts semi-commutation and

quasi-commutation to sequences of and states a separation law.

LEMMA 7 For a KA K and all
(i)
(ii)
(iii)

A proof of this lemma can be found in [17]. The following lemma

compares quasi-commutation and semi-commutation.
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LEMMA 8 Consider KA K and
(i)

If K is extensional and then

Proof. (i) Let semi-commute over By Kleene algebra,

(ii) Let quasi-commute over and let be Noetherian. First,

The first step uses Lemma 7(iii), the second distributivity and the defi-

nition of the third Lemma 7 (ii), the fourth

To apply Noethericity, we now pass to the modal operator level. To

enhance readability, we write for and for and for

The first step uses isotonicity of minus in its first argument. The second

step uses The third step uses

and antitonicity of subtraction in its second argument. The

fourth step uses and distributivity.

By Lemma 1(vi) we know that is Noetherian iff is. Therefore

whence The claim then
follows from and extensionality.

LEMMA 9 Let K be

(iii)

For all and
For all and imply
For all

Proof. We use the same abbreviations as in the previous proof.

(i)

(ii)

Immediate from Lemma 8 and Lemma 7 (i).

Let and Then by (i),

Now let whence and in particular

Since by Lemma1 (vi) is Noetherian iff is, we have that by
assumption. This can only be the case if

(iii) We calculate

Now is Noetherian if is. Let Then

and follows from the assumptions.

Lemma 9 (ii) and (iii) immediately imply the main theorem of this
section. It generalizes the Bachmair-Dershowitz well-founded union the-

orem from relations to MKA.

THEOREM 10 Let K be an extensional and with
Then iff

(ii)

(i)
(ii)
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These results show that MKA provides proofs for abstract rewrit-

ing that are as simple as those in Note that the original

proofs in [2] are rather informal, while also previous diagrammatic proofs

(e.g. [9]) suppress many elementary steps. In contrast, our algebraic

proofs are complete, formal and still simple. For an extensive discussion
of the relation between the proofs in and their diagrammatic

counterparts see [17]. In particular, the algebraic proofs mirror precisely

the diagrammatic; this also holds for the modal proofs given here.

8. Newman’s Lemma and Normal Forms

We now turn from semi-commutation to commutation and confluence.

For their direct algebraic characterization one either has to use converse

at the element level or a combination of forward and backward modalities
at the operator level. Since converse is not available in MKA, we have
to choose the second alternative.

We say that commute if and commute

locally if These definitions can be visualized as

Then is (locally) confluent if it (locally) commutes with itself.

In the relational setting, the generalization from confluence to com-
mutation has been used in [15] for a theory of term-rewriting with

pre-congruences that extends the traditional equational case. This also
yields generalizations of the Church-Rosser theorem and of Newman’s

lemma. While the former has already been proved in Kleene algebra in

[16], it has been argued in [17] that a proof of Newman’s lemma does

not work in pure Kleene or

For the equational case, [14] gives a calculational proof of Newman’s

lemma in relation algebra. But it cannot be adapted to our case, since

it uses a notion of unique normal form that does not exist in the com-
mutation-based setting. Moreover, conceptually it is nicer to completely

uncouple confluence from normal forms.
We will faithfully reconstruct the diagrammatic proof using Noethe-

rian induction [15]; it turns out that MKA is very well suited for this.

A calculational proof that is close in spirit occurs in [8]. However, it is

more complex in that it uses full residuation, whereas we can make do

with the much weaker concept of modal operators. (The modal box op-
erator corresponds to the monotype factor that is also used in [8].) Also,

the theorem there is more restricted, since it only covers the relational
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case, whereas our result also applies to e.g. the path algebra. Now we

are ready for our generalization of Newman’s lemma.

THEOREM 11 Let K be a modal KA with complete test algebra. If

and and commute locally then and commute.

Proof. The central idea of our proof is to use a generalized predi-

cate that characterizes the set of all points on which and commute

and to retrieve full commutation as a special case. If we can show that

this predicate is contracted by then, by the second form (12) of

Noethericity, we are done. So let us define ( stands for “restricted

commutation”)

states that and commute on all points in The nota-

tion enhances the symmetry of the formulation; it is justified, since
for all tests Clearly, and commute iff Moreover,

is downward closed, i.e., We now de-

fine which exists by completeness of test(K). This

represents the set of all points on which and commute. Completeness

of test(K) implies that · distributes over all suprema in test(K), so that

Moreover, composition with diamonds is uni-
versally disjunctive in both arguments, so that we may infer
Together with downward closure of we therefore obtain

We now show that is contracted by so that

implies For this we first calculate

The first step uses order theory, the second the Galois connection (5),
the third distributivity and Boolean algebra, the fourth (22) and the
definition

So assume By the star fixpoint law (8) and dis-

tributivities, The outer

two of these summands are below by isotonicity, and
neutrality of For the middle summand we first state

This follows by isotonicity, since the definition of and right neutrality

of codomain imply Now we calculate, illustrating
this by a diagram in which the bottom point is in and the two points
in the next higher layer are in and resp.
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The first step uses idempotence of codomain propagation (23) twice

and compositionality, the second the third the assumption

the fourth idempotence of star and compositionality, the
fifth the assumption the sixth idempotence of star and com-

positionality.

We conclude this section by showing that confluence implies unique-

ness of normal forms. As in Section 6, for the element

describes the exhaustive iteration of the points in being

the normal forms. Now, a Kleene element assigns to each point in its

domain at most one point in its codomain iff is deterministic, i.e., iff
This formula corresponds to the relational characterization

of determinacy of (where is converse). Now we can show

LEMMA 12 If a is confluent then is deterministic.
Proof. Plugging in the definition of we calculate

The first step uses compositionality, the second confluence of the third

compositionality again, the fourth the star fixpoint law, distributivity
and (gla), the fifth isotonicity and idempotence of

9. Conclusion

We have used modal KA for termination analysis, introducing and
comparing different notions of termination that arise in this context and

applying our techniques to two examples from abstract rewriting. All

proofs are abstract, concise and entirely calculational. Together with

previous work [16, 17] our case study in abstract rewriting shows that
large parts of this theory can be reconstructed in MKA. By its simplicity,

our approach has considerable potential for mechanization. There are

strong connections with automata-theoretic decision procedures.

From the proof of Newman’s lemma and the associated diagram it

becomes clear that MKA allows one to perform induction in the middle
of an expression. This is not possible in pure Kleene or due

to the shape of the star and omega induction rules. Hence MKA allows
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“context-free” induction, whereas pure Kleene or admit only

“regular” induction. Therefore, in [8] residuals are used to move the

point of induction from inside an expression to its ends and back.

The results of this paper contribute to establishing modal Kleene al-

gebra as a formalism for safe cross-theory reasoning and therefore inter-

operability between different calculi for program analysis. We envision

three main lines of further work. First, the integration of our results

into Hoare-style reasoning and into Kleene algebras for the weakest pre-
condition semantics, second, a further exploitation of the mentioned

connection with the modal and third, further applications of

our technique to the analysis of programs and protocols.
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